EP3853330B1 - Detergent composition - Google Patents
Detergent composition Download PDFInfo
- Publication number
- EP3853330B1 EP3853330B1 EP19765252.2A EP19765252A EP3853330B1 EP 3853330 B1 EP3853330 B1 EP 3853330B1 EP 19765252 A EP19765252 A EP 19765252A EP 3853330 B1 EP3853330 B1 EP 3853330B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- detergent composition
- soil release
- release polymer
- lipase
- srp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 124
- 239000003599 detergent Substances 0.000 title claims description 71
- 108090001060 Lipase Proteins 0.000 claims description 85
- 102000004882 Lipase Human genes 0.000 claims description 85
- 229920000642 polymer Polymers 0.000 claims description 50
- 239000002689 soil Substances 0.000 claims description 43
- -1 polyethylene Polymers 0.000 claims description 41
- 230000001580 bacterial effect Effects 0.000 claims description 28
- 102000004190 Enzymes Human genes 0.000 claims description 27
- 108090000790 Enzymes Proteins 0.000 claims description 27
- 229940088598 enzyme Drugs 0.000 claims description 27
- 230000002538 fungal effect Effects 0.000 claims description 25
- 238000004140 cleaning Methods 0.000 claims description 23
- 229920000728 polyester Polymers 0.000 claims description 20
- 102000035195 Peptidases Human genes 0.000 claims description 16
- 108091005804 Peptidases Proteins 0.000 claims description 16
- 239000004365 Protease Substances 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 11
- 241000589513 Burkholderia cepacia Species 0.000 claims description 10
- 239000003945 anionic surfactant Substances 0.000 claims description 10
- 102000005575 Cellulases Human genes 0.000 claims description 9
- 108010084185 Cellulases Proteins 0.000 claims description 9
- 241001104683 Psychromonas ingrahamii Species 0.000 claims description 9
- 239000002736 nonionic surfactant Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 9
- 125000000129 anionic group Chemical group 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 108700020962 Peroxidase Proteins 0.000 claims description 7
- 102000003992 Peroxidases Human genes 0.000 claims description 7
- 230000015556 catabolic process Effects 0.000 claims description 7
- 238000006731 degradation reaction Methods 0.000 claims description 7
- 239000004094 surface-active agent Substances 0.000 claims description 7
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 229920000768 polyamine Polymers 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 108090000637 alpha-Amylases Proteins 0.000 claims description 5
- 102000004139 alpha-Amylases Human genes 0.000 claims description 5
- 102000004316 Oxidoreductases Human genes 0.000 claims description 4
- 108090000854 Oxidoreductases Proteins 0.000 claims description 4
- 241000589540 Pseudomonas fluorescens Species 0.000 claims description 4
- 238000010348 incorporation Methods 0.000 claims description 4
- 230000002366 lipolytic effect Effects 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 102100032487 Beta-mannosidase Human genes 0.000 claims description 3
- 108010055059 beta-Mannosidase Proteins 0.000 claims description 3
- 108010087558 pectate lyase Proteins 0.000 claims description 3
- 239000004753 textile Substances 0.000 claims description 3
- 239000004367 Lipase Substances 0.000 description 62
- 235000019421 lipase Nutrition 0.000 description 62
- 238000009472 formulation Methods 0.000 description 39
- 239000000975 dye Substances 0.000 description 33
- 239000004744 fabric Substances 0.000 description 26
- 239000002304 perfume Substances 0.000 description 22
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 14
- 239000004615 ingredient Substances 0.000 description 10
- 235000019626 lipase activity Nutrition 0.000 description 10
- 108090000787 Subtilisin Proteins 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- 229910052708 sodium Inorganic materials 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 108010056079 Subtilisins Proteins 0.000 description 8
- 102000005158 Subtilisins Human genes 0.000 description 8
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- VRVDFJOCCWSFLI-UHFFFAOYSA-K trisodium 3-[[4-[(6-anilino-1-hydroxy-3-sulfonatonaphthalen-2-yl)diazenyl]-5-methoxy-2-methylphenyl]diazenyl]naphthalene-1,5-disulfonate Chemical compound [Na+].[Na+].[Na+].COc1cc(N=Nc2cc(c3cccc(c3c2)S([O-])(=O)=O)S([O-])(=O)=O)c(C)cc1N=Nc1c(O)c2ccc(Nc3ccccc3)cc2cc1S([O-])(=O)=O VRVDFJOCCWSFLI-UHFFFAOYSA-K 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 7
- 238000005481 NMR spectroscopy Methods 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 7
- 229920000742 Cotton Polymers 0.000 description 6
- 229920002873 Polyethylenimine Polymers 0.000 description 6
- 239000000987 azo dye Substances 0.000 description 6
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 6
- 241000193830 Bacillus <bacterium> Species 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 5
- 102000012479 Serine Proteases Human genes 0.000 description 5
- 108010022999 Serine Proteases Proteins 0.000 description 5
- 101710135785 Subtilisin-like protease Proteins 0.000 description 5
- 150000004996 alkyl benzenes Chemical class 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 239000003205 fragrance Substances 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 5
- 235000019419 proteases Nutrition 0.000 description 5
- 241001328119 Bacillus gibsonii Species 0.000 description 4
- 241000193422 Bacillus lentus Species 0.000 description 4
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 4
- 239000002738 chelating agent Substances 0.000 description 4
- 108010005400 cutinase Proteins 0.000 description 4
- 238000007046 ethoxylation reaction Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 108010020132 microbial serine proteinases Proteins 0.000 description 4
- 239000013641 positive control Substances 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- CZCBTSFUTPZVKJ-UHFFFAOYSA-N rose oxide Chemical compound CC1CCOC(C=C(C)C)C1 CZCBTSFUTPZVKJ-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910021653 sulphate ion Inorganic materials 0.000 description 4
- 229930192474 thiophene Natural products 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 3
- YNGNVZFHHJEZKD-UHFFFAOYSA-N (4-nitrophenyl) dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC1=CC=C([N+]([O-])=O)C=C1 YNGNVZFHHJEZKD-UHFFFAOYSA-N 0.000 description 3
- RJQXEHRFVKJLJO-UHFFFAOYSA-N (4-nitrophenyl) pentanoate Chemical compound CCCCC(=O)OC1=CC=C([N+]([O-])=O)C=C1 RJQXEHRFVKJLJO-UHFFFAOYSA-N 0.000 description 3
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 3
- 108010065511 Amylases Proteins 0.000 description 3
- 102000013142 Amylases Human genes 0.000 description 3
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 3
- 241000194108 Bacillus licheniformis Species 0.000 description 3
- 241000194103 Bacillus pumilus Species 0.000 description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- 235000019418 amylase Nutrition 0.000 description 3
- 229940025131 amylases Drugs 0.000 description 3
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 3
- 150000004056 anthraquinones Chemical class 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 229930007744 linalool Natural products 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- ULDHMXUKGWMISQ-VIFPVBQESA-N (+)-carvone Chemical compound CC(=C)[C@H]1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-VIFPVBQESA-N 0.000 description 2
- CHLICZRVGGXEOD-UHFFFAOYSA-N 1-Methoxy-4-methylbenzene Chemical compound COC1=CC=C(C)C=C1 CHLICZRVGGXEOD-UHFFFAOYSA-N 0.000 description 2
- QUMXDOLUJCHOAY-UHFFFAOYSA-N 1-Phenylethyl acetate Chemical compound CC(=O)OC(C)C1=CC=CC=C1 QUMXDOLUJCHOAY-UHFFFAOYSA-N 0.000 description 2
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 2
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- SZHQPBJEOCHCKM-UHFFFAOYSA-N 2-phosphonobutane-1,2,4-tricarboxylic acid Chemical compound OC(=O)CCC(P(O)(O)=O)(C(O)=O)CC(O)=O SZHQPBJEOCHCKM-UHFFFAOYSA-N 0.000 description 2
- UWKAYLJWKGQEPM-UHFFFAOYSA-N 3,7-dimethylocta-1,6-dien-3-yl acetate Chemical compound CC(C)=CCCC(C)(C=C)OC(C)=O UWKAYLJWKGQEPM-UHFFFAOYSA-N 0.000 description 2
- GNKZMNRKLCTJAY-UHFFFAOYSA-N 4'-Methylacetophenone Chemical compound CC(=O)C1=CC=C(C)C=C1 GNKZMNRKLCTJAY-UHFFFAOYSA-N 0.000 description 2
- NTPLXRHDUXRPNE-UHFFFAOYSA-N 4-methoxyacetophenone Chemical compound COC1=CC=C(C(C)=O)C=C1 NTPLXRHDUXRPNE-UHFFFAOYSA-N 0.000 description 2
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 2
- HVJKZICIMIWFCP-UHFFFAOYSA-N Benzyl 3-methylbutanoate Chemical compound CC(C)CC(=O)OCC1=CC=CC=C1 HVJKZICIMIWFCP-UHFFFAOYSA-N 0.000 description 2
- ZCTQGTTXIYCGGC-UHFFFAOYSA-N Benzyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OCC1=CC=CC=C1 ZCTQGTTXIYCGGC-UHFFFAOYSA-N 0.000 description 2
- UYWQUFXKFGHYNT-UHFFFAOYSA-N Benzylformate Chemical compound O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 2
- FKUPPRZPSYCDRS-UHFFFAOYSA-N Cyclopentadecanolide Chemical compound O=C1CCCCCCCCCCCCCCO1 FKUPPRZPSYCDRS-UHFFFAOYSA-N 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 2
- JUWUWIGZUVEFQB-UHFFFAOYSA-N Fenchyl acetate Chemical compound C1CC2C(C)(C)C(OC(=O)C)C1(C)C2 JUWUWIGZUVEFQB-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 2
- 241000223218 Fusarium Species 0.000 description 2
- XXIKYCPRDXIMQM-UHFFFAOYSA-N Isopentenyl acetate Chemical compound CC(C)=CCOC(C)=O XXIKYCPRDXIMQM-UHFFFAOYSA-N 0.000 description 2
- 241000579835 Merops Species 0.000 description 2
- IYTXKIXETAELAV-UHFFFAOYSA-N Nonan-3-one Chemical compound CCCCCCC(=O)CC IYTXKIXETAELAV-UHFFFAOYSA-N 0.000 description 2
- ZYEMGPIYFIJGTP-UHFFFAOYSA-N O-methyleugenol Chemical compound COC1=CC=C(CC=C)C=C1OC ZYEMGPIYFIJGTP-UHFFFAOYSA-N 0.000 description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 2
- ZOZIRNMDEZKZHM-UHFFFAOYSA-N Phenethyl phenylacetate Chemical compound C=1C=CC=CC=1CCOC(=O)CC1=CC=CC=C1 ZOZIRNMDEZKZHM-UHFFFAOYSA-N 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 235000019486 Sunflower oil Nutrition 0.000 description 2
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- GUUHFMWKWLOQMM-NTCAYCPXSA-N alpha-hexylcinnamaldehyde Chemical compound CCCCCC\C(C=O)=C/C1=CC=CC=C1 GUUHFMWKWLOQMM-NTCAYCPXSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- 229940007550 benzyl acetate Drugs 0.000 description 2
- AKGGYBADQZYZPD-UHFFFAOYSA-N benzylacetone Chemical compound CC(=O)CCC1=CC=CC=C1 AKGGYBADQZYZPD-UHFFFAOYSA-N 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- HQKQRXZEXPXXIG-VJOHVRBBSA-N chembl2333940 Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@H]1[C@@](OC(C)=O)(C)CC2 HQKQRXZEXPXXIG-VJOHVRBBSA-N 0.000 description 2
- QMVPMAAFGQKVCJ-UHFFFAOYSA-N citronellol Chemical compound OCCC(C)CCC=C(C)C QMVPMAAFGQKVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- VUJGKADZTYCLIL-YHPRVSEPSA-L disodium;5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S([O-])(=O)=O)C(S(=O)(=O)[O-])=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 VUJGKADZTYCLIL-YHPRVSEPSA-L 0.000 description 2
- HFJRKMMYBMWEAD-UHFFFAOYSA-N dodecanal Chemical compound CCCCCCCCCCCC=O HFJRKMMYBMWEAD-UHFFFAOYSA-N 0.000 description 2
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 2
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 2
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- AOGQPLXWSUTHQB-UHFFFAOYSA-N hexyl acetate Chemical compound CCCCCCOC(C)=O AOGQPLXWSUTHQB-UHFFFAOYSA-N 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- NFLGAXVYCFJBMK-UHFFFAOYSA-N isomenthone Natural products CC(C)C1CCC(C)CC1=O NFLGAXVYCFJBMK-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- UWKAYLJWKGQEPM-LBPRGKRZSA-N linalyl acetate Chemical compound CC(C)=CCC[C@](C)(C=C)OC(C)=O UWKAYLJWKGQEPM-LBPRGKRZSA-N 0.000 description 2
- 239000012669 liquid formulation Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 2
- GVOWHGSUZUUUDR-UHFFFAOYSA-N methyl N-methylanthranilate Chemical compound CNC1=CC=CC=C1C(=O)OC GVOWHGSUZUUUDR-UHFFFAOYSA-N 0.000 description 2
- VAMXMNNIEUEQDV-UHFFFAOYSA-N methyl anthranilate Chemical compound COC(=O)C1=CC=CC=C1N VAMXMNNIEUEQDV-UHFFFAOYSA-N 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- VKCYHJWLYTUGCC-UHFFFAOYSA-N nonan-2-one Chemical compound CCCCCCCC(C)=O VKCYHJWLYTUGCC-UHFFFAOYSA-N 0.000 description 2
- NUJGJRNETVAIRJ-UHFFFAOYSA-N octanal Chemical compound CCCCCCCC=O NUJGJRNETVAIRJ-UHFFFAOYSA-N 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- MDHYEMXUFSJLGV-UHFFFAOYSA-N phenethyl acetate Chemical compound CC(=O)OCCC1=CC=CC=C1 MDHYEMXUFSJLGV-UHFFFAOYSA-N 0.000 description 2
- OSORMYZMWHVFOZ-UHFFFAOYSA-N phenethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCC1=CC=CC=C1 OSORMYZMWHVFOZ-UHFFFAOYSA-N 0.000 description 2
- DTUQWGWMVIHBKE-UHFFFAOYSA-N phenylacetaldehyde Chemical compound O=CCC1=CC=CC=C1 DTUQWGWMVIHBKE-UHFFFAOYSA-N 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 235000019833 protease Nutrition 0.000 description 2
- 229930007790 rose oxide Natural products 0.000 description 2
- ZMQAAUBTXCXRIC-UHFFFAOYSA-N safrole Chemical compound C=CCC1=CC=C2OCOC2=C1 ZMQAAUBTXCXRIC-UHFFFAOYSA-N 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002600 sunflower oil Substances 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 2
- NPNUFJAVOOONJE-ZIAGYGMSSA-N β-(E)-Caryophyllene Chemical compound C1CC(C)=CCCC(=C)[C@H]2CC(C)(C)[C@@H]21 NPNUFJAVOOONJE-ZIAGYGMSSA-N 0.000 description 2
- PSQYTAPXSHCGMF-BQYQJAHWSA-N β-ionone Chemical compound CC(=O)\C=C\C1=C(C)CCCC1(C)C PSQYTAPXSHCGMF-BQYQJAHWSA-N 0.000 description 2
- JZQOJFLIJNRDHK-UHFFFAOYSA-N (+)-(1S,5R)-cis-alpha-irone Natural products CC1CC=C(C)C(C=CC(C)=O)C1(C)C JZQOJFLIJNRDHK-UHFFFAOYSA-N 0.000 description 1
- SFEOKXHPFMOVRM-UHFFFAOYSA-N (+)-(S)-gamma-ionone Natural products CC(=O)C=CC1C(=C)CCCC1(C)C SFEOKXHPFMOVRM-UHFFFAOYSA-N 0.000 description 1
- NFLGAXVYCFJBMK-RKDXNWHRSA-N (+)-isomenthone Natural products CC(C)[C@H]1CC[C@@H](C)CC1=O NFLGAXVYCFJBMK-RKDXNWHRSA-N 0.000 description 1
- NZGWDASTMWDZIW-MRVPVSSYSA-N (+)-pulegone Chemical compound C[C@@H]1CCC(=C(C)C)C(=O)C1 NZGWDASTMWDZIW-MRVPVSSYSA-N 0.000 description 1
- ULDHMXUKGWMISQ-SECBINFHSA-N (-)-carvone Chemical compound CC(=C)[C@@H]1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-SECBINFHSA-N 0.000 description 1
- NFLGAXVYCFJBMK-IUCAKERBSA-N (-)-isomenthone Chemical compound CC(C)[C@@H]1CC[C@H](C)CC1=O NFLGAXVYCFJBMK-IUCAKERBSA-N 0.000 description 1
- 239000001563 (1,5,5-trimethyl-6-bicyclo[2.2.1]heptanyl) acetate Substances 0.000 description 1
- FINOAUDUYKVGDS-UHFFFAOYSA-N (2-tert-butylcyclohexyl) acetate Chemical compound CC(=O)OC1CCCCC1C(C)(C)C FINOAUDUYKVGDS-UHFFFAOYSA-N 0.000 description 1
- 229940098795 (3z)- 3-hexenyl acetate Drugs 0.000 description 1
- VXWBQOJISHAKKM-UHFFFAOYSA-N (4-formylphenyl)boronic acid Chemical compound OB(O)C1=CC=C(C=O)C=C1 VXWBQOJISHAKKM-UHFFFAOYSA-N 0.000 description 1
- 239000001303 (5-methyl-2-prop-1-en-2-ylcyclohexyl) acetate Substances 0.000 description 1
- 239000001306 (7E,9E,11E,13E)-pentadeca-7,9,11,13-tetraen-1-ol Substances 0.000 description 1
- OOCCDEMITAIZTP-QPJJXVBHSA-N (E)-cinnamyl alcohol Chemical compound OC\C=C\C1=CC=CC=C1 OOCCDEMITAIZTP-QPJJXVBHSA-N 0.000 description 1
- WUOACPNHFRMFPN-VIFPVBQESA-N (R)-(+)-alpha-terpineol Chemical compound CC1=CC[C@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-VIFPVBQESA-N 0.000 description 1
- QMVPMAAFGQKVCJ-SNVBAGLBSA-N (R)-(+)-citronellol Natural products OCC[C@H](C)CCC=C(C)C QMVPMAAFGQKVCJ-SNVBAGLBSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- UFLHIIWVXFIJGU-ARJAWSKDSA-N (Z)-hex-3-en-1-ol Chemical compound CC\C=C/CCO UFLHIIWVXFIJGU-ARJAWSKDSA-N 0.000 description 1
- XEJGJTYRUWUFFD-FNORWQNLSA-N (e)-1-(2,6,6-trimethyl-1-cyclohex-3-enyl)but-2-en-1-one Chemical compound C\C=C\C(=O)C1C(C)C=CCC1(C)C XEJGJTYRUWUFFD-FNORWQNLSA-N 0.000 description 1
- JHEPBQHNVNUAFL-AATRIKPKSA-N (e)-hex-1-en-1-ol Chemical compound CCCC\C=C\O JHEPBQHNVNUAFL-AATRIKPKSA-N 0.000 description 1
- JLIDRDJNLAWIKT-UHFFFAOYSA-N 1,2-dimethyl-3h-benzo[e]indole Chemical compound C1=CC=CC2=C(C(=C(C)N3)C)C3=CC=C21 JLIDRDJNLAWIKT-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 1
- ZMLPKJYZRQZLDA-UHFFFAOYSA-N 1-(2-phenylethenyl)-4-[4-(2-phenylethenyl)phenyl]benzene Chemical group C=1C=CC=CC=1C=CC(C=C1)=CC=C1C(C=C1)=CC=C1C=CC1=CC=CC=C1 ZMLPKJYZRQZLDA-UHFFFAOYSA-N 0.000 description 1
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- WNJSKZBEWNVKGU-UHFFFAOYSA-N 2,2-dimethoxyethylbenzene Chemical compound COC(OC)CC1=CC=CC=C1 WNJSKZBEWNVKGU-UHFFFAOYSA-N 0.000 description 1
- MZZRKEIUNOYYDF-UHFFFAOYSA-N 2,4-dimethylcyclohex-3-ene-1-carbaldehyde Chemical compound CC1C=C(C)CCC1C=O MZZRKEIUNOYYDF-UHFFFAOYSA-N 0.000 description 1
- 239000001278 2-(5-ethenyl-5-methyloxolan-2-yl)propan-2-ol Substances 0.000 description 1
- FLUWAIIVLCVEKF-UHFFFAOYSA-N 2-Methyl-1-phenyl-2-propanyl acetate Chemical compound CC(=O)OC(C)(C)CC1=CC=CC=C1 FLUWAIIVLCVEKF-UHFFFAOYSA-N 0.000 description 1
- RNDNSYIPLPAXAZ-UHFFFAOYSA-N 2-Phenyl-1-propanol Chemical compound OCC(C)C1=CC=CC=C1 RNDNSYIPLPAXAZ-UHFFFAOYSA-N 0.000 description 1
- RCSBILYQLVXLJG-UHFFFAOYSA-N 2-Propenyl hexanoate Chemical compound CCCCCC(=O)OCC=C RCSBILYQLVXLJG-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- QGLVWTFUWVTDEQ-UHFFFAOYSA-N 2-chloro-3-methoxyphenol Chemical compound COC1=CC=CC(O)=C1Cl QGLVWTFUWVTDEQ-UHFFFAOYSA-N 0.000 description 1
- QTDIEDOANJISNP-UHFFFAOYSA-N 2-dodecoxyethyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOCCOS(O)(=O)=O QTDIEDOANJISNP-UHFFFAOYSA-N 0.000 description 1
- DVCHJFSLGUNEQZ-UHFFFAOYSA-M 2-ethenyl-2,6-dimethylhept-5-enoate Chemical compound CC(C)=CCCC(C)(C=C)C([O-])=O DVCHJFSLGUNEQZ-UHFFFAOYSA-M 0.000 description 1
- RIWRBSMFKVOJMN-UHFFFAOYSA-N 2-methyl-1-phenylpropan-2-ol Chemical compound CC(C)(O)CC1=CC=CC=C1 RIWRBSMFKVOJMN-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- UWOFGIXNNCPENM-UHFFFAOYSA-N 3,3-difluoropentan-2-one Chemical compound CCC(F)(F)C(C)=O UWOFGIXNNCPENM-UHFFFAOYSA-N 0.000 description 1
- NONFLFDSOSZQHR-UHFFFAOYSA-N 3-(trimethylsilyl)propionic acid Chemical class C[Si](C)(C)CCC(O)=O NONFLFDSOSZQHR-UHFFFAOYSA-N 0.000 description 1
- JRJBVWJSTHECJK-PKNBQFBNSA-N 3-Methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one Chemical compound CC(=O)C(\C)=C\C1C(C)=CCCC1(C)C JRJBVWJSTHECJK-PKNBQFBNSA-N 0.000 description 1
- RHLVCLIPMVJYKS-UHFFFAOYSA-N 3-octanone Chemical compound CCCCCC(=O)CC RHLVCLIPMVJYKS-UHFFFAOYSA-N 0.000 description 1
- YXVSKJDFNJFXAJ-UHFFFAOYSA-N 4-cyclohexyl-2-methylbutan-2-ol Chemical compound CC(C)(O)CCC1=CC=CC=C1 YXVSKJDFNJFXAJ-UHFFFAOYSA-N 0.000 description 1
- OIGWAXDAPKFNCQ-UHFFFAOYSA-N 4-isopropylbenzyl alcohol Chemical compound CC(C)C1=CC=C(CO)C=C1 OIGWAXDAPKFNCQ-UHFFFAOYSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 1
- WRYLYDPHFGVWKC-UHFFFAOYSA-N 4-terpineol Chemical compound CC(C)C1(O)CCC(C)=CC1 WRYLYDPHFGVWKC-UHFFFAOYSA-N 0.000 description 1
- YGUMVDWOQQJBGA-VAWYXSNFSA-N 5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S(O)(=O)=O)C(S(=O)(=O)O)=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 YGUMVDWOQQJBGA-VAWYXSNFSA-N 0.000 description 1
- WGPCZPLRVAWXPW-NSHDSACASA-N 5-octyloxolan-2-one Chemical compound CCCCCCCC[C@H]1CCC(=O)O1 WGPCZPLRVAWXPW-NSHDSACASA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 1
- 241001019659 Acremonium <Plectosphaerellaceae> Species 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 108091005502 Aspartic proteases Proteins 0.000 description 1
- 102000035101 Aspartic proteases Human genes 0.000 description 1
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 1
- 108010062877 Bacteriocins Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241001453380 Burkholderia Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- 241000588881 Chromobacterium Species 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 235000019499 Citrus oil Nutrition 0.000 description 1
- 241000222511 Coprinus Species 0.000 description 1
- 244000251987 Coprinus macrorhizus Species 0.000 description 1
- 108010005843 Cysteine Proteases Proteins 0.000 description 1
- 102000005927 Cysteine Proteases Human genes 0.000 description 1
- XHXUANMFYXWVNG-UHFFFAOYSA-N D-menthyl acetate Natural products CC(C)C1CCC(C)CC1OC(C)=O XHXUANMFYXWVNG-UHFFFAOYSA-N 0.000 description 1
- 102000016559 DNA Primase Human genes 0.000 description 1
- 108010092681 DNA Primase Proteins 0.000 description 1
- 241000222175 Diutina rugosa Species 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- FXNFFCMITPHEIT-UHFFFAOYSA-N Ethyl 10-undecenoate Chemical compound CCOC(=O)CCCCCCCCC=C FXNFFCMITPHEIT-UHFFFAOYSA-N 0.000 description 1
- HZPKNSYIDSNZKW-UHFFFAOYSA-N Ethyl 2-methylpentanoate Chemical compound CCCC(C)C(=O)OCC HZPKNSYIDSNZKW-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 1
- 244000166124 Eucalyptus globulus Species 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- 241000223221 Fusarium oxysporum Species 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- 241000208152 Geranium Species 0.000 description 1
- 108091005503 Glutamic proteases Proteins 0.000 description 1
- OUGPMNMLWKSBRI-UHFFFAOYSA-N Hexyl formate Chemical compound CCCCCCOC=O OUGPMNMLWKSBRI-UHFFFAOYSA-N 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- 241001480714 Humicola insolens Species 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical group CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- HLHIVJRLODSUCI-ADEWGFFLSA-N Isopulegol acetate Chemical compound C[C@@H]1CC[C@@H](C(C)=C)[C@H](OC(C)=O)C1 HLHIVJRLODSUCI-ADEWGFFLSA-N 0.000 description 1
- XMLSXPIVAXONDL-PLNGDYQASA-N Jasmone Chemical compound CC\C=C/CC1=C(C)CCC1=O XMLSXPIVAXONDL-PLNGDYQASA-N 0.000 description 1
- 102100027612 Kallikrein-11 Human genes 0.000 description 1
- 101710172072 Kexin Proteins 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- 244000178870 Lavandula angustifolia Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- BRHDDEIRQPDPMG-UHFFFAOYSA-N Linalyl oxide Chemical compound CC(C)(O)C1CCC(C)(C=C)O1 BRHDDEIRQPDPMG-UHFFFAOYSA-N 0.000 description 1
- JBVVONYMRFACPQ-UHFFFAOYSA-N Linalylformate Natural products CC(=C)CCCC(C)(OC=O)C=C JBVVONYMRFACPQ-UHFFFAOYSA-N 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 108090000856 Lyases Proteins 0.000 description 1
- 102000004317 Lyases Human genes 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 244000024873 Mentha crispa Species 0.000 description 1
- 235000014749 Mentha crispa Nutrition 0.000 description 1
- FRLZQXRXIKQFNS-UHFFFAOYSA-N Methyl 2-octynoate Chemical compound CCCCCC#CC(=O)OC FRLZQXRXIKQFNS-UHFFFAOYSA-N 0.000 description 1
- 244000270834 Myristica fragrans Species 0.000 description 1
- 235000009421 Myristica fragrans Nutrition 0.000 description 1
- GLZPCOQZEFWAFX-JXMROGBWSA-N Nerol Natural products CC(C)=CCC\C(C)=C\CO GLZPCOQZEFWAFX-JXMROGBWSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- 241000948194 Psychromonas Species 0.000 description 1
- NZGWDASTMWDZIW-UHFFFAOYSA-N Pulegone Natural products CC1CCC(=C(C)C)C(=O)C1 NZGWDASTMWDZIW-UHFFFAOYSA-N 0.000 description 1
- 101710081551 Pyrolysin Proteins 0.000 description 1
- 241000235403 Rhizomucor miehei Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000529895 Stercorarius Species 0.000 description 1
- 241000223258 Thermomyces lanuginosus Species 0.000 description 1
- 241001313536 Thermothelomyces thermophila Species 0.000 description 1
- 241001494489 Thielavia Species 0.000 description 1
- 241001495429 Thielavia terrestris Species 0.000 description 1
- 108091005501 Threonine proteases Proteins 0.000 description 1
- 102000035100 Threonine proteases Human genes 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 101710152431 Trypsin-like protease Proteins 0.000 description 1
- 244000126014 Valeriana officinalis Species 0.000 description 1
- 235000013832 Valeriana officinalis Nutrition 0.000 description 1
- 241000607598 Vibrio Species 0.000 description 1
- QLRICECRKJGSKQ-SDNWHVSQSA-N [(2e)-3,7-dimethylocta-2,6-dienyl] 2-aminobenzoate Chemical compound CC(C)=CCC\C(C)=C\COC(=O)C1=CC=CC=C1N QLRICECRKJGSKQ-SDNWHVSQSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- BEKFRUBWDIJKOB-UHFFFAOYSA-N acetic acid;2,2,2-tri(cyclodecen-1-yl)acetic acid Chemical compound CC(O)=O.C=1CCCCCCCCC=1C(C=1CCCCCCCCC=1)(C(=O)O)C1=CCCCCCCCC1 BEKFRUBWDIJKOB-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- OOCCDEMITAIZTP-UHFFFAOYSA-N allylic benzylic alcohol Natural products OCC=CC1=CC=CC=C1 OOCCDEMITAIZTP-UHFFFAOYSA-N 0.000 description 1
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 1
- GUUHFMWKWLOQMM-UHFFFAOYSA-N alpha-n-hexylcinnamic aldehyde Natural products CCCCCCC(C=O)=CC1=CC=CC=C1 GUUHFMWKWLOQMM-UHFFFAOYSA-N 0.000 description 1
- USMNOWBWPHYOEA-UHFFFAOYSA-N alpha-thujone Natural products CC1C(=O)CC2(C(C)C)C1C2 USMNOWBWPHYOEA-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- 229940062909 amyl salicylate Drugs 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- 239000001000 anthraquinone dye Substances 0.000 description 1
- 238000000222 aromatherapy Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- DULCUDSUACXJJC-UHFFFAOYSA-N benzeneacetic acid ethyl ester Natural products CCOC(=O)CC1=CC=CC=C1 DULCUDSUACXJJC-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- NPNUFJAVOOONJE-UHFFFAOYSA-N beta-cariophyllene Natural products C1CC(C)=CCCC(=C)C2CC(C)(C)C21 NPNUFJAVOOONJE-UHFFFAOYSA-N 0.000 description 1
- JGQFVRIQXUFPAH-UHFFFAOYSA-N beta-citronellol Natural products OCCC(C)CCCC(C)=C JGQFVRIQXUFPAH-UHFFFAOYSA-N 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000010338 boric acid Nutrition 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- NPNUFJAVOOONJE-UONOGXRCSA-N caryophyllene Natural products C1CC(C)=CCCC(=C)[C@@H]2CC(C)(C)[C@@H]21 NPNUFJAVOOONJE-UONOGXRCSA-N 0.000 description 1
- SVURIXNDRWRAFU-OGMFBOKVSA-N cedrol Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@@H]1[C@@](O)(C)CC2 SVURIXNDRWRAFU-OGMFBOKVSA-N 0.000 description 1
- 229940026455 cedrol Drugs 0.000 description 1
- PCROEXHGMUJCDB-UHFFFAOYSA-N cedrol Natural products CC1CCC2C(C)(C)C3CC(C)(O)CC12C3 PCROEXHGMUJCDB-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960005233 cineole Drugs 0.000 description 1
- NPFVOOAXDOBMCE-PLNGDYQASA-N cis-3-Hexenyl acetate Natural products CC\C=C/CCOC(C)=O NPFVOOAXDOBMCE-PLNGDYQASA-N 0.000 description 1
- RRGOKSYVAZDNKR-ARJAWSKDSA-M cis-3-hexenylacetate Chemical compound CC\C=C/CCCC([O-])=O RRGOKSYVAZDNKR-ARJAWSKDSA-M 0.000 description 1
- IVLCENBZDYVJPA-ARJAWSKDSA-N cis-Jasmone Natural products C\C=C/CC1=C(C)CCC1=O IVLCENBZDYVJPA-ARJAWSKDSA-N 0.000 description 1
- 235000000484 citronellol Nutrition 0.000 description 1
- 239000010500 citrus oil Substances 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- XSNQECSCDATQEL-UHFFFAOYSA-N dihydromyrcenol Chemical compound C=CC(C)CCCC(C)(C)O XSNQECSCDATQEL-UHFFFAOYSA-N 0.000 description 1
- 229930008394 dihydromyrcenol Natural products 0.000 description 1
- NJPXFJXCALXJCX-UHFFFAOYSA-L disodium 7-anilino-3-[[4-[(2,4-dimethyl-6-sulfonatophenyl)diazenyl]-2,5-dimethylphenyl]diazenyl]-4-hydroxynaphthalene-2-sulfonate Chemical compound [Na+].[Na+].Cc1cc(C)c(N=Nc2cc(C)c(cc2C)N=Nc2c(O)c3ccc(Nc4ccccc4)cc3cc2S([O-])(=O)=O)c(c1)S([O-])(=O)=O NJPXFJXCALXJCX-UHFFFAOYSA-L 0.000 description 1
- LARMRMCFZNGNNX-UHFFFAOYSA-L disodium 7-anilino-3-[[4-[(2,4-dimethyl-6-sulfonatophenyl)diazenyl]-2-methoxy-5-methylphenyl]diazenyl]-4-hydroxynaphthalene-2-sulfonate Chemical compound [Na+].[Na+].COc1cc(N=Nc2c(C)cc(C)cc2S([O-])(=O)=O)c(C)cc1N=Nc1c(O)c2ccc(Nc3ccccc3)cc2cc1S([O-])(=O)=O LARMRMCFZNGNNX-UHFFFAOYSA-L 0.000 description 1
- PMPJQLCPEQFEJW-HPKCLRQXSA-L disodium;2-[(e)-2-[4-[4-[(e)-2-(2-sulfonatophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC=CC=C1\C=C\C1=CC=C(C=2C=CC(\C=C\C=3C(=CC=CC=3)S([O-])(=O)=O)=CC=2)C=C1 PMPJQLCPEQFEJW-HPKCLRQXSA-L 0.000 description 1
- HOSFCSQXJQXSIQ-ZPZFBZIMSA-L disodium;5-[(4,6-dianilino-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4,6-dianilino-1,3,5-triazin-2-yl)amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].C=1C=C(\C=C\C=2C(=CC(NC=3N=C(NC=4C=CC=CC=4)N=C(NC=4C=CC=CC=4)N=3)=CC=2)S([O-])(=O)=O)C(S(=O)(=O)[O-])=CC=1NC(N=C(NC=1C=CC=CC=1)N=1)=NC=1NC1=CC=CC=C1 HOSFCSQXJQXSIQ-ZPZFBZIMSA-L 0.000 description 1
- BDYOOAPDMVGPIQ-QDBORUFSSA-L disodium;5-[(4-anilino-6-methoxy-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-methoxy-1,3,5-triazin-2-yl)amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(OC)N=C(NC=5C=CC=CC=5)N=4)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(OC)=NC=1NC1=CC=CC=C1 BDYOOAPDMVGPIQ-QDBORUFSSA-L 0.000 description 1
- MMNFJSXNIHPIPR-VRZXRVJBSA-L disodium;5-[[4-anilino-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(NC=5C=CC=CC=5)N=C(NCC)N=4)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(NCC)=NC=1NC1=CC=CC=C1 MMNFJSXNIHPIPR-VRZXRVJBSA-L 0.000 description 1
- VVYVUOFMPAXVCH-QDBORUFSSA-L disodium;5-[[4-anilino-6-[2-hydroxyethyl(methyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[2-hydroxyethyl(methyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(C)CCO)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(N(CCO)C)=NC=1NC1=CC=CC=C1 VVYVUOFMPAXVCH-QDBORUFSSA-L 0.000 description 1
- YJHDFAAFYNRKQE-YHPRVSEPSA-L disodium;5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 YJHDFAAFYNRKQE-YHPRVSEPSA-L 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- NYNCZOLNVTXTTP-UHFFFAOYSA-N ethyl 2-(1,3-dioxoisoindol-2-yl)acetate Chemical compound C1=CC=C2C(=O)N(CC(=O)OCC)C(=O)C2=C1 NYNCZOLNVTXTTP-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 229940093858 ethyl acetoacetate Drugs 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- WGPCZPLRVAWXPW-LLVKDONJSA-N gamma-Dodecalactone Natural products CCCCCCCC[C@@H]1CCC(=O)O1 WGPCZPLRVAWXPW-LLVKDONJSA-N 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- YDZCHDQXPLJVBG-UHFFFAOYSA-N hex-1-enyl acetate Chemical compound CCCCC=COC(C)=O YDZCHDQXPLJVBG-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- WPFVBOQKRVRMJB-UHFFFAOYSA-N hydroxycitronellal Chemical compound O=CCC(C)CCCC(C)(C)O WPFVBOQKRVRMJB-UHFFFAOYSA-N 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- SNWQUNCRDLUDEX-UHFFFAOYSA-N inden-1-one Chemical compound C1=CC=C2C(=O)C=CC2=C1 SNWQUNCRDLUDEX-UHFFFAOYSA-N 0.000 description 1
- VDBNYAPERZTOOF-UHFFFAOYSA-N isoquinolin-1(2H)-one Chemical compound C1=CC=C2C(=O)NC=CC2=C1 VDBNYAPERZTOOF-UHFFFAOYSA-N 0.000 description 1
- SVURIXNDRWRAFU-UHFFFAOYSA-N juniperanol Natural products C1C23C(C)CCC3C(C)(C)C1C(O)(C)CC2 SVURIXNDRWRAFU-UHFFFAOYSA-N 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 235000020094 liqueur Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229930007503 menthone Natural products 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 229940102398 methyl anthranilate Drugs 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- 229940116837 methyleugenol Drugs 0.000 description 1
- PRHTXAOWJQTLBO-UHFFFAOYSA-N methyleugenol Natural products COC1=CC=C(C(C)=C)C=C1OC PRHTXAOWJQTLBO-UHFFFAOYSA-N 0.000 description 1
- JPTOCTSNXXKSSN-UHFFFAOYSA-N methylheptenone Chemical compound CCCC=CC(=O)CC JPTOCTSNXXKSSN-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 108010009355 microbial metalloproteinases Proteins 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- ZOCHHNOQQHDWHG-UHFFFAOYSA-N n-hexan-3-ol Natural products CCCC(O)CC ZOCHHNOQQHDWHG-UHFFFAOYSA-N 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 239000001702 nutmeg Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229930007459 p-menth-8-en-3-one Natural products 0.000 description 1
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- TWSRVQVEYJNFKQ-UHFFFAOYSA-N pentyl propanoate Chemical compound CCCCCOC(=O)CC TWSRVQVEYJNFKQ-UHFFFAOYSA-N 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000002988 phenazines Chemical class 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229940100595 phenylacetaldehyde Drugs 0.000 description 1
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical class OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 1
- 229940067107 phenylethyl alcohol Drugs 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000196 poly(lauryl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000012667 polymer degradation Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920005996 polystyrene-poly(ethylene-butylene)-polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- DAPMZWDGZVFZMK-UHFFFAOYSA-N sodium;2-[2-[4-[4-[2-(2-sulfophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonic acid Chemical group [Na].[Na].OS(=O)(=O)C1=CC=CC=C1C=CC1=CC=C(C=2C=CC(C=CC=3C(=CC=CC=3)S(O)(=O)=O)=CC=2)C=C1 DAPMZWDGZVFZMK-UHFFFAOYSA-N 0.000 description 1
- AXMCIYLNKNGNOT-UHFFFAOYSA-N sodium;3-[[4-[(4-dimethylazaniumylidenecyclohexa-2,5-dien-1-ylidene)-[4-[ethyl-[(3-sulfophenyl)methyl]amino]phenyl]methyl]-n-ethylanilino]methyl]benzenesulfonate Chemical compound [Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](C)C)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S(O)(=O)=O)=C1 AXMCIYLNKNGNOT-UHFFFAOYSA-N 0.000 description 1
- RBYJOOWYRXEJAM-UHFFFAOYSA-M sodium;5,9-dianilino-7-phenylbenzo[a]phenazin-7-ium-4,10-disulfonate Chemical compound [Na+].C=1C=CC=CC=1[N+]1=C2C=C(NC=3C=CC=CC=3)C(S(=O)(=O)[O-])=CC2=NC(C2=CC=CC(=C22)S([O-])(=O)=O)=C1C=C2NC1=CC=CC=C1 RBYJOOWYRXEJAM-UHFFFAOYSA-M 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-N terephthalic acid group Chemical group C(C1=CC=C(C(=O)O)C=C1)(=O)O KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 1
- 108010075550 termamyl Proteins 0.000 description 1
- 108010031354 thermitase Proteins 0.000 description 1
- NPFVOOAXDOBMCE-UHFFFAOYSA-N trans-3-hexenyl acetate Natural products CCC=CCCOC(C)=O NPFVOOAXDOBMCE-UHFFFAOYSA-N 0.000 description 1
- XMLSXPIVAXONDL-UHFFFAOYSA-N trans-jasmone Natural products CCC=CCC1=C(C)CCC1=O XMLSXPIVAXONDL-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 235000016788 valerian Nutrition 0.000 description 1
- RGVQNSFGUOIKFF-UHFFFAOYSA-N verdyl acetate Chemical compound C12CC=CC2C2CC(OC(=O)C)C1C2 RGVQNSFGUOIKFF-UHFFFAOYSA-N 0.000 description 1
- YEIGUXGHHKAURB-UHFFFAOYSA-N viridine Natural products O=C1C2=C3CCC(=O)C3=CC=C2C2(C)C(O)C(OC)C(=O)C3=COC1=C23 YEIGUXGHHKAURB-UHFFFAOYSA-N 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38627—Preparations containing enzymes, e.g. protease or amylase containing lipase
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0036—Soil deposition preventing compositions; Antiredeposition agents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3715—Polyesters or polycarbonates
Definitions
- the invention concerns a detergent composition, in particular a detergent composition comprising a soil release polymer and a lipase.
- Soil release polymers are a useful ingredient for detergent formulations, particularly for laundry detergents.
- Another ingredient that is useful is the incorporation of enzymes, particularly lipase enzymes, such as described in WO 93/23516 A1 , WO 97/19155 A1 , EP 3 301 162 A1 , WO 2012/010407 A1 and EP 0 839 186 A1 .
- lipase enzymes such as described in WO 93/23516 A1 , WO 97/19155 A1 , EP 3 301 162 A1 , WO 2012/010407 A1 and EP 0 839 186 A1 .
- lipase enzymes causes degradation of the soil release polymer. So the formulator has to forgo one of these useful ingredients.
- lipases A problem with inclusion of lipases is that they cannot be included in a detergent formulation with soil release polymers.
- non-fungal lipase enzymes in detergent compositions doesn't cause degradation of the soil release polymer.
- the non-fungal lipases still provide effective cleaning.
- the present invention provides a detergent composition according to present claim 1, wherein the composition comprises:
- a preferred detergent composition is a laundry detergent composition.
- the laundry detergent composition is a liquid or a powder, more preferably the detergent is a liquid detergent.
- the laundry detergent composition comprises anionic and/or nonionic surfactant, more preferably the laundry detergent composition comprises both anionic and nonionic surfactant.
- the laundry detergent preferably comprises from 0.1 to 8 wt.% of an alkoxylated polyamine.
- Preferred detergent compositions, particularly laundry detergent compositions additionally comprise a further enzyme selected from the group consisting of: proteases, cellulases, alpha-amylases, peroxidases/oxidases, pectate lyases, and/or mannanases.
- the present invention provides a method of treatment of a substrate with a detergent composition according to present claim 8, wherein the detergent composition comprises i) the above-mentioned lipase enzyme; and ii) the above-mentioned polyester soil release polymer; to provide lipolytic cleaning without degradation of said polyester soil release polymer, said method comprising incorporation in a detergent composition of a bacterial lipase enzyme into a detergent composition according to the above-mentioned composition of the first aspect; and subsequent treatment of a substrate, preferably textiles, with said composition.
- the present invention provides the use of the above-mentioned bacterial lipase enzyme, according to present claim 9, in a detergent composition comprising a polyethylene and/or polypropylene terephthalate polyester soil release polymer, to provide lipolytic cleaning without degradation of said polyester soil release polymer.
- indefinite article “a” or “an” and its corresponding definite article “the” as used herein means at least one, or one or more, unless specified otherwise.
- the detergent composition may take any suitable form, for example liquids, solids (including powders) or gels.
- the detergent composition can be applied to any suitable substrate.
- Particularly preferred substrates are textiles.
- Particularly preferred detergent compositions are laundry detergent compositions.
- Laundry detergent compositions may take any suitable form. Preferred forms are liquid or powder, with liquid being most preferred.
- the soil release polymer is present at a level of from 0.1 to 10 wt.%.
- the levels of soil release polymer are preferably from 0.2 to 9 wt.%, more preferably from 0.25 to 8 wt.%, even more preferably from 0.5 to 6 wt.%, most preferably from 1 to 5 wt.%.
- the soil release polymer is a polyester based soil released polymer selected as a polyethylene and/or polypropylene terephthalate based soil release polymer, most preferably a polypropylene terephthalate based soil release polymer.
- Suitable polyester based soil release polymers are described in WO 2014/029479 and WO 2016/005338 .
- Lipases are hydrolytic enzymes that are known to cleave ester bonds in lipids.
- the lipase is of origin other than fungal, i.e. it is a non-fungal lipase enzyme.
- Such non-fungal lipase enzymes can be for example mammalian, plant or bacterial origin.
- Non-fungal lipases have been identified, but not limited to, from plants, e.g. Arabidopsis thaliana, from mammals, e.g. pancreas, hepatic, lipoprotein, from bacterial microorganism, e.g. Psychromonas, Pseudomonas, Vibrio, Burkholderia, Chromobacterium.
- the non-fungal lipase enzyme of the present invention is a bacterial lipase enzyme.
- the bacterial lipases of the present invention are derived from Burkholderia cepacia, Pseudomonas fluorescence or Psychromonas ingrahamii.
- Preferred bacterial lipases are derived from Burkholderia cepacia, or Psychromonas ingrahamii.
- a non-fungal lipase is an isolated, synthetic, or recombinant polypeptide, not encoding for a fungal lipase.
- non-fungal, preferably bacterial lipase enzymes provide effective cleaning, the purpose of inclusion in these detergent compositions, as well as overcoming the problem of incompatibility with the soil release polymer due to degradation of the polymer.
- the detergent composition comprises surfactant (which includes a mixture of two or more surfactants).
- the composition comprises from 1 to 60 wt.%, preferably from 2.5 to 50 wt.%, more preferably from 4 to 40 wt.% of surfactant. Even more preferred levels of surfactant are from 6 to 40 wt.%, more preferably from 8 to 35 wt.%.
- the detergent composition (preferably a laundry detergent composition) comprises anionic and/or nonionic surfactant, preferably comprising both anionic and nonionic surfactant.
- Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
- suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C 8 to C 18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C 9 to C 20 benzene sulphonates, particularly sodium linear secondary alkyl C 10 to C 15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
- the anionic surfactant is preferably selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof.
- the most preferred anionic surfactants are selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof.
- the alkyl ether sulphate is a C 12 -C 14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
- Sodium lauryl ether sulphate is particularly preferred (SLES).
- the linear alkyl benzene sulphonate is a sodium C 11 to C 15 alkyl benzene sulphonates.
- the alkyl sulphates is a linear or branched sodium C 12 to C 18 alkyl sulphates.
- Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate).
- liquid formulations preferably two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
- the laundry composition in addition to the anionic surfactant comprises alkyl exthoylated non-ionic surfactant, preferably from 2 to 8 wt.% of alkyl ethoxylated non-ionic surfactant.
- Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide.
- Preferred nonionic detergent compounds are the condensation products of aliphatic C 8 to C 18 primary or secondary linear or branched alcohols with ethylene oxide.
- nonionic detergent compound is the alkyl ethoxylated non-ionic surfactant is a C 8 to C 18 primary alcohol with an average ethoxylation of 7EO to 9EO units.
- surfactants used are saturated.
- the detergent composition is in the form of a laundry composition, it is preferred that an alkoxylated polyamine is included.
- Preferred levels of alkoxylated polyamine range from 0.1 to 8 wt.%, preferably from 0.2 to 6 wt.%, more preferably from 0.5 to 5 wt.%. Another preferred level is from 1 to 4 wt.%.
- the alkoxylated polyamine may be linear or branched. It may be branched to the extent that it is a dendrimer.
- the alkoxylation may typically be ethoxylation or propoxylation, or a mixture of both. Where a nitrogen atom is alkoxylated, a preferred average degree of alkoxylation is from 10 to 30, preferably from 15 to 25.
- a preferred material is alkoxylated polyethylenimine, most preferably ethoxylated polyethyleneimine, with an average degree of ethoxylation being from 10 to 30 preferably from 15 to 25, where a nitrogen atom is ethoxylated.
- Additional enzymes other than the specified lipase may be present in the detergent composition. It is preferred that additional enzymes are present in the preferred laundry detergent composition.
- the level of each enzyme in the laundry composition of the invention is from 0.0001 wt.% to 0.1 wt.%.
- Levels of enzyme present in the composition preferably relate to the level of enzyme as pure protein.
- Preferred further enzymes include those in the group consisting of: proteases, cellulases, alpha-amylases, peroxidases/oxidases, pectate lyases, and/or mannanases. Said preferred additional enzymes include a mixture of two or more of these enzymes.
- the further enzyme is selected from: proteases, cellulases, and/or alpha-amylases.
- proteases hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains.
- suitable proteases families include aspartic proteases; cysteine proteases; glutamic proteases; aspargine peptide lyase; serine proteases and threonine proteases. Such protease families are described in the MEROPS peptidase database (http://merops.sanger.ac.uk/ ). Serine proteases are preferred. Subtilase type serine proteases are more preferred.
- the term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng.
- Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate.
- the subtilases may be divided into 6 subdivisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
- subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO 89/06279 and protease PD138 described in ( WO 93/18140 ).
- proteases may be those described in WO 92/175177 , WO 01/016285 , WO 02/026024 and WO 02/016547 .
- trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270 , WO 94/25583 and WO 05/040372 , and the chymotrypsin proteases derived from Cellumonas described in WO 05/052161 and WO 05/052146 .
- protease is a subtilisins (EC 3.4.21.62).
- subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in ( WO93/18140 ).
- the subsilisin is derived from Bacillus, preferably Bacillus lentus, B.
- subtilisin is derived from Bacillus gibsonii or Bacillus Lentus.
- Suitable commercially available protease enzymes include those sold under the trade names names Alcalase ® , Blaze ® ; DuralaseTm, DurazymTm, Relase ® , Relase ® Ultra, Savinase ® , Savinase ® Ultra, Primase ® , Polarzyme ® , Kannase ® , Liquanase ® , Liquanase ® Ultra, Ovozyme ® , Coronase ® , Coronase ® Ultra, Neutrase ® , Everlase ® and Esperase ® all could be sold as Ultra ® or Evity ® (Novozymes A/S).
- the composition may use cutinase, classified in EC 3.1.1.74.
- the cutinase used according to the invention may be of any origin.
- Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
- Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060 .
- amylases are Duramyl TM , Termamyl TM , Termamyl Ultra TM , Natalase TM , Stainzyme TM , Amplify TM , Fungamyl TM and BAN TM (Novozymes A/S), Rapidase TM and Purastar TM (from Genencor International Inc.).
- Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307 , US 5,648,263 , US 5,691,178 , US 5,776,757 , WO 89/09259 , WO 96/029397 , and WO 98/012307 .
- Celluzyme TM Commercially available cellulases include Celluzyme TM , Carezyme TM , Celluclean TM , Endolase TM , Renozyme TM (Novozymes A/S), Clazinase TM and Puradax HA TM (Genencor International Inc.), and KAC-500(B) TM (Kao Corporation).
- Celluclean TM is preferred.
- Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C . cinereus , and variants thereof as those described in WO 93/24618 , WO 95/10602 , and WO 98/15257 . Commercially available peroxidases include Guardzyme TM and Novozym TM 51004 (Novozymes A/S).
- the aqueous solution used in the method preferably has an enzyme present.
- the enzyme is preferably present in the aqueous solution used in the method at a concentration in the range from 0.01 to 10ppm, preferably 0.05 to 1ppm.
- Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708 .
- a polyol such as propylene glycol or glycerol
- a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
- Chelating agents may be present or absent from the detergent compositions.
- the chelating agent is present at a level of from 0.01 to 5 wt.%.
- Example phosphonic acid (or salt thereof) chelating agents are: 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP); Diethylenetriaminepenta(methylenephosphonic acid) (DTPMP); Hexamethylenediaminetetra(methylenephosphonic acid) (HDTMP); Aminotris(methylenephosphonic acid) (ATMP); Ethylenediaminetetra(methylenephosphonic acid) (EDTMP); Tetramethylenediaminetetra(methylenephosphonic acid) (TDTMP); and, Phosphonobutanetricarboxylic acid (PBTC).
- HEDP 1-Hydroxyethylidene-1,1-diphosphonic acid
- DTPMP Diethylenetriaminepenta(methylenephosphonic acid)
- HDTMP Hexamethylenediaminetetra(methylenephosphonic acid)
- AMP Aminotris(methylenephosphonic acid)
- ETMP Ethylenedi
- detergent compositions preferably laundry detergent compositions
- materials that may be included in the detergent compositions include fluorescent agent, perfume, shading dyes and polymers.
- the composition preferably comprises a fluorescent agent (optical brightener).
- fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
- the total amount of the fluorescent agent or agents used in the composition is generally from 0.0001 to 0.5 wt.%, preferably 0.005 to 2 wt.%, more preferably 0.01 to 0.1 wt.%.
- Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
- Di-styryl biphenyl compounds e.g. Tinopal (Trade Mark) CBS-X
- Di-amine stilbene di-sulphonic acid compounds e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH
- Pyrazoline compounds e.g. Blankophor SN.
- Preferred fluorescers are fluorescers with CAS-No 3426-43-5 ; CAS-No 35632-99-6 ; CAS-No 24565-13-7 ; CAS-No 12224-16-7 ; CAS-No 13863-31-5 ; CAS-No 4193-55-9 ; CAS-No 16090-02-1 ; CAS-No 133-66-4 ; CAS-No 68444-86-0 ; CAS-No 27344-41-8 .
- fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulphonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl.
- the aqueous solution used in the method has a fluorescer present.
- the fluorescer is present in the aqueous solution used in the method preferably in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.
- the composition preferably comprises a perfume.
- perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co .
- the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2-methyl-, ethyl ester; octanal; benzyl acetate; 1,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester; amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl an
- Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavour Ingredients, 1975, CRC Press ; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostr and; or Perfume and Flavour Chemicals by S. Arctander 1969, Montclair, N.J. (USA ).
- compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
- top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]).
- Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
- the Research Institute for Fragrance Materials provides a database of perfumes (fragrances) with safety information.
- Perfume top note may be used to cue the whiteness and brightness benefit of the invention.
- perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low CLog P (ie. those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0.
- these materials have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole, benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d-carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3-hexenyl acetate, cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethy
- compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
- perfumes with which the present invention can be applied are the so-called 'aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.
- the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
- a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
- the composition is a laundry detergent composition
- it comprises a shading dye.
- the shading dye is present at from 0.0001 to 0.1 wt.% of the composition.
- Dyes are described in Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments, (H Zollinger, Wiley VCH, Switzerland, 2003 ) and, Industrial Dyes Chemistry, Properties Applications. (K Hunger (ed), Wiley-VCH Weinheim 2003 ).
- Shading Dyes for use in laundry compositions preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than 5000 L mol -1 cm -1 , preferably greater than 10000 L mol -1 cm -1 .
- the dyes are blue or violet in colour.
- Preferred shading dye chromophores are azo, azine, anthraquinone, and triphenylmethane.
- Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charged or are uncharged.
- Azine preferably carry a net anionic or cationic charge.
- Blue or violet shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric. In this regard the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 250 to 320, most preferably 250 to 280.
- the white cloth used in this test is bleached non-mercerised woven cotton sheeting.
- Shading dyes are discussed in WO 2005/003274 , WO 2006/032327(Unilever ), WO 2006/032397(Unilever ), WO 2006/045275(Unilever ), WO 2006/027086(Unilever ), WO 2008/017570(Unilever ), WO 2008/141880 (Unilever ), WO 2009/132870(Unilever ), WO 2009/141173 (Unilever ), WO 2010/099997(Unilever ), WO 2010/102861(Unilever ), WO 2010/148624(Unilever ), WO 2008/087497 (P&G ), WO 2011/011799 (P&G ), WO 2012/054820 (P&G ), WO 2013/142495 (P&G ) and WO 2013/151970 (P&G ).
- Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes.
- Alkoxylated thiophene dyes are discussed in WO/2013/142495 and WO/2008/087497 . Preferred examples of thiophene dyes are shown below: and,
- Bis-azo dyes are preferably sulphonated bis-azo dyes.
- Preferred examples of sulphonated bis-azo compounds are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, Direct Violet 66, direct violet 99 and alkoxylated versions thereof. Alkoxylated bis-azo dyes are discussed in WO2012/054058 and WO2010/151906 .
- alkoxylated bis-azo dye is :
- Thiophene dyes are available from Milliken under the tradenames of Liquitint Violet DD and Liquitint Violet ION.
- Azine dye are preferably selected from sulphonated phenazine dyes and cationic phenazine dyes. Preferred examples are acid blue 98, acid violet 50, dye with CAS-No 72749-80-5 , acid blue 59, and the phenazine dye selected from: wherein:
- the shading dye is present in the composition in range from 0.0001 to 0.5 wt %, preferably 0.001 to 0.1 wt%. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class. As stated above the shading dye is a blue or violet shading dye.
- a mixture of shading dyes may be used.
- the shading dye is most preferably a reactive blue anthraquinone dye covalently linked to an alkoxylated polyethyleneimine.
- the alkoxylation is preferably selected from ethoxylation and propoxylation, most preferably propoxylation.
- 80 to 95 mol% of the N-H groups in the polyethylene imine are replaced with iso-propyl alcohol groups by propoxylation.
- the polyethylene imine before reaction with the dye and the propoxylation has a molecular weight of 600 to 1800.
- An example structure of a preferred reactive anthraquinone covalently attached to a propoxylated polyethylene imine is:
- the composition may comprise one or more further polymers.
- suitable polymers are carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
- Lipase activity was determined by a colorimetric method using 4-nitrophenyl-valerate (C5) and 4-nitrophenyl-dodecanoate (C12) as a substrates.
- 4-nitrophenyl-dodecanoate (25mg) or 4-nitrophenyl-valerate (18mg) were dissolved in 10mL solvent (methanol) to prepare 8mM stock solutions.
- solvent methanol
- 1mL of stock solution was added in 7mL of acidified water (pH 4.5), to give a final concentration of 1mM.
- deltaE ⁇ L 2 + ⁇ a 2 + ⁇ b 2 1 / 2
- ⁇ L is a measure of the difference in darkness between the washed and white cloth
- ⁇ a and ⁇ b are measures for the difference in redness and yellowness respectively between both cloths.
- Washed-off knitted polyester fabric was cut into 5 ⁇ 5cm squares.
- Into a 250mL glass bottle 0.5g of stored formulation containing SRP and lipase was diluted with 200mL of Prenton water and the polyester fabric added before incubating at 30°C for 30min. This gave a final SRP concentration of 50ppm (in wash). The fabric was rinsed twice in Prenton water and allow to dry, before repeating the wash again using the same formulation and conditions. Controls used were formulation without SRP and also a control plus SRP without lipase.
- One stain used for these experiments was sunflower oil containing 0.2% Macrolex Violet dye. A volume of 100 ⁇ L per stain swatch was applied and allowed to dry and age for 5 days at r/t, before taking a 'pre-wash' reading of stain intensity (DE* value).
- the main wash for cleaning of the sunflower oil/macrolex dye stain was a repeat of the pre-wash conditions though using 3 squares of stained fabric plus 2 squares of woven cotton ballast. Following the wash, the fabric was rinsed twice in Prenton water and allowed to dry before taking a 'post-wash' reading of stain intensity and calculating SRI as a measure of cleaning.
- Washed-off knitted polyester fabric was cut into 5 ⁇ 5cm squares.
- 2.5g of stored formulation containing SRP and lipase was diluted with 1L of FH26 water and the polyester fabric added before incubating at 30°C for 30min.
- Ballast cotton fabric was added to ensure a liquid:cloth ratio of 20:1 was maintained. This gave a final SRP concentration of 50ppm (in wash).
- the fabric was rinsed twice in FH26 water and allow to dry, before repeating the wash again using the same formulation and conditions. Control used was formulation containing SRP but without lipase.
- the stain used for these experiments was Dende oil. A volume of 200 ⁇ L per polyester stain swatch was applied and allowed to dry and age for 3 days at r/t.
- the main wash for cleaning of the Dende oil stain was a repeat of the pre-wash conditions though using 4 squares of Dende oil-stained fabric plus 3 swatches of lard stained cotton (for measure of lipase cleaning). Ballast cotton fabric was added to ensure a liquid:cloth ratio of 20:1. Following the wash, the fabric was rinsed twice in FH26 water and allowed to dry before taking a 'post-wash' reading of stain intensity and calculating SRI as a measure of cleaning.
- Lipex 100L a fungal lipase
- SRP degrade Texcare UL soil release polymer
- three different commercially available fungal lipases, plus two lipases of bacterial origin and one from plant were incubated in SRP containing laundry formulation for a period of 4 weeks, from which 1mL samples were extracted for testing of lipase activity and for SRP integrity.
- the SRP was a polyester based soil release polymer, based on a polypropylene terephthalate polymer.
- the three fungal lipases purchased from Sigma Aldrich originate from different organisms: Rhizomucor miehei (cat. no: L4277), Thermomyces lanuginosus (cat. no: L0777), Candida rugosa (cat. no: L1754).
- Bacterial Amano lipase from Burkholderia cepacia was also purchased from Sigma (cat. no: 534641).
- a second bacterial lipase used in these studies originates from Psychromonas ingrahamii, and was supplied as purified enzyme by the University of Starbucks (the enzyme used is identical to that disclosed in WO 2017/036901 ).
- lipase from wheat germ (Purchased from Sigma Aldrich - cat. no: L3001) was also tested in these studies. Based on specific lipase activity as quoted by the commercial supplier or determined from prior work, lipases were incorporated into storage samples to give the same Unit/mL activity as a 0.4% w / v addition of the benchmark enzyme Lipex 100L - corresponding to a final lipase addition of 400 Units/mL. Of the six lipases tested in comparison to Lipex, only two of these were shown to retain lipase activity after 4 weeks storage in laundry formulation (containing the SRP).
- Formulation samples from those that retained lipase activity after 4 weeks storage i.e. Lipex 100L control, PinLip from Psychromonas ingrahamii, and Amano lipase from Burkholderia cepacia ) were tested for SRP integrity via NMR.
- figure 2 shows how the peak intergrity is lost when Lipex 100L is included in the SRP laundry formulation. This is translated into a reduction of the polymer peak, as well as increase in peak intensity corresponding to the monomer (terephthalic acid) unit and oligomer related peaks.
- NMR clearly shows the SRP to retain structural integrity despite a 4 week incubation period at both 37°C and 45°C ( figure 3 ).
- the lipase activity measurements taken from this same sample were previously described in example 1.
- lipase from Psychromonas ingrahamii also showed no hydrolytic activity towards the Texcare SRP, with the timecourse of NMR samples in figure 4 showing preservation of the SRP NMR peak throughout the storage period at 45°C.
- Table 1 shows that within the formulation controls, the presence of SRP results in a large noticeable increase in cleaning ( ⁇ 10 dSRI).
- SRP formulation containing Lipex 100L the level of cleaning is reduced when compared to SRP formulation on its own. This shows that the cleaning benefit due to SRP is greater than that of Lipex 100L, and underlines the importance for preservation of the SRP within storage.
- Cleaning benefits due to a structurally intact soil release polymer and an active bacterial lipase (Amano or PinLip) are also shown in table. The additional cleaning benefit from having the lipase present with the SRP is observed in these cases.
- Table 1 Showing the positive effect of the bacterial lipases with the SRP Sample SRI Negative Control (formulation - SRP) 85.45 ⁇ 2.42 Positive Control (formulation + SRP) 93.96 ⁇ 0.72 A Formulation + SRP + Lipex 100L 92.03 ⁇ 0.22 1 Formulation + SRP + Amano lipase 95.85 ⁇ 0.45 2 Formulation + SRP + PinLip 95.91 ⁇ 0.77
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Description
- The invention concerns a detergent composition, in particular a detergent composition comprising a soil release polymer and a lipase.
- Soil release polymers are a useful ingredient for detergent formulations, particularly for laundry detergents. Another ingredient that is useful is the incorporation of enzymes, particularly lipase enzymes, such as described in
WO 93/23516 A1 WO 97/19155 A1 EP 3 301 162 A1 ,WO 2012/010407 A1 andEP 0 839 186 A1 . However, inclusion of lipase enzymes causes degradation of the soil release polymer. So the formulator has to forgo one of these useful ingredients. - A problem with inclusion of lipases is that they cannot be included in a detergent formulation with soil release polymers.
- This problem is particularly pronounced in laundry detergent formulations, especially liquid laundry detergent formulations.
- We have found that the incorporation of non-fungal lipase enzymes in detergent compositions doesn't cause degradation of the soil release polymer. However, the non-fungal lipases still provide effective cleaning.
- In one aspect the present invention provides a detergent composition according to present claim 1, wherein the composition comprises:
- (i) from 0.1 to 10 wt.%, preferably from 0.2 to 9 wt.%, more preferably from 0.25 to 8, even more preferably from 0.5 to 6 wt.%, most preferably from 1 to 5 wt.% of a soil release polymer; and,
- (ii) from 0.0005 to 2.5 wt.%, preferably from 0.005 to 2 wt.%, more preferably from 0.01 to 1 wt.% of a non-fungal lipase enzyme,
- A preferred detergent composition is a laundry detergent composition. Preferably the laundry detergent composition is a liquid or a powder, more preferably the detergent is a liquid detergent.
- Preferably the laundry detergent composition comprises anionic and/or nonionic surfactant, more preferably the laundry detergent composition comprises both anionic and nonionic surfactant.
- The laundry detergent preferably comprises from 0.1 to 8 wt.% of an alkoxylated polyamine. Preferred detergent compositions, particularly laundry detergent compositions additionally comprise a further enzyme selected from the group consisting of: proteases, cellulases, alpha-amylases, peroxidases/oxidases, pectate lyases, and/or mannanases.
- In another aspect the present invention provides a method of treatment of a substrate with a detergent composition according to present claim 8, wherein the detergent composition comprises i) the above-mentioned lipase enzyme; and ii) the above-mentioned polyester soil release polymer; to provide lipolytic cleaning without degradation of said polyester soil release polymer, said method comprising incorporation in a detergent composition of a bacterial lipase enzyme into a detergent composition according to the above-mentioned composition of the first aspect; and subsequent treatment of a substrate, preferably textiles, with said composition.
- In another aspect the present invention provides the use of the above-mentioned bacterial lipase enzyme, according to present claim 9, in a detergent composition comprising a polyethylene and/or polypropylene terephthalate polyester soil release polymer, to provide lipolytic cleaning without degradation of said polyester soil release polymer.
-
-
Figure 1 shows the NMR spectrum of the detergent formulation including the soil release polymer (Texcare UL ex. Clariant) -
Figure 2 shows the NMR spectrum of the detergent formulation including the soil release polymer (Texcare UL ex. Clariant) and Lipex 100L (a fungal lipase ex. Novozymes) -
Figure 3 shows the NMR spectrum of the detergent formulation including the soil release polymer (Texcare UL ex. Clariant) and Amano lipase from Burkholderia cepacia (a bacterial lipase enzyme supplied by Sigma) -
Figure 4 shows the NMR spectrum of the detergent formulation including the soil release polymer (Texcare UL ex. Clariant) and PinLip lipase from Psychromonas ingrahamii, (a bacterial lipase enzyme supplied as purified enzyme by the University of Exeter) - The indefinite article "a" or "an" and its corresponding definite article "the" as used herein means at least one, or one or more, unless specified otherwise.
- All % levels of ingredients in compositions (formulations) listed herein are in wt.% based on total formulation unless other stated.
- It is understood that any reference to a preferred ingredient of the detergent composition is envisaged to be combinable subject matter with any other preferred ingredient of the detergent composition disclosed herein.
- The detergent composition may take any suitable form, for example liquids, solids (including powders) or gels.
- The detergent composition can be applied to any suitable substrate. Particularly preferred substrates are textiles. Particularly preferred detergent compositions are laundry detergent compositions.
- Laundry detergent compositions may take any suitable form. Preferred forms are liquid or powder, with liquid being most preferred.
- The soil release polymer is present at a level of from 0.1 to 10 wt.%.
- The levels of soil release polymer are preferably from 0.2 to 9 wt.%, more preferably from 0.25 to 8 wt.%, even more preferably from 0.5 to 6 wt.%, most preferably from 1 to 5 wt.%.
- The soil release polymer is a polyester based soil released polymer selected as a polyethylene and/or polypropylene terephthalate based soil release polymer, most preferably a polypropylene terephthalate based soil release polymer.
- Suitable polyester based soil release polymers are described in
WO 2014/029479 andWO 2016/005338 . - Lipases (E.C. 3.1.1.3) are hydrolytic enzymes that are known to cleave ester bonds in lipids. The lipase is of origin other than fungal, i.e. it is a non-fungal lipase enzyme. Such non-fungal lipase enzymes can be for example mammalian, plant or bacterial origin. Non-fungal lipases have been identified, but not limited to, from plants, e.g. Arabidopsis thaliana, from mammals, e.g. pancreas, hepatic, lipoprotein, from bacterial microorganism, e.g. Psychromonas, Pseudomonas, Vibrio, Burkholderia, Chromobacterium.
- The non-fungal lipase enzyme of the present invention is a bacterial lipase enzyme.
- Examples of bacterial lipases, are classified in Arpigny & Jaeger (1999) and Lopez-Lopez et al., 2014).
- The bacterial lipases of the present invention are derived from Burkholderia cepacia, Pseudomonas fluorescence or Psychromonas ingrahamii.
- Preferred bacterial lipases are derived from Burkholderia cepacia, or Psychromonas ingrahamii.
- A non-fungal lipase is an isolated, synthetic, or recombinant polypeptide, not encoding for a fungal lipase.
- These non-fungal, preferably bacterial lipase enzymes provide effective cleaning, the purpose of inclusion in these detergent compositions, as well as overcoming the problem of incompatibility with the soil release polymer due to degradation of the polymer.
- The detergent composition comprises surfactant (which includes a mixture of two or more surfactants). The composition comprises from 1 to 60 wt.%, preferably from 2.5 to 50 wt.%, more preferably from 4 to 40 wt.% of surfactant. Even more preferred levels of surfactant are from 6 to 40 wt.%, more preferably from 8 to 35 wt.%.
- The detergent composition (preferably a laundry detergent composition) comprises anionic and/or nonionic surfactant, preferably comprising both anionic and nonionic surfactant. Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
- Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C8 to C18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
- The anionic surfactant is preferably selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof.
- The most preferred anionic surfactants are selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof. Preferably the alkyl ether sulphate is a C12-C14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
- Sodium lauryl ether sulphate is particularly preferred (SLES). Preferably the linear alkyl benzene sulphonate is a sodium C11 to C15 alkyl benzene sulphonates. Preferably the alkyl sulphates is a linear or branched sodium C12 to C18 alkyl sulphates. Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate).
- In liquid formulations preferably two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
- In liquid formulations, preferably the laundry composition in addition to the anionic surfactant comprises alkyl exthoylated non-ionic surfactant, preferably from 2 to 8 wt.% of alkyl ethoxylated non-ionic surfactant.
- Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide. Preferred nonionic detergent compounds are the condensation products of aliphatic C8 to C18 primary or secondary linear or branched alcohols with ethylene oxide.
- Most preferably the nonionic detergent compound is the alkyl ethoxylated non-ionic surfactant is a C8 to C18 primary alcohol with an average ethoxylation of 7EO to 9EO units.
- Preferably the surfactants used are saturated.
- When the detergent composition is in the form of a laundry composition, it is preferred that an alkoxylated polyamine is included.
- Preferred levels of alkoxylated polyamine range from 0.1 to 8 wt.%, preferably from 0.2 to 6 wt.%, more preferably from 0.5 to 5 wt.%. Another preferred level is from 1 to 4 wt.%.
- The alkoxylated polyamine may be linear or branched. It may be branched to the extent that it is a dendrimer. The alkoxylation may typically be ethoxylation or propoxylation, or a mixture of both. Where a nitrogen atom is alkoxylated, a preferred average degree of alkoxylation is from 10 to 30, preferably from 15 to 25.
- A preferred material is alkoxylated polyethylenimine, most preferably ethoxylated polyethyleneimine, with an average degree of ethoxylation being from 10 to 30 preferably from 15 to 25, where a nitrogen atom is ethoxylated.
- Additional enzymes, other than the specified lipase may be present in the detergent composition. It is preferred that additional enzymes are present in the preferred laundry detergent composition.
- If present, then the level of each enzyme in the laundry composition of the invention is from 0.0001 wt.% to 0.1 wt.%.
- Levels of enzyme present in the composition preferably relate to the level of enzyme as pure protein.
- Preferred further enzymes include those in the group consisting of: proteases, cellulases, alpha-amylases, peroxidases/oxidases, pectate lyases, and/or mannanases. Said preferred additional enzymes include a mixture of two or more of these enzymes.
- Preferably the further enzyme is selected from: proteases, cellulases, and/or alpha-amylases.
- Protease enzymes hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains. Examples of suitable proteases families include aspartic proteases; cysteine proteases; glutamic proteases; aspargine peptide lyase; serine proteases and threonine proteases. Such protease families are described in the MEROPS peptidase database (http://merops.sanger.ac.uk/). Serine proteases are preferred. Subtilase type serine proteases are more preferred. The term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng. 4 (1991) 719-737 and Siezen et al. Protein Science 6 (1997) 501 -523. Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate. The subtilases may be divided into 6 subdivisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
- Examples of subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in;
US7262042 andWO09/021867 WO 89/06279 WO 93/18140 WO 92/175177 WO 01/016285 WO 02/026024 WO 02/016547 WO 89/06270 WO 94/25583 WO 05/040372 WO 05/052161 WO 05/052146 - Most preferably the protease is a subtilisins (EC 3.4.21.62).
- Examples of subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in;
US7262042 andWO09/021867 WO89/06279 WO93/18140 US 6,312,936 B1 ,US 5,679,630 ,US 4,760,025 ,US7,262,042 andWO 09/021867 - Suitable commercially available protease enzymes include those sold under the trade names names Alcalase®, Blaze®; DuralaseTm, DurazymTm, Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Primase®, Polarzyme®, Kannase®, Liquanase®, Liquanase® Ultra, Ovozyme®, Coronase®, Coronase® Ultra, Neutrase®, Everlase® and Esperase® all could be sold as Ultra® or Evity® (Novozymes A/S).
- The composition may use cutinase, classified in EC 3.1.1.74. The cutinase used according to the invention may be of any origin. Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
- Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in
GB 1,296,839 WO 95/026397 WO 00/060060 - Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in
US 4,435,307 ,US 5,648,263 ,US 5,691,178 ,US 5,776,757 ,WO 89/09259 WO 96/029397 WO 98/012307 - Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in
WO 93/24618 WO 95/10602 WO 98/15257 - Further enzymes suitable for use are discussed in
WO 2009/087524 ,WO 2009/090576 ,WO 2009/107091 ,WO 2009/111258 andWO 2009/148983 . - The aqueous solution used in the method preferably has an enzyme present. The enzyme is preferably present in the aqueous solution used in the method at a concentration in the range from 0.01 to 10ppm, preferably 0.05 to 1ppm.
- Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g.
WO 92/19709 WO 92/19708 - Chelating agents may be present or absent from the detergent compositions.
- If present, then the chelating agent is present at a level of from 0.01 to 5 wt.%.
- Example phosphonic acid (or salt thereof) chelating agents are: 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP); Diethylenetriaminepenta(methylenephosphonic acid) (DTPMP); Hexamethylenediaminetetra(methylenephosphonic acid) (HDTMP); Aminotris(methylenephosphonic acid) (ATMP); Ethylenediaminetetra(methylenephosphonic acid) (EDTMP); Tetramethylenediaminetetra(methylenephosphonic acid) (TDTMP); and, Phosphonobutanetricarboxylic acid (PBTC).
- Further optional but preferred materials that may be included in the detergent compositions (preferably laundry detergent compositions) include fluorescent agent, perfume, shading dyes and polymers.
- The composition preferably comprises a fluorescent agent (optical brightener). Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
- The total amount of the fluorescent agent or agents used in the composition is generally from 0.0001 to 0.5 wt.%, preferably 0.005 to 2 wt.%, more preferably 0.01 to 0.1 wt.%.
- Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
- Preferred fluorescers are fluorescers with CAS-No 3426-43-5; CAS-No 35632-99-6; CAS-No 24565-13-7; CAS-No 12224-16-7; CAS-No 13863-31-5; CAS-No 4193-55-9; CAS-No 16090-02-1; CAS-No 133-66-4; CAS-No 68444-86-0; CAS-No 27344-41-8.
- Most preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino}stilbene-2-2' disulphonate, disodium 4,4'-bis{[(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino} stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl.
- The aqueous solution used in the method has a fluorescer present. The fluorescer is present in the aqueous solution used in the method preferably in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.
- The composition preferably comprises a perfume. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
- Preferably the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2-methyl-, ethyl ester; octanal; benzyl acetate; 1,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester; amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl anthranilate; alpha-irone; beta-phenyl ethyl benzoate; alpa-santalol; cedrol; cedryl acetate; cedry formate; cyclohexyl salicyate; gamma-dodecalactone; and, beta phenylethyl phenyl acetate.
- Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavour Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavour Chemicals by S. Arctander 1969, Montclair, N.J. (USA).
- It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
- In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
- The International Fragrance Association has published a list of fragrance ingredients (perfumes) in 2011. (http://www.ifraorg.org/en-us/ingredients#.U7Z4hPidWzk)
- The Research Institute for Fragrance Materials provides a database of perfumes (fragrances) with safety information.
- Perfume top note may be used to cue the whiteness and brightness benefit of the invention.
- Some or all of the perfume may be encapsulated, typical perfume components which it is advantageous to encapsulate, include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low CLog P (ie. those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0. These materials, of relatively low boiling point and relatively low CLog P have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole, benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d-carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3-hexenyl acetate, cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethyl amyl ketone, ethyl benzoate, ethyl butyrate, ethyl hexyl ketone, ethyl phenyl acetate, eucalyptol, eugenol, fenchyl acetate, flor acetate (tricyclo decenyl acetate) , frutene (tricyclco decenyl propionate) , geraniol, hexenol, hexenyl acetate, hexyl acetate, hexyl formate, hydratropic alcohol, hydroxycitronellal, indone, isoamyl alcohol, iso menthone, isopulegyl acetate, isoquinolone, ligustral, linalool, linalool oxide, linalyl formate, menthone, menthyl acetphenone, methyl amyl ketone, methyl anthranilate, methyl benzoate, methyl benyl acetate, methyl eugenol, methyl heptenone, methyl heptine carbonate, methyl heptyl ketone, methyl hexyl ketone, methyl phenyl carbinyl acetate, methyl salicylate, methyl-n-methyl anthranilate, nerol, octalactone, octyl alcohol, p-cresol, p-cresol methyl ether, p-methoxy acetophenone, p-methyl acetophenone, phenoxy ethanol, phenyl acetaldehyde, phenyl ethyl acetate, phenyl ethyl alcohol, phenyl ethyl dimethyl carbinol, prenyl acetate, propyl bornate, pulegone, rose oxide, safrole, 4-terpinenol, alphaterpinenol, and /or viridine. It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
- Another group of perfumes with which the present invention can be applied are the so-called 'aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.
- It is preferred that the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
- Preferably when the composition is a laundry detergent composition, then it comprises a shading dye. Preferably the shading dye is present at from 0.0001 to 0.1 wt.% of the composition.
- Dyes are described in Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments, (H Zollinger, Wiley VCH, Zürich, 2003) and, Industrial Dyes Chemistry, Properties Applications. (K Hunger (ed), Wiley-VCH Weinheim 2003).
- Shading Dyes for use in laundry compositions preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than 5000 L mol-1 cm-1, preferably greater than 10000 L mol-1 cm-1. The dyes are blue or violet in colour.
- Preferred shading dye chromophores are azo, azine, anthraquinone, and triphenylmethane.
- Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charged or are uncharged. Azine preferably carry a net anionic or cationic charge. Blue or violet shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric. In this regard the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 250 to 320, most preferably 250 to 280. The white cloth used in this test is bleached non-mercerised woven cotton sheeting.
- Shading dyes are discussed in
WO 2005/003274 ,WO 2006/032327(Unilever ),WO 2006/032397(Unilever ),WO 2006/045275(Unilever ),WO 2006/027086(Unilever ),WO 2008/017570(Unilever ),WO 2008/141880 (Unilever ),WO 2009/132870(Unilever ),WO 2009/141173 (Unilever ),WO 2010/099997(Unilever ),WO 2010/102861(Unilever ),WO 2010/148624(Unilever ),WO 2008/087497 (P&G ),WO 2011/011799 (P&G ),WO 2012/054820 (P&G ),WO 2013/142495 (P&G ) andWO 2013/151970 (P&G ). - Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes. The mono-azo dyes are preferably alkoxylated and are preferably uncharged or anionically charged at pH=7. Alkoxylated thiophene dyes are discussed in
WO/2013/142495 andWO/2008/087497 . Preferred examples of thiophene dyes are shown below: - Bis-azo dyes are preferably sulphonated bis-azo dyes. Preferred examples of sulphonated bis-azo compounds are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, Direct Violet 66, direct violet 99 and alkoxylated versions thereof. Alkoxylated bis-azo dyes are discussed in
WO2012/054058 andWO2010/151906 . -
- Thiophene dyes are available from Milliken under the tradenames of Liquitint Violet DD and Liquitint Violet ION.
-
- X3 is selected from: -H; -F; -CH3; -C2H5; -OCH3; and, -OC2H5;
- X4 is selected from: -H; -CH3; -C2H5; -OCH3; and, -OC2H5;
- Y2 is selected from: -OH; -OCH2CH2OH; -CH(OH)CH2OH; -OC(O)CH3; and, C(O)OCH3.
- The shading dye is present is present in the composition in range from 0.0001 to 0.5 wt %, preferably 0.001 to 0.1 wt%. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class. As stated above the shading dye is a blue or violet shading dye.
- A mixture of shading dyes may be used.
- The shading dye is most preferably a reactive blue anthraquinone dye covalently linked to an alkoxylated polyethyleneimine. The alkoxylation is preferably selected from ethoxylation and propoxylation, most preferably propoxylation. Preferably 80 to 95 mol% of the N-H groups in the polyethylene imine are replaced with iso-propyl alcohol groups by propoxylation. Preferably the polyethylene imine before reaction with the dye and the propoxylation has a molecular weight of 600 to 1800.
-
- The composition may comprise one or more further polymers. Examples are carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
- The invention will be demonstrated by the following non-limiting examples.
- Lipase activity was determined by a colorimetric method using 4-nitrophenyl-valerate (C5) and 4-nitrophenyl-dodecanoate (C12) as a substrates. 4-nitrophenyl-dodecanoate (25mg) or 4-nitrophenyl-valerate (18mg) were dissolved in 10mL solvent (methanol) to prepare 8mM stock solutions. Before carrying out the assay, 1mL of stock solution was added in 7mL of acidified water (pH 4.5), to give a final concentration of 1mM. In 96-well microtitre plates, 60µL dH2O, 115µL Tris-HCl buffer (pH 8.5, 50mM), 5µL of diluted enzyme solution and 20µL substrate (multi-channel at the end) were added. For blanks, enzyme solution was replaced with dH2O. Following the addition of reagents, the release of product (4-nitrophenol) was monitored at 405nm for 15min at ambient temperature in a Varioskan plate reader.
- Into a laundry formulation containing 2% w/w Texcare UL soil release polymer, different lipases were added to give the same Unit/mL activity as a 0.4% w/v addition of the benchmark enzyme Lipex 100L (Novozymes), based on the specific activity as quoted by the commercial supplier of the lipase. This level of addition corresponded to a final lipase addition of 400 Units/mL, which in the case of Lipex 100L is a final lipase concentration of 0.08mg/mL. A control incubation without lipase was also made. Formulations with and without lipases were stored in incubators at either 37°C or 45°C for a minimum of 4 weeks. After different time intervals, 1mL samples were transferred into an Eppendorf tube and stored at -20°C prior to NMR analysis. After 4 weeks incubation, lipase activity was assayed in the remaining storage sample.
- Standard qualitative and quantitative experiments were performed using a Bruker Avance DRX 400 MHz spectrometer. Samples were prepared as polymer solutions in D2O to track polymer stability as fully formulated laundry liquids after storage. D2O contained 0.05% 3-(trimethylsilyl)propionic acid, sodium salt (TSP) as the internal standards. Signals are quoted in parts per million (ppm) relative to TSP.
- Woven cotton fabric stained with either frying fat (CS46B) or beef fat (CS61) (Centre for Testmaterials - Netherlands) was cut into empty 96-well microtitre plates and pre-wash readings taken for stain intensity. Lipase solutions were prepared in FH32 water, and subsequently transferred (200µL) to the stains using a multi-channel pipette just prior to incubation at 40°C, with shaking at 200rpm for 20min. Following washing, the wash liqueur was immediately removed using a multi-channel pipette, and the stain discs washed 3× with 200µL dH2O, before leaving overnight in a cupboard to dry. After drying, the stain plates were digitally scanned and their deltaE measured. This value is used to express cleaning effect and is defined as the colour difference between a white cloth and that of the stained cloth after being washed. Mathematically, the definition of deltaE is:
-
- The higher the SRI the cleaner the cloth, SRI = 100 (white).
- Washed-off knitted polyester fabric was cut into 5×5cm squares. Into a 250mL glass bottle 0.5g of stored formulation containing SRP and lipase was diluted with 200mL of Prenton water and the polyester fabric added before incubating at 30°C for 30min. This gave a final SRP concentration of 50ppm (in wash). The fabric was rinsed twice in Prenton water and allow to dry, before repeating the wash again using the same formulation and conditions. Controls used were formulation without SRP and also a control plus SRP without lipase.
- One stain used for these experiments was sunflower oil containing 0.2% Macrolex Violet dye. A volume of 100µL per stain swatch was applied and allowed to dry and age for 5 days at r/t, before taking a 'pre-wash' reading of stain intensity (DE* value).
- The main wash for cleaning of the sunflower oil/macrolex dye stain was a repeat of the pre-wash conditions though using 3 squares of stained fabric plus 2 squares of woven cotton ballast. Following the wash, the fabric was rinsed twice in Prenton water and allowed to dry before taking a 'post-wash' reading of stain intensity and calculating SRI as a measure of cleaning.
- Washed-off knitted polyester fabric was cut into 5×5cm squares. Into a 1L Tergo pot, 2.5g of stored formulation containing SRP and lipase was diluted with 1L of FH26 water and the polyester fabric added before incubating at 30°C for 30min. Ballast cotton fabric was added to ensure a liquid:cloth ratio of 20:1 was maintained. This gave a final SRP concentration of 50ppm (in wash). The fabric was rinsed twice in FH26 water and allow to dry, before repeating the wash again using the same formulation and conditions. Control used was formulation containing SRP but without lipase.
- The stain used for these experiments was Dende oil. A volume of 200µL per polyester stain swatch was applied and allowed to dry and age for 3 days at r/t.
- The main wash for cleaning of the Dende oil stain was a repeat of the pre-wash conditions though using 4 squares of Dende oil-stained fabric plus 3 swatches of lard stained cotton (for measure of lipase cleaning). Ballast cotton fabric was added to ensure a liquid:cloth ratio of 20:1. Following the wash, the fabric was rinsed twice in FH26 water and allowed to dry before taking a 'post-wash' reading of stain intensity and calculating SRI as a measure of cleaning.
- To compare against the benchmark commercially available lipase Lipex 100L (a fungal lipase) which is known to degrade Texcare UL soil release polymer (SRP), three different commercially available fungal lipases, plus two lipases of bacterial origin and one from plant were incubated in SRP containing laundry formulation for a period of 4 weeks, from which 1mL samples were extracted for testing of lipase activity and for SRP integrity. The SRP was a polyester based soil release polymer, based on a polypropylene terephthalate polymer.
- The three fungal lipases purchased from Sigma Aldrich originate from different organisms: Rhizomucor miehei (cat. no: L4277), Thermomyces lanuginosus (cat. no: L0777), Candida rugosa (cat. no: L1754). Bacterial Amano lipase from Burkholderia cepacia was also purchased from Sigma (cat. no: 534641). A second bacterial lipase used in these studies (PinLip) originates from Psychromonas ingrahamii, and was supplied as purified enzyme by the University of Exeter (the enzyme used is identical to that disclosed in
WO 2017/036901 ). The lipase from wheat germ (Purchased from Sigma Aldrich - cat. no: L3001) was also tested in these studies. Based on specific lipase activity as quoted by the commercial supplier or determined from prior work, lipases were incorporated into storage samples to give the same Unit/mL activity as a 0.4% w/v addition of the benchmark enzyme Lipex 100L - corresponding to a final lipase addition of 400 Units/mL. Of the six lipases tested in comparison to Lipex, only two of these were shown to retain lipase activity after 4 weeks storage in laundry formulation (containing the SRP). Both bacterial lipases were found to be active after the 4 week storage period, with Amano lipase from Burkholderia cepacia maintaining a similar level of activity to the Lipex 100L benchmark. None of the fungal/plant lipases which were purchased from Sigma Aldrich proved to be active after 4-week's storage in the laundry formulation at 37°C. - This experiment shows that the bacterial lipases retain their cleaning efficacy function after storage in a detergent composition containing a soil release polymer.
- Formulation samples from those that retained lipase activity after 4 weeks storage (i.e. Lipex 100L control, PinLip from Psychromonas ingrahamii, and Amano lipase from Burkholderia cepacia) were tested for SRP integrity via NMR.
-
Figure 1 shows the NMR spectra for SRP-containing formulation which has been incubated for 4 weeks in the absence of lipase. This figure shows that the NMR peak corresponding to SRP retains its shape after storage at both 37°C and 45°C for 4 weeks (i.e. identical spectra to T=0). - In contrast,
figure 2 shows how the peak intergrity is lost when Lipex 100L is included in the SRP laundry formulation. This is translated into a reduction of the polymer peak, as well as increase in peak intensity corresponding to the monomer (terephthalic acid) unit and oligomer related peaks. Interestingly, when incubated with Amano lipase from Burkholderia cepacia, NMR clearly shows the SRP to retain structural integrity despite a 4 week incubation period at both 37°C and 45°C (figure 3 ). The lipase activity measurements taken from this same sample were previously described in example 1. Interestingly, lipase from Psychromonas ingrahamii (PinLip) also showed no hydrolytic activity towards the Texcare SRP, with the timecourse of NMR samples infigure 4 showing preservation of the SRP NMR peak throughout the storage period at 45°C. - This result shows that lipases of bacterial origin are preferable for compatibility with SRP, since the fungal Lipex 100L is particularly aggressive towards the hydrolysis of SRP, even after just 1 week incubation.
- With NMR analysis of stored formulations previously showing the preservation of SRP structural integrity (example 2), and biochemical assays showing lipase activity to remain (example 1), the following results provide a measure of cleaning benefit that arises due to the presence of SRP and the lipase.
- Table 1 shows that within the formulation controls, the presence of SRP results in a large noticeable increase in cleaning (~10 dSRI). In SRP formulation containing Lipex 100L the level of cleaning is reduced when compared to SRP formulation on its own. This shows that the cleaning benefit due to SRP is greater than that of Lipex 100L, and underlines the importance for preservation of the SRP within storage. Cleaning benefits due to a structurally intact soil release polymer and an active bacterial lipase (Amano or PinLip) are also shown in table. The additional cleaning benefit from having the lipase present with the SRP is observed in these cases.
Table 1 Showing the positive effect of the bacterial lipases with the SRP Sample SRI Negative Control (formulation - SRP) 85.45 ± 2.42 Positive Control (formulation + SRP) 93.96 ± 0.72 A Formulation + SRP + Lipex 100L 92.03 ± 0.22 1 Formulation + SRP + Amano lipase 95.85 ± 0.45 2 Formulation + SRP + PinLip 95.91 ± 0.77 - The formulation without SRP or lipase gave a SRI of ~85. Adding the SRP improved the SRI to ~94. Addition of Lipex 100L, a fungal lipase enzyme, to the positive control, had a negative effect, such that the SRI was even less than the positive control. Addition of either of 2 bacterial enzymes (Amano lipase or PinLip) did not show the negative effect on the SRP and gave a small statistical improvement over the positive control.
Claims (9)
- A detergent composition comprising:(i) from 0.1 to 10 wt.%, preferably from 0.2 to 9 wt.%, more preferably from 0.25 to 8, even more preferably from 0.5 to 6 wt.%, most preferably from 1 to 5 wt.% of a soil release polymer; and,(ii) from 0.0005 to 2.5 wt.%, preferably from 0.005 to 2 wt.%, more preferably from 0.01 to 1 wt.% of a non-fungal lipase enzyme,wherein the soil release polymer is a polyester based soil released polymer,wherein the polyester soil release polymer is a polyethylene and/or polypropylene terephthalate based soil release polymer; and,wherein the non-fungal lipase enzyme is a bacterial lipase enzyme derived from Burkholderia cepacia, Pseudomonas fluorescence or Psychromonas ingrahamii.
- A detergent composition according to any preceding claim, wherein the detergent composition comprises from 1 to 60 wt.%, preferably from 2.5 to 50 wt.%, more preferably from 4 to 40 wt.%, most preferably from 8 to 35 wt.% of a surfactant.
- A detergent composition according to claim 3, wherein the detergent composition comprises anionic and/or nonionic surfactant, preferably comprising both anionic and nonionic surfactant.
- A detergent composition according to any preceding claim, wherein the detergent composition is a laundry detergent composition.
- A laundry detergent composition according to claim 4, wherein the laundry detergent composition is a liquid or a powder, preferably a liquid detergent.
- A laundry detergent composition according to any one of claims 4 or 5, wherein the laundry detergent composition comprises an alkoxylated polyamine, preferably at a level of from 0.1 to 8 wt.%, more preferably from 0.2 to 6 wt.%, most preferably from 0.5 to 5 wt.%.
- A detergent composition according to any preceding claim, additionally comprising a further enzyme selected from the group consisting of: proteases, cellulases, alpha-amylases, peroxidases/oxidases, pectate lyases, and/or mannanases.
- A method of treatment of a substrate with a detergent composition comprising i) a lipase enzyme; and ii) a polyethylene and/or polypropylene terephthalate polyester soil release polymer; to provide lipolytic cleaning without degradation of said polyester soil release polymer, said method comprising incorporation in a detergent composition of a bacterial lipase enzyme into a detergent composition according to any one of claims 1 to 7; and subsequent treatment of a substrate, preferably textiles, with said composition.
- Use of a bacterial lipase enzyme derived from Burkholderia cepacia, Pseudomonas fluorescence or Psychromonas ingrahamii, in a detergent composition comprising a polyethylene and/or polypropylene terephthalate polyester soil release polymer, to provide lipolytic cleaning without degradation of said polyester soil release polymer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18194918 | 2018-09-17 | ||
PCT/EP2019/074006 WO2020058024A1 (en) | 2018-09-17 | 2019-09-09 | Detergent composition |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3853330A1 EP3853330A1 (en) | 2021-07-28 |
EP3853330B1 true EP3853330B1 (en) | 2023-06-07 |
Family
ID=63637798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19765252.2A Active EP3853330B1 (en) | 2018-09-17 | 2019-09-09 | Detergent composition |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3853330B1 (en) |
CN (1) | CN112703246A (en) |
AR (1) | AR116411A1 (en) |
BR (1) | BR112021004507A2 (en) |
WO (1) | WO2020058024A1 (en) |
ZA (1) | ZA202101254B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0839186B1 (en) * | 1995-07-14 | 2004-11-10 | Novozymes A/S | A modified enzyme with lipolytic activity |
Family Cites Families (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1296839A (en) | 1969-05-29 | 1972-11-22 | ||
DK187280A (en) | 1980-04-30 | 1981-10-31 | Novo Industri As | RUIT REDUCING AGENT FOR A COMPLETE LAUNDRY |
US4760025A (en) | 1984-05-29 | 1988-07-26 | Genencor, Inc. | Modified enzymes and methods for making same |
ATE129523T1 (en) | 1988-01-07 | 1995-11-15 | Novo Nordisk As | SPECIFIC PROTEASES. |
DK6488D0 (en) | 1988-01-07 | 1988-01-07 | Novo Industri As | ENZYMES |
EP0406314B1 (en) | 1988-03-24 | 1993-12-01 | Novo Nordisk A/S | A cellulase preparation |
US5648263A (en) | 1988-03-24 | 1997-07-15 | Novo Nordisk A/S | Methods for reducing the harshness of a cotton-containing fabric |
DK58491D0 (en) | 1991-04-03 | 1991-04-03 | Novo Nordisk As | HIS UNKNOWN PROTEAS |
EP0511456A1 (en) | 1991-04-30 | 1992-11-04 | The Procter & Gamble Company | Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme |
AU666660B2 (en) | 1991-04-30 | 1996-02-22 | Procter & Gamble Company, The | Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme |
DK28792D0 (en) | 1992-03-04 | 1992-03-04 | Novo Nordisk As | NEW ENZYM |
AU4231493A (en) * | 1992-05-08 | 1993-12-13 | Procter & Gamble Company, The | Granular detergent compositions with lipase |
DK72992D0 (en) | 1992-06-01 | 1992-06-01 | Novo Nordisk As | ENZYME |
DK52393D0 (en) | 1993-05-05 | 1993-05-05 | Novo Nordisk As | |
US5817495A (en) | 1993-10-13 | 1998-10-06 | Novo Nordisk A/S | H2 O2 -stable peroxidase variants |
CZ105396A3 (en) | 1993-10-14 | 1996-09-11 | Procter & Gamble | Cleaning agent, agent for cleaning fabrics, agent for washing dishes, washing agent, method of cleaning fabrics, method of washing dishes and washing process |
ES2250969T3 (en) | 1994-03-29 | 2006-04-16 | Novozymes A/S | AMYLASA ALKALINE OF BACILO. |
JP3360830B2 (en) | 1995-03-17 | 2003-01-07 | ノボザイムス アクティーゼルスカブ | Novel endoglucanase |
AU7528196A (en) * | 1995-11-17 | 1997-06-11 | Procter & Gamble Company, The | Laundry detergent compositions containing lipolytic enzyme and selected quaternary ammonium compounds |
JP3532576B2 (en) | 1996-09-17 | 2004-05-31 | ノボザイムス アクティーゼルスカブ | Cellulase mutant |
WO1998015257A1 (en) | 1996-10-08 | 1998-04-16 | Novo Nordisk A/S | Diaminobenzoic acid derivatives as dye precursors |
AR016969A1 (en) | 1997-10-23 | 2001-08-01 | Procter & Gamble | PROTEASE VARIANTE, ADN, EXPRESSION VECTOR, GUEST MICROORGANISM, CLEANING COMPOSITION, ANIMAL FOOD AND COMPOSITION TO TREAT A TEXTILE |
MXPA01009706A (en) | 1999-03-31 | 2002-05-14 | Novozymes As | Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same. |
EP2336331A1 (en) | 1999-08-31 | 2011-06-22 | Novozymes A/S | Novel proteases and variants thereof |
CN1337553A (en) | 2000-08-05 | 2002-02-27 | 李海泉 | Underground sightseeing amusement park |
AU2001279614B2 (en) | 2000-08-21 | 2006-08-17 | Novozymes A/S | Subtilase enzymes |
DE10162728A1 (en) | 2001-12-20 | 2003-07-10 | Henkel Kgaa | New alkaline protease from Bacillus gibsonii (DSM 14393) and washing and cleaning agents containing this new alkaline protease |
GB0314210D0 (en) | 2003-06-18 | 2003-07-23 | Unilever Plc | Laundry treatment compositions |
JP4880469B2 (en) | 2003-10-23 | 2012-02-22 | ノボザイムス アクティーゼルスカブ | Protease with improved stability in detergents |
WO2005052161A2 (en) | 2003-11-19 | 2005-06-09 | Genencor International, Inc. | Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same |
GB0420203D0 (en) | 2004-09-11 | 2004-10-13 | Unilever Plc | Laundry treatment compositions |
GB0421145D0 (en) | 2004-09-23 | 2004-10-27 | Unilever Plc | Laundry treatment compositions |
DE602005015234D1 (en) | 2004-09-23 | 2009-08-13 | Unilever Nv | COMPOSITIONS FOR WASH TREATMENT |
DE102004052007B4 (en) | 2004-10-25 | 2007-12-06 | Müller Weingarten AG | Drive system of a forming press |
AU2007283690B2 (en) | 2006-08-10 | 2010-04-08 | Unilever Global Ip Limited | Shading composition |
EP2192169B1 (en) | 2007-01-19 | 2012-05-09 | The Procter & Gamble Company | Laundry care composition comprising a whitening agents for cellulosic substrates |
US20100197555A1 (en) | 2007-05-18 | 2010-08-05 | Stephen Norman Batchelor | Triphenodioxazine dyes |
DE102007038031A1 (en) | 2007-08-10 | 2009-06-04 | Henkel Ag & Co. Kgaa | Agents containing proteases |
BRPI0822220A2 (en) | 2008-01-04 | 2015-06-23 | Procter & Gamble | Enzyme Containing Compositions and Tinting Agent for Tissues |
EP2085070A1 (en) | 2008-01-11 | 2009-08-05 | Procter & Gamble International Operations SA. | Cleaning and/or treatment compositions |
CN101960007A (en) | 2008-02-29 | 2011-01-26 | 宝洁公司 | Detergent composition comprising lipase |
US20090217464A1 (en) | 2008-02-29 | 2009-09-03 | Philip Frank Souter | Detergent composition comprising lipase |
ES2400204T5 (en) | 2008-05-02 | 2015-11-26 | Unilever N.V. | Granules with reduced staining |
ES2443822T3 (en) | 2008-05-20 | 2014-02-20 | Unilever N.V. | Matting Composition |
HUE042847T2 (en) | 2008-06-06 | 2019-07-29 | Procter & Gamble | A surfactant composition containing a variant of the 44 xyloglucanase family |
WO2010099997A1 (en) | 2009-03-05 | 2010-09-10 | Unilever Plc | Dye radical initiators |
MY154041A (en) | 2009-03-12 | 2015-04-30 | Unilever Plc | Dye-polymers formulations |
WO2010148624A1 (en) | 2009-06-26 | 2010-12-29 | Unilever Plc | Dye polymers |
EP2596089B1 (en) * | 2010-07-22 | 2014-12-17 | Unilever PLC | Detergent compositions comprising biosurfactant and lipase |
US20120101018A1 (en) | 2010-10-22 | 2012-04-26 | Gregory Scot Miracle | Bis-azo colorants for use as bluing agents |
JP6129740B2 (en) | 2010-10-22 | 2017-05-17 | ミリケン・アンド・カンパニーMilliken & Company | Bis-azo colorant for bluing agents |
WO2012054058A1 (en) | 2010-10-22 | 2012-04-26 | The Procter & Gamble Company | Bis-azo colorants for use as bluing agents |
MX2013005276A (en) | 2010-11-12 | 2013-06-03 | Procter & Gamble | Thiophene azo dyes and laundry care compositions containing the same. |
ES2421162T3 (en) * | 2011-04-04 | 2013-08-29 | Unilever Nv | Fabric washing procedure |
MX2014011154A (en) | 2012-03-19 | 2014-12-10 | Procter & Gamble | Laundry care compositions containing dyes. |
EP2834340B1 (en) | 2012-04-03 | 2016-06-29 | The Procter and Gamble Company | Laundry detergent composition comprising water-soluble phthalocyanine compound |
DE102012016462A1 (en) | 2012-08-18 | 2014-02-20 | Clariant International Ltd. | Use of polyesters in detergents and cleaners |
HUE052331T2 (en) * | 2013-02-19 | 2021-04-28 | Procter & Gamble | Method of laundering a fabric |
EP2966160A1 (en) | 2014-07-09 | 2016-01-13 | Clariant International Ltd. | Storage-stable compositions comprising soil release polymers |
AR105803A1 (en) * | 2015-08-28 | 2017-11-08 | Unilever Nv | IMPROVED WASH COMPOSITIONS |
EP3301162A1 (en) * | 2016-10-03 | 2018-04-04 | The Procter & Gamble Company | Low ph laundry detergent composition |
-
2019
- 2019-09-09 CN CN201980060687.9A patent/CN112703246A/en active Pending
- 2019-09-09 EP EP19765252.2A patent/EP3853330B1/en active Active
- 2019-09-09 WO PCT/EP2019/074006 patent/WO2020058024A1/en active Application Filing
- 2019-09-09 BR BR112021004507-4A patent/BR112021004507A2/en unknown
- 2019-09-16 AR ARP190102616A patent/AR116411A1/en active IP Right Grant
-
2021
- 2021-02-24 ZA ZA2021/01254A patent/ZA202101254B/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0839186B1 (en) * | 1995-07-14 | 2004-11-10 | Novozymes A/S | A modified enzyme with lipolytic activity |
Also Published As
Publication number | Publication date |
---|---|
EP3853330A1 (en) | 2021-07-28 |
WO2020058024A1 (en) | 2020-03-26 |
CN112703246A (en) | 2021-04-23 |
ZA202101254B (en) | 2022-09-28 |
BR112021004507A2 (en) | 2021-06-08 |
AR116411A1 (en) | 2021-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3649222B1 (en) | Whitening composition | |
US20220364022A1 (en) | Detergent composition | |
EP4162018B1 (en) | Method of improving protease activity | |
EP3853330B1 (en) | Detergent composition | |
EP3990603B1 (en) | Detergent composition | |
EP3990602B1 (en) | Detergent composition | |
EP3884026B1 (en) | Detergent composition | |
EP3884024B1 (en) | Detergent composition | |
EP3884022B1 (en) | Detergent composition | |
EP3884025B1 (en) | Detergent composition | |
EP3884023B1 (en) | Detergent composition | |
US20230112279A1 (en) | Detergent composition | |
EP3649221B1 (en) | Laundry cleaning composition | |
EP3990599B1 (en) | Detergent composition | |
WO2021185956A1 (en) | Detergent composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210217 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230220 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
GRAF | Information related to payment of grant fee modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1575044 Country of ref document: AT Kind code of ref document: T Effective date: 20230615 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019030393 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230907 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1575044 Country of ref document: AT Kind code of ref document: T Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231009 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019030393 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
26N | No opposition filed |
Effective date: 20240308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230909 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230909 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230909 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240918 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240920 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240925 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240902 Year of fee payment: 6 |