[go: up one dir, main page]

EP3871792B1 - Buse de pulvérisation à jet plat et faible dérivé - Google Patents

Buse de pulvérisation à jet plat et faible dérivé Download PDF

Info

Publication number
EP3871792B1
EP3871792B1 EP21158812.4A EP21158812A EP3871792B1 EP 3871792 B1 EP3871792 B1 EP 3871792B1 EP 21158812 A EP21158812 A EP 21158812A EP 3871792 B1 EP3871792 B1 EP 3871792B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
insert
blade
outlet
spray nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21158812.4A
Other languages
German (de)
English (en)
Other versions
EP3871792A1 (fr
EP3871792C0 (fr
Inventor
Hervé FOUBERT
Alexandre BILLOIR
Paul TOURNEROCHE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solcera SAS
Original Assignee
Solcera SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solcera SAS filed Critical Solcera SAS
Publication of EP3871792A1 publication Critical patent/EP3871792A1/fr
Application granted granted Critical
Publication of EP3871792B1 publication Critical patent/EP3871792B1/fr
Publication of EP3871792C0 publication Critical patent/EP3871792C0/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/04Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
    • B05B1/044Slits, i.e. narrow openings defined by two straight and parallel lips; Elongated outlets for producing very wide discharges, e.g. fluid curtains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/04Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
    • B05B1/042Outlets having two planes of symmetry perpendicular to each other, one of them defining the plane of the jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0425Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid without any source of compressed gas, e.g. the air being sucked by the pressurised liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/04Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
    • B05B1/048Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like having a flow conduit with, immediately behind the outlet orifice, an elongated cross section, e.g. of oval or elliptic form, of which the major axis is perpendicular to the plane of the jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3402Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to avoid or to reduce turbulencies, e.g. comprising fluid flow straightening means

Definitions

  • the invention relates to a spray nozzle.
  • a spray nozzle is externally presented as a case having an inlet orifice and an outlet orifice. Inside, the nozzle body is arranged to allow the dispersion of a liquid in the form of droplets, and to form at the outlet a jet of droplets, or spray, which has a determined distribution in space. More generally, a nozzle body is arranged to generate a dispersion of droplets at the outlet of an outlet orifice of the nozzle. Such nozzles are for example used in the agricultural field to spray phytosanitary products on crops.
  • nozzles There are different types of nozzles according to the particular shape of their jet: nozzles called straight jet, flat jet, cone jet, which can be a hollow cone, or even a full cone.
  • the present invention relates to spray nozzles of the flat jet type.
  • the essential characteristics of the flat jet are its angle of opening, and the law of distribution of the droplets inside this angle of opening, so that one obtains a uniform cumulative distribution of the drops when the nozzles are associated on a ramp and spaced between them.
  • a nozzle In sprayers, a nozzle is most often placed every 50 cm. And the characteristics of the nozzles are chosen to ensure a substantially uniform distribution of the product to be sprayed over the surface of the agricultural land concerned.
  • a nozzle comprises a body forming a case and which encloses one or more organs and/or elements designed to disturb the jet, that is to say to act on the flow of liquid and to modify its characteristics before its release. ejection through the outlet orifice, depending on the desired spray and the shape of the desired outlet jet.
  • the document FR2838069 discloses a spray nozzle consisting of a body defining an axial cavity comprising a calibration pad, a so-called “divergent” part and a so-called “convergent” part.
  • the Applicant produces a range of so-called AVI nozzles which also achieve median drop sizes of approximately 500 micrometers.
  • the nozzle body can first enclose a "core", which is a part of generally cylindrical shape, defining an internal passage of increasing internal cross-section.
  • This passage is placed in communication with the outside air, substantially at the level of its weakest cross-section, hence a Venturi effect.
  • the central exit orifice of this core leads to a working chamber, which will ensure the transition with the exit orifice of the nozzle.
  • this nozzle also provides drop sizes limited to 500 micrometers, without making it possible to reach super-large drop sizes, which would typically have an average size of 800 micrometers, over an interval extending from 400 micrometers to 1.2 mm.
  • the nozzle described with direct impaction has a limitation which depends on the contact surface of the liquid with the wall of the Venturi and therefore the final length of the nozzle. It produces drops in the range of 500 - 600 ⁇ m depending on the type of impaction injector. The goal is to overcome this limitation while maintaining the nozzle size.
  • the invention improves the performance of such a nozzle.
  • the nozzle further comprises an additional part called a spark gap, housed in the working chamber, arranged to form an obstacle to the flow of the fluid, this spark gap comprising two through axial orifices, each forming a fluid passage, on either side of a radial plane, so that the two flows passing through the orifices of the spark gap combine and then impact the surface of the outlet slot of the insert, finally generating a flat jet.
  • a spark gap housed in the working chamber, arranged to form an obstacle to the flow of the fluid, this spark gap comprising two through axial orifices, each forming a fluid passage, on either side of a radial plane, so that the two flows passing through the orifices of the spark gap combine and then impact the surface of the outlet slot of the insert, finally generating a flat jet.
  • the spray nozzle proposed is of the type comprising a body forming a casing, which has an inlet orifice and an outlet orifice, and which has, on the side of the inlet orifice, a fluid inlet area.
  • the nozzle body can first enclose a “Venturi core”, which is a part of generally cylindrical shape, defining an internal passage of increasing internal straight section. This passage is placed in communication with the outside air, substantially at the level of its weakest cross-section, hence the Venturi effect.
  • the central exit orifice of this core leads to a working chamber, which will ensure the transition with the exit orifice of the nozzle.
  • the proposed nozzle is characterized in that it comprises, in the working chamber, and upstream of the insert, an additional part here called spark gap.
  • This piece forms an obstacle to the flow of the liquid flow. It comprises two through passages or longitudinal orifices, on either side of a central plane. At the outlet of the spark gap, the two flows which have passed through the orifices of the spark gap will regroup. And they will then impact the surface of the outlet slot of the insert, to finally generate a flat jet.
  • the invention provides a blade at the outlet of the spark gap, in the central plane. At the outlet of the spark gap, the two flows will circulate along this blade and follow its surface by the "teapot effect" (sometimes incorrectly called the Coanda effect), before regrouping to impact the surface of the outlet slot of the spark gap. insert.
  • the spark gap blade is adjusted or “indexed” to the insert slot. That is to say that the plane of the blade substantially merges with the plane of the outlet slot of the insert.
  • THE figures 1 to 3 show a known flat jet spray nozzle, such as the Applicant's AVI-110-04 nozzle.
  • the word bore refers here to a female element of a circular fit, whatever its machining process. Indeed, the parts not being metallic, but rather made of synthetic material or ceramic, they are not machined by the conventional boring for metals.
  • Venturi core 2 which begins with a cover 20, resting on the collar 10.
  • the Venturi core 2 has a first cylindrical volume inside straight 21, followed by a conical volume 22. This defines an internal passage of increasing internal straight section.
  • the volume 21 is traversed by radial passages 25A and 25B, which communicate via an annular recess 26 with outside air inlets 18 arranged through the wall of the body 1.
  • a flow rate calibration element 29 which here is a pellet with a calibration orifice.
  • a Venturi effect occurs, due to the nozzle formed by the calibration disc 29, and the volumes 21 and 22.
  • the intensity of the Venturi effect depends on the pressure of the liquid at the inlet.
  • the Venturi effect itself results in the production of a liquid+air mixture in the cavity 23 located downstream of the Venturi core.
  • an O-ring 4 which provides sealing between the annular recess 26 and the downstream of the core 2.
  • the body 1 contains a spray insert 3, which has a cylindrical cavity 30 leading to a slot 31, which is in the plane of the figure 2 , and perpendicular to the plane of the picture 3 .
  • This slot 31 constitutes the outlet orifice of the nozzle.
  • the insert 3 is put in place and held by screwing and has for this purpose a peripheral threaded portion located close to its end 16 and designed to cooperate with a corresponding thread (not visible) of the bore 15 of the body 1.
  • the insert 3 is assembled to the body 1 by crimping. For that. The insert 3 is positioned in the body 1 then pushed in using a press.
  • the Venturi effect makes it possible in particular to obtain slightly larger drops, due to the creation of the air/liquid mixture, but without doing much better than 500 micrometers.
  • This nozzle has the same general structure as that of the figures 1 to 3 .
  • the internal space 23 located upstream of the insert is occupied by an additional part 7 called here spark gap.
  • the spark gap On the upstream side, the spark gap comprises a cylindrical peripheral cupola 70, which engages in a recess 28 made in the downstream outer periphery of the core 2, and abuts on a shoulder 29 of this core 2.
  • the cupola 70 In its radial part, the cupola 70 comprises two through passages or longitudinal orifices 71 and 72, provided symmetrically on either side of a central radial plane 73.
  • the spark gap continues with a blade 75, also placed symmetrically with respect to the central radial plane 73.
  • the two flows which have passed through the orifices 71 and 72 will circulate along the blade 75 and follow its surface by “teapot effect” to regroup.
  • the two streams thus grouped together will come to impact the outlet surface of the insert 3 and generate a flat jet of the “flat fan” type (flat fan).
  • the circulation of the fluid through the nozzle 1 is as follows.
  • a supply of liquid to be sprayed is connected to the nozzle 1.
  • the flow enters through the orifice of the ceramic calibration disc 29 of circular section then, directed by the pressure, it moves into the duct of the core 2, of restricted section then widening.
  • the mixture thus obtained comes into contact with the surface between the two orifices of the spark gap.
  • the impact will generate a sharp drop in the energy of the flux, which will be directed by pressure towards the two outlet orifices 71 and 72 of the spark gap.
  • the two flows will circulate along the blade 75 and follow its surface by “teapot effect” to regroup.
  • the two streams thus grouped together will impact the outlet surface 31 of the insert 3 and generate a flat jet of the “flat fan” type with controlled angle and dispersion.
  • THE figures 7 to 10 show four embodiments of the spark gap 7, tested by the Applicant.
  • the spark gap has no blade.
  • the spark gap has a substantially flat blade 75B, as shown in the figures 4 to 6 .
  • the spark gap also has a flat blade 75C, but provided with cylindrically-shaped channels based on an arc of a circle, which come as an extension of the orifices 71 and 72.
  • the spark gap still has a 75D flat blade, but this time provided with transverse striations.
  • FIG 14 illustrates, in enlarged view, the exit slot of the nozzle, which is of width L.
  • the Applicant then decided to position an intermediate piece, called a "gap", between the core and the insert (assembled on the core).
  • the nozzles thus obtained have proven to be functional: they are primed as soon as the nozzle is started up and the flow bursts and the formation of a jet of the flat fan type is obtained.
  • the proposed solution is not only to reconcile distribution and size of very large drops, but to ensure that it can work at pressures of 2 bar and more while obtaining the level of drift reduction required.
  • Results are given in figures 11 to 13 for three types of spark gap (those of figures 8 to 10 ), the rest of the nozzle being the same.
  • the plastic material is typically a polyoxymethylene or POM, which is a polymer of the polyacetal family, for its ease of shaping and the associated mechanical properties, or any other equivalent plastic material, chemically compatible with the fluid to be spread.
  • the ceramic may be alumina, also for its ease of forming and the associated mechanical properties, or an equivalent material.
  • Control of these elements makes it possible to produce a sufficient spray angle to optimize jet overlaps at lower pressure below 3 bar, and this without the need to size the height of the outlet slot 31 of the insert 3 of noticeable way. In this way, a known problem of the state of the art is avoided in particular, which is the condition of having to make the two walls of the outlet slot parallel. Parallel walls have the effect of reducing the visible area of rupture of the ligaments forming the drops.

Landscapes

  • Nozzles (AREA)
  • Gas Separation By Absorption (AREA)
  • Noodles (AREA)
  • Glanulating (AREA)

Description

  • L'invention concerne une buse de pulvérisation.
  • Une buse de pulvérisation se présente extérieurement comme un étui présentant un orifice d'entrée et un orifice de sortie. A l'intérieur, le corps de buse est agencé pour permettre la dispersion d'un liquide sous forme de gouttelettes, et pour former en sortie un jet de gouttelettes, ou spray, qui possède une distribution déterminée dans l'espace. Plus généralement, un corps de buse est agencé pour générer en sortie d'un orifice de sortie de la buse une dispersion de gouttelettes. De telles buses sont par exemple utilisées dans le domaine agricole pour pulvériser des produits phytosanitaires sur des cultures.
  • On distingue différents types de buses selon la forme particulière de leur jet : buses dites à jet droit, à jet plat, à jet en cône, qui peut être un cône creux, ou encore un cône plein.
  • La présente invention s'intéresse aux buses de pulvérisation du type à jet plat.
  • Les caractéristiques essentielles du jet plat sont son angle d'ouverture, et la loi de distribution des gouttelettes à l'intérieur de cet angle d'ouverture, de sorte que l'on obtienne une distribution cumulée uniforme des gouttes lorsque les buses sont associées sur une rampe et espacées entre elles.
  • Dans les pulvérisateurs, on place le plus souvent une buse tous les 50 cm. Et l'on choisit les caractéristiques des buses pour assurer une distribution sensiblement uniforme du produit à pulvériser sur la surface du terrain agricole concerné.
  • On sait réaliser cela avec des buses connues, mais il reste un problème. Cela marche bien sans vent. Mais, le vent peut faire que la zone de pulvérisation déborde la surface du terrain agricole concerné. C'est d'abord une perte d'efficacité. Mais c'est aussi potentiellement néfaste en cas de produits pulvérisés qui sont agressifs et/ou dangereux pour les êtres vivants. Il faut donc l'éviter.
  • La demanderesse a pensé qu'une solution serait d'augmenter la taille des gouttelettes pulvérisées, pour diminuer leur sensibilité au vent. Mais obtenir des buses qui possèdent le même angle d'ouverture, avec uniformité de la distribution cumulée des gouttelettes à l'intérieur de cet angle, et ce pour des gouttelettes plus grosses, n'est pas un problème simple.
  • De façon générale, une buse comprend un corps formant un étui et qui enferme un ou plusieurs organes et/ou éléments conçus pour perturber le jet, c'est-à-dire agir sur le flux de liquide et pour en modifier les caractéristiques avant son éjection par l'orifice de sortie, en fonction de la pulvérisation souhaitée et de la forme du jet de sortie voulue.
  • Le brevet US US5133502A , intitulé "FLAT-JET NOZZLE TO ATOMIZE LIQUIDS INTO COMPARATIVELY COARSE DROPS" soit « buse à jet plat pour atomiser des liquides en gouttes comparativement grosses » constitue une proposition en ce sens. Mais il n'obtient que des tailles de gouttes modestes (sa figure 6), qui restent en dessous de 500 micromètres, même avec une basse pression d'entrée descendant jusqu'à 1 bar.
  • Le document FR2838069 divulgue une buse de pulvérisation constituée d'un corps définissant une cavité axiale comprenant une pastille de calibration, une pièce dite "divergent" et une pièce dite "convergent".
  • Le document US5615836 divulgue une buse capable de produire des gouttes remplies d'air,
  • Le document US4128206 divulgue une buse de pulvérisation plate à faible dérive.
  • La Demanderesse produit une gamme de buses dite AVI qui arrivent aussi à des tailles médianes de goutte d'environ 500 micromètres.
  • Il s'agit de buses à jet plat dites à injection d'air, c'est-à-dire utilisant une aspiration autonome de la buse permettant d'augmenter beaucoup plus efficacement la taille de gouttes que le brevet US US5133502A , pour les pressions supérieures.
  • Dans une buse du type AVI, de l'entrée vers la sortie, le corps de buse peut enfermer d'abord un « noyau », qui est une pièce de forme générale cylindrique, définissant un passage interne de section droite intérieure croissante. Ce passage est mis en communication avec l'air extérieur, sensiblement au niveau de sa section droite la plus faible, d'où un effet Venturi. L'orifice de sortie central de ce noyau aboutit à une chambre de travail, qui va assurer la transition avec l'orifice de sortie de la buse. Afin de pouvoir produire un jet plat, il convient de prévoir un insert muni d'une fente de sortie. Cette fente forme l'orifice de sortie de la buse, dont elle définit aussi l'angle d'ouverture.
  • Mais cette buse procure aussi des tailles de gouttes limitées à 500 micromètres, sans permettre d'atteindre des tailles de gouttes supergrosses, qui auraient typiquement une taille moyenne de 800 micromètres, sur un intervalle s'étendant de 400 micromètres à 1,2 mm.
  • Autrement dit, la buse décrite à impaction directe possède une limitation qui dépend de la surface de contact du liquide avec la paroi du Venturi et donc de la longueur finale de la buse. Elle produit des gouttes dans le domaine des 500 - 600 µm selon le type d'injecteur à impaction. L'objectif est de dépasser cette limitation tout en conservant la taille de la buse.
  • L'invention vient améliorer les performances d'une telle buse.
  • De façon générale, la buse de pulvérisation proposée est du type comprenant un corps, qui possède une zone d'entrée de fluide et un orifice de sortie de fluide, le corps logeant
    • un noyau, définissant intérieurement un passage, de section transversale croissante, en communication avec l'extérieur sensiblement au niveau de sa section transversale la plus faible, d'où un effet Venturi, ladite section transversale la plus faible commençant à proximité de la zone d'entrée de fluide,
    • un insert, muni d'une fente de sortie formant l'orifice de sortie (16) de la buse et définissant l'angle d'ouverture de celle-ci,
    le noyau et l'insert étant distants l'un de l'autre et formant entre eux une chambre de travail dans le corps.
  • Elle est caractérisée en ce que la buse comporte en outre une pièce additionnelle dite éclateur, logée dans la chambre de travail, aménagée pour former un obstacle à l'écoulement du fluide, cet éclateur comprenant deux orifices axiaux traversants, formant chacun un passage fluidique, de part et d'autre d'un plan radial, de sorte que les deux flux passés par les orifices de l'éclateur se regroupent et viennent ensuite impacter la surface de la fente de sortie de l'insert, engendrant finalement un jet plat.
  • D'un autre point de vue, la buse de pulvérisation proposée est du type comprenant un corps formant étui, qui possède un orifice d'entrée et un orifice de sortie, et qui présente, du côté de l'orifice d'entrée, une zone d'entrée de fluide. De l'entrée vers la sortie, le corps de buse peut enfermer d'abord un « noyau Venturi », qui est une pièce de forme générale cylindrique, définissant un passage interne de section droite intérieure croissante. Ce passage est mis en communication avec l'air extérieur, sensiblement au niveau de sa section droite la plus faible, d'où l'effet Venturi. L'orifice de sortie central de ce noyau aboutit à une chambre de travail, qui va assurer la transition avec l'orifice de sortie de la buse. Afin de pouvoir produire un jet plat, il convient de prévoir un insert muni d'une fente de sortie. Cette fente forme l'orifice de sortie de la buse, dont elle définit aussi l'angle d'ouverture.
  • La buse proposée est caractérisée en ce qu'elle comprend, dans la chambre de travail, et en amont de l'insert, une pièce additionnelle nommée ici éclateur. Cette pièce forme un obstacle à l'écoulement du flux liquide. Elle comporte deux passages ou orifices longitudinaux traversants, de part et d'autre d'un plan central. En sortie de l'éclateur, les deux flux qui sont passés par les orifices de l'éclateur vont se regrouper. Et ils vont venir ensuite impacter la surface de la fente de sortie de l'insert, pour engendrer finalement un jet plat.
  • L'invention prévoit en sortie de l'éclateur une lame, dans le plan central. En sortie de l'éclateur, les deux flux vont circuler le long de cette lame et en suivre la surface par « effet théière » (parfois dénommé à tort effet Coanda), avant de se regrouper pour impacter la surface de la fente de sortie de l'insert.
  • La lame de l'éclateur est ajustée ou « indexée » sur la fente de l'insert. C'est-à-dire que le plan de la lame se confond sensiblement avec le plan de la fente de sortie de l'insert.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels :
    • [Fig 1] est une vue éclatée en perspective avant d'une buse de pulvérisation à jet plat connue.
    • [Fig 2] est une vue assemblée de la buse de la figure 1, en coupe selon un plan qui passe par la fente de sortie.
    • [Fig 3] est une vue assemblée de la buse de la figure 1, en coupe selon un plan perpendiculaire au plan de la fente de sortie.
    • [Fig 4] est une vue éclatée en perspective avant de la buse de pulvérisation à jet plat ici proposée.
    • [Fig 5] est une vue assemblée de la buse de la figure 4, en coupe selon un plan qui passe par la fente de sortie.
    • [Fig 6] est une vue assemblée de la buse de la figure 4, en coupe selon un plan perpendiculaire au plan de la fente de sortie.
    • [Fig 7] illustre en perspective un premier mode de réalisation de la pièce ajoutée dite éclateur.
    • [Fig 8] illustre en perspective un second mode de réalisation de la pièce ajoutée dite éclateur.
    • [Fig 9] illustre en perspective un troisième mode de réalisation de la pièce ajoutée dite éclateur.
    • [Fig 10] illustre en perspective un quatrième mode de réalisation de la pièce ajoutée dite éclateur.
    • [Fig 11] est un graphique illustrant les performances de la buse avec l'éclateur de la figure 10.
    • [Fig 12] est un graphique illustrant les performances de la buse avec l'éclateur de la figure 9.
    • [Fig 13] est un graphique illustrant les performances de la buse avec l'éclateur de la figure 8.
    • [Fig 14] est une vue agrandie de la fente de sortie de la buse.
  • Les dessins et la description ci-après contiennent, pour l'essentiel, des éléments à caractère certain, qu'il est difficile de rendre autrement que par le dessin. En conséquence, les dessins font partie intégrante de la description et pourront donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant.
  • Les figures 1 à 3 montrent une buse de pulvérisation à jet plat connue, comme la buse AVI-110-04 de la Demanderesse.
  • La buse comprend un corps 1 qui définit intérieurement un étui creux, de forme générale cylindrique, avec :
    • Un premier alésage 11, muni d'une collerette 10, côté entrée, et un suivi d'un second alésage 12 un peu plus étroit,
    • Un troisième alésage 13, suivi d'un quatrième alésage 14 un peu plus étroit,
    • Enfin, un alésage de sortie 15.
  • A noter que le mot alésage vise ici un élément femelle d'un ajustement circulaire, quel que soit son procédé d'usinage. En effet, les pièces n'étant pas métalliques, mais plutôt en matière synthétique ou en céramique, elle ne sont pas usinées par l'alésage classique pour les métaux.
  • Au niveau des alésages 11 et 12 est inséré un noyau Venturi 2, qui commence par un couvercle 20, s'appuyant sur la collerette 10. Le noyau Venturi 2 comporte intérieurement un premier volume cylindrique droit 21, suivi d'un volume conique 22. Ceci définit un passage interne de section droite intérieure croissante.
  • Le volume 21 est traversé par des passages radiaux 25A et 25 B, qui communiquent par l'intermédiaire d'un évidement annulaire 26 avec des entrées d'air extérieur 18 aménagées à travers la paroi du corps 1.
  • Enfin, le haut du noyau est équipé d'un élément de calibration de débit 29, qui est ici une pastille avec un orifice de calibration.
  • Dans le noyau 2 se produit un effet Venturi, en raison de la tuyère formée par la pastille de calibration 29, et les volumes 21 et 22. L'intensité de l'effet Venturi dépend de la pression du liquide à l'entrée. Et l'effet Venturi lui-même a pour conséquence la production d'un mélange liquide + air dans la cavité 23 située en aval du noyau Venturi.
  • Dans une nervure périphérique externe du noyau 2, il est prévu un joint torique 4, qui assure l'étanchéité entre l'évidement annulaire 26 et l'aval du noyau 2.
  • Plus bas, le corps 1 contient un insert de pulvérisation 3, qui comporte une cavité cylindrique 30 aboutissant à une fente 31, qui est dans le plan de la figure 2, et perpendiculaire au plan de la figure 3. Cette fente 31 constitue l'orifice de sortie de la buse.
  • L'insert 3 est mis en place et maintenu par vissage et possède pour ce faire une portion filetée périphérique située à proximité de son extrémité 16 et conçue pour coopérer avec un taraudage correspondant (non visible) de l'alésage 15 du corps 1. Dans un autre mode de réalisation, l'insert 3 est assemblé au corps 1 par sertissage. Pour cela. L'insert 3 est positionné dans le corps 1 puis enfoncé à l'aide d'une presse.
  • L'effet Venturi permet notamment d'obtenir des gouttes un peu plus grosses, en raison de la création du mélange air/liquide, mais sans faire nettement mieux que 500 micromètres.
  • On décrira maintenant la buse proposée, en référence aux figures 4 à 6.
  • Cette buse a la même structure générale que celle des figures 1 à 3.
  • On ne décrira donc pas à nouveau les points communs des figures 1 à 3 d'une part, et 4 à 6, d'autre part.
  • Sur les figures 4 à 6, l'espace interne 23 situé en amont de l'insert est occupé par une pièce additionnelle 7 dite ici éclateur.
  • Côté amont, l'éclateur comporte une coupole périphérique cylindrique 70, qui vient s'engager dans un évidement 28 pratiqué en périphérie externe aval du noyau 2, et bute sur un épaulement 29 de ce noyau 2. Dans sa partie radiale, la coupole 70 comporte deux passages ou orifices longitudinaux traversants 71 et 72, prévus symétriquement de part et d'autre d'un plan radial central 73.
  • L'éclateur se poursuit par une lame 75, elle aussi placée symétriquement par rapport au plan radial central 73.
  • En sortie de l'éclateur, les deux flux qui sont passés par les orifices 71 et 72 vont circuler le long de la lame 75 et en suivre la surface par « effet théière » pour se regrouper. Les deux flux ainsi regroupés vont venir impacter la surface de sortie de l'insert 3 et engendrer un jet plat de type « flat fan » (éventail plat).
  • La circulation du fluide à travers la buse 1 est la suivante.
  • Une alimentation en liquide à pulvériser est raccordée à la buse 1. Le flux entre par l'orifice de la pastille céramique de calibration 29 de section circulaire puis, dirigé par la pression, il se déplace dans le conduit du noyau 2, de section restreinte puis s'élargissant. La présence de prises d'air (25A, 25B, 26, 18) au niveau de la section la plus restreinte du noyau, combinée à la basse pression du flux à cet endroit (conséquence de son accélération), permet l'aspiration de l'air extérieur par effet Venturi et son mélange au flux.
  • A l'entrée dans l'éclateur, le mélange ainsi obtenu vient en contact de la surface entre les deux orifices de l'éclateur. L'impact va engendrer une forte chute de l'énergie du flux, qui sera par pression dirigé vers les deux orifices de sortie 71 et 72 de l'éclateur. En sortie de l'éclateur, les deux flux vont circuler le long de la lame 75 et en suivre la surface par « effet théière » pour se regrouper. Les deux flux ainsi regroupés vont venir impacter la surface de sortie 31 de l'insert 3 et engendrer un jet plat de type « flat fan » à l'angle et à la dispersion maîtrisés.
  • Les figures 7 à 10 montrent quatre modes de réalisation de l'éclateur 7, essayés par la Demanderesse.
  • Sur la figure 7, l'éclateur n'a pas de lame.
  • Sur la figure 8, l'éclateur possède une lame sensiblement plate 75B, comme représenté sur les figures 4 à 6.
  • Sur la figure 9, l'éclateur possède aussi une lame plate 75C, mais munie de canaux en forme cylindrique à base d'arc de cercle, qui viennent en prolongement des orifices 71 et 72.
  • Sur la figure 10, l'éclateur possède encore une lame plate 75D, mais munie cette fois de striures transversales.
  • On se tournera maintenant vers l'une des applications préférentielles de l'invention, qui est l'épandage de produits à pulvériser sur la surface d'un terrain agricole, par exemple des produits phytosanitaires concernés.
  • Ces applications utilisent des rampes d'épandage, munies typiquement de buses distantes de 50 cm, suspendues à environ 50 cm (en pratique, de 40 à 60 cm) au-dessus du sol, ou plus particulièrement à environ 50 cm au-dessus des cultures. Les buses AVI connues, par exemple AVI-110-04, peuvent être utilisées pour ces applications. Mais elles produisent des gouttelettes, qui, en bordure de zone à pulvériser, peuvent être poussées par le vent, éventuellement se désagréger, et atteindre par exemple des surfaces habitées, ce qui est néfaste à leurs occupants, au moins dans le cas de produits phytosanitaires nocifs pour la santé. Il est maintenant souhaité d'avoir des buses classées antidérive à 90%, à débit et angle de pulvérisation comparables.
  • Sur les figures 11 à 13 est représentée une courbe théorique, d'allure gaussienne, qui représente la distribution souhaitée en volume de pulvérisation par la buse, en fonction de la distance horizontale à l'axe de celle-ci. L'écartement de la dispersion au sol est de +/- 50 cm. Avec la courbe théorique, deux buses distantes de 50 cm vont produire une pulvérisation sensiblement uniforme au sol.
  • La figure 14 illustre, en vue agrandie, la fente de sortie de la buse, qui est de largeur L.
  • La Demanderesse a cherché à améliorer la buse existante AVI-110-04 pour avoir des gouttelettes moins sensibles au vent. Elle a considéré que la taille des gouttes produites par une buse de type AVI est directement dépendante des paramètres géométriques de l'insert, en particularité de sa largeur de fente L. Cette largeur de fente a été augmentée, passant de L = 0,9 mm à L = 1,3 mm dans le cas de la buse AVI-110-04, afin d'agrandir le diamètre moyen des gouttes. Plus généralement, on augmente la taille de fente de 40 à 50 %.
  • Il a alors été observé que les buses ainsi obtenues présentaient d'importantes difficultés d'amorçage, du fait d'un flux de liquide de pression trop faible en sortie du noyau.
  • La Demanderesse a alors décidé de positionner une pièce intermédiaire, nommée « éclateur », entre le noyau et l'insert (assemblée sur le noyau).
  • Les buses ainsi obtenues se sont avérées fonctionnelles : leur amorçage s'effectue dès la mise en route de la buse et on obtient l'éclatement du flux et la formation d'un jet de type éventail plat.
  • Plusieurs modèles de buses ont été assemblés avec des éclateurs (ceux des figures 7 et 10) et sujets à des mesures de taille de gouttes.
  • Tous les modèles de buses avancés présentent des diamètres de goutte moyens d'environ 800 µm, soit un gain d'environ 50%. Ce résultat est considéré comme pleinement satisfaisant.
  • La solution proposée n'est pas uniquement de concilier répartition et taille de gouttes très grosse, mais de s'assurer de pouvoir travailler à des pressions de 2 bar et plus tout en obtenant le niveau de réduction de dérive requis.
  • Il semble ainsi que la géométrie de l'éclateur a un impact prépondérant sur la reformation du jet en sa sortie et donc sur le fonctionnement de la buse et sur sa conformité à la norme (débit, angle, répartition du fluide épandu).
  • Une multitude d'éclateurs, dont des exemples sont présentés en Figures 7 à 10, a été testée en faisant varier les solutions d'éclatement et les géométries propres à chacune de ces solutions. Les buses ont alors été caractérisées en angle, débit, observations visuelles et répartition au sol du fluide épandu.
  • Des résultats sont donnés en figures 11 à 13 pour trois types d'éclateur (ceux des figures 8 à 10), le reste de la buse étant le même.
  • La figure 13 indique la meilleure correspondance entre la courbe théorique et la distribution de débit de la buse.
  • Toutefois, les autres distributions (figures 11 et 12) sont également prometteuses, et pourraient servir dans certains cas, notamment si l'on s'écarte de la construction typique des rampes d'épandage en particulier de l'écartement inter-buses de 50 cm.
  • Dans un mode de réalisation particulier :
    • Le corps de buse 1 est en matière plastique,
    • L'insert 3 peut être en céramique, ou bien en matière plastique,
    • L'éclateur 7 est en matière plastique, mais peut aussi être en céramique,
    • Le noyau Venturi 2 peut être en matière plastique ou en céramique,
    • La pastille 1 est en matière plastique, ou encore en céramique.
  • La matière plastique est typiquement un polyoxyméthylène ou POM, qui est un polymère de la famille des polyacétals, pour sa facilité de mise en forme et les propriétés mécaniques associées, ou en tout autre matériau plastique équivalent, compatible chimiquement avec le fluide à épandre.
  • La céramique peut être l'alumine, également pour sa facilité de mise en forme et les propriétés mécaniques associées, ou une matière équivalente.
  • Le dimensionnement de l'éclateur 7 est choisi par rapport à deux contraintes principales. La première contrainte est une maîtrise du coefficient de décharge induit par l'éclateur 7, en rapport à celui induit par l'insert 3, qui passe par la maîtrise de la surface globale des deux orifices de l'éclateur. La deuxième contrainte est une impaction optimale des deux flux sortant de l'éclateur 7 dans l'insert 3. Cette impaction optimale est obtenue par :
    • La présence de la lame 75 qui, de par l'adhésion du fluide contre celle-ci va limiter les turbulences des jets en sortie d'éclateur d'une part, et d'autre part limiter les turbulences en sortie de buse (orifice de sortie); et
    • Un écartement des flux et le dimensionnement de la lame. Le fait que le diamètre extérieur des orifices soit proche ou tangent au diamètre de l'insert peut également jouer un rôle. L'écartement de flux, la largeur de la lame et sa longueur sont adaptés pour chaque modèle de manière à maximiser l'énergie d'impaction des deux flux, et de permettre un éclatement (produit par l'insert de décharge) optimal à faible pression.
  • La maitrise de ces éléments permet de produire un angle de pulvérisation suffisant pour optimiser les recouvrements de jet à plus faible pression en dessous de 3 bar, et ceci sans le besoin de dimensionner la hauteur de la fente de sortie 31 de l'insert 3 de manière notable. De cette manière on évite notamment un problème connu de l'état de la technique qui est la condition de devoir réaliser les deux parois de la fente de sortie de manière parallèles. Des parois parallèles ont pour conséquence de réduire la zone visible de rupture des ligaments formant les gouttes.

Claims (5)

  1. Buse de pulvérisation du type comprenant un corps (1), qui possède une zone d'entrée de fluide et un orifice de sortie de fluide, le corps (1) logeant
    - un noyau (2), définissant intérieurement un passage, de section transversale croissante, en communication avec l'extérieur sensiblement au niveau de sa section transversale la plus faible, d'où un effet Venturi, ladite section transversale la plus faible commençant à proximité de la zone d'entrée de fluide,
    - un insert (3), muni d'une fente de sortie (31) formant l'orifice de sortie (16) de la buse et définissant l'angle d'ouverture de celle-ci,
    le noyau (2) et l'insert (3) étant distants l'un de l'autre et formant entre eux une chambre de travail (23) dans le corps (1),
    la buse comportant en outre une pièce additionnelle (7) dite éclateur, logée dans la chambre de travail (23), aménagée pour former un obstacle à l'écoulement du fluide, cet éclateur comprenant deux orifices axiaux traversants (71, 72), formant chacun un passage fluidique, de part et d'autre d'un plan radial central (73), caractérisée en ce que l'éclateur comprend, en sortie, une lame (75), dans le plan radial central (73) de sorte que les deux flux passés par les orifices (71, 72) de l'éclateur circulent le long de cette lame et en suivent la surface avant de se regrouper et venir ensuite impacter la surface de la fente de sortie (31) de l'insert, engendrant finalement un jet plat.
  2. Buse de pulvérisation selon la revendication 1, caractérisée en ce que la lame (75B) est sensiblement plate.
  3. Buse de pulvérisation selon la revendication 2, caractérisée en ce que la lame plate (75C), est munie de canaux (750) en forme cylindrique à base d'arc de cercle, qui viennent en prolongement des orifices (71, 72).
  4. Buse de pulvérisation selon l'une des revendications 2 et 3, caractérisée en ce que la lame plate (75D), est munie de striures transversales (755).
  5. Buse de pulvérisation selon l'une des revendications 2 à 4, caractérisée en ce que la lame (75) est indexée parallèlement à la fente (31) de l'insert (3).
EP21158812.4A 2020-02-28 2021-02-23 Buse de pulvérisation à jet plat et faible dérivé Active EP3871792B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2002021A FR3107659B1 (fr) 2020-02-28 2020-02-28 Buse de pulvérisation à jet plat et faible dérive.

Publications (3)

Publication Number Publication Date
EP3871792A1 EP3871792A1 (fr) 2021-09-01
EP3871792B1 true EP3871792B1 (fr) 2023-06-07
EP3871792C0 EP3871792C0 (fr) 2023-06-07

Family

ID=71994567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21158812.4A Active EP3871792B1 (fr) 2020-02-28 2021-02-23 Buse de pulvérisation à jet plat et faible dérivé

Country Status (7)

Country Link
US (1) US11865555B2 (fr)
EP (1) EP3871792B1 (fr)
AU (1) AU2021201256A1 (fr)
BR (1) BR102021003626A2 (fr)
ES (1) ES2953954T3 (fr)
FR (1) FR3107659B1 (fr)
PL (1) PL3871792T3 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3107659B1 (fr) * 2020-02-28 2022-06-24 Solcera Buse de pulvérisation à jet plat et faible dérive.
DE102022201847A1 (de) * 2022-02-22 2023-08-24 Lechler Gmbh Flachstrahldüse
FR3135628A1 (fr) 2022-05-23 2023-11-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de fragmentation d’un liquide cryogénique dans une conduite de gaz.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128206A (en) * 1977-05-31 1978-12-05 Delavan Corporation Low drift flat spray nozzle and method
US5076497A (en) * 1989-04-21 1991-12-31 Rabitsch Benjamin F Spray nozzle
DE3914551C1 (fr) 1989-05-03 1990-11-15 Lechler Gmbh & Co Kg, 7012 Fellbach, De
DE4338585A1 (de) * 1993-11-11 1995-05-18 Graef Jordt Steffen Injektordüse
FR2838069B1 (fr) * 2002-04-08 2005-03-18 Saint Gobain Ceramiques Avance Buse de pulverisation
DE102005047195B3 (de) * 2005-09-23 2007-06-06 Lechler Gmbh Vollkegelsprühdüse
DE102007024245B3 (de) * 2007-05-15 2008-08-28 Lechler Gmbh Sprühdüse
EP2945752B1 (fr) * 2013-01-21 2020-12-09 Syngenta Participations AG Procédé et appareil de pulvérisation de surfaces de sol
CN105722601B (zh) * 2013-09-20 2019-05-03 喷雾系统公司 高效/低压催化裂化喷雾喷嘴组件
US10406540B2 (en) * 2016-12-31 2019-09-10 Donald John Jackson Dripless atomizing impact nozzle and jet assembly
US11668085B2 (en) * 2019-02-28 2023-06-06 Kohler Co. Rim jet nozzle system for toilets
DE102019213569A1 (de) * 2019-09-06 2021-03-11 Lechler Gmbh Injektionsdüse für eine Sprühvorrichtung und Sprühvorrichtung
FR3107659B1 (fr) * 2020-02-28 2022-06-24 Solcera Buse de pulvérisation à jet plat et faible dérive.

Also Published As

Publication number Publication date
ES2953954T3 (es) 2023-11-17
EP3871792A1 (fr) 2021-09-01
US11865555B2 (en) 2024-01-09
US20210268522A1 (en) 2021-09-02
PL3871792T3 (pl) 2023-10-23
BR102021003626A2 (pt) 2021-09-14
FR3107659A1 (fr) 2021-09-03
FR3107659B1 (fr) 2022-06-24
AU2021201256A1 (en) 2021-09-16
EP3871792C0 (fr) 2023-06-07

Similar Documents

Publication Publication Date Title
EP3871792B1 (fr) Buse de pulvérisation à jet plat et faible dérivé
EP3296022B1 (fr) Dispositif d'application
FR3074432A1 (fr) Tete de distribution de produit fluide.
FR2488153A1 (fr) Buse a haut rendement
FR2481148A1 (fr) Buse de pulverisation par atomisation
CH622968A5 (fr)
WO1999033572A1 (fr) Buse de pulverisation a moyen statique d'inhibition d'ecoulement
US8567198B2 (en) Injection nozzle having constant diameter pin and method for operating the injection nozzle
EP1492624B1 (fr) Buse de pulverisation
EP2606980A1 (fr) Bouton poussoir pour un système de distribution d'un produit sous pression
EP3717137A1 (fr) Tête de distribution de produit fluide
WO2003061839A1 (fr) Buse de pulverisation a diametre reduit
EP1883478A1 (fr) Buse a chambre tourbillonnaire
EP2952261B1 (fr) Buse de pulverisation a cône plein
EP3717134B1 (fr) Tête de distribution de produit fluide
EP2353726B1 (fr) Bouton poussoir pour un système de distribution d'un produit sous pression
EP3140032B1 (fr) Dispositif d'injection, notamment pour injecter une charge d'hydrocarbures dans une unité de raffinage.
WO2021001628A1 (fr) Procede de fabrication d'une paroi de distribution
LU86331A1 (fr) Procede de production de mousse et distributeur de mousse pour la mise en oeuvre du procede
WO2019106315A1 (fr) Procédé de fabrication d'une paroi de distribution
FR3132649A1 (fr) Buse de pulvérisation à jet conique
WO2024223557A1 (fr) Dispositif de pulvérisation d'une composition à distribuer
FR3147959A1 (fr) Dispositif de pulvérisation d’une composition à distribuer
FR2636252A1 (fr) Dispositif de pulverisation pneumatique de liquide, a jet pulverise plat
BE843842A (fr) Ajutage de protection a faible derive

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220225

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1573358

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021002615

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230629

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230705

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2953954

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20231117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602021002615

Country of ref document: DE

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20240205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240220

Year of fee payment: 4

Ref country code: PL

Payment date: 20240216

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240328

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240223