[go: up one dir, main page]

EP3918119B1 - Optimierung eines spinnprozesses bezüglich fremdmaterialien. - Google Patents

Optimierung eines spinnprozesses bezüglich fremdmaterialien. Download PDF

Info

Publication number
EP3918119B1
EP3918119B1 EP20704380.3A EP20704380A EP3918119B1 EP 3918119 B1 EP3918119 B1 EP 3918119B1 EP 20704380 A EP20704380 A EP 20704380A EP 3918119 B1 EP3918119 B1 EP 3918119B1
Authority
EP
European Patent Office
Prior art keywords
foreign material
material information
spinning process
foreign
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20704380.3A
Other languages
English (en)
French (fr)
Other versions
EP3918119A1 (de
Inventor
Loris De Vries
Ulf Schneider
Oswald BALDISCHWIELER
Pavel PLISKA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uster Technologies AG
Original Assignee
Uster Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69528515&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3918119(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Uster Technologies AG filed Critical Uster Technologies AG
Publication of EP3918119A1 publication Critical patent/EP3918119A1/de
Application granted granted Critical
Publication of EP3918119B1 publication Critical patent/EP3918119B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/14Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements
    • D01H13/22Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements responsive to presence of irregularities in running material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G31/00Warning or safety devices, e.g. automatic fault detectors, stop motions
    • D01G31/003Detection and removal of impurities
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/14Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/32Counting, measuring, recording or registering devices

Definitions

  • the present invention is in the field of yarn spinning. It relates to a method for optimizing a spinning process with regard to foreign materials and a device for carrying out the method, according to the independent patent claims.
  • the WO-2006/079426 A1 discloses a method and apparatus for separating foreign matter from fibrous material, particularly raw cotton. Such methods are used, for example, in the blowroom to prepare the raw cotton for spinning.
  • a pneumatic fiber transport line the fiber material is guided past a sensor system and a separation device one after the other.
  • foreign materials are detected by the sensor system, they are removed from the fiber transport line through a removal opening in the fiber transport line by means of a compressed air pulse directed transversely to the fiber transport line.
  • a corresponding product is in the brochure " USTER® JOSSI VISION SHIELD 2 - The key to Total Contamination Control", Uster Technologies AG, October 2015 , described.
  • a yarn clearer includes a measuring head with at least one sensor that scans the moving yarn and thereby detects yarn defects such as foreign materials or thick and thin spots. The sensor's output signal is continuously evaluated according to specified criteria.
  • the US-6,244,030 B1 discloses a yarn clearer that not only detects foreign materials but also distinguishes different types of foreign materials from each other. The sensor scans the yarn optically with reflected light. A binning field or matrix is provided. The length of yarn sections is plotted along the horizontal axis of the classification field and the reflectivity of light on the yarn is plotted along the vertical axis.
  • the classification field is divided into 16 classes for light foreign materials and 16 classes for dark foreign materials. Yarn sections of the same class are counted. A corresponding product is in the brochure " USTER® QUANTUM 3 Application Handbook", Section 8.4, Uster Technologies AG, April 2011 , described.
  • the WO-2017/190259 A1 describes a method and apparatus for monitoring contamination in a fiber tuft stream.
  • a first monitor monitors contaminants in a fiber fluff stream while a second monitor monitors contaminants downstream in the textile manufacturing process.
  • the second monitoring device can be a yarn clearer on a winding machine.
  • a control unit is connected to the first and second monitoring devices. It collects data from the two monitors, evaluates them statistically and issues reports produced therefrom to an operator. In a control loop, a limit for removing the impurities in the first monitor is changed depending on a monitoring result of the second monitor.
  • control devices for stretching processes in autoleveling draw frames in the textile industry can operate according to the open or closed control loop principle in order to obtain a strip with a uniform cross-section at the outlet of the stretching passage.
  • the measurement signal from a fast-reacting measuring device at the exit of the section is correlated with another measurement signal at the entry to the section.
  • the parameters that determine the amount of distortion are corrected in such a way that short-term fluctuations in the cross-section of the strip are also compensated for.
  • the transit time of the strip from the actuator to the measuring device at the exit of the draw frame and the overall amplification of the measuring signal are particularly important.
  • the optimization should relate in particular to the yarn quality and/or the production costs: the yarn quality should be increased with the same production costs, the production costs should be reduced with the same yarn quality, or the yarn quality should be increased and the production costs should be reduced at the same time.
  • a higher yarn quality means a lower proportion of disruptive foreign materials in the yarn.
  • the production costs are e.g. influenced by the amount of fiber material rejected as waste and the frequency of winder shutdowns.
  • a further object of the invention is to provide a device for carrying out the method.
  • the invention is based on the idea of associating foreign material information that was determined at two different points in the spinning process with one another and making a change to the spinning process on the basis of the foreign material information that is associated with one another.
  • the allocation must be made in such a way that the foreign material information essentially relates to the same sample of the fiber material.
  • sample refers to an associated quantity of the fiber material which essentially has the same, essentially homogeneously distributed properties.
  • the size of the sample can range from a flock of fibers with a mass of less than 1 g to several tons of fiber material.
  • An example of a sample is a presentation of 50 cotton bales of 220 kg each (total 11 1), as found in an opening shop.
  • the sample goes through the spinning process; their structure and shape change depending on the respective process step.
  • the same sample can B. take the form of raw fibers, fiber flock, batt, sliver, roving or yarn.
  • the sample can be divided into different processing machines during the spinning process.
  • the method according to the invention serves to optimize a spinning process, which is run through by a fiber material fed in in the form of raw fibers and output in the form of yarn, with regard to foreign materials in the fiber material.
  • first foreign material information relating to the foreign materials is ascertained.
  • second foreign material information relating to the foreign materials is determined.
  • the first position or the second position corresponds to a process step from the following set: opening, coarse cleaning, mixing, fine cleaning, carding, doubling, combing, stretching, spinning, rewinding.
  • the first piece of foreign material information and the second piece of foreign material information are associated with one another in such a way that they relate to the same sample of the fiber material.
  • a change is made to the spinning process on the basis of the first piece of foreign material information and the second piece of foreign material information assigned to it.
  • the first foreign material information and the second foreign material information can be determined on the entire sample of the fiber material or on a subset of the sample of the fiber material. It can take place continuously or at discrete points in time. It can be done online in the spinning process or offline by taking the sample of the fiber material or a portion thereof from the spinning process and using it outside of the spinning process, e.g. B. in a textile laboratory is examined.
  • the change to the spinning process may involve a change in the raw fibers fed into the spinning process, or at least part thereof, and/or a change in settings on machines involved in the spinning process.
  • the mutual assignment of the first foreign material information and the second foreign material information preferably includes one of the following steps: determining a throughput time as that time interval during which a fiber runs from the first point to the second point in the spinning process; determining a property of the sample itself; and labeling a carrier of the sample.
  • the throughput time can be determined empirically or theoretically from known processing and storage times.
  • their chemical composition can be used, whereby the natural composition of the fiber by means of genetic analysis and / or an artificially added label (marker) can play a role.
  • the carrier of the sample can be cans or coil cores on which optical and/or electromagnetic markings are applied.
  • a flow of fiber tufts which are pneumatically conveyed in an air current, is monitored for foreign materials.
  • the first piece of foreign material information is determined on the basis of the monitoring.
  • yarn that has been spun from the fiber tufts and is conveyed along its length is monitored for foreign materials.
  • the second piece of foreign material information is determined on the basis of the monitoring.
  • a transit time is defined as the time interval during which a fiber travels from the first point to the second point in the spinning process.
  • the first foreign material information is at a first point in time and the second foreign material information is determined at a second point in time, which is after the first point in time by the throughput time.
  • the first item of foreign material determined in this way and the second item of foreign material determined in this way are assigned to one another.
  • the first foreign matter information is a first foreign matter rate indicating a rate of foreign matter in the fiber flock
  • the second foreign matter information is a second foreign matter rate indicating a rate of foreign matter in the yarn.
  • the first foreign material level substantially indicates a number of foreign materials per unit mass of fiber flock or per unit time
  • the second foreign material level substantially indicates a number of foreign materials per unit mass of yarn, per unit length of yarn or per unit time.
  • the change to the spinning process involves a change in the separation criterion.
  • the first foreign matter information may be a rejection rate indicating a number of rejection per unit mass of fiber floc or per unit time.
  • a relationship between the separation criterion and the separation rate is advantageously determined beforehand, and this relationship is taken into account when the spinning process is changed.
  • the second foreign matter information is a cleaning rate indicating a number of cleaning operations per unit mass of yarn, per unit length of yarn, or per unit time.
  • a connection between the cleaning criterion and the cleaning rate can be determined beforehand and this connection can be taken into account when changing the spinning process.
  • Costs for an elimination can be determined in advance and when changing the spinning process a product of the cost of an elimination and the elimination rate. Costs for a cleaning process can be determined beforehand and a product of the costs for a cleaning process and the cleaning rate can be taken into account when changing the spinning process.
  • the change to the spinning process is advantageously made in such a way that the linear combination takes on a smaller value after the change than before the change, and preferably in such a way that a global minimum of the linear combination is reached.
  • the throughput time can be entered manually by an operator, calculated automatically on the basis of specifications and/or retrieved from a database on the basis of specifications.
  • first classes of foreign materials in the fiber material are predetermined at the first location, which first classes differ from one another with regard to properties of the foreign materials, and the first foreign material information relates to one or more of these first classes.
  • second classes of foreign materials in the fiber material can be predetermined at the second location, which second classes differ from one another with regard to properties of the foreign materials, and the second foreign material information can relate to one or more of these second classes.
  • the first foreign material information and the second foreign material information are issued to an operator at the same time.
  • the simultaneous output of the first foreign material information and the second foreign material information can be at least partially graphical.
  • an evaluation of the first item of foreign material and/or the second item of foreign material can be output to the operator.
  • the evaluation preferably includes at least two categories that indicate appropriate or critical foreign material information.
  • a recommendation for the change in the spinning process can be output to the operator.
  • an alarm is issued to an operator on the basis of the first piece of foreign material information and the second piece of foreign material information associated therewith.
  • a time profile of the first piece of foreign material information and a time profile of the second piece of foreign material information assigned to it are determined, and the alarm is output on the basis of the time profiles.
  • the operator makes the change to the spinning process on the basis of the simultaneously output first piece of foreign material information and second piece of foreign material information, on the basis of the evaluation and/or on the basis of the recommendation.
  • the change to the spinning process is made automatically.
  • a worldwide frequency distribution of a foreign material content in fiber flocks and/or in yarns is determined beforehand, and this frequency distribution is taken into account when changing the spinning process.
  • the invention also relates to a device for carrying out the method according to the invention in a spinning mill carrying out a spinning process which is run through by a fiber material fed in in the form of raw fibers and output in the form of yarn.
  • the device includes a first monitoring device at a first point in the spinning process. The first monitoring device is set up to determine first foreign material information relating to the foreign material.
  • the apparatus further includes a second monitoring device at a second location in the spinning process, downstream of the first location. The second monitoring device is set up to provide a second monitoring device relating to the foreign materials determine foreign material information.
  • the first position or the second position corresponds to a process step from the following set: opening, coarse cleaning, mixing, fine cleaning, carding, doubling, combing, stretching, spinning, rewinding.
  • the device also includes a central control device connected to the first monitoring device and the second monitoring device.
  • the central control device is set up to assign the first piece of foreign material information and the second piece of foreign material information to one another and to automatically make a change to the spinning process on the basis of the first piece of foreign material information and the second piece of foreign material information assigned to it.
  • the central control device is set up to simultaneously output the first item of foreign material information and the second item of foreign material information to an operator.
  • the apparatus includes a fiber tuft monitor at the first point in the spinning process.
  • the fiber tuft monitoring device is set up to monitor a stream of fiber tufts, which are conveyed pneumatically in an air stream, for foreign materials and to determine the first item of foreign material information on the basis of the monitoring.
  • the device also includes a yarn monitoring device at the second point in the spinning process.
  • the yarn monitoring device is set up to monitor yarn that has been spun from the fiber tufts and is conveyed along its longitudinal direction for foreign materials and to determine the second piece of foreign material information on the basis of the monitoring.
  • the central control device is set up to store a throughput time as the time interval during which a fiber runs through from the first point to the second point in the spinning process, the first foreign material information at a first point in time and the second foreign material information at a second point in time, which is around the throughput time is after the first point in time, to store and to assign the first foreign material information determined in this way and the second foreign material information determined in this way to one another.
  • the spinning process is optimized with regard to foreign materials.
  • a high yarn quality is achieved because few foreign substances remain in the yarn.
  • productivity is high because little fiber material is discarded as waste.
  • figure 1 shows schematically a part of a spinning process 1, which takes place in a spinning mill.
  • the spinning process 1 z. B. yarn spun from raw cotton.
  • the spinning process 1 can e.g. B. include the following process steps: opening, coarse cleaning, mixing, fine cleaning 11, carding 12, doubling, combing, stretching, spinning 13, rewinding 14. Not all process steps 11-14 mentioned need to be run through, and further process steps can be added. For the sake of simplicity, in figure 1 only a few process steps 11-14 are shown schematically, while others are indicated by dots.
  • a device 2 according to the invention is also shown schematically.
  • a fiber tuft monitoring device 3 of the device 2 according to the invention is located at this first point. The fiber tuft monitoring device 3 is set up to monitor the flow of fiber tufts for foreign materials and to determine first foreign material information relating to the foreign materials on the basis of the monitoring.
  • the first foreign matter information may be a first foreign matter rate indicating a rate of foreign matter in the fiber tufts.
  • This can e.g. B. essentially a number of foreign materials per unit mass of fiber floc (e.g. per 100 kg) or per unit time (e.g. per hour); the two figures can be converted into one another using the commonly known mass flow per unit of time (e.g. in kg/h).
  • the fiber tuft monitoring device 3 can separate foreign materials from the stream of fiber tufts according to a separation criterion.
  • a method and a device for separating foreign matter in fiber material, particularly in raw cotton, are per se z. B. from the WO-2006/079426 A1 known.
  • the fiber tuft monitoring device 3 includes a sensor system that detects properties of objects, including foreign matter, in the flow of fiber tufts.
  • the sensor system can e.g. B. include two CCD cameras that take pictures of the flow of fiber flocks; other or additional sensors are possible.
  • the sensor system is connected to a control unit, for example a computer.
  • the control unit evaluates an output signal from the sensor system and uses a rejection criterion in order to decide whether an object detected in the flow of fiber tufts is permissible or not. Depending on the result of the evaluation, it controls a separation unit Separation of foreign materials from the flow of fiber tufts.
  • the separation unit includes z. B. a plurality of compressed air nozzles that can be actuated individually by a control unit. If the control unit detects an impermissible object, it causes the compressed air nozzle located at the location of the object to eject compressed air perpendicularly to the transport direction of the flow of fiber tufts, so that the object is separated from the flow of fiber tufts.
  • Figure 12 shows a fiber event field 20 for fiber events that includes a quadrant or part of a quadrant of a two-dimensional Cartesian coordinate system.
  • a first parameter is plotted and plotted along a second axis 22, e.g. B. the ordinate, a second parameter is recorded.
  • the first parameter may relate to a geometric property of the objects in the stream of fiber tufts and is preferably a length or an area of the objects.
  • the second parameter may relate to an optical property of the objects and is preferably an intensity of light reflected from, transmitted through or absorbed by the flakes.
  • the values of the first and second parameters determined for an object define coordinates of a fiber event representing the object in the fiber event field 20.
  • a fiber event representing the object in the fiber event field 20.
  • point 23 only one fiber event is shown as point 23 by way of example; in practice, there are many such fiber events in a flow of fiber tufts, the locations of which in the fiber event field 20 generally differ from one another.
  • the fiber event field 20 of figure 2 is divided into 20 rectangular first classes 27.
  • the fiber events can be counted and their respective number can thus be determined.
  • a relative proportion of the fiber events in the respective first class 27 is determined by forming a ratio of the absolute number of fiber events in the respective first class 27 and a total number of fiber events in the entire fiber event field 20 .
  • the first foreign material portion can relate to only one or only some of the first classes 27 .
  • figure 2 also illustrates a possible separation criterion for foreign materials in a flow of fiber flocks.
  • the elimination criterion can e.g. B. in the form of a Elimination curve 26 may be specified in the fiber event field 20, as in FIG WO-2017/190259 A1 described.
  • the rejection curve 26 divides the fiber event field 20 into two mutually complementary regions: a first region 24 in which allowable fiber events reside, and a second region 25 in which invalid fiber events reside. Objects represented by fiber events in the first region 24 remain in the stream of fiber tufts, while objects represented by fiber events in the second region 25 are discarded from the stream of fiber tufts.
  • the elimination curve 26 in the two-dimensional fiber event field 20, as shown in FIG figure 2 shown is only one possible exclusion criterion for use in the present invention.
  • the elimination criterion may only consider a single parameter, e.g. B. an intensity as plotted along the ordinate 22 of the fiber event field 20.
  • the elimination criterion may consider more than two parameters, e.g. B. a geometric property and an intensity as they are plotted along the axes 21, 22 of the fiber event field 20, and additionally a color of the object.
  • the elimination criterion can be specified by an operator, taken from a database or calculated automatically.
  • the first foreign matter information may be a rejection rate.
  • This can e.g. B. indicate essentially a number of excretions per unit mass of fiber flocks (e.g. per 100 kg) or per unit of time (e.g. per hour); the two figures can be converted into one another using the commonly known mass flow per unit of time (e.g. in kg/h).
  • yarn spun from the fiber tufts is conveyed along its longitudinal direction, e.g. B. during rewinding 14.
  • a yarn monitoring device 4 of the device 2 according to the invention is located at this second point.
  • the yarn monitoring device 4 is set up to check the yarn for foreign materials to monitor and, based on the monitoring, to determine second foreign material information relating to the foreign materials.
  • the second foreign matter information may be a second foreign matter rate indicating a rate of foreign matter in the yarn.
  • the yarn monitoring device 4 can, for. B. be designed as a yarn cleaner system.
  • Yarn cleaners for monitoring a running yarn for foreign materials are known per se, e.g. B. from the US-6,244,030 B1 .
  • the yarn monitoring device 4 includes a sensor that acquires measured values of an optical measurement on a yarn section along the longitudinal direction of the yarn. It also contains an evaluation unit for determining values of a reflectivity of the yarn section measured from the measured values.
  • the evaluation unit provides a classification field for foreign materials, which is divided into at least two classes. It classifies the yarn events into at least two classes and determines the shares of yarn events in at least one of the at least two classes in a total number of foreign materials detected in the yarn.
  • the yarn event field 30 includes a quadrant or part of a quadrant of a two-dimensional Cartesian coordinate system.
  • An abscissa 31 of the coordinate system indicates an extension of reflectivity values in the longitudinal direction, e.g. B. in centimeters.
  • An ordinate 32 indicates a deviation of reflectivity values from a target value, e.g. B. Percentage.
  • the values for the extent and the deviation of the reflectivity values determined for a yarn event define coordinates of the yarn event in the yarn event field 30.
  • figure 3 is just a yarn event as point 33 drawn in; in practice there are many such events in a yarn whose locations in the yarn event field 30 differ from each other.
  • the yarn event field 30 from figure 3 is divided into 32 rectangular second classes, uniquely identified with letters and numbers AA1-F.
  • a second class AA1-F can be clearly assigned to each yarn event in the yarn event field 30 according to its position.
  • the yarn event represented by point 33 is in the second class C3.
  • the yarn events can be counted and their respective number can thus be determined.
  • a relative proportion of the yarn events in the respective second class AA1-F is determined by forming a ratio of the absolute number of yarn events in the respective second class AA1-F and a total number of yarn events in the entire yarn event field 30 .
  • the second foreign material portion can relate to only one or only some of the second classes AA1-F.
  • a cleaning curve 36 is also plotted in the yarn event field 30, which represents a cleaning limit as the boundary between permissible and impermissible foreign materials in the yarn.
  • the determined coordinates of yarn events are compared to the clearing boundary 36 and the yarn events are removed from the yarn depending on the comparison, i. H. cleaned up or not.
  • the second foreign matter information may be a cleaning rate.
  • the yarn monitoring device 4 is bidirectionally connected to a central control device 5, which is represented by an arrow 7.
  • the central control device 5 is bidirectionally connected to the fiber tuft monitoring device 3 , which is represented by an arrow 6 .
  • the data connections 6, 7 enable a bidirectional exchange of data between the devices 3, 4, 5 involved data equipped.
  • the data connections 6, 7 can be wired or wireless.
  • the central control device 5 can be implemented as a stand-alone device, e.g. B. as a computer that is in the spinning mill or outside the spinning mill. In this case, it contains appropriate receiving and transmitting means for receiving or transmitting data.
  • the central control device 5 can be integrated in another device, e.g. B. in a yarn testing device in the textile laboratory of the spinning mill, in the fiber tufts monitoring device 3, in the yarn monitoring device 4, etc. In the latter two cases, there can be a direct data connection between the yarn monitoring device 4 and the fiber tufts monitoring device 3, via which the two devices 4, 3 transmit data or exchange.
  • Further devices can be located along the connection 6 and/or 7, which receive the transmitted data, process them if necessary and send them on.
  • several fiber tuft monitors 3 are connected to a fiber tuft expert system.
  • the fiber tuft expert system is set up to receive data from the fiber tuft monitoring devices 3 , to process them and to output them in a suitable form, and to control the fiber tuft monitoring devices 3 . It is in turn connected to the central control device 5 .
  • multiple yarn monitors 4 are connected to a yarn expert system.
  • the yarn expert system is set up to receive data from the yarn monitoring devices 4, to process them and output them in a suitable form, and to control the yarn monitoring devices 4. It is in turn connected to the central control device 5 .
  • the throughput time ⁇ t is defined as the time interval during which a fiber passes through the spinning process 1 from the first point (e.g. fine cleaning 11) to the second point (e.g. rewinding 14).
  • the throughput time ⁇ t depends on a number of factors, e.g. B. the spinning process 1, the organization of the spinning mill, the raw fibers, the yarn to be produced, etc. It can be in the range of hours or days, depending on the situation.
  • the throughput time ⁇ t can be entered manually into the central control device 5 by an operator.
  • the throughput time ⁇ t can be calculated automatically by the central control device 5 .
  • the calculation can e.g. B. based on data stored in the central control device 5, z. B. the spinning process 1, the organization of the spinning mill, the raw fibers, the yarn to be produced, etc., take place.
  • the throughput time ⁇ t can be called up by the central control device 5 using inputs from a database. It can remain constant or be changed while the method according to the invention is being carried out, in which case a change can again be made manually or automatically.
  • the first proportion of foreign material and the second proportion of foreign material relate to the same sample of fiber material, ie they are determined “for the same fibers”, so to speak.
  • the first proportion of foreign material determined in this way and the second proportion of foreign material determined in this way are assigned to one another.
  • Determining the throughput time ⁇ t is only one of several possibilities for mutual assignment of the first item of foreign material information and the second item of foreign material information. Another possibility is to determine a property of the sample itself. As a property of the sample z. B. their chemical composition can be used, whereby the natural composition of the fiber by means of genetic analysis and / or an artificially added label (marker) can play a role. A further possibility for assignment consists in marking a carrier of the sample in order to track the sample in the spinning process. carrier of the sample can, depending on the nature of the sample, be cans or coil cores on which optical and/or electromagnetic markings are applied.
  • the first piece of foreign material information and the second piece of foreign material information are output to an operator at the same time.
  • the first and second pieces of foreign material information are preferably output graphically at the same time.
  • the Figures 4 and 5 show two examples thereof, where the first foreign material information is the elimination rate and the second foreign material information is the cleaning rate.
  • figure 4 shows a first example of a graphical output 40. It contains a column 41 which is divided into four evaluation areas 42-45. On both sides of the column 41 there are horizontal arrows 46, 47 whose position relative to the column 41 can be changed in the vertical direction. The left arrow 46 shows the excretion rate, the right arrow 47 the associated cleaning rate. The further down an arrow 46, 47 is, the lower the relevant rate, and vice versa.
  • the four evaluation areas 42-45 of column 41 in the traffic light colors green for appropriate (second evaluation area 43), yellow for critical (first evaluation area 42 and third evaluation area 44) and red for highly critical (fourth evaluation area 45).
  • the elimination rate is low and the purification rate is very high.
  • figure 5 shows a second example of a graphical output of the rejection rate and the purification rate.
  • This is a portfolio diagram 50.
  • the excretion rate is plotted along an abscissa 51, and the purification rate is plotted along an ordinate 52.
  • the elimination rate and the associated purification rate each form the coordinates of a point 53 in the portfolio diagram.
  • Five evaluation areas 54-58 which correspond to different evaluation categories or recommendation categories, are shown schematically in the diagram area.
  • the evaluation ranges 54-58 can be different than those in figure 5 have drawn forms.
  • the five evaluation areas 54-58 can be used in the traffic light colors green for appropriate (first evaluation area 54 and fifth evaluation area 58), yellow for critical (second evaluation area 55 and fourth evaluation area 57) and red for highly critical (third evaluation area 56). be colored.
  • the drawn point 53 lies in a first, green evaluation area 54. In this case, good raw fibers with little foreign material are obviously used, so that there is no need for action.
  • a point lying in a second, yellow evaluation area 55 would indicate a high elimination rate combined with a low cleaning rate.
  • This recommendation to the operator is indicated by an arrow 59.
  • red evaluation area 56 are both the elimination rate and the cleaning rate high, resulting in poor productivity. In this case, consideration should be given to using better, less contaminated crude fiber.
  • a point lying in a fourth, yellow evaluation area 57 would indicate a low elimination rate combined with a high cleaning rate. This corresponds to the figure 4 depicted situation. Such mismatch in rates should be balanced by increasing the rate of elimination and decreasing the rate of purification. This recommendation to the operator is indicated by an arrow 59. If a point is in the fifth, green evaluation area 58, then the rejection rate and the cleaning rate are balanced and the spinning process 1 does not need to be changed.
  • the value of the elimination rate and/or the purification rate can be given in addition to the graphic representation. This is in figure 4 the case where the two values are entered in the respective horizontal arrows 46,47. Alternatively, only the values without a graphical representation can be output to the operator.
  • the recommendation can be given in words to the operator.
  • the highly critical cases preferably not only a recommendation but also a warning or an alarm is issued to the operator. This can be done graphically or in words on a display unit of the central control unit 5 ( figure 1 ), acoustically and/or visually, e.g. B. with a warning light done.
  • the operator can make a change to the spinning process 1 manually.
  • the change to the spinning process 1 can be made automatically, e.g. B. from the central control unit 5 ( figure 1 ).
  • the boundaries of the evaluation areas 42-45, 54-58 in the Figures 4 and 5 can be set in different ways.
  • a first possibility is a requirement based on of experiences.
  • a second possibility is to determine beforehand a worldwide frequency distribution of a foreign material content in fiber tufts and/or yarns and to take this frequency distribution into account when defining the limits of the assessment areas.
  • Such a worldwide frequency distribution can e.g. B. the USTER ® STATISTICS .
  • the USTER ® STATISTICS are a compilation of textile quality data, published by the applicant of the present property right, which was determined from the worldwide production of textile raw materials, intermediate products and end products; see https://www.uster.com/en/service/uster-statistics/, retrieved at the time this property right was registered.
  • FIG 6 Another way to set the boundaries of the rating ranges 42-45, 54-58 in the Figures 4 and 5 is in figure 6 illustrated.
  • the figure shows a diagram 60 in a Cartesian coordinate system, along whose abscissa 61 a parameter influencing the elimination criterion is plotted.
  • This parameter can e.g. B. a sensitivity of the fiber flock monitoring device 3 ( figure 1 ) with respect to the light intensity, which determines the position of the excretion curve 26 ( figure 2 ) determined in the vertical direction.
  • the excretion rate is plotted along the ordinate 62 .
  • a curve 63 indicates the relationship between the sensitivity and the excretion rate.
  • Such a connection can be determined heuristically or theoretically in advance.
  • the abscissa 61 is divided into three areas 64-66. In a first area 64, the sensitivities are so low that they hardly have any effect on the excretion rate. In a third area 66, the sensitivities are very high, resulting in very high elimination rates. In a second range 65 there are medium sensitivities with medium elimination rates. A region 67 of the elimination rate corresponding to this second region 65 corresponds to the appropriate, green region 43 of the elimination rate in figure 4 . Similarly, an appropriate range for the cleaning rate can be set.
  • figure 7 shows three examples of time courses of the first foreign material information and the second foreign material information assigned to it. These two items of foreign material information are each shown in two diagrams 701, 702 arranged one above the other, with the upper diagram 701 being plotted along an ordinate 72, e.g. Legs Excretion rate E(t) and the lower diagram 702 along an ordinate 73 indicates a second foreign material fraction F(t) and the abscissa 71 is the time axis t common to the two diagrams 701, 702.
  • a first curve 74 in the upper diagram 701 indicates the time course of the first foreign material information
  • a second curve 75 in the lower diagram 702 indicates the time course of the second foreign material information.
  • the elimination criterion is changed at a first point in time ti in such a way that a higher elimination rate E(t) results. As expected, this should have the result that at a second point in time t 2 , which is later than the first point in time t 1 by the throughput time ⁇ t, the second proportion of foreign material F(t) falls. If, on the other hand, the separation criterion is changed in such a way that a lower separation rate E(t) results, then the second foreign material fraction F(t) should increase later by the throughput time ⁇ t.
  • figure 8 illustrates a further embodiment of the method according to the invention. In this embodiment, costs are taken into account.
  • Figure 8(a) shows a diagram 801 in a Cartesian coordinate system, along whose abscissa 81 the precipitation rate E is plotted and along whose ordinate 82 the cleaning rate C(E) is plotted.
  • a curve 83 schematically shows a possible connection between the elimination rate E and the purification rate C(E).
  • Such a relationship C(E) can be determined heuristically or theoretically.
  • the costs K E for an elimination and the costs K C for a cleaning process can also be determined heuristically or theoretically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

    FACHGEBIET
  • Die vorliegende Erfindung liegt auf dem Gebiet des Spinnens von Garn. Sie betrifft ein Verfahren zur Optimierung eines Spinnprozesses bezüglich Fremdmaterialien und eine Vorrichtung zur Durchführung des Verfahrens, gemäss den unabhängigen Patentansprüchen.
  • STAND DER TECHNIK
  • Fremdmaterialien im Garn stellen eines der grossen Probleme heutiger Spinnereien dar. Es handelt sich dabei um Materialien, die sich vom beabsichtigten Grundmaterial der Garnfasern, z. B. Baumwollfasern, unterscheiden. Sie können verschiedenen Ursprungs sein, wie z. B. Kunststoffverpackungen, Schnüre, menschliche oder tierische Haare etc. Fremdmaterialien führen zu Fadenbrüchen beim Spinnen und Weben, nehmen Farbstoff in anderer Weise an als das Grundmaterial und beeinflussen das Aussehen des textilen Endproduktes. Sie vermindern wesentlich den Wert des Endproduktes. Eine Übersicht über Gewebefehler, die durch Fremdmaterialien verursacht sind, und Empfehlungen zu ihrer Verminderung gibt Abs. 3.8 des USTER® NEWS BULLETIN NO. 47 "The origins of fabric defects - and ways to reduce them", Uster Technologies AG, März 2010.
  • Die WO-2006/079426 A1 offenbart ein Verfahren und eine Vorrichtung zum Ausscheiden von Fremdstoffen in Fasermaterial, insbesondere in Rohbaumwolle. Derartige Verfahren werden beispielsweise in der Putzerei eingesetzt, um die Rohbaumwolle für das Spinnen vorzubereiten. Das Fasermaterial wird in einer pneumatischen Fasertransportleitung nacheinander an einem Sensorsystem und an einer Ausscheidevorrichtung vorbeigeführt. Beim Erkennen von Fremdmaterialien durch das Sensorsystem werden diese mittels eines quer zur Fasertransportleitung gerichteten Druckluftimpulses durch eine Ausscheideöffnung in der Fasertransportleitung aus dieser ausgeschieden. Ein entsprechendes Produkt ist in der Broschüre "USTER® JOSSI VISION SHIELD 2 - The key to Total Contamination Control", Uster Technologies AG, Oktober 2015, beschrieben.
  • Weiter stromabwärts im textilen Herstellungsprozess können Fremdmaterialien auf Spinn- oder Spulmaschinen durch so genannte Garnreiniger aus dem Garn entfernt werden. Ein Garnreiniger beinhaltet einen Messkopf mit mindestens einem Sensor, der das bewegte Garn abtastet und dabei Garnfehler wie Fremdmaterialien oder Dick- und Dünnstellen detektiert. Das Ausgangssignal des Sensors wird laufend gemäss vorgegebenen Kriterien ausgewertet. Die US-6,244,030 B1 offenbart einen Garnreiniger, der nicht nur Fremdmaterialien detektiert, sondern auch verschiedene Arten von Fremdmaterialien voneinander unterscheidet. Der Sensor tastet das Garn optisch durch Auflicht ab. Es wird ein Klassierfeld oder eine Klassiermatrix zur Verfügung gestellt. Längs der horizontalen Achse des Klassierfeldes wird die Länge von Gamabschnitten und längs der vertikalen Achse wird die Reflektivität von Licht am Garn aufgetragen. Das Klassierfeld ist in 16 Klassen für helle Fremdmaterialien und 16 Klassen für dunkle Fremdmaterialien unterteilt. Garnabschnitte der gleichen Klasse werden gezählt. Ein entsprechendes Produkt ist in der Broschüre "USTER® QUANTUM 3 Application Handbook", Abs. 8.4, Uster Technologies AG, April 2011, beschrieben.
  • Die WO-2017/190259 A1 beschreibt ein Verfahren und eine Vorrichtung zur Überwachung von Verunreinigungen in einem Faserflockenstrom. In einer Ausführungsform überwacht eine erste Überwachungsvorrichtung Verunreinigungen in einem Faserflockenstrom, während eine zweite Überwachungsvorrichtung Verunreinigungen stromabwärts im textilen Herstellungsprozess überwacht. Die zweite Überwachungsvorrichtung kann ein Garnreiniger auf einer Spulmaschine sein. Eine Steuereinheit ist mit der ersten und der zweiten Überwachungsvorrichtung verbunden. Sie sammelt Daten von den beiden Überwachungsvorrichtungen, wertet sie statistisch aus und gibt daraus hergestellte Berichte an eine Bedienungsperson aus. In einem Regelkreis wird eine Grenze zur Entfernung der Verunreinigungen in der ersten Überwachungsvorrichtung abhängig von einem Überwachungsresultat der zweiten Überwachungsvorrichtung geändert.
  • In der US-4,653,153 A bzw. der EP-0'176'661 A2 sind Regelvorrichtungen für Streckprozesse bei Regulierstrecken der Textilindustrie beschrieben. Sie können nach dem Prinzip des offenen oder des geschlossenen Regelkreises wirken, um am Ausgang der Streckpassage ein im Querschnitt vergleichmässigtes Band zu erhalten. Das Messsignal eines schnell reagierenden Messorgans am Ausgang der Strecke wird mit einem weiteren Messsignal am Einlauf der Strecke korreliert. Dadurch wird die die Verzugsgrösse bestimmenden Parameter derart korrigiert, dass auch kurzzeitige Querschnittsschwankungen des Bandes ausgeglichen werden. Dabei sind insbesondere die Laufzeit des Bandes vom Stellglied zum Messorgan am Ausgang der Strecke als auch die Gesamtverstärkung des Messsignals ausschlaggebend.
  • DARSTELLUNG DER ERFINDUNG
  • Es ist eine Aufgabe der vorliegenden Erfindung, ein Verfahren anzugeben, das einen Spinnprozess bezüglich Fremdmaterialien optimiert. Die Optimierung soll insbesondere die Garnqualität und/oder die Produktionskosten betreffen: Die Garnqualität soll bei gleichen Produktionskosten erhöht, die Produktionskosten sollen bei gleicher Garnqualität gesenkt oder die Garnqualität soll erhöht und die Produktionskosten sollen gleichzeitig gesenkt werden. Im Zusammenhang mit Fremdmaterialien bedeutet eine höhere Garnqualität einen tieferen Anteil an störenden Fremdmaterialien im Garn. Die Produktionskosten werden u. a. durch die Menge von als Abfall ausgeschiedenem Fasergutmaterial und die Häufigkeit der Spulmaschinenabstellungen beeinflusst.
  • Eine weitere Aufgabe der Erfindung ist es, eine Vorrichtung zur Durchführung des Verfahrens zur Verfügung zu stellen.
  • Diese und andere Aufgaben werden durch das erfindungsgemässe Verfahren und die erfindungsgemässe Vorrichtung gelöst, wie sie in den unabhängigen Patentansprüchen definiert sind. Vorteilhafte Ausführungsformen sind in den abhängigen Patentansprüchen angegeben.
  • Die Erfindung beruht auf der Idee, Fremdmaterialinformationen, die an zwei verschiedenen Stellen im Spinnprozess ermittelt wurden, einander zuzuordnen und aufgrund der einander zugeordneten Fremdmaterialinformationen eine Änderung an dem Spinnprozess vorzunehmen. Die Zuordnung muss derart erfolgen, dass sich die Fremdmaterialinformationen im Wesentlichen auf dieselbe Probe des Fasermaterials beziehen.
  • Der Ausdruck "Probe" bezeichnet in dieser Schrift eine zusammengehörige Menge des Fasermaterials, die im Wesentlichen dieselben, im Wesentlichen homogen verteilten Eigenschaften aufweist. Die Grösse der Probe kann von einer Faserflocke mit einer Masse von weniger als 1 g bis zu mehreren Tonnen Fasermaterial betragen. Ein Beispiel für eine Probe ist eine Vorlage von 50 Baumwollballen zu je 220 kg (total 11 1), wie sie in einer Öffnerei anzutreffen ist. Die Probe durchläuft den Spinnprozess; dabei ändern sich je nach dem jeweiligen Prozessschritt ihre Struktur und Form. Dieselbe Probe kann z. B. die Form von Rohfasern, Faserflocken, Vlies, Faserband, Vorgarn oder Garn annehmen. Die Probe kann während des Spinnprozesses auf verschiedene Verarbeitungsmaschinen aufgeteilt werden.
  • Das erfindungsgemässe Verfahren dient zur Optimierung eines Spinnprozesses, der von einem in Form von Rohfasern eingespeisten und in Form von Garn ausgegebenen Fasermaterial durchlaufen wird, bezüglich Fremdmaterialien in dem Fasermaterial. An einer ersten Stelle im Spinnprozess wird eine sich auf die Fremdmaterialien beziehende erste Fremdmaterialinformation ermittelt. An einer zweiten Stelle im Spinnprozess, die stromabwärts bezüglich der ersten Stelle liegt, wird eine sich auf die Fremdmaterialien beziehende zweite Fremdmaterialinformation ermittelt. Die erste Stelle bzw. die zweite Stelle entspricht jeweils einem Prozessschritt aus der folgenden Menge: Öffnen, Grobreinigen, Mischen, Feinreinigen, Kardieren, Doublieren, Kämmen, Verstrecken, Verspinnen, Umspulen. Die erste Fremdmaterialinformation und die zweite Fremdmaterialinformation werden einander derart zugeordnet, dass sie sich auf dieselbe Probe des Fasermaterials beziehen. Aufgrund der ersten Fremdmaterialinformation und der ihr zugeordneten zweiten Fremdmaterialinformation wird eine Änderung an dem Spinnprozess vorgenommen.
  • Die Ermittlung der ersten Fremdmaterialinformation und der zweiten Fremdmaterialinformation kann an der gesamten Probe des Fasermaterials oder an einer Teilmenge der Probe des Fasermaterials erfolgen. Sie kann kontinuierlich oder zu diskreten Zeitpunkten erfolgen. Sie kann online am Spinnprozess oder offline erfolgen, indem die Probe des Fasermaterials oder eine Teilmenge davon dem Spinnprozess entnommen und ausserhalb des Spinnprozesses, z. B. in einem Textillabor, untersucht wird.
  • Die Änderung an dem Spinnprozess kann eine Änderung der in den Spinnprozess eingespeisten Rohfasern oder zumindest eines Teils davon und/oder eine Änderung von Einstellungen an Maschinen, die an dem Spinnprozess beteiligt sind, beinhalten.
  • Die gegenseitige Zuordnung der ersten Fremdmaterialinformation und der zweiten Fremdmaterialinformation beinhaltet vorzugsweise einen der Schritte aus der folgenden Menge: Ermittlung einer Durchlaufzeit als desjenigen Zeitintervalls, während dessen eine Faser von der ersten Stelle bis zur zweiten Stelle im Spinnprozess durchläuft; Bestimmung einer Eigenschaft der Probe selbst; und Markierung eines Trägers der Probe. Die Durchlaufzeit kann empirisch oder theoretisch aus bekannten Bearbeitungs- und Lagerzeiten ermittelt werden. Als Eigenschaft der Probe kann z. B. ihre chemische Zusammensetzung verwendet werden, wobei die natürliche Zusammensetzung der Faser mittels Genanalyse und/oder eine künstlich hinzugefügte Markierung (Marker) eine Rolle spielen kann. Träger der Probe können, je nach Probenbeschaffenheit, Kannen oder Spulenkerne sein, auf die optische und/oder elektromagnetische Markierungen aufgebracht sind.
  • In einer bevorzugten Ausführungsform wird an der ersten Stelle im Spinnprozess ein Strom von Faserflocken, die pneumatisch in einem Luftstrom gefördert werden, auf Fremdmaterialien überwacht. Aufgrund der Überwachung wird die erste Fremdmaterialinformation ermittelt. An der zweiten Stelle im Spinnprozess wird Garn, das aus den Faserflocken gesponnen wurde und entlang seiner Längsrichtung gefördert wird, auf Fremdmaterialien überwacht. Aufgrund der Überwachung wird die zweite Fremdmaterialinformation ermittelt. Eine Durchlaufzeit wird als dasjenige Zeitintervall, während dessen eine Faser von der ersten Stelle bis zur zweiten Stelle im Spinnprozess durchläuft, bestimmt. Die erste Fremdmaterialinformation wird zu einem ersten Zeitpunkt und die zweite Fremdmaterialinformation wird zu einem zweiten Zeitpunkt, der um die Durchlaufzeit nach dem ersten Zeitpunkt liegt, ermittelt. Die so ermittelte erste Fremdmaterialinformation und die so ermittelte zweite Fremdmaterialinformation werden einander zugeordnet.
  • In einer Ausführungsform ist die erste Fremdmaterialinformation ein erster Fremdmaterialanteil, der einen Anteil Fremdmaterialien in den Faserflocken angibt, und die zweite Fremdmaterialinformation ist ein zweiter Fremdmaterialanteil, der einen Anteil Fremdmaterialien in dem Garn angibt. Vorzugsweise gibt der erste Fremdmaterialanteil im Wesentlichen eine Anzahl Fremdmaterialien pro Einheitsmasse Faserflocken oder pro Zeiteinheit an, und/oder der zweite Fremdmaterialanteil gibt im Wesentlichen eine Anzahl Fremdmaterialien pro Einheitsmasse Garn, pro Längeneinheit des Garns oder pro Zeiteinheit an.
  • In einer Ausführungsform werden an der ersten Stelle im Spinnprozess Fremdmaterialien gemäss einem Ausscheidungskriterium aus dem Strom von Faserflocken ausgeschieden, und die Änderung an dem Spinnprozess beinhaltet eine Änderung des Ausscheidungskriteriums. Die erste Fremdmaterialinformation kann eine Ausscheidungsrate sein, die eine Anzahl Ausscheidungen pro Einheitsmasse Faserflocken oder pro Zeiteinheit angibt. Vorteilhafterweise wird vorgängig ein Zusammenhang zwischen dem Ausscheidungskriterium und der Ausscheidungsrate ermittelt, und dieser Zusammenhang wird bei der Änderung an dem Spinnprozess berücksichtigt.
  • In einer Ausführungsform werden an der zweiten Stelle im Spinnprozess im Garn detektierte Fremdmaterialien gemäss einem Reinigungskriterium aus dem Garn ausgereinigt, und die Änderung an dem Spinnprozess beinhaltet eine Änderung des Reinigungskriteriums. Vorzugsweise ist die zweite Fremdmaterialinformation eine Reinigungsrate, die eine Anzahl Reinigungsvorgänge pro Einheitsmasse Garn, pro Längeneinheit des Garns oder pro Zeiteinheit angibt. Vorgängig kann ein Zusammenhang zwischen dem Reinigungskriterium und der Reinigungsrate ermittelt und dieser Zusammenhang bei der Änderung an dem Spinnprozess berücksichtigt werden. Vorgängig können Kosten für eine Ausscheidung ermittelt und bei der Änderung an dem Spinnprozess ein Produkt aus den Kosten für eine Ausscheidung und der Ausscheidungsrate berücksichtigt werden. Vorgängig können Kosten für einen Reinigungsvorgang ermittelt und bei der Änderung an dem Spinnprozess ein Produkt aus den Kosten für einen Reinigungsvorgang und der Reinigungsrate berücksichtigt werden. Es kann vorteilhaft sein, bei der Änderung an dem Spinnprozess eine Linearkombination des Produktes aus den Kosten für eine Ausscheidung und der Ausscheidungsrate sowie des Produktes aus den Kosten für einen Reinigungsvorgang und der Reinigungsrate zu berücksichtigen. Die Änderung an dem Spinnprozess wird vorteilhafterweise derart vorgenommen, dass die Linearkombination nach der Änderung einen kleineren Wert annimmt als vor der Änderung, und vorzugsweise derart, dass ein globales Minimum der Linearkombination erreicht wird.
  • Die Durchlaufzeit kann von einer Bedienungsperson manuell eingegeben, aufgrund von Vorgaben automatisch berechnet und/oder aufgrund von Vorgaben aus einer Datenbank abgerufen werden.
  • In einer Ausführungsform werden erste Klassen von Fremdmaterialien in dem Fasermaterial an der ersten Stelle vorbestimmt, welche erste Klassen sich bezüglich Eigenschaften der Fremdmaterialien voneinander unterscheiden, und die erste Fremdmaterialinformation bezieht sich auf eine oder mehrere dieser ersten Klassen. Ebenso können zweite Klassen von Fremdmaterialien in dem Fasermaterial an der zweiten Stelle vorbestimmt werden, welche zweite Klassen sich bezüglich Eigenschaften der Fremdmaterialien voneinander unterscheiden, und die zweite Fremdmaterialinformation kann sich auf eine oder mehrere dieser zweiten Klassen beziehen.
  • In einer Ausführungsform werden die erste Fremdmaterialinformation und die zweite Fremdmaterialinformation gleichzeitig an eine Bedienungsperson ausgegeben werden. Die gleichzeitige Ausgabe der ersten Fremdmaterialinformation und der zweiten Fremdmaterialinformation kann zumindest teilweise grafisch erfolgen. Zusätzlich zur gleichzeitigen Ausgabe der ersten Fremdmaterialinformation und der zweiten Fremdmaterialinformation kann eine Bewertung der ersten Fremdmaterialinformation und/oder der zweiten Fremdmaterialinformation an die Bedienungsperson ausgegeben werden. Die Bewertung beinhaltet vorzugsweise jeweils mindestens zwei Kategorien, die auf angemessene bzw. kritische Fremdmaterialinformationen hinweisen. Zusätzlich zur gleichzeitigen Ausgabe der ersten Fremdmaterialinformation und der zweiten Fremdmaterialinformation kann eine Empfehlung für die Änderung an dem Spinnprozess an die Bedienungsperson ausgegeben werden.
  • In einer Ausführungsform wird aufgrund der ersten Fremdmaterialinformation und der ihr zugeordneten zweiten Fremdmaterialinformation ein Alarm an eine Bedienungsperson ausgegeben. Vorzugsweise werden ein Zeitverlauf der ersten Fremdmaterialinformation und ein Zeitverlauf der ihr zugeordneten zweiten Fremdmaterialinformation ermittelt, und der Alarm wird aufgrund der Zeitverläufe ausgegeben.
  • In einer Ausführungsform nimmt die Bedienungsperson aufgrund der gleichzeitig ausgegebenen ersten Fremdmaterialinformation und zweiten Fremdmaterialinformation, aufgrund der Bewertung und/oder aufgrund der Empfehlung die Änderung an dem Spinnprozess vor.
  • In einer Ausführungsform wird die Änderung an dem Spinnprozess automatisch vorgenommen.
  • In einer Ausführungsform wird vorgängig eine weltweite Häufigkeitsverteilung eines Fremdmaterialgehaltes in Faserflocken und/oder in Garnen ermittelt, und diese Häufigkeitsverteilung wird bei der Änderung an dem Spinnprozess berücksichtigt.
  • Die Erfindung betrifft auch eine Vorrichtung zur Durchführung des erfindungsgemässen Verfahrens in einer einen Spinnprozess, der von einem in Form von Rohfasern eingespeisten und in Form von Garn ausgegebenen Fasermaterial durchlaufen wird, ausführenden Spinnerei. Die Vorrichtung beinhaltet eine erste Überwachungseinrichtung an einer ersten Stelle im Spinnprozess. Die erste Überwachungseinrichtung ist dazu eingerichtet, eine sich auf die Fremdmaterialien beziehende erste Fremdmaterialinformation zu ermitteln. Ferner beinhaltet die Vorrichtung eine zweite Überwachungseinrichtung an einer zweiten Stelle im Spinnprozess, die stromabwärts bezüglich der ersten Stelle liegt. Die zweite Überwachungseinrichtung ist dazu eingerichtet, eine sich auf die Fremdmaterialien beziehende zweite Fremdmaterialinformation zu ermitteln. Die erste Stelle bzw. die zweite Stelle entspricht jeweils einem Prozessschritt aus der folgenden Menge: Öffnen, Grobreinigen, Mischen, Feinreinigen, Kardieren, Doublieren, Kämmen, Verstrecken, Verspinnen, Umspulen. Die Vorrichtung beinhaltet ausserdem eine mit der ersten Überwachungseinrichtung und der zweiten Überwachungseinrichtung verbundene zentrale Steuereinrichtung. Die zentrale Steuereinrichtung ist dazu eingerichtet, die erste Fremdmaterialinformation und die zweite Fremdmaterialinformation einander zuzuordnen und aufgrund der ersten Fremdmaterialinformation und der ihr zugeordneten zweiten Fremdmaterialinformation eine Änderung an dem Spinnprozess automatisch vorzunehmen.
  • In einer Ausführungsform ist die zentrale Steuereinrichtung dazu eingerichtet, die erste Fremdmaterialinformation und die zweite Fremdmaterialinformation gleichzeitig an eine Bedienungsperson auszugeben.
  • In einer Ausführungsform beinhaltet die Vorrichtung eine Faserflockenüberwachungseinrichtung an der ersten Stelle im Spinnprozess. Die Faserflockenüberwachungseinrichtung ist dazu eingerichtet, einen Strom von Faserflocken, die pneumatisch in einem Luftstrom gefördert werden, auf Fremdmaterialien zu überwachen und aufgrund der Überwachung die erste Fremdmaterialinformation zu ermitteln. Ferner beinhaltet die Vorrichtung eine Garnüberwachungseinrichtung an der zweiten Stelle im Spinnprozess. Die Garnüberwachungseinrichtung ist dazu eingerichtet, Garn, das aus den Faserflocken gesponnen wurde und entlang seiner Längsrichtung gefördert wird, auf Fremdmaterialien zu überwachen und aufgrund der Überwachung die zweite Fremdmaterialinformation zu ermitteln. Die zentrale Steuereinrichtung ist dazu eingerichtet, eine Durchlaufzeit als dasjenige Zeitintervall, während dessen eine Faser von der ersten Stelle bis zur zweiten Stelle im Spinnereiprozess durchläuft, zu speichern, die erste Fremdmaterialinformation zu einem ersten Zeitpunkt und die zweite Fremdmaterialinformation zu einem zweiten Zeitpunkt, der um die Durchlaufzeit nach dem ersten Zeitpunkt liegt, zu speichern und die so ermittelte erste Fremdmaterialinformation und die so ermittelte zweite Fremdmaterialinformation einander zuzuordnen.
  • Dank der Erfindung wird der Spinnprozess bezüglich Fremdmaterialien optimiert. Es wird eine hohe Qualität des Garns erzielt, weil wenige Fremdstoffe im Garn verbleiben. Gleichzeitig ist die Produktivität hoch, weil wenig Fasergutmaterial als Abfall ausgeschieden wird.
  • AUFZÄHLUNG DER ZEICHNUNGEN
  • Nachfolgend wird die Erfindung anhand der Zeichnungen detailliert erläutert. Dabei wird vorwiegend eine bevorzugte Ausführungsform diskutiert, in welcher die erste Stelle im Spinnprozess dem Feinreinigen von Faserflocken und die zweite Stelle im Spinnprozess dem Umspulen von Garn entsprechen. Dies soll aber die Allgemeinheit der Erfindung nicht einschränken. Alternativ können die erste und/oder die zweite Stelle anderen Prozessschritten entsprechen.
  • Figur 1
    zeigt schematisch einen Teil eines Spinnprozesses in einer Spinnerei und eine erfindungsgemässe Vorrichtung.
    Figur 2
    zeigt ein beispielhaftes Faserereignisfeld für Fremdmaterialereignisse in einem Strom von Faserflocken.
    Figur 3
    zeigt ein beispielhaftes Garnereignisfeld für Fremdmaterialereignisse in einem Garn.
    Figuren 4 und 5
    zeigen Beispiele für grafische Ausgaben von einander zugeordneten Fremdmaterialinformationen.
    Figur 6
    zeigt ein Diagramm, anhand dessen Grenzen von Bewertungsbereichen für Fremdmaterialinformationen festgelegt werden können.
    Figur 7
    zeigt drei Beispiele für Zeitverläufe von einander zugeordneten Fremdmaterialinformationen.
    Figur 8
    zeigt Diagramme zur Minimierung der Kosten in einem Spinnprozess.
    AUSFÜHRUNG DER ERFINDUNG
  • Figur 1 zeigt schematisch einen Teil eines Spinnprozesses 1, der in einer Spinnerei abläuft. In dem Spinnprozess 1 wird z. B. aus Rohbaumwolle Garn gesponnen. Der Spinnprozess 1 kann z. B. die folgenden Prozessschritte beinhalten: Öffnen, Grobreinigen, Mischen, Feinreinigen 11, Kardieren 12, Doublieren, Kämmen, Verstrecken, Verspinnen 13, Umspulen 14. Nicht alle genannten Prozessschritte 11-14 brauchen durchlaufen zu werden, und es können weitere Prozessschritte hinzukommen. Der Einfachheit halber sind in Figur 1 nur einige wenige Prozessschritte 11-14 schematisch eingezeichnet, während andere durch Punkte angedeutet sind.
  • In Figur 1 ist auch eine erfindungsgemässe Vorrichtung 2 schematisch eingezeichnet. An einer ersten Stelle in einem frühen Stadium im Spinnprozess 1, z. B. in oder unmittelbar nach der Feinreinigung 11, liegt ein Strom von Faserflocken vor, die pneumatisch in einem Luftstrom gefördert werden. An dieser ersten Stelle befindet sich eine Faserflockenüberwachungseinrichtung 3 der erfindungsgemässen Vorrichtung 2. Die Faserflockenüberwachungseinrichtung 3 ist dazu eingerichtet, den Strom von Faserflocken auf Fremdmaterialien zu überwachen und aufgrund der Überwachung eine sich auf die Fremdmaterialien beziehende erste Fremdmaterialinformation zu ermitteln.
  • Die erste Fremdmaterialinformation kann ein erster Fremdmaterialanteil sein, der einen Anteil Fremdmaterialien in den Faserflocken angibt. Dies kann z. B. im Wesentlichen eine Anzahl Fremdmaterialien pro Einheitsmasse Faserflocken (z. B. pro 100 kg) oder pro Zeiteinheit (z. B. pro Stunde) sein; die beiden Angaben können mittels des üblicherweise bekannten Massenflusses pro Zeiteinheit (z. B. in kg/h) ineinander umgerechnet werden.
  • Ausserdem kann die Faserflockenüberwachungseinrichtung 3 Fremdmaterialien gemäss einem Ausscheidungskriterium aus dem Strom von Faserflocken ausscheiden. Ein Verfahren und eine Vorrichtung zum Ausscheiden von Fremdstoffen in Fasermaterial, insbesondere in Rohbaumwolle, sind an sich z. B. aus der WO-2006/079426 A1 bekannt. In einer bevorzugten Ausführungsform beinhaltet die Faserflockenüberwachungseinrichtung 3 ein Sensorsystem, das Eigenschaften von Objekten, inklusive Fremdstoffe, im Strom von Faserflocken detektiert. Das Sensorsystem kann z. B. zwei CCD-Kameras beinhalten, die Bilder des Stroms von Faserflocken aufnehmen; andere oder zusätzliche Sensoren sind möglich. Das Sensorsystem ist mit einer Steuereinheit, bspw. einem Computer, verbunden. Die Steuereinheit wertet ein Ausgangssignal des Sensorsystems aus und wendet dabei ein Ausscheidungskriterium an, um zu entscheiden, ob ein im Strom von Faserflocken detektiertes Objekt zulässig ist oder nicht. Sie steuert je nach Resultat der Auswertung eine Ausscheideeinheit zur Ausscheidung von Fremdmaterialien aus dem Strom von Faserflocken. Die Ausscheideeinheit beinhaltet z. B. eine Mehrzahl von Druckluftdüsen, die von einer Steuereinheit individuell betätigbar sind. Detektiert die Steuereinheit ein unzulässiges Objekt, so veranlasst sie die am Ort des Objektes befindliche Druckluftdüse, Druckluft senkrecht zur Transportrichtung des Stroms von Faserflocken auszustossen, so dass das Objekt aus dem Strom von Faserflocken ausgeschieden wird.
  • Figur 2 zeigt ein Faserereignisfeld 20 für Faserereignisse, das einen Quadranten oder einen Teil eines Quadranten eines zweidimensionalen kartesischen Koordinatensystems beinhaltet. Entlang einer ersten Achse, 21, z. B. der Abszisse, ist ein erster Parameter aufgezeichnet, und entlang einer zweiten Achse 22, z. B. der Ordinate, ist ein zweiter Parameter aufgezeichnet. Der erste Parameter kann sich auf eine geometrische Eigenschaft der Objekte im Strom von Faserflocken beziehen und ist vorzugsweise eine Länge oder ein Flächeninhalt der Objekte. Der zweite Parameter kann sich auf eine optische Eigenschaft der Objekte beziehen und ist vorzugsweise eine Intensität von Licht, das von den Flocken reflektiert, durch diese transmittiert oder von diesen absorbiert wurde. Die Werte des ersten und des zweiten Parameters, die für ein Objekt bestimmt wurden, definieren Koordinaten eines Faserereignisses, welches das Objekt repräsentiert, im Faserereignisfeld 20. In Figur 2 ist beispielhaft bloss ein Faserereignis als Punkt 23 eingezeichnet; in der Praxis gibt es in einem Strom von Faserflocken viele solche Faserereignisse, deren Lagen im Faserereignisfeld 20 sich im Allgemeinen voneinander unterscheiden.
  • Das Faserereignisfeld 20 von Figur 2 ist in 20 rechteckige erste Klassen 27 unterteilt. In mindestens einer, und vorzugsweise in allen, der ersten Klassen 27 können die Faserereignisse gezählt und so ihre jeweilige Anzahl bestimmt werden. Durch Bildung eines Verhältnisses aus der absoluten Anzahl Faserereignisse in der jeweiligen ersten Klasse 27 und einer Gesamtzahl von Faserereignissen im ganzen Faserereignisfeld 20 wird ein relativer Anteil der Faserereignisse in der jeweiligen ersten Klasse 27bestimmt. Der erste Fremdmaterialanteil kann sich auf nur eine oder nur einige der ersten Klassen 27 beziehen.
  • Figur 2 illustriert auch ein mögliches Ausscheidungskriterium für Fremdmaterialien in einem Strom von Faserflocken. Das Ausscheidungskriterium kann z. B. in Form einer Ausscheidungskurve 26 im Faserereignisfeld 20 vorgegeben sein, wie in der WO-2017/190259 A1 beschrieben. Die Ausscheidungskurve 26 unterteilt das Faserereignisfeld 20 in zwei zueinander komplementäre Bereiche: einen ersten Bereich 24, in dem sich zulässige Faserereignisse befinden, und einen zweiten Bereich 25, in dem sich unzulässige Faserereignisse befinden. Objekte, die durch Faserereignisse im ersten Bereich 24 repräsentiert sind, verbleiben im Strom von Faserflocken, während Objekte, die durch Faserereignisse im zweiten Bereich 25 repräsentiert sind, aus dem Strom von Faserflocken ausgeschieden werden.
  • Die Ausscheidungskurve 26 im zweidimensionalen Faserereignisfeld 20, wie in Figur 2 dargestellt, ist nur ein mögliches Ausscheidungskriterium zur Anwendung in der vorliegenden Erfindung. In einer Ausführungsform kann das Ausscheidungskriterium nur einen einzigen Parameter berücksichtigen, z. B. eine Intensität, wie sie entlang der Ordinate 22 des Faserereignisfeldes 20 aufgetragen ist. In einer anderen Ausführungsform kann das Ausscheidungskriterium mehr als zwei Parameter berücksichtigen, z. B. eine geometrische Eigenschaft und eine Intensität, wie sie entlang der Achsen 21, 22 des Faserereignisfeldes 20 aufgetragen sind, und zusätzlich eine Farbe des Objektes.
  • Das Ausscheidungskriterium kann durch eine Eingabe einer Bedienungsperson vorgegeben, einer Datenbank entnommen oder automatisch berechnet werden.
  • Die erste Fremdmaterialinformation kann eine Ausscheidungsrate sein. Diese kann z. B. im Wesentlichen eine Anzahl Ausscheidungen pro Einheitsmasse Faserflocken (z. B. pro 100 kg) oder pro Zeiteinheit (z. B. pro Stunde) angeben; die beiden Angaben können mittels des üblicherweise bekannten Massenflusses pro Zeiteinheit (z. B. in kg/h) ineinander umgerechnet werden.
  • An einer zweiten Stelle im Spinnprozess 1 (siehe Figur 1), die stromabwärts bezüglich der ersten Stelle liegt, wird Garn, das aus den Faserflocken gesponnen wurde, entlang seiner Längsrichtung gefördert, z. B. während des Umspulens 14. An dieser zweiten Stelle befindet sich eine Garnüberwachungseinrichtung 4 der erfindungsgemässen Vorrichtung 2. Die Garnüberwachungseinrichtung 4 ist dazu eingerichtet, das Garn auf Fremdmaterialien zu überwachen und aufgrund der Überwachung eine sich auf die Fremdmaterialien beziehende zweite Fremdmaterialinformation zu ermitteln.
  • Die zweite Fremdmaterialinformation kann ein zweiter Fremdmaterialanteil sein, der einen Anteil Fremdmaterialien in dem Garn angibt. Dies kann z. B. im Wesentlichen eine Anzahl Fremdmaterialien pro Einheitsmasse Garn (z. B. pro kg), pro Längeneinheit des Garns (z. B. pro 100 km) oder pro Zeiteinheit (z. B. pro Stunde) sein; die drei Angaben können mittels der Garnnummer (z. B. in tex = g/km) bzw. der Spulgeschwindigkeit (z. B. in m/min) ineinander umgerechnet werden.
  • Die Garnüberwachungseinrichtung 4 kann z. B. als ein Garnreinigersystem ausgeführt sein. Garnreiniger zur Überwachung eines laufenden Garns auf Fremdmaterialien sind an sich bekannt, z. B. aus der US-6,244,030 B1 . Dementsprechend beinhaltet die Garnüberwachungseinrichtung 4 einen Sensor, der Messwerte einer optischen Messung an einem Garnabschnitt entlang der Längsrichtung des Garns erfasst. Sie beinhaltet ferner eine Auswerteeinheit zur Ermittlung von Werten einer Reflektivität des ausgemessenen Garnabschnitts aus den Messwerten. Die Auswerteeinheit stellt ein Klassierfeld für Fremdmaterialien bereit, das in mindestens zwei Klassen unterteilt ist. Sie klassiert die Garnereignisse in die mindestens zwei Klassen und bestimmt Anteile der Garnereignisse in mindestens einer der mindestens zwei Klassen an einer Gesamtanzahl der im Garn detektierten Fremdmaterialien.
  • Zwei Ereignisfelder für Garnereignisse sind in Abs. 8.4 des "USTER® QUANTUM 3 Application Handbook", Uster Technologies AG, April 2011, angegeben. Eines davon ist beispielhaft in der vorliegenden Figur 3 wiedergegeben. Das Garnereignisfeld 30 beinhaltet einen Quadranten oder einen Teil eines Quadranten eines zweidimensionalen kartesischen Koordinatensystems. Eine Abszisse 31 des Koordinatensystems gibt eine Erstreckung von Reflektivitätswerten in der Längsrichtung an, z. B. in Zentimetern. Eine Ordinate 32 gibt eine Abweichung von Reflektivitätswerten von einem Sollwert an, z. B. in Prozent. Die Werte für die Erstreckung und die Abweichung der Reflektivitätswerte, die für ein Garnereignis bestimmt wurden, definieren Koordinaten des Garnereignisses im Garnereignisfeld 30. In Figur 3 ist beispielhaft bloss ein Garnereignis als Punkt 33 eingezeichnet; in der Praxis gibt es in einem Garn viele solche Ereignisse, deren Lagen im Garnereignisfeld 30 sich voneinander unterscheiden.
  • Das Garnereignisfeld 30 von Figur 3 ist in 32 rechteckige zweite Klassen unterteilt, die mit Buchstaben und Zahlen AA1-F eindeutig identifiziert sind. Jedem Garnereignis im Garnereignisfeld 30 kann gemäss seiner Lage eindeutig eine zweite Klasse AA1-F zugeordnet werden. Das Garnereignis, das durch den Punkt 33 repräsentiert wird, liegt in der zweiten Klasse C3. In mindestens einer, und vorzugsweise in allen, der zweiten Klassen AA1-F können die Garnereignisse gezählt und so ihre jeweilige Anzahl bestimmt werden. Durch Bildung eines Verhältnisses aus der absoluten Anzahl Garnereignisse in der jeweiligen zweiten Klasse AA1-F und einer Gesamtzahl von Garnereignissen im ganzen Garnereignisfeld 30 wird ein relativer Anteil der Garnereignisse in der jeweiligen zweiten Klasse AA1-F bestimmt. Der zweite Fremdmaterialanteil kann sich auf nur eine oder nur einige der zweiten Klassen AA1-F beziehen.
  • Im Garnereignisfeld 30 ist zusätzlich eine Reinigungskurve 36 eingezeichnet, die eine Reinigungsgrenze als Grenze zwischen zulässigen und unzulässigen Fremdmaterialien im Garn darstellt. Die ermittelten Koordinaten von Garnereignissen werden mit der Reinigungsgrenze 36 verglichen, und die Garnereignisse werden abhängig vom Vergleich aus dem Garn entfernt, d. h. ausgereinigt, oder nicht.
  • Die zweite Fremdmaterialinformation kann eine Reinigungsrate sein. Diese kann z. B. im Wesentlichen eine Anzahl Reinigungsvorgänge pro Einheitsmasse Garn (z. B. pro kg), pro Längeneinheit des Garns (z. B. pro 100 km) oder pro Zeiteinheit (z. B. pro Stunde) angeben; die drei Angaben können mittels der Garnnummer (z. B. in tex = g/km) bzw. der Spulgeschwindigkeit (z. B. in m/min) ineinander umgerechnet werden.
  • In der Ausführungsform gemäss Figur 1 ist die Garnüberwachungseinrichtung 4 mit einer zentralen Steuereinrichtung 5 bidirektional verbunden, was durch einen Pfeil 7 dargestellt ist. Die zentrale Steuereinrichtung 5 ist ihrerseits mit der Faserflockenüberwachungseinrichtung 3 bidirektional verbunden, was durch einen Pfeil 6 dargestellt ist.
  • Die Datenverbindungen 6, 7 ermöglichen einen bidirektionalen Austausch von Daten zwischen den jeweils beteiligten Einrichtungen 3, 4, 5. Zu diesem Zweck sind die Faserflockenüberwachungseinrichtung 3, die Garnüberwachungseinrichtung 4 und die zentrale Steuereinrichtung 5 mit Sendemitteln zum Senden von Daten und mit Empfangsmitteln zum Empfangen von Daten ausgestattet. Die Datenverbindungen 6, 7 können kabelgebunden oder kabellos ausgeführt sein.
  • Die zentrale Steuereinrichtung 5 kann als ein eigenständiges Gerät ausgeführt sein, z. B. als ein Computer, der sich in der Spinnerei oder ausserhalb der Spinnerei befindet. Diesfalls beinhaltet sie entsprechende Empfangs- und Sendemittel zum Empfangen bzw. Senden von Daten. Alternativ kann die zentrale Steuereinrichtung 5 in einem anderen Gerät integriert sein, z. B. in einem Garnprüfgerät im Textillabor der Spinnerei, in der Faserflockenüberwachungseinrichtung 3, in der Garnüberwachungseinrichtung 4 etc. In den letzteren beiden Fällen kann eine direkte Datenverbindung zwischen der Garnüberwachungseinrichtung 4 und der Faserflockenüberwachungseinrichtung 3 bestehen, über welche die beiden Einrichtungen 4, 3 Daten übermitteln oder austauschen.
  • Entlang der Verbindung 6 und/oder 7 können sich weitere (nicht eingezeichnete) Einrichtungen befinden, welche die übermittelten Daten empfangen, bei Bedarf verarbeiten und weitersenden. In einer Ausführungsform sind mehrere Faserflockenüberwachungseinrichtungen 3 mit einem Faserflockenexpertensystem verbunden. Das Faserflockenexpertensystem ist dazu eingerichtet, Daten von den Faserflockenüberwachungseinrichtungen 3 zu empfangen, zu verarbeiten und in geeigneter Form auszugeben, sowie die Faserflockenüberwachungseinrichtungen 3 zu steuern. Es ist seinerseits mit der zentralen Steuereinrichtung 5 verbunden. In einer Ausführungsform sind mehrere Garnüberwachungseinrichtungen 4 mit einem Garnexpertensystem verbunden. Das Garnexpertensystem ist dazu eingerichtet, Daten von den Garnüberwachungseinrichtungen 4 zu empfangen, zu verarbeiten und in geeigneter Form auszugeben, sowie die Garnüberwachungseinrichtungen 4 zu steuern. Es ist seinerseits mit der zentralen Steuereinrichtung 5 verbunden.
  • Im Spinnprozess 1 von Figur 1 wird eine Durchlaufzeit Δt (vgl. Figuren 7(b) und (c)) bestimmt. Die Durchlaufzeit Δt wird in der vorliegenden Schrift als dasjenige Zeitintervall, während dessen eine Faser von der ersten Stelle (z. B. Feinreinigung 11) bis zur zweiten Stelle (z. B. Umspulen 14) im Spinnprozess 1 durchläuft, definiert. Die Durchlaufzeit Δt hängt von mehreren Gegebenheiten ab wie z. B. dem Spinnprozess 1, der Organisation der Spinnerei, den Rohfasern, dem herzustellenden Garn etc. Sie kann je nachdem im Bereich von Stunden oder Tagen liegen. In einer Ausführungsform kann die Durchlaufzeit Δt von einer Bedienungsperson manuell in die zentrale Steuereinrichtung 5 eingegeben werden. In einer anderen Ausführungsform kann die Durchlaufzeit Δt von der zentralen Steuereinrichtung 5 automatisch berechnet werden. Die Berechnung kann z. B. anhand von in der zentralen Steuereinrichtung 5 gespeicherten Daten, die z. B. den Spinnprozess 1, die Organisation der Spinnerei, die Rohfasern, das herzustellenden Garn etc. betreffen, erfolgen. In einer weiteren Ausführungsform kann die Durchlaufzeit Δt von der zentralen Steuereinrichtung 5 anhand von Eingaben aus einer Datenbank abgerufen werden. Sie kann während der Durchführung des erfindungsgemässen Verfahrens konstant bleiben oder verändert werden, wobei eine Veränderung wiederum manuell oder automatisch erfolgen kann.
  • Im erfindungsgemässen Verfahren beziehen sich der erste Fremdmaterialanteil und der zweite Fremdmaterialanteil auf dieselbe Probe von Fasermaterial, d. h. werden sozusagen "für dieselben Fasern" ermittelt. Zu diesem Zweck muss ein zweiter Zeitpunkt t2 (vgl. Figuren 7(b) und (c)), zu dem der zweite Fremdmaterialanteil ermittelt wird, um die Durchlaufzeit Δt nach einem ersten Zeitpunkt ti, zu dem der erste Fremdmaterialanteil ermittelt wird, liegen, d. h. t2 = ti + Δt. Der so ermittelte erste Fremdmaterialanteil und der so ermittelte zweite Fremdmaterialanteil werden einander zugeordnet.
  • Die Ermittlung der Durchlaufzeit Δt ist nur eine von mehreren Möglichkeiten zur gegenseitigen Zuordnung der ersten Fremdmaterialinformation und der zweiten Fremdmaterialinformation. Eine andere Möglichkeit besteht darin, eine Eigenschaft der Probe selbst zu bestimmen. Als Eigenschaft der Probe kann z. B. ihre chemische Zusammensetzung verwendet werden, wobei die natürliche Zusammensetzung der Faser mittels Genanalyse und/oder eine künstlich hinzugefügte Markierung (Marker) eine Rolle spielen kann. Eine weitere Möglichkeit zur Zuordnung besteht in einer Markierung eines Trägers der Probe, um die Probe im Spinnprozess nachzuverfolgen. Träger der Probe können, je nach Probenbeschaffenheit, Kannen oder Spulenkerne sein, auf die optische und/oder elektromagnetische Markierungen aufgebracht sind.
  • Aufgrund des ersten Fremdmaterialanteils und des ihm zugeordneten zweiten Fremdmaterialanteils wird eine Änderung an dem Spinnprozess 1 vorgenommen. Nachfolgend werden einige Beispiele für solche Änderungen vorgestellt:
    • In einer Ausführungsform beinhaltet die Änderung an dem Spinnprozess 1 eine Änderung des Ausscheidungskriteriums. Zu diesem Zweck kann z. B. die Ausscheidungskurve 26 (vgl. Figur 2) geändert werden.
    • In einer Ausführungsform beinhaltet die Änderung an dem Spinnprozess 1 eine Änderung des Reinigungskriteriums. Zu diesem Zweck kann z. B. die Reinigungskurve 36 (vgl. Figur 3) geändert werden.
    • In einer Ausführungsform beinhaltet die Änderung an dem Spinnprozess 1 eine Änderung der in den Spinnprozess 1 eingespeisten Rohfasern oder zumindest eines Teils davon.
    • In einer Ausführungsform beinhaltet die die Änderung an dem Spinnprozess 1 eine Änderung von Einstellungen an Maschinen, die an dem Spinnprozess 1 beteiligt sind.
  • In einer Ausführungsform des erfindungsgemässen Verfahrens werden die erste Fremdmaterialinformation und die zweite Fremdmaterialinformation gleichzeitig an eine Bedienungsperson ausgegeben. Die gleichzeitige Ausgabe der ersten und zweiten Fremdmaterialinformation erfolgt vorzugsweise grafisch. Die Figuren 4 und 5 zeigen zwei Beispiele dafür, wobei die erste Fremdmaterialinformation die Ausscheidungsrate und die zweite Fremdmaterialinformation die Reinigungsrate sind.
  • Figur 4 zeigt ein erstes Beispiel einer grafischen Ausgabe 40. Sie enthält eine Säule 41, die in vier Bewertungsbereiche 42-45 unterteilt ist. Beidseits der Säule 41 befinden sich horizontale Pfeile 46, 47, deren Position bezüglich der Säule 41 in vertikaler Richtung veränderbar ist. Der linke Pfeil 46 zeigt die Ausscheidungsrate an, der rechte Pfeil 47 die ihr zugeordnete Reinigungsrate. Je weiter unten sich ein Pfeil 46, 47 befindet, umso niedriger ist die betreffende Rate, und umgekehrt. Zwecks einer Bewertung der Raten können die vier Bewertungsbereiche 42-45 der Säule 41 in den Ampelfarben Grün für angemessen (zweiter Bewertungsbereich 43), Gelb für kritisch (erster Bewertungsbereich 42 und dritter Bewertungsbereich 44) und Rot für hoch kritisch (vierter Bewertungsbereich 45) eingefärbt sein. Im Beispiel von Figur 4 ist die Ausscheidungsrate niedrig und die Reinigungsrate sehr hoch. Ein solches Missverhältnis der Raten ist nicht optimal. Zusätzlich zur gleichzeitigen Ausgabe der Ausscheidungsrate und der Reinigungsrate kann eine Empfehlung für die Änderung an dem Spinnprozess an die Bedienungsperson ausgegeben werden. Eine solche Empfehlung zeigen in Figur 4 die beiden einfachen, vertikalen Pfeile 48, 49 an: Die Ausscheidungsrate sollte erhöht (Pfeil 48) und die Reinigungsrate verringert (Pfeil 49) werden. Bei einer optimalen Einstellung zeigen beide horizontalen Pfeile 46, 47 auf den zweiten, grünen Bewertungsbereich 43. Selbstverständlich umfasst die Erfindung andere, ähnliche grafische Ausgaben, wie z. B. je eine eigene Säule für die Ausscheidungsrate und für die Reinigungsrate.
  • Figur 5 zeigt ein zweites Beispiel einer grafischen Ausgabe der Ausscheidungsrate und der Reinigungsrate. Hierbei handelt es sich um ein Portfolio-Diagramm 50. Entlang einer Abszisse 51 ist die Ausscheidungsrate aufgetragen, entlang einer Ordinate 52 die Reinigungsrate. Die Ausscheidungsrate und die ihr zugeordnete Reinigungsrate bilden die Koordinaten jeweils eines Punktes 53 im Portfolio-Diagramm. In der Diagrammfläche sind schematisch fünf Bewertungsbereiche 54-58 eingezeichnet, die verschiedenen Bewertungskategorien oder Empfehlungskategorien entsprechen. Die Bewertungsbereiche 54-58 können andere als die in Figur 5 eingezeichneten Formen aufweisen. Zwecks einer Bewertung der Raten können die fünf Bewertungsbereiche 54-58 in den Ampelfarben Grün für angemessen (erster Bewertungsbereich 54 und fünfter Bewertungsbereich 58), Gelb für kritisch (zweiter Bewertungsbereich 55 und vierter Bewertungsbereich 57) und Rot für hoch kritisch (dritter Bewertungsbereich 56) eingefärbt sein. Der eingezeichnete Punkt 53 liegt in einem ersten, grünen Bewertungsbereich 54. In diesem Fall werden offenbar gute, fremdmaterialarme Rohfasern verwendet, so dass kein Handlungsbedarf besteht. Ein in einem zweiten, gelben Bewertungsbereich 55 liegender Punkt würde auf eine hohe Ausscheidungsrate bei gleichzeitig niedriger Reinigungsrate hinweisen. Ein solches Missverhältnis der Raten sollte ausgeglichen werden, indem die Ausscheidungsrate verringert und die Reinigungsrate erhöht wird. Diese Empfehlung an die Bedienungsperson ist durch einen Pfeil 59 angedeutet. In einem dritten, roten Bewertungsbereich 56 sind sowohl die Ausscheidungsrate als auch die Reinigungsrate hoch, was eine schlechte Produktivität zur Folge hat. In diesem Fall sollte erwogen werden, besseres, weniger verunreinigte Rohfasern zu verwenden. Ein in einem vierten, gelben Bewertungsbereich 57 liegender Punkt würde auf eine niedrige Ausscheidungsrate bei gleichzeitig hoher Reinigungsrate hinweisen. Dies entspricht der in Figur 4 dargestellten Situation. Ein solches Missverhältnis der Raten sollte ausgeglichen werden, indem die Ausscheidungsrate erhöht und die Reinigungsrate verringert wird. Diese Empfehlung an die Bedienungsperson ist durch einen Pfeil 59 angedeutet. Liegt ein Punkt im fünften, grünen Bewertungsbereich 58, dann sind die Ausscheidungsrate und die Reinigungsrate ausgeglichen, und der Spinnprozess 1 braucht nicht geändert zu werden.
  • In den Beispielen der Figuren 4 und 5 kann zusätzlich zur grafischen Darstellung der Wert der Ausscheidungsrate und/oder der Reinigungsrate angegeben werden. Dies ist in Figur 4 der Fall, wo die beiden Werte in den entsprechenden horizontalen Pfeilen 46, 47 eingetragen sind. Alternativ können nur die Werte ohne eine grafische Darstellung an die Bedienungsperson ausgegeben werden.
  • Anstatt mit oder zusätzlich zu Pfeilen 48, 49 (Figur 4) bzw. 59 (Figur 5) oder ähnlichen grafischen Symbolen kann die Empfehlung in Worten an die Bedienungsperson ausgegeben werden.
  • In den hoch kritischen fällen (vierter Bewertungsbereich 45 von Figur 4 und dritter Bewertungsbereich 56 von Figur 5) wird vorzugsweise nicht nur eine Empfehlung, sondern auch eine Warnung oder ein Alarm an die Bedienungsperson ausgegeben. Dies kann grafisch oder mit Worten auf einer Anzeigeeinheit der zentralen Steuereinheit 5 (Figur 1), akustisch und/oder visuell, z. B. mit einer Warnleuchte, erfolgen.
  • Aufgrund der grafischen Ausgabe, der Empfehlung und/oder des Alarms kann die Bedienungsperson eine Änderung am Spinnprozess 1 manuell vornehmen. Alternativ kann die Änderung am Spinnprozess 1 automatisch vorgenommen werden, z. B. von der zentralen Steuereinheit 5 (Figur 1).
  • Die Grenzen der Bewertungsbereiche 42-45, 54-58 in den Figuren 4 und 5 können auf verschiedene Weisen festgelegt werden. Eine erste Möglichkeit ist eine Vorgabe aufgrund von Erfahrungen. Eine zweite Möglichkeit besteht darin, vorgängig eine weltweite Häufigkeitsverteilung eines Fremdmaterialgehaltes in Faserflocken und/oder in Garnen zu ermitteln und diese Häufigkeitsverteilung bei der Festlegung der Grenzen der Bewertungsbereiche zu berücksichtigen. Eine solche weltweite Häufigkeitsverteilung kann z. B. den USTER® STATISTICS entnommen werden. Die USTER® STATISTICS sind eine von der Anmelderin des vorliegenden Schutzrechtes herausgegebene Zusammenstellung von textilen Qualitätsdaten, die aus der weltweiten Produktion von textilen Rohmaterialien, Zwischenprodukten und Endprodukten ermittelt wurden; siehe https://www.uster.com/en/service/uster-statistics/, abgerufen zum Anmeldezeitpunkt des vorliegenden Schutzrechtes.
  • Eine weitere Möglichkeit zur Festlegung der Grenzen der Bewertungsbereiche 42-45, 54-58 in den Figuren 4 und 5 ist in Figur 6 illustriert. Die Figur zeigt ein Diagramm 60 in einem kartesischen Koordinatensystem, entlang dessen Abszisse 61 ein das Ausscheidungskriterium beeinflussender Parameter aufgetragen ist. Dieser Parameter kann z. B. eine Empfindlichkeit der Faserflockenüberwachungseinrichtung 3 (Figur 1) bezüglich der Lichtintensität sein, welche die Lage der Ausscheidungskurve 26 (Figur 2) in vertikaler Richtung bestimmt. Entlang der Ordinate 62 ist die Ausscheidungsrate aufgetragen. Eine Kurve 63 gibt den Zusammenhang zwischen der Empfindlichkeit und der Ausscheidungsrate an. Ein solcher Zusammenhang kann vorgängig heuristisch oder theoretisch ermittelt werden. Die Abszisse 61 ist in drei Bereiche 64-66 unterteilt. In einem ersten Bereich 64 sind die Empfindlichkeiten so gering, dass sie kaum einen Einfluss auf die Ausscheidungsrate haben. In einem dritten Bereich 66 sind die Empfindlichkeiten sehr hoch, was sehr hohe Ausscheidungsraten zur Folge hat. In einem zweiten Bereich 65 liegen mittlere Empfindlichkeiten mit mittleren Ausscheidungsraten. Ein diesem zweiten Bereich 65 entsprechender Bereich 67 der Ausscheidungsrate entspricht dem angemessenen, grünen Bereich 43 der Ausscheidungsrate in Figur 4. Analog kann ein angemessener Bereich für die Reinigungsrate festgelegt werden.
  • Figur 7 zeigt drei Beispiele für Zeitverläufe der ersten Fremdmaterialinformation und der ihr zugeordneten zweiten Fremdmaterialinformation. Diese beiden Fremdmaterialinformationen sind jeweils in zwei übereinander angeordneten Diagrammen 701, 702 dargestellt, wobei das obere Diagramm 701 entlang einer Ordinate 72 z. B. eine Ausscheidungsrate E(t) und das untere Diagramm 702 entlang einer Ordinate 73 einen zweiten Fremdmaterialanteil F(t) angibt und die Abszisse 71 die beiden Diagrammen 701, 702 gemeinsame Zeitachse t ist. Eine erste Kurve 74 im oberen Diagramm 701 gibt den Zeitverlauf der ersten Fremdmaterialinformation, eine zweite Kurve 75 im unteren Diagramm 702 gibt den Zeitverlauf der zweiten Fremdmaterialinformation an. Es wird angenommen, dass ausser einer eventuellen Änderung des Ausscheidungskriteriums keine anderen Änderungen am Spinnprozess 1 vorgenommen werden. Die Beispiele zeigen jeweils das erwartete Verhalten. Eine Abweichung von diesem Verhalten weist auf einen Fehler im Spinnprozess 1 hin und kann z. B. einen Alarm an die Bedienungsperson auslösen.
  • In Figur 7(a) ist der triviale Fall dargestellt, in welchem die Ausscheidungsrate E(t) zeitlich konstant bleibt und das Ausscheidungskriterium nicht verändert wird. Diesfalls sollte auch der zweite Fremdmaterialanteil F(t) zeitlich konstant bleiben; andernfalls sollte ein Alarm ausgegeben werden.
  • Im Beispiel von Figur 7(b) wird zu einem ersten Zeitpunkt ti eine höhere Ausscheidungsrate E(t) beobachtet, ohne dass das Ausscheidungskriterium geändert worden wäre. Dies kann dann der Fall sein, wenn Rohfasern mit mehr Fremdmaterialien in den Spinnprozess 1 eingespeist werden. Es wird erwartet, dass zu einem zweiten Zeitpunkt t2, der um die Durchlaufzeit Δt später liegt als der erste Zeitpunkt ti, der zweite Fremdmaterialanteil F(t) ebenfalls steigt. Umgekehrt sollte ohne Änderung des Ausscheidungskriteriums ein Sinken der Ausscheidungsrate E(t) ebenfalls ein Sinken des zweiten Fremdmaterialanteils F(t) zur Folge haben.
  • Im Beispiel von Figur 7(c) wird das Ausscheidungskriterium zu einem ersten Zeitpunkt ti so geändert, dass eine höhere Ausscheidungsrate E(t) resultiert. Dies sollte erwartungsgemäss zur Folge haben, dass zu einem zweiten Zeitpunkt t2, der um die Durchlaufzeit Δt später liegt als der erste Zeitpunkt ti, der zweite Fremdmaterialanteil F(t) sinkt. Wird hingegen das Ausscheidungskriterium so geändert, dass eine niedrigere Ausscheidungsrate E(t) resultiert, so sollte der zweite Fremdmaterialanteil F(t) um die Durchlaufzeit Δt später steigen.
  • Figur 8 illustriert eine weitere Ausführungsform des erfindungsgemässen Verfahrens. In dieser Ausführungsform werden Kosten mitberücksichtigt.
  • Figur 8(a) zeigt ein Diagramm 801 in einem kartesischen Koordinatensystem, entlang dessen Abszisse 81 die Ausscheidungsrate E und entlang dessen Ordinate 82 die Reinigungsrate C(E) aufgetragen ist. Eine Kurve 83 zeigt schematisch einen möglichen Zusammenhang zwischen der Ausscheidungsrate E und der Reinigungsrate C(E). Ein solcher Zusammenhang C(E) kann heuristisch oder theoretisch ermittelt werden. Ebenfalls heuristisch oder theoretisch können die Kosten KE für eine Ausscheidung und die Kosten KC für einen Reinigungsvorgang ermittelt werden. Die Gesamtkosten K pro Einheitsmasse für die Ausscheidungen und Reinigungsvorgänge im Spinnprozess 1 betragen dann K E = E K E + C E K C ,
    Figure imgb0001
    wobei darauf zu achten ist, dass sich in dieser Linearkombination die Ausscheidungsrate E und der Reinigungsrate C auf dieselbe Einheitsmasse beziehen. Die Bedingung zur Minimierung der Gesamtkosten K(E) lautet dK dE = K E + d dE C E K C = 0 .
    Figure imgb0002
  • Daraus folgt d dE C E = K E K C .
    Figure imgb0003
  • Dementsprechend ist in einem Diagramm 802 in Figur 8(b) entlang einer Ordinate 84 die Ableitung dC(E)/dE der Kurve 83 von Figur 8(a) aufgetragen. Eine Kurve 85 zeigt den Verlauf der Ableitung. Beispielhaft ist ein Wert -KE/KC eingezeichnet, den die Ableitung an zwei Stellen Emax, Emin annimmt.
  • In einem Diagramm 803 in Figur 8(c) sind schliesslich die Gesamtkosten K(E) mittels einer Kurve 87 aufgetragen. An einer ersten Stelle Emax der genannten zwei Stellen liegt ein zu meidendes Maximum der Gesamtkosten K(E). An einer zweiten Stelle Emin der genannten zwei Stellen liegt hingegen das Minimum, das vorliegend interessiert. Dieser Wert Emin sollte durch eine entsprechende Wahl des Ausscheidungskriteriums angestrebt werden, um den Spinnprozess 1 zu optimieren. Die Änderung am Spinnprozess 1 sollte also in dieser Ausführungsform in einer derartigen Wahl des Ausscheidungskriteriums bestehen, dass die Ausscheidungsrate gerade Emin beträgt; dann sind die Gesamtkosten K(E) minimal. Die Änderung kann manuell von einer Bedienungsperson oder automatisch, z. B. von der zentralen Steuereinheit 5 (Figur 1) vorgenommen werden.
  • Die anhand der Figur 8 beschriebene Ausführungsform des erfindungsgemässen Verfahrens lässt sich selbst dann ausführen, wenn sich die in Figur 8(a) dargestellte Funktion für einen gegebenen Spinnprozess 1 nicht oder nicht vollständig ermitteln lässt. Es genügt, wenn für den gegebenen Spinnprozess 1 ein einziger Punkt (E, C') und die Funktion C(E) für einen anderen, aber ähnlichen Spinnprozess bekannt sind. Unter der Annahme, dass die Verläufe der Kurve 83 für beide Spinnprozesse ähnlich sind, lässt sich ein Proportionalitätsfaktor p = C E C E
    Figure imgb0004
    berechnen. Die Minimalbedingung für den gegebenen Spinnprozess 1 lautet dann d dE C E = 1 p K E K C ,
    Figure imgb0005
    worin dC(E)/dE die in Figur 8(b) dargestellte Ableitung der bekannten Funktion C(E) ist.
  • Selbstverständlich ist die vorliegende Erfindung nicht auf die oben diskutierten Ausführungsformen beschränkt. Insbesondere können an mehr als zwei Stellen im Spinnprozess sich auf die Fremdmaterialien beziehende Fremdmaterialinformationen ermittelt werden. Bei Kenntnis der Erfindung wird der Fachmann weitere Varianten herleiten können, die auch zum Gegenstand der vorliegenden Erfindung gehören.
  • BEZUGSZEICHENLISTE
  • 1
    Spinnprozess
    11
    Feinreinigen
    12
    Kardieren
    13
    Verspinnen
    14
    Umspulen
    2
    Vorrichtung
    3
    Faserflockenüberwachungseinrichtung
    4
    Garnüberwachungseinrichtung
    5
    zentrale Steuereinrichtung
    6, 7
    Datenverbindungen
    20
    Faserereignisfeld
    21
    Abszisse
    22
    Ordinate
    23
    Faserereignis
    24
    erster Bereich für zulässige Faserereignisse
    25
    zweiter Bereich für unzulässige Faserereignisse
    26
    Ausscheidungskurve, Ausscheidungskriterium
    27
    Klassen von Faserereignissen
    30
    Garnereignisfeld
    31
    Abszisse
    32
    Ordinate
    33
    Garnereignis
    40
    grafische Ausgabe
    41
    Säule
    42-45
    Bewertungsbereiche
    46
    Pfeil zur Anzeige der Ausscheidungsrate
    47
    Pfeil zur Anzeige der Reinigungsrate
    48, 49
    Pfeile zur Anzeige von Empfehlungen
    50
    Portfolio-Diagramm
    51
    Abszisse
    52
    Ordinate
    53
    Punkt im Portfolio-Diagramm
    54-58
    Bewertungsbereiche
    59
    Pfeile zur Anzeige von Empfehlungen
    60
    Diagramm
    61
    Abszisse
    62
    Ordinate
    63
    Kurve
    64-66
    Bereiche auf der Abszisse
    67
    Bereich auf der Ordinate
    701, 702
    Diagramme
    71
    Abszisse
    72, 73
    Ordinaten
    74, 75
    erste bzw. zweite Kurve
    801-803
    Diagramme
    81
    Abszisse
    82, 84, 86
    Ordinaten
    83, 85, 87
    Kurven

Claims (26)

  1. Verfahren zur Optimierung eines Spinnprozesses (1), der von einem in Form von Rohfasern eingespeisten und in Form von Garn ausgegebenen Fasermaterial durchlaufen wird, bezüglich Fremdmaterialien in dem Fasermaterial, wobei
    an einer ersten Stelle (11) im Spinnprozess (1) eine sich auf die Fremdmaterialien beziehende erste Fremdmaterialinformation ermittelt wird, und
    an einer zweiten Stelle (14) im Spinnprozess (1), die stromabwärts bezüglich der ersten Stelle (11) liegt, eine sich auf die Fremdmaterialien beziehende zweite Fremdmaterialinformation ermittelt wird,
    wobei die erste Stelle (11) bzw. die zweite Stelle (14) jeweils einem Prozessschritt aus der folgenden Menge entspricht: Öffnen, Grobreinigen, Mischen, Feinreinigen (11), Kardieren (12), Doublieren, Kämmen, Verstrecken, Verspinnen (13), Umspulen (14),
    dadurch gekennzeichnet, dass
    die erste Fremdmaterialinformation und die zweite Fremdmaterialinformation einander derart zugeordnet werden, dass sie sich auf dieselbe Probe des Fasermaterials beziehen, und
    aufgrund der ersten Fremdmaterialinformation und der ihr zugeordneten zweiten Fremdmaterialinformation eine Änderung an dem Spinnprozess (1) vorgenommen wird.
  2. Verfahren nach Anspruch 1, wobei die Ermittlung der ersten Fremdmaterialinformation und der zweiten Fremdmaterialinformation an der gesamten Probe des Fasermaterials oder an einer Teilmenge der Probe des Fasermaterials erfolgt.
  3. Verfahren nach einem der vorangehenden Ansprüche, wobei die Ermittlung der ersten Fremdmaterialinformation und der zweiten Fremdmaterialinformation kontinuierlich oder zu diskreten Zeitpunkten erfolgt.
  4. Verfahren nach einem der vorangehenden Ansprüche, wobei die Ermittlung der ersten Fremdmaterialinformation und der zweiten Fremdmaterialinformation online am Spinnprozess oder offline, indem die Probe des Fasermaterials oder eine Teilmenge davon dem Spinnprozess entnommen und ausserhalb des Spinnprozesses untersucht wird, erfolgt.
  5. Verfahren nach einem der vorangehenden Ansprüche, wobei die Änderung an dem Spinnprozess (1) eine Änderung der in den Spinnprozess (1) eingespeisten Rohfasern oder zumindest eines Teils davon und/oder eine Änderung von Einstellungen an Maschinen, die an dem Spinnprozess (1) beteiligt sind, beinhaltet.
  6. Verfahren nach einem der vorangehenden Ansprüche, wobei die gegenseitige Zuordnung der ersten Fremdmaterialinformation und der zweiten Fremdmaterialinformation einen der Schritte aus der folgenden Menge beinhaltet: Ermittlung einer Durchlaufzeit (Δt) als desjenigen Zeitintervalls, während dessen eine Faser von der ersten Stelle (11) bis zur zweiten Stelle (14) im Spinnprozess (1) durchläuft; Bestimmung einer Eigenschaft der Probe selbst; und Markierung eines Trägers der Probe.
  7. Verfahren nach Anspruch 6, wobei
    an der ersten Stelle (11) im Spinnprozess (1) ein Strom von Faserflocken, die pneumatisch in einem Luftstrom gefördert werden, auf Fremdmaterialien überwacht wird und aufgrund der Überwachung die erste Fremdmaterialinformation ermittelt wird, und
    an der zweiten Stelle (14) im Spinnprozess (1) Garn, das aus den Faserflocken gesponnen wurde und entlang seiner Längsrichtung gefördert wird, auf Fremdmaterialien überwacht wird und aufgrund der Überwachung die zweite Fremdmaterialinformation ermittelt wird,
    eine Durchlaufzeit (Δt) als dasjenige Zeitintervall, während dessen eine Faser von der ersten Stelle (11) bis zur zweiten Stelle (14) im Spinnprozess (1) durchläuft, bestimmt wird,
    die erste Fremdmaterialinformation zu einem ersten Zeitpunkt (t1) und die zweite Fremdmaterialinformation zu einem zweiten Zeitpunkt (t2), der um die Durchlaufzeit (Δt) nach dem ersten Zeitpunkt (t1) liegt, ermittelt werden und
    die so ermittelte erste Fremdmaterialinformation und die so ermittelte zweite Fremdmaterialinformation einander zugeordnet werden.
  8. Verfahren nach Anspruch 7, wobei
    die erste Fremdmaterialinformation ein erster Fremdmaterialanteil ist, der einen Anteil Fremdmaterialien in den Faserflocken angibt, und
    die zweite Fremdmaterialinformation ein zweiter Fremdmaterialanteil ist, der einen Anteil Fremdmaterialien in dem Garn angibt.
  9. Verfahren nach Anspruch 7 oder 8, wobei an der ersten Stelle (11) im Spinnprozess (1) Fremdmaterialien gemäss einem Ausscheidungskriterium (26) aus dem Strom von Faserflocken ausgeschieden werden und die Änderung an dem Spinnprozess (1) eine Änderung des Ausscheidungskriteriums (26) beinhaltet.
  10. Verfahren nach Anspruch 9, wobei die erste Fremdmaterialinformation eine Ausscheidungsrate (E) ist, die eine Anzahl Ausscheidungen pro Einheitsmasse Faserflocken oder pro Zeiteinheit angibt, vorgängig ein Zusammenhang zwischen dem Ausscheidungskriterium und der Ausscheidungsrate (E) ermittelt wird und dieser Zusammenhang bei der Änderung an dem Spinnprozess (1) berücksichtigt wird.
  11. Verfahren nach einem der Ansprüche 7-10, wobei an der zweiten Stelle(14) im Spinnprozess (1) im Garn detektierte Fremdmaterialien gemäss einem Reinigungskriterium (36) aus dem Garn ausgereinigt werden und die Änderung an dem Spinnprozess (1) eine Änderung des Reinigungskriteriums (36) beinhaltet.
  12. Verfahren nach Anspruch 11, wobei die zweite Fremdmaterialinformation eine Reinigungsrate (C) ist, die eine Anzahl Reinigungsvorgänge pro Einheitsmasse Garn, pro Längeneinheit des Garns oder pro Zeiteinheit angibt, vorgängig ein Zusammenhang zwischen dem Reinigungskriterium (36) und der Reinigungsrate (C) ermittelt wird und dieser Zusammenhang bei der Änderung an dem Spinnprozess (1) berücksichtigt wird.
  13. Verfahren nach Anspruch 9 oder 10, wobei vorgängig Kosten (KE) für eine Ausscheidung ermittelt werden und bei der Änderung an dem Spinnprozess (1) ein Produkt aus den Kosten (KE) für eine Ausscheidung und der Ausscheidungsrate (E) berücksichtigt wird.
  14. Verfahren nach Anspruch 11 oder 12, wobei vorgängig Kosten (Kc) für einen Reinigungsvorgang ermittelt werden und bei der Änderung an dem Spinnprozess (1) ein Produkt aus den Kosten (KC) für einen Reinigungsvorgang und der Reinigungsrate (C) berücksichtigt wird.
  15. Verfahren nach einem der Ansprüche 7-14, wobei die Durchlaufzeit (Δt) von einer Bedienungsperson manuell eingegeben, aufgrund von Vorgaben automatisch berechnet und/oder aufgrund von Vorgaben aus einer Datenbank abgerufen wird.
  16. Verfahren nach einem der vorangehenden Ansprüche, wobei
    erste Klassen (27) von Fremdmaterialien in dem Fasermaterial an der ersten Stelle (11) vorbestimmt werden, welche erste Klassen (27) sich bezüglich Eigenschaften der Fremdmaterialien voneinander unterscheiden, und die erste Fremdmaterialinformation sich auf eine oder mehrere dieser ersten Klassen (27) bezieht, und/oder
    zweite Klassen (AA1-F) von Fremdmaterialien in dem Fasermaterial an der zweiten Stelle (14) vorbestimmt werden, welche zweite Klassen (AA1-F) sich bezüglich Eigenschaften der Fremdmaterialien voneinander unterscheiden, und die zweite Fremdmaterialinformation sich auf eine oder mehrere dieser zweiten Klassen (AA1-F) bezieht.
  17. Verfahren nach einem der vorangehenden Ansprüche, wobei die erste Fremdmaterialinformation und die zweite Fremdmaterialinformation gleichzeitig an eine Bedienungsperson ausgegeben werden und die gleichzeitige Ausgabe der ersten Fremdmaterialinformation und der zweiten Fremdmaterialinformation zumindest teilweise grafisch erfolgt.
  18. Verfahren nach Anspruch 17, wobei zusätzlich zur gleichzeitigen Ausgabe der ersten Fremdmaterialinformation und der zweiten Fremdmaterialinformation eine Bewertung der ersten Fremdmaterialinformation und/oder der zweiten Fremdmaterialinformation an die Bedienungsperson ausgegeben wird und die Bewertung jeweils mindestens zwei Kategorien beinhaltet, die auf angemessene bzw. kritische Fremdmaterialinformationen hinweisen.
  19. Verfahren nach Anspruch 17 oder 18, wobei zusätzlich zur gleichzeitigen Ausgabe der ersten Fremdmaterialinformation und der zweiten Fremdmaterialinformation eine Empfehlung für die Änderung an dem Spinnprozess (1) an die Bedienungsperson ausgegeben wird.
  20. Verfahren nach einem der vorangehenden Ansprüche, wobei aufgrund der ersten Fremdmaterialinformation und der ihr zugeordneten zweiten Fremdmaterialinformation ein Alarm an eine Bedienungsperson ausgegeben wird.
  21. Verfahren nach Anspruch 20, wobei ein Zeitverlauf (74) der ersten Fremdmaterialinformation und ein Zeitverlauf (75) der ihr zugeordneten zweiten Fremdmaterialinformation ermittelt werden und der Alarm aufgrund der Zeitverläufe (74, 75) ausgegeben wird.
  22. Verfahren nach einem der Ansprüche 17-21, wobei die Bedienungsperson aufgrund der gleichzeitig ausgegebenen ersten Fremdmaterialinformation und zweiten Fremdmaterialinformation, aufgrund der Bewertung und/oder aufgrund der Empfehlung die Änderung an dem Spinnprozess (1) vornimmt.
  23. Verfahren nach einem der vorangehenden Ansprüche, wobei die Änderung an dem Spinnprozess (1) automatisch vorgenommen wird.
  24. Vorrichtung (2) zur Durchführung des Verfahrens nach einem der vorangehenden Ansprüche in einer einen Spinnprozess (1), der von einem in Form von Rohfasern eingespeisten und in Form von Garn ausgegebenen Fasermaterial durchlaufen wird, ausführenden Spinnerei, beinhaltend
    eine erste Überwachungseinrichtung (3) an einer ersten Stelle (11) im Spinnprozess (1), welche erste Überwachungseinrichtung (3) dazu eingerichtet ist, eine sich auf die Fremdmaterialien beziehende erste Fremdmaterialinformation zu ermitteln, und eine zweite Überwachungseinrichtung (4) an einer zweiten Stelle (14) im Spinnprozess (1), die stromabwärts bezüglich der ersten Stelle (11) liegt, welche zweite Überwachungseinrichtung (4) dazu eingerichtet ist, eine sich auf die Fremdmaterialien beziehende zweite Fremdmaterialinformation zu ermitteln, wobei die erste Stelle (11) bzw. die zweite Stelle (14) jeweils einem Prozessschritt aus der folgenden Menge entspricht: Öffnen, Grobreinigen, Mischen, Feinreinigen (11), Kardieren (12), Doublieren, Kämmen, Verstrecken, Verspinnen (13), Umspulen (14),
    gekennzeichnet durch
    eine mit der ersten Überwachungseinrichtung (3) und der zweiten Überwachungseinrichtung (4) verbundene zentrale Steuereinrichtung (5), die dazu eingerichtet ist,
    die erste Fremdmaterialinformation und die zweite Fremdmaterialinformation einander derart zuzuordnen, dass sie sich auf dieselbe Probe des Fasermaterials beziehen, und
    aufgrund der ersten Fremdmaterialinformation und der ihr zugeordneten zweiten Fremdmaterialinformation eine Änderung an dem Spinnprozess (1) automatisch vorzunehmen.
  25. Vorrichtung (2) nach Anspruch 24, wobei die zentrale Steuereinrichtung (5) dazu eingerichtet ist, die erste Fremdmaterialinformation und die zweite Fremdmaterialinformation gleichzeitig an eine Bedienungsperson auszugeben.
  26. Vorrichtung (2) nach Anspruch 24 oder 25, beinhaltend
    eine Faserflockenüberwachungseinrichtung (3) an der ersten Stelle (11) im Spinnprozess (1), welche Faserflockenüberwachungseinrichtung (3) dazu eingerichtet ist, einen Strom von Faserflocken, die pneumatisch in einem Luftstrom gefördert werden, auf Fremdmaterialien zu überwachen und aufgrund der Überwachung die erste Fremdmaterialinformation zu ermitteln, und
    eine Garnüberwachungseinrichtung (4) an der zweiten Stelle (14) im Spinnprozess (1), welche Garnüberwachungseinrichtung (4) dazu eingerichtet ist, Garn, das aus den Faserflocken gesponnen wurde und entlang seiner Längsrichtung gefördert wird, auf Fremdmaterialien zu überwachen und aufgrund der Überwachung die zweite Fremdmaterialinformation zu ermitteln,
    wobei die zentrale Steuereinrichtung (5), dazu eingerichtet ist,
    eine Durchlaufzeit (Δt) als dasjenige Zeitintervall, während dessen eine Faser von der ersten Stelle (11) bis zur zweiten Stelle (14) im Spinnereiprozess (1) durchläuft, zu speichern,
    die erste Fremdmaterialinformation zu einem ersten Zeitpunkt (t1) und die zweite Fremdmaterialinformation zu einem zweiten Zeitpunkt (t2), der um die Durchlaufzeit (Δt) nach dem ersten Zeitpunkt (t1) liegt, zu speichern, und
    die so ermittelte erste Fremdmaterialinformation und die so ermittelte zweite Fremdmaterialinformation einander zuzuordnen.
EP20704380.3A 2019-01-31 2020-01-23 Optimierung eines spinnprozesses bezüglich fremdmaterialien. Active EP3918119B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH1062019 2019-01-31
CH1582019 2019-02-08
PCT/CH2020/000002 WO2020154820A1 (de) 2019-01-31 2020-01-23 Optimierung eines spinnprozesses bezüglich fremdmaterialien.

Publications (2)

Publication Number Publication Date
EP3918119A1 EP3918119A1 (de) 2021-12-08
EP3918119B1 true EP3918119B1 (de) 2023-06-28

Family

ID=69528515

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20704380.3A Active EP3918119B1 (de) 2019-01-31 2020-01-23 Optimierung eines spinnprozesses bezüglich fremdmaterialien.

Country Status (5)

Country Link
US (1) US12043926B2 (de)
EP (1) EP3918119B1 (de)
JP (1) JP7496828B2 (de)
CN (2) CN118547408A (de)
WO (1) WO2020154820A1 (de)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176661A2 (de) 1984-09-25 1986-04-09 Zellweger Luwa Ag Verfahren und Vorrichtung zur Optimierung des Streckprozesses bei Regulierstrecken der Textilindustrie
US5805452A (en) 1996-08-01 1998-09-08 The United States Of America As Represented By The Secretary Of Agriculture System and method for materials process control
EP1057907A1 (de) 1999-05-31 2000-12-06 Barco N.V. Verfahren und Anlagen zur Steuerung von Spinnereiprozessen
US20010049860A1 (en) 2000-02-09 2001-12-13 Armin Jossi Method and device for controlling a treatment installation for textile fibres, in particular cotton fibres
CH708392A2 (de) 2014-11-24 2015-01-15 Uster Technologies Ag Computerunterstützte Bearbeitung von Qualitätsdaten aus einem textilen Herstellungsprozess.
WO2017079853A1 (de) 2015-11-10 2017-05-18 Uster Technologies Ag Lokales netzwerk für textile qualitätskontrolle
WO2017190259A1 (en) 2016-05-04 2017-11-09 Uster Technologies Ag Monitoring contamination in a stream of fiber flocks
EP3587637A1 (de) 2018-06-25 2020-01-01 Murata Machinery, Ltd. Textilverarbeitungsverfahren, textilverarbeitungssystem und textilverarbeitungsprogramm

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH597081A5 (de) * 1976-10-13 1978-03-31 Loepfe Ag Geb
US4512060A (en) 1982-09-30 1985-04-23 Ppm, Inc. Apparatus and methods for aeromechanical and electrodynamic release and separation of foreign matter from fiber
DE3821238A1 (de) * 1988-06-23 1989-12-28 Rieter Ag Maschf Verfahren und vorrichtung zur herstellung eines gleichmaessigen faserbandes
DE3900409A1 (de) * 1989-01-09 1990-07-12 Rieter Ag Maschf Textilmaschine, insbesondere spinnmaschine
DE3924208A1 (de) * 1989-07-21 1991-01-24 Schubert & Salzer Maschinen Verfahren zur herstellung eines fadens aus fasermaterial
US5539515A (en) * 1990-03-14 1996-07-23 Zellweger Uster, Inc. Apparatus and methods for measurement and classification of trash in fiber samples
JPH047269A (ja) * 1990-04-24 1992-01-10 Murata Mach Ltd 紡績工場における品質管理システム
CH685202A5 (de) * 1991-03-07 1995-04-28 Rieter Ag Maschf Verfahren zum Steuern einer vernetzten Spinnereianlage.
JPH06207331A (ja) * 1991-09-20 1994-07-26 Kondo Bousekishiyo:Kk 保全管理システム
FR2688064B1 (fr) * 1992-07-22 1997-10-17 Scanera Sc Dispositif de detection de defauts de materiaux fibreux
US5383135A (en) * 1992-12-31 1995-01-17 Zellweger Uster, Inc. Acquisition, measurement and control of thin webs on in-process textile materials
DE4335459C2 (de) * 1993-10-18 1999-12-02 Rieter Ingolstadt Spinnerei Spinnstellenstörmelder und -qualifizierer
IL108743A (en) * 1994-02-22 1998-02-22 Mor Uzi System and method for detection of cotton stickiness and neps and other lint qualities in real time and removal of sticky deposits from processed cotton in the gin
JPH0881841A (ja) * 1994-06-02 1996-03-26 Zellweger Luwa Ag 糸、ロービング、スライバ中の糸欠陥の原因を求めるための方法と装置
DE19505421A1 (de) 1995-02-19 1996-08-22 Hergeth Hubert Verfahren zur Optimierung von Farbauswertungen an Erkennungssystemen für Fremdfasern und Partikel in Faserverarbeitungsanlagen
CH689600A5 (de) 1995-09-25 1999-06-30 H J Scheinhuette Entwicklungen Karde mit Vorrichtung zum Ausscheiden von Fremdfasern.
JP4110485B2 (ja) 1996-03-27 2008-07-02 ウステル・テヒノロジーズ・アクチエンゲゼルシヤフト 糸の品質を監視する方法及び装置
DE29622931U1 (de) 1996-08-08 1997-09-04 Trützschler GmbH & Co KG, 41199 Mönchengladbach Vorrichtung in einer Spinnereivorbereitungsanlage (Putzerei) zum Erkennen und Auswerten von Fremdstoffen
DE59809009D1 (de) * 1997-04-23 2003-08-21 Uster Technologies Ag Uster Verfahren und Vorrichtung zum Reinigen von Garnen
EP0877104A1 (de) 1997-05-07 1998-11-11 Jossi Holding AG Vorrichtung zum Behandeln eines Fasergutstroms in einer Faseraufbereitungsanlage
US5822972A (en) * 1997-06-30 1998-10-20 Zellweger Uster, Inc. Air curtain nep separation and detection
US5892142A (en) * 1998-02-06 1999-04-06 Zellweger Uster, Inc. Fiber micronaire testing system
EP1103640B1 (de) * 1999-11-24 2004-03-03 Maschinenfabrik Rieter Ag Selektive Reinigungslinie
EP1167590A3 (de) * 2000-06-23 2002-09-11 Maschinenfabrik Rieter Ag Faserlängenmessung
DE10063861B4 (de) * 2000-12-21 2014-08-28 Trützschler GmbH & Co Kommanditgesellschaft Vorrichtung an einer Spinnereivorbereitungsmaschine, z. B. Reiniger, Öffner, Karde o. dgl. zur Erfassung von ausgeschiedenem Abfall
US6442803B1 (en) * 2001-02-14 2002-09-03 Raymond Keith Foster Method of producing blends of cotton lint
DE10214955B9 (de) * 2002-04-04 2017-06-29 Rieter Ingolstadt Gmbh Spinnereivorbereitungsmaschine
CH697063A5 (de) * 2003-04-03 2008-04-15 Truetzschler Gmbh & Co Kg Vorrichtung an einer Spinnereivorbereitungsmaschine, z.B. Reiniger, Öffner oder Karde, zur Erfassung von aus Fasermaterial, z. B. Baumwolle, ausgeschiedenem, aus Fremdstoffen und Gutfasern b
CN101076625B (zh) 2005-01-25 2011-06-29 乔希控股股份公司 分离在纤维材料特别是原棉中的杂质的方法和设备
DE102006057215B4 (de) 2006-12-01 2022-08-11 Trützschler GmbH & Co Kommanditgesellschaft Vorrichtung an einer Spinnereivorbereitungsanlage zum Erkennen von Fremdstoffen in Fasergut
DE102007059288A1 (de) * 2007-12-08 2009-08-06 Oerlikon Textile Gmbh & Co. Kg Verfahren und Vorrichtung zur optischen Bewertung der Qualität eines längsbewegten Faserstranges
CH698344A2 (de) * 2008-01-15 2009-07-15 Rieter Ag Maschf Spulenwechseleinrichtung an einer Spinnmaschine.
DE102008037758B4 (de) * 2008-08-14 2019-09-19 Saurer Spinning Solutions Gmbh & Co. Kg Verfahren zur Qualitätsüberwachung eines längsbewegten Garnes an einer Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine
JP5413560B2 (ja) * 2008-09-25 2014-02-12 村田機械株式会社 異物検出装置、繊維機械及び異物検出方法
CH699599A1 (de) * 2008-09-29 2010-03-31 Uster Technologies Ag Verfahren und vorrichtung zur überwachung von spleissen in einem länglichen textilen prüfgut.
CH701957A8 (de) * 2009-10-02 2011-11-15 Uster Technologies Ag Verfahren zum Festlegen einer Reinigungsgrenze auf einer Garnreinigungsanlage.
CH702009A1 (de) * 2009-10-02 2011-04-15 Uster Technologies Ag Verfahren zur Optimierung eines textilen Produktionsprozesses.
US9851341B2 (en) * 2014-06-27 2017-12-26 Eastman Chemical Company Fibers with chemical markers used for coding
JP6183330B2 (ja) 2014-10-13 2017-08-23 株式会社デンソー 電子制御装置
CN106407524B (zh) * 2016-09-05 2019-11-08 东华大学 一种纺纱质量的定量预测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176661A2 (de) 1984-09-25 1986-04-09 Zellweger Luwa Ag Verfahren und Vorrichtung zur Optimierung des Streckprozesses bei Regulierstrecken der Textilindustrie
US5805452A (en) 1996-08-01 1998-09-08 The United States Of America As Represented By The Secretary Of Agriculture System and method for materials process control
EP1057907A1 (de) 1999-05-31 2000-12-06 Barco N.V. Verfahren und Anlagen zur Steuerung von Spinnereiprozessen
US20010049860A1 (en) 2000-02-09 2001-12-13 Armin Jossi Method and device for controlling a treatment installation for textile fibres, in particular cotton fibres
CH708392A2 (de) 2014-11-24 2015-01-15 Uster Technologies Ag Computerunterstützte Bearbeitung von Qualitätsdaten aus einem textilen Herstellungsprozess.
WO2017079853A1 (de) 2015-11-10 2017-05-18 Uster Technologies Ag Lokales netzwerk für textile qualitätskontrolle
WO2017190259A1 (en) 2016-05-04 2017-11-09 Uster Technologies Ag Monitoring contamination in a stream of fiber flocks
EP3587637A1 (de) 2018-06-25 2020-01-01 Murata Machinery, Ltd. Textilverarbeitungsverfahren, textilverarbeitungssystem und textilverarbeitungsprogramm

Also Published As

Publication number Publication date
JP7496828B2 (ja) 2024-06-07
JP2022518593A (ja) 2022-03-15
CN118547408A (zh) 2024-08-27
CN113396252A (zh) 2021-09-14
US20220090302A1 (en) 2022-03-24
US12043926B2 (en) 2024-07-23
WO2020154820A1 (de) 2020-08-06
CN113396252B (zh) 2024-03-15
EP3918119A1 (de) 2021-12-08

Similar Documents

Publication Publication Date Title
EP3802927B1 (de) Ringspinnanlage und verfahren zu ihrem betrieb
EP0891436B1 (de) Verfahren und vorrichtung zur qualitätsüberwachung von garnen
DE19822886B4 (de) Regulierstreckwerk für einen Faserverband, z. B. Baumwolle, Chemiefasern o. dgl. mit mindestens einem Verzugsfeld
EP0399315B1 (de) Reinigungs-Optimierung
DE19939711B4 (de) Verfahren und Vorrichtung zur Detektierung von Fremdkörpern in einem längsbewegten Faden
EP1123995B1 (de) Verfahren und Vorrichtung zum Steuern einer Behandlungsanlage für textile Fasern, insbesondere Baumwollfasern
DE102019115138B3 (de) Karde, Vliesleitelement, Spinnereivorbereitungsanlage und Verfahren zur Erfassung von störenden Partikeln
EP3918119B1 (de) Optimierung eines spinnprozesses bezüglich fremdmaterialien.
EP4031698B1 (de) Optimierung eines garnherstellungsprozesses bezüglich fremdmaterialien.
EP0483607B1 (de) Verfahren zum Feststellen einer Eigenschaft eines Faserverbandes
WO2019173929A1 (de) Optimierung eines spinnprozesses bezüglich fremdmaterialien
EP3400325B1 (de) Verfahren und überwachungseinheit zur überwachung eines faserstroms
CH683347A5 (de) Steuerung bzw. Regelung einer Faserverarbeitungsanlage.
EP1159472B1 (de) Verfahren zur qualitätsüberwachung textiler bänder
CH720250A1 (de) Verfahren zur Untersuchung eines Faserflockenstroms in einer Spinnereivorbereitungsanlage
DE10214657A1 (de) Verfahren und Prüfgerät zum Prüfen von Fasermaterial auf dessen Kennwerte
CH720251A1 (de) Untersuchung von Textilfaserballen in der Öffnerei einer Spinnereivorbereitungsanlage
WO2003031699A1 (de) Verfahren und prüfgerät zum prüfen von fasermaterial auf dessen kennwerte.
DE9116319U1 (de) Vorrichtung zum Abtragen und Mischen von Textilfasern, z.B. Baumwolle, Chemiefasern u.dgl.
DE102022004857A1 (de) Verfahren zum Ermitteln der Spulenqualität einer Sammelspule
EP4361328A1 (de) Verfahren zum betrieb einer karde, karde und spinnereivorbereitungsanlage
WO2021151216A1 (de) Qualitätsüberwachung in einem spinnereiprozess
EP4416471A1 (de) Optische charakterisierung eines textilfasergebildes
CH685247A5 (de) Verfahren zur Steuerung einer Faserverarbeitungsanlage.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230314

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1582774

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003946

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230928

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502020003946

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240312

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 5

Ref country code: CH

Payment date: 20240202

Year of fee payment: 5

26 Opposition filed

Opponent name: MASCHINENFABRIK RIETER AG

Effective date: 20240327

Opponent name: GEBRUEDER LOEPFE AG

Effective date: 20240327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240122

Year of fee payment: 5

Ref country code: IT

Payment date: 20240129

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20240123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240123

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240123