[go: up one dir, main page]

EP3830309B1 - Copper-silver composite material - Google Patents

Copper-silver composite material Download PDF

Info

Publication number
EP3830309B1
EP3830309B1 EP19749620.1A EP19749620A EP3830309B1 EP 3830309 B1 EP3830309 B1 EP 3830309B1 EP 19749620 A EP19749620 A EP 19749620A EP 3830309 B1 EP3830309 B1 EP 3830309B1
Authority
EP
European Patent Office
Prior art keywords
silver
copper
approximately
orthogonal
dimensions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19749620.1A
Other languages
German (de)
French (fr)
Other versions
EP3830309C0 (en
EP3830309A1 (en
Inventor
Florence Lecouturier
Christophe Laurent
David MESGUICH
Antoine Lonjon
Simon TARDIEU
Nelson Ferreira
Geoffroy CHEVALLIER
Claude Estournes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Toulouse III Paul Sabatier
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Toulouse III Paul Sabatier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Toulouse III Paul Sabatier filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3830309A1 publication Critical patent/EP3830309A1/en
Application granted granted Critical
Publication of EP3830309C0 publication Critical patent/EP3830309C0/en
Publication of EP3830309B1 publication Critical patent/EP3830309B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/162Machining, working after consolidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/12Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]

Definitions

  • the invention relates to a massive composite material comprising copper and a volume quantity of silver less than 5% by volume, relative to the total volume of said material, a method of manufacturing said material, and the uses of said material in various applications.
  • the invention applies typically, but not exclusively, to the fields of microelectronics, industrial magnetoforming, conductors for electrical and/or telecommunications cables, and conductors for pulsed magnets. More particularly, the invention relates to a composite material having both good mechanical properties, in particular in terms of resistance to breaking, and good electrical properties, in particular electrical conductivity.
  • Pure copper has excellent electrical conductivity (100% IACS or International Annealed Copper Standard ), but has a low breaking strength, notably around 200-400 MPa.
  • mechanically reinforced copper conductors have been proposed comprising grains of pure copper in the form of nanocrystals or nanograins, or grains formed of a copper alloy.
  • Sakai et al. described [Acta Materialia, 1997, 45, 3, 1017-1023 ] a copper-silver alloy comprising 24% by mass of silver, having an optimized breaking strength of approximately 1.5 GPa.
  • its electrical conductivity is approximately 65% IACS. This conductivity does not allow the alloy to be used in pulsed magnets which would then undergo a drastic increase in temperature, and/or in high voltage electrical cables.
  • CN 102723144 B describes a copper-silver composite material comprising 24% by mass of silver, and having an acceptable breaking strength of approximately 970 MPa.
  • the composite material is obtained by a process comprising a step of inserting a silver bar into a copper tube, an electron beam welding step under vacuum, a heat treatment step at 500-700°C , an extrusion step, then several wire drawing, annealing, and shaping steps to form a composite single strand.
  • composite single strands eg 630 single strands
  • the process is very long, energy-intensive and/or expensive since it requires numerous heat treatment and shaping steps.
  • the materials of the prior art have improved mechanical properties, to the detriment of electrical conductivity.
  • the methods of the prior art introduce internal defects such as grain boundaries, or stacking faults, which induce a reduction in the electrical conductivity of the material obtained.
  • the processes are often long and/or expensive.
  • the aim of the present invention is to overcome all or part of the drawbacks of the prior art and in particular to provide a composite material based on copper and silver, having improved electrical properties, in particular in terms of electrical conductivity. , while guaranteeing good mechanical properties, in particular in terms of resistance to breaking, said material being able to present performances suitable for use in the field of cables, in particular as an electrically conductive element of an energy cable and/or telecommunications, in the field of pulsed magnets, in the field of intense magnetic field installations and/or in the field of industrial magnetoforming.
  • Another aim of the invention is to provide a simple and economical process for preparing such a material.
  • the material of the invention has improved electrical properties, in particular in terms of electrical conductivity, while guaranteeing good mechanical properties, in particular in terms of resistance to breakage.
  • it can have a conductivity greater than or equal to approximately 75% lACS, while guaranteeing a breaking strength of at least approximately 900 MPa.
  • the copper and silver are preferably in the form of grains having at least one of their dimensions of sub-micron size (i.e. less than 1 ⁇ m).
  • the copper is in the form of grains having at least one of their dimensions less than or equal to approximately 700 nm, preferably less than or equal to approximately 500 nm, of more preferably ranging from approximately 50 to 400 nm, and more preferably ranging from approximately 100 to 300 nm.
  • the term "dimension” means the average dimension in number of all the grains of a given population, this dimension being conventionally determined by well-known methods of a person skilled in the art.
  • the size of the grain(s) according to the invention can for example be determined by microscopy, in particular by scanning electron microscope (SEM) or by transmission electron microscope (TEM).
  • the material of the invention is a composite material.
  • the expression “composite material” means a material comprising at least one pure copper phase and at least one pure silver phase.
  • said material is an assembly of at least copper grains and grains of silver, the grains of copper and the grains of silver not being mutually soluble.
  • a copper-silver composite material differs from a copper-silver alloy in which copper is combined with silver, for example by fusion or mechanofusion.
  • copper-silver alloys consist of a two-phase eutectic structure in the form of copper-silver solid solutions, one rich in copper, and the other rich in silver.
  • the composite material of the invention does not include a zone of mutual solubility of copper and silver. The absence of a zone of mutual solubility of copper and silver in the composite material of the invention can in particular be demonstrated by energy dispersive analysis (EDX).
  • EDX energy dispersive analysis
  • the material of the invention is massive. In other words, it is in the form of a solid mass, or it is different from a material in the form of a powder or powdery material.
  • the material of the invention preferably has a conductivity of at least approximately 80% IACS, more preferably at least approximately 85% IACS, and more preferably at least approximately 90% IACS, in particular at 20°C. .
  • the material of the invention preferably has an electrical resistivity of at most approximately 2.15 ⁇ .cm, more preferably at most approximately 2.03 ⁇ .cm, and more preferably at most 1.91 approximately ⁇ .cm, particularly at 20°C.
  • the material of the invention preferably has an electrical resistivity of at most approximately 0.70 ⁇ .cm, more preferably at most approximately 0.60 ⁇ .cm, and more preferably at most 0.50 approximately ⁇ .cm, particularly at -196°C.
  • the electrical resistivity is preferably determined using a device sold under the trade name Sourcemeter KEITHLEY2450, by the company TEKTRONIX.
  • the material of the invention preferably has a breaking strength of at least 900 MPa, preferably at least 1 GPa, preferably at least approximately 1.05 GPa, more preferably at least 1 .1 GPa approximately, and more preferably at least 1.2 GPa approximately, in particular at -196°C.
  • the breaking strength is preferably determined using a device sold under the trade name INSTRON 1195, by the company INSTRON.
  • the material of the invention preferably has an elongation at break of at least approximately 0.5%, particularly at room temperature (i.e. 18-25°C).
  • the elongation at break is preferably determined using a device sold under the trade name Epsilon 3442 extensometer, by the company DOERLER Mesures.
  • the material comprises silver in a volume proportion of less than 5%, relative to the total volume of said material.
  • the low proportion of silver in said material makes it possible to guarantee a homogeneous material, in which the silver grains are uniformly dispersed within the copper grains. Indeed, at 5% by volume or beyond, the dispersion of silver in the material is heterogeneous (e.g. presence of aggregates), leading to a weakening of its mechanical properties.
  • the material comprises at most approximately 2% by volume of silver, preferably at most approximately 1.5% by volume of silver, and even more preferably at most 1% by volume. Approximately % by volume of silver, relative to the total volume of said material.
  • the material of the invention comprises at least 0.1% by volume of silver, and preferably at least 0.5% by volume of silver, relative to the total volume of said material.
  • the material of the invention may comprise at least approximately 98% by volume of copper, and preferably at least 99% by volume of copper, relative to the total volume of said material.
  • the material of the invention may comprise at most approximately 99.9% by volume of copper, and preferably at most 99.5% by volume of copper, relative to the total volume of said material.
  • the material comprises at most approximately 0.1% by volume of unavoidable impurities, relative to the total volume of said material.
  • the unavoidable impurities can be chosen from the elements Al, C, Fe, Ni, Pb, Si, Sn, Zn, Se, and one of their mixtures.
  • the material comprises at most approximately 0.5% by volume, and preferably at most approximately 0.1% by volume, of other impurities chosen from O, S, P, Se, and one of their mixtures.
  • the material essentially comprises copper and silver.
  • copper and silver represent at least 99.9% by volume, and more preferably approximately 100% by volume, relative to the total volume of said material.
  • the copper and/or silver are in the form of grains having a filamentary shape.
  • the material of the invention is preferably anisotropic. In other words, it is composed of copper grains (respectively silver) elongated in a preferred direction, also called filamentary grains.
  • a grain having a filamentary shape can be a “ribbon” in which the two orthogonal dimensions (D Cu1 , D Cu2 ) of the grain according to the invention are its width (I cu ) (first orthogonal dimension ) and its thickness (E Cu ) (second orthogonal dimension), the width (I cu ) being notably much greater than the thickness (E Cu ).
  • the two orthogonal dimensions (D Ag1 , D Ag2 ) of a grain having a filamentary shape are equivalent or close. We then speak of a “stick” or “thread”.
  • the length (L Ag ) of the silver grains can be of micrometric size (ie less than 1 mm), preferably less than or equal to approximately 500 ⁇ m, preferably less than or equal to approximately 200 ⁇ m, more preferably ranging from 1 at approximately 150 ⁇ m, and more preferably ranging from approximately 10 to 70 ⁇ m.
  • the process of the invention is simple and it allows in a few steps to obtain a composite material conforming to the first object of the invention, having improved electrical properties, in particular in terms of electrical conductivity, while guaranteeing good mechanical properties, particularly in terms of breaking strength. Furthermore, it avoids repeated annealing and/or heat treatment steps such as those carried out in the processes of the prior art, while avoiding the phenomena of diffusion and/or melting of copper and silver. Finally, such a process can easily be transposed to an industrial scale.
  • Step i) makes it possible to form a homogeneous mixture of copper and silver, while avoiding metal diffusion phenomena.
  • the non-solvent medium can be chosen from alcohols, water, ketones such as acetone, and one of their mixtures.
  • the non-solvent media S 1 and S 2 can have the same definition as that given above for the non-solvent medium S.
  • the non-solvent media S 1 and S 2 are identical.
  • the non-solvent media S 1 and S 2 are preferably mutually soluble.
  • Substep i-a) can be carried out with mechanical or magnetic stirring or in the presence of ultrasound.
  • Substep i-b) can be carried out with mechanical or magnetic stirring, in particular in order to avoid the degradation of the micrometric or sub-micrometric silver particles.
  • Substep i-c) can be carried out with mechanical or magnetic stirring or in the presence of ultrasound.
  • the micrometric copper particles can have at least one of their dimensions ranging from approximately 0.5 to 20 ⁇ m, preferably from 0.5 to 10 ⁇ m approximately, preferably from approximately 0.5 to 4 ⁇ m, and more preferably from approximately 0.5 to 1.5 ⁇ m.
  • micrometric copper particles are preferably spherical micrometric particles.
  • the silver particles can have at least one of their dimensions ranging from approximately 0.1 to 150 ⁇ m, and preferably from approximately 0.5 to 70 ⁇ m.
  • micrometric or sub-micrometric particles of silver can be spherical or filiform.
  • the micrometric or sub-micrometric spherical silver particles may have a diameter ranging from approximately 0.5 to 20 ⁇ m, preferably from approximately 0.5 to 10 ⁇ m, preferably from approximately 0.5 to 4 ⁇ m, and preferably another approximately 0.5 to 1.5 ⁇ m.
  • the micrometric or sub-micrometric silver particles are filiform.
  • the two orthogonal dimensions (D' Ag1 , D' Ag2 ) of a filiform particle are equivalent or close and represent the diameter (D' Ag ) of its cross section. We then speak of a “stick” or “thread”.
  • a filiform particle is a “ribbon” in which the two orthogonal dimensions of the particle according to the invention are its width (I' Ag ) (first orthogonal dimension) and its thickness (E' Ag ) (second orthogonal dimension), the width (I' Ag ) being notably much greater than the thickness (E' Ag ).
  • Step ii) allows the non-solvent media to evaporate.
  • the drying temperature preferably ranges from approximately 70 to 100°C, and is more preferably of the order of 80°C.
  • the composite powder comprises at most approximately 2% by volume of silver particles, preferably at most approximately 1.5% by volume of silver particles, and even more more preferentially at most approximately 1% by volume of silver particles, relative to the total volume of said powder.
  • the process may further comprise a step ii') of reduction of the dried composite powder from step ii), in the presence of dihydrogen.
  • This step ii') can make it possible to eliminate the layer of copper oxide which can form on the surface of the copper particles.
  • Step ii') can be carried out at a temperature T 1 of approximately 100 to 300°C, preferably of approximately 110 to 240°C, and more preferably of approximately 120 to 160°C.
  • Step ii') can be carried out by heating the powder from room temperature to temperature T 1 as defined in the invention, at a speed ranging from 1°C/min to approximately 5°C/min, and preferably still ranging from approximately 2°C/min to 3°C/min.
  • Flash sintering means uniaxial pressure sintering based on the use of an electric current. Flash sintering is also well known as “ Spark Plasma Sintering” or SPS.
  • Step iii) makes it possible to consolidate the powder obtained in the previous step ii) or ii'), while avoiding the phenomena of diffusion and/or melting of the copper and/or silver.
  • This step iii) is preferably carried out at a temperature T 2 of at most approximately 550°C, preferably ranging from approximately 375 to 525°C, and even more preferably ranging from approximately 390 to 450°C. These temperatures make it possible to obtain a solid composite mass having sufficient residual porosity to be able to be cold drawn in the subsequent stages (eg without breaks and/or cracks and/or ruptures).
  • Sintering is preferably carried out under primary or secondary vacuum, or under an argon or nitrogen atmosphere.
  • the pressure exerted on the composite powder resulting from step ii) or ii') preferably ranges from 20 to 100 MPa, and even more preferably from 25 to 35 MPa.
  • the duration of sintering varies depending on the temperature. This duration generally ranges from approximately 20 to 30 minutes.
  • the sintering is carried out under secondary vacuum, at a pressure of approximately 25 to 50 MPa, at a maximum temperature of 400 to 500°C, maintained for a period of 3 to 10 minutes .
  • the total duration of the heat treatment is, in this case, less than 1 hour 30 minutes.
  • the intensity of the pulsed current can range from approximately 10 to 250 A.
  • the duration of each current pulse is of the order of a few milliseconds. This duration preferably ranges from approximately 2 to 4 ms.
  • the composite solid mass obtained at the end of step iii) has a relative density ranging from approximately 85 to 97%, preferably from approximately 90 to 95%, and more preferably from approximately 92 to 96%.
  • these density ranges are adapted to be able to implement the following wire drawing step, avoiding the formation of cracks and/or fractures.
  • the composite material can be in the form of a cylinder or a bar, in particular having a height or length greater than its diameter. This can thus make it possible to promote the implementation of step iv).
  • the cylinder or bar has a diameter ranging from approximately 5 to 80 mm, and preferably from approximately 5 to 40 mm.
  • Step iii) makes it possible to preserve the micrometric size of the copper particles and the micrometric or sub-micrometric size of the silver particles, and thus to avoid the growth of metallic grains.
  • the solid composite mass obtained in step iii) is preferably isotropic. In other words, it does not present a preferential orientation of the copper grains (respectively silver), compared to its own macroscopic geometric shape.
  • the cold drawing step(s) iv) are preferably carried out at a temperature of at most approximately 40°C, preferably at most approximately 35°C, particularly preferably ranging from -196°C to 30°C. C approximately, and more particularly preferably at room temperature.
  • the ambient temperature corresponds to a temperature ranging from approximately 18 to 25°C.
  • the process can comprise several steps iv), in particular from approximately 20 to 80 steps iv), and in particular around forty steps iv).
  • the drawing step(s) iv) make it possible to obtain a composite material in the form of a wire, in particular with a diameter ranging from approximately 0.1 to 4 mm, preferably from 0.2 to 4 mm. approximately 1 mm, and more preferably approximately 0.25 to 0.8 mm.
  • the drawing step(s) iv) make it possible to obtain a composite material in the form of a wire of length ranging from approximately 0.1 to 1000 m, and preferably from 0.2 to 50 m approximately.
  • step iv the phenomena of rupture and/or cracks and/or breaks are greatly reduced, or even avoided.
  • the method may further comprise between steps iii) and iv) a step of cooling the solid composite mass, in particular at a cooling rate ranging from approximately 4°C/min to 7°C/min.
  • the process conforming to the second object leads to a material conforming to the first object.
  • the invention also relates to a massive composite material as defined in the first subject of the invention, capable of being obtained according to a process as defined in the second subject of the invention.
  • the third object of the invention is the use of a massive composite material conforming to the first object of the invention or obtained according to a process conforming to the second object of the invention, as an electrical conductor, in particular for electrical cables and/or telecommunications, as a conductor for continuous or pulsed field magnets, in the field of intense field installations, or in the field of industrial magnetoforming.
  • Such a massive composite material presents a good compromise between electrical conduction and breaking strength to be able to be used in high voltage cables or overhead electricity transmission lines, in particular as an electrical conductor, or in motors, alternators, transformers, or connectors.
  • the massive composite material conforming to the first object of the invention can also be used in installations with intense magnetic fields, in particular non-destructive pulsed magnetic fields greater than 100 Tesla.
  • the low electrical resistivity of this material can induce, at constant power, an increase in the duration of the pulse of the pulsed magnetic field and a reduction in the electrical power necessary to power the continuous magnets.
  • wires made of solid composite material conforming to the first object of the invention can be integrated into prototypes of magnetoforming magnets.
  • Wires made of solid composite material conforming to the first object of the invention can enable the winding of industrial magnets for magnetoforming.
  • Silver nanowires were prepared using a solution growth method from silver nitrate (AgNO 3 ), PVP, and ethylene glycol, as described by Sun YG et al., “Crystalline silver nanowires by soft solution processing,”. Nano Letters, 2002. 2(2): p. 165-168 , with a PVP/AgNO 3 ratio of 1.53.
  • the silver nanowires obtained have a length ranging from approximately 30 to 60 ⁇ m, and a diameter ranging from approximately 200 to 300 nm.
  • a suspension comprising 0.178 g of silver nanowires and 9 ml of ethanol was prepared.
  • the suspension of silver nanowires was mixed with 15 g of copper powder, then the resulting mixture was homogenized under ultrasound, then evaporated using a rotary evaporator at 80°C.
  • a PC 1 composite powder comprising 1% by volume of silver, relative to the total volume of the powder, was thus obtained.
  • the composite powder was reduced in the presence of dihydrogen for 1 h at 160°C in order to reduce the copper oxide formed on the surface of the copper particles.
  • the resulting powder was then sintered by SPS using a device sold under the trade name Dr Sinter 2080® , by the company Syntex Inc.
  • the composite powder was placed in a die/matrix made of tungsten carbide and cobalt alloy (WC/Co) with an internal diameter of 8 mm, the interior of which was protected by a graphite film.
  • the die was then closed by symmetrical pistons and then introduced into the chamber of the SPS machine.
  • Sintering was carried out under vacuum (chamber residual pressure ⁇ 10 Pa) using pulsed direct currents defined over 14 periods of 3.2 ms, including 12 pulse periods and 2 non-pulse periods.
  • the temperature was controlled using a thermocouple inserted into a hole (5 mm deep) drilled on the external surface of the die.
  • a temperature of 500°C was reached in 2 stages: a ramp of 25°C.min -1 for 13 minutes to go from ambient temperature to 350°C, then a ramp of 50°C.min -1 for 3 minutes to go from 350°C to 500°C. This temperature was then maintained for 5 minutes. These temperature ramps were obtained by applying pulsed direct currents defined over 14 periods of 3.2 ms, including 12 pulse periods and 2 non-pulse periods. A pressure of 25 MPa was reached within 1 minute and maintained for the remainder of the sintering. The die was then cooled within the SPS chamber.
  • the MSC 1 composite solid mass obtained is in the form of a cylinder of 8 mm in diameter and 33 mm in length.
  • the composite solid mass obtained was then drawn at room temperature using a tungsten carbide die. After 40 passes, a composite material in the form of an FC 1 wire of 0.29 mm in diameter and 25 m in length was obtained. No breakage of the wires was observed.
  • the composite powders and composite wires were analyzed by scanning electron microscopy (SEM) using a field effect gun, sold under the trade name JEOL JSM 6700F by the company JEOL, and operating at 200 kV.
  • SEM scanning electron microscopy
  • the density of the composite solid masses and the composite wires was determined by the Archimedes method.
  • the electrical resistivity of the composite wires was determined to be 77K (liquid nitrogen) using the four-point method, with a maximum current of 100 mA to avoid heating of the wires.
  • the breaking strength was measured using a device sold under the trade name INSTRON 1195 by the company INSTRON, at 77K (liquid nitrogen) and at 293K on composite wires 170 mm long.
  • the specific tensions encountered were measured with a force sensor (1000 N or 250 N; 1.6 X 10 -5 ms -1 ).
  • the density of the composite solid masses MSC 1 and MSC A is approximately 94% ( ⁇ 2%).
  • FIG 1 is a SEM image of the PC 1 composite powder according to the invention (cf. figure 1a : scale 10 ⁇ m, and figure 1b : scale 2 ⁇ m), and the PC A composite not in accordance with the invention (cf. figure 1c : scale 10 ⁇ m, and figure 1d : scale 2 ⁇ m).
  • figure 1 shows the uniform dispersion of the silver nanowires within the copper powder, inducing a homogeneous powder.
  • the use of a volume quantity of silver of approximately 10% by volume does not make it possible to obtain a homogeneous powder.
  • FIG. 2 shows the resistivity (in pQ.cm) at 77K of a composite material in the form of an FC 1 wire in accordance with the invention (curve with solid triangles) and of a composite material in the form of a wire FC A not in accordance with the invention (curve with solid circles), depending on their respective diameter (in mm).
  • FIG. 3 shows the breaking strength (in MPa) at 77K of a composite material in the form of an FC 1 wire in accordance with the invention (curve with solid triangles) and of a composite material in the form of a FC A wire not in accordance with the invention (curve with solid circles), depending on their respective diameter (in mm).
  • the breaking strength at 77K of a composite wire according to the invention is twice that of a pure copper wire with equivalent diameters, while guaranteeing low electrical resistivity (0.38-0.50 pQ .cm). These electrical resistivity values are in particular lower than those obtained for alloys or composites of the prior art having a similar breaking strength, but comprising 20 times more silver.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

L'invention concerne un matériau composite massif comprenant du cuivre et une quantité volumique d'argent inférieure à 5% en volume, par rapport au volume total dudit matériau, un procédé de fabrication dudit matériau, et les utilisations dudit matériau dans diverses applications.The invention relates to a massive composite material comprising copper and a volume quantity of silver less than 5% by volume, relative to the total volume of said material, a method of manufacturing said material, and the uses of said material in various applications.

L'invention s'applique typiquement, mais non exclusivement, aux domaines de la microélectronique, du magnétoformage industriel, des conducteurs pour câbles électriques et/ou de télécommunications, et des conducteurs pour aimants pulsés. Plus particulièrement, l'invention concerne un matériau composite présentant à la fois de bonnes propriétés mécaniques, notamment en termes de résistance à la rupture, et de bonnes propriétés électriques, notamment de conductivité électrique.The invention applies typically, but not exclusively, to the fields of microelectronics, industrial magnetoforming, conductors for electrical and/or telecommunications cables, and conductors for pulsed magnets. More particularly, the invention relates to a composite material having both good mechanical properties, in particular in terms of resistance to breaking, and good electrical properties, in particular electrical conductivity.

Le cuivre pur présente une excellente conductivité électrique (100% IACS ou International Annealed Copper Standard), mais possède une faible résistance à la rupture, notamment de 200-400 MPa environ. Ainsi, il a été proposé des conducteurs en cuivre renforcés mécaniquement comprenant des grains de cuivre pur sous forme de nanocristaux ou nanograins, ou des grains formés d'un alliage de cuivre. Par exemple, Sakai et al. ont décrit [Acta Materialia, 1997, 45, 3, 1017-1023 ] un alliage de cuivre-argent comprenant 24% en masse d'argent, ayant une résistance à la rupture optimisée de 1,5 GPa environ. Toutefois, sa conductivité électrique est de 65% IACS environ. Cette conductivité ne permet pas d'utiliser l'alliage dans les aimants pulsés qui subiraient alors une augmentation drastique de la température, et/ou dans des câbles électriques haute tension. L'alliage est obtenu par un procédé comprenant la fusion d'un mélange comprenant du cuivre et de l'argent, la coulée du mélange dans le moule, puis des étapes de tréfilage à froid alternées avec des étapes de traitement thermique (notamment à 330-430°C). Le procédé est énergivore et/ou coûteux puisqu'il nécessite de nombreuses étapes de traitement thermique.Pure copper has excellent electrical conductivity (100% IACS or International Annealed Copper Standard ), but has a low breaking strength, notably around 200-400 MPa. Thus, mechanically reinforced copper conductors have been proposed comprising grains of pure copper in the form of nanocrystals or nanograins, or grains formed of a copper alloy. For example, Sakai et al. described [Acta Materialia, 1997, 45, 3, 1017-1023 ] a copper-silver alloy comprising 24% by mass of silver, having an optimized breaking strength of approximately 1.5 GPa. However, its electrical conductivity is approximately 65% IACS. This conductivity does not allow the alloy to be used in pulsed magnets which would then undergo a drastic increase in temperature, and/or in high voltage electrical cables. The alloy is obtained by a process comprising the melting of a mixture comprising copper and silver, the pouring of the mixture into the mold, then cold drawing stages alternated with heat treatment stages (in particular at 330 -430°C). The process is energy-intensive and/or expensive since it requires numerous heat treatment steps.

D'autres solutions ont été proposées, telle que la fabrication d'un matériau composite cuivre-argent. En particulier, CN 102723144 B décrit un matériau composite cuivre-argent comprenant 24% en masse d'argent, et ayant une résistance à la rupture acceptable de 970 MPa environ. Toutefois, là encore sa conductivité électrique reste très modérée (72% IACS environ). Le matériau composite est obtenu par un procédé comprenant une étape d'insertion d'un barreau d'argent dans un tube de cuivre, une étape de soudage par faisceau d'électrons sous vide, une étape de traitement thermique à 500-700°C, une étape d'extrusion, puis plusieurs étapes de tréfilage, de recuit, et de mise en forme pour former un monobrin composite. Plusieurs monobrins composites (e.g. 630 monobrins) sont formés avec le procédé précité, puis insérés dans un tube de cuivre pour répéter le procédé précité. Le procédé est très long, énergivore et/ou coûteux puisqu'il nécessite de nombreuses étapes de traitement thermique et de mise en forme.Other solutions have been proposed, such as the manufacture of a copper-silver composite material. Especially, CN 102723144 B describes a copper-silver composite material comprising 24% by mass of silver, and having an acceptable breaking strength of approximately 970 MPa. However, here again its electrical conductivity remains very moderate (approximately 72% IACS). The composite material is obtained by a process comprising a step of inserting a silver bar into a copper tube, an electron beam welding step under vacuum, a heat treatment step at 500-700°C , an extrusion step, then several wire drawing, annealing, and shaping steps to form a composite single strand. Several composite single strands (eg 630 single strands) are formed with the aforementioned process, then inserted into a copper tube to repeat the aforementioned process. The process is very long, energy-intensive and/or expensive since it requires numerous heat treatment and shaping steps.

Ainsi, les matériaux de l'art antérieur ont des propriétés mécaniques améliorées, au détriment de la conductivité électrique. En effet, les méthodes de l'art antérieur introduisent des défauts internes tels que des joints de grains, ou des défauts d'empilement, qui induisent une diminution de la conductivité électrique du matériau obtenu. Par ailleurs, les procédés sont souvent longs et/ou coûteux.Thus, the materials of the prior art have improved mechanical properties, to the detriment of electrical conductivity. Indeed, the methods of the prior art introduce internal defects such as grain boundaries, or stacking faults, which induce a reduction in the electrical conductivity of the material obtained. Furthermore, the processes are often long and/or expensive.

Ainsi, le but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur et notamment de fournir un matériau composite à base de cuivre et d'argent, présentant des propriétés électriques améliorées, en particulier en termes de conductivité électrique, tout en garantissant de bonnes propriétés mécaniques, en particulier en termes de résistance à la rupture, ledit matériau pouvant présenter des performances adaptées pour une utilisation dans le domaine des câbles, notamment comme élément électriquement conducteur d'un câble d'énergie et/ou de télécommunications, dans le domaine des aimants pulsés, dans le domaine des installations de champs magnétiques intenses et/ou dans le domaine du magnétoformage industriel. Un autre but de l'invention est de fournir un procédé simple et économique de préparation d'un tel matériau.Thus, the aim of the present invention is to overcome all or part of the drawbacks of the prior art and in particular to provide a composite material based on copper and silver, having improved electrical properties, in particular in terms of electrical conductivity. , while guaranteeing good mechanical properties, in particular in terms of resistance to breaking, said material being able to present performances suitable for use in the field of cables, in particular as an electrically conductive element of an energy cable and/or telecommunications, in the field of pulsed magnets, in the field of intense magnetic field installations and/or in the field of industrial magnetoforming. Another aim of the invention is to provide a simple and economical process for preparing such a material.

L'invention a donc pour premier objet un matériau comprenant du cuivre et de l'argent, tel que défini dans la revendication 1.The invention therefore has as its first object a material comprising copper and silver, as defined in claim 1.

Le matériau massif de l'invention se distingue notamment des matériaux non massifs décrits notamment dans les documents US2017/11327 ou CN106493353 .The massive material of the invention is distinguished in particular from the non-massive materials described in particular in the documents US2017/11327 Or CN106493353 .

Le matériau de l'invention présente des propriétés électriques améliorées, en particulier en termes de conductivité électrique, tout en garantissant de bonnes propriétés mécaniques, en particulier en termes de résistance à la rupture. En particulier, il peut présenter une conductivité supérieure ou égale à 75% lACS environ, tout en garantissant une résistance à la rupture d'au moins 900 MPa environ.The material of the invention has improved electrical properties, in particular in terms of electrical conductivity, while guaranteeing good mechanical properties, in particular in terms of resistance to breakage. In particular, it can have a conductivity greater than or equal to approximately 75% lACS, while guaranteeing a breaking strength of at least approximately 900 MPa.

Dans le matériau composite de l'invention, le cuivre et l'argent sont de préférence sous la forme de grains ayant au moins une de leurs dimensions de taille sub-micronique (i.e. inférieure à 1 µm).In the composite material of the invention, the copper and silver are preferably in the form of grains having at least one of their dimensions of sub-micron size (i.e. less than 1 µm).

Selon une forme de réalisation de l'invention, le cuivre (respectivement l'argent) est sous la forme de grains ayant au moins une de leurs dimensions inférieure ou égale à 700 nm environ, de préférence inférieure ou égale à 500 nm environ, de préférence encore allant de 50 à 400 nm environ, et de préférence encore allant de 100 à 300 nm environ.According to one embodiment of the invention, the copper (respectively silver) is in the form of grains having at least one of their dimensions less than or equal to approximately 700 nm, preferably less than or equal to approximately 500 nm, of more preferably ranging from approximately 50 to 400 nm, and more preferably ranging from approximately 100 to 300 nm.

De telles dimensions de grains permettent de garantir de bonnes propriétés électriques et de bonnes propriétés mécaniques.Such grain sizes make it possible to guarantee good electrical properties and good mechanical properties.

En considérant plusieurs grains de cuivre (respectivement d'argent) selon l'invention, le terme « dimension » signifie la dimension moyenne en nombre de l'ensemble des grains d'une population donnée, cette dimension étant classiquement déterminée par des méthodes bien connues de l'homme du métier.Considering several grains of copper (respectively of silver) according to the invention, the term "dimension" means the average dimension in number of all the grains of a given population, this dimension being conventionally determined by well-known methods of a person skilled in the art.

La dimension de la ou des grains selon l'invention peut être par exemple déterminée par microscopie, notamment par microscope électronique à balayage (MEB) ou par microscope électronique transmission (MET).The size of the grain(s) according to the invention can for example be determined by microscopy, in particular by scanning electron microscope (SEM) or by transmission electron microscope (TEM).

Le matériau de l'invention est un matériau composite. Dans l'invention l'expression « matériau composite » signifie un matériau comprenant au moins une phase pure de cuivre et au moins une phase pure d'argent. En d'autres termes, ledit matériau est un assemblage d'au moins des grains de cuivre et des grains d'argent, les grains de cuivre et les grains d'argent n'étant pas solubles mutuellement. Il convient de noter qu'un matériau composite cuivre-argent se différencie d'un alliage cuivre-argent dans lequel le cuivre est combiné à l'argent, par exemple par fusion ou par mécanofusion. En particulier, les alliages cuivre-argent sont constitués d'une structure eutectique à deux phases sous forme de solutions solides cuivre-argent, l'une riche en cuivre, et l'autre riche en argent. Le matériau composite de l'invention ne comprend pas de zone de solubilité mutuelle du cuivre et de l'argent. L'absence de zone de solubilité mutuelle du cuivre et de l'argent dans le matériau composite de l'invention peut notamment être démontrée par analyse dispersive en énergie (EDX) .The material of the invention is a composite material. In the invention the expression “composite material” means a material comprising at least one pure copper phase and at least one pure silver phase. In other words, said material is an assembly of at least copper grains and grains of silver, the grains of copper and the grains of silver not being mutually soluble. It should be noted that a copper-silver composite material differs from a copper-silver alloy in which copper is combined with silver, for example by fusion or mechanofusion. In particular, copper-silver alloys consist of a two-phase eutectic structure in the form of copper-silver solid solutions, one rich in copper, and the other rich in silver. The composite material of the invention does not include a zone of mutual solubility of copper and silver. The absence of a zone of mutual solubility of copper and silver in the composite material of the invention can in particular be demonstrated by energy dispersive analysis (EDX).

Le matériau de l'invention est massif. En d'autres termes, il est sous la forme d'une masse solide, ou il est différent d'un matériau sous la forme d'une poudre ou d'un matériau pulvérulent.The material of the invention is massive. In other words, it is in the form of a solid mass, or it is different from a material in the form of a powder or powdery material.

Le matériau de l'invention a de préférence une conductivité d'au moins 80% IACS environ, de préférence encore d'au moins 85% IACS environ, et de préférence encore d'au moins 90% IACS environ, notamment à 20°C.The material of the invention preferably has a conductivity of at least approximately 80% IACS, more preferably at least approximately 85% IACS, and more preferably at least approximately 90% IACS, in particular at 20°C. .

Le matériau de l'invention a de préférence une résistivité électrique d'au plus 2,15 µΩ.cm environ, de préférence encore d'au plus 2,03 µΩ.cm environ, et de préférence encore d'au plus 1,91 µΩ.cm environ, notamment à 20°C.The material of the invention preferably has an electrical resistivity of at most approximately 2.15 µΩ.cm, more preferably at most approximately 2.03 µΩ.cm, and more preferably at most 1.91 approximately µΩ.cm, particularly at 20°C.

Le matériau de l'invention a de préférence une résistivité électrique d'au plus 0,70 µΩ.cm environ, de préférence encore d'au plus 0,60 µΩ.cm environ, et de préférence encore d'au plus 0,50 µΩ.cm environ, notamment à -196°C.The material of the invention preferably has an electrical resistivity of at most approximately 0.70 µΩ.cm, more preferably at most approximately 0.60 µΩ.cm, and more preferably at most 0.50 approximately µΩ.cm, particularly at -196°C.

La résistivité électrique est de préférence déterminée à l'aide d'un appareil vendu sous la dénomination commerciale Sourcemètre KEITHLEY2450, par la société TEKTRONIX.The electrical resistivity is preferably determined using a device sold under the trade name Sourcemeter KEITHLEY2450, by the company TEKTRONIX.

Le matériau de l'invention a de préférence une résistance à la rupture d'au moins 900 MPa, de préférence d'au moins 1 GPa, de préférence d'au moins 1,05 GPa environ, de préférence encore d'au moins 1,1 GPa environ, et de préférence encore d'au moins 1,2 GPa environ, notamment à -196°C.The material of the invention preferably has a breaking strength of at least 900 MPa, preferably at least 1 GPa, preferably at least approximately 1.05 GPa, more preferably at least 1 .1 GPa approximately, and more preferably at least 1.2 GPa approximately, in particular at -196°C.

La résistance à la rupture est de préférence déterminée à l'aide d'un appareil vendu sous la dénomination commerciale INSTRON 1195, par la société INSTRON.The breaking strength is preferably determined using a device sold under the trade name INSTRON 1195, by the company INSTRON.

Le matériau de l'invention a de préférence une élongation à la rupture d'au moins 0,5% environ, notamment à température ambiante (i.e. 18-25°C).The material of the invention preferably has an elongation at break of at least approximately 0.5%, particularly at room temperature (i.e. 18-25°C).

L'élongation à la rupture est de préférence déterminée à l'aide d'un appareil vendu sous la dénomination commerciale extensomètre Epsilon 3442, par la société DOERLER Mesures.The elongation at break is preferably determined using a device sold under the trade name Epsilon 3442 extensometer, by the company DOERLER Mesures.

Le matériau comprend de l'argent en proportion volumique inférieure à 5%, par rapport au volume total dudit matériau. La faible proportion d'argent dans ledit matériau permet de garantir un matériau homogène, dans lequel les grains d'argent sont uniformément dispersés au sein des grains de cuivre. En effet, à 5% en volume ou au-delà, la dispersion de l'argent dans le matériau est hétérogène (e.g. présence d'agrégats), induisant un affaiblissement de ses propriétés mécaniques.The material comprises silver in a volume proportion of less than 5%, relative to the total volume of said material. The low proportion of silver in said material makes it possible to guarantee a homogeneous material, in which the silver grains are uniformly dispersed within the copper grains. Indeed, at 5% by volume or beyond, the dispersion of silver in the material is heterogeneous (e.g. presence of aggregates), leading to a weakening of its mechanical properties.

Selon une forme de réalisation préférée de l'invention, le matériau comprend au plus 2% en volume environ d'argent, de manière préférentielle au plus 1,5% en volume environ d'argent, et de manière encore plus préférentielle au plus 1% en volume environ d'argent, par rapport au volume total dudit matériau.According to a preferred embodiment of the invention, the material comprises at most approximately 2% by volume of silver, preferably at most approximately 1.5% by volume of silver, and even more preferably at most 1% by volume. Approximately % by volume of silver, relative to the total volume of said material.

Le matériau de l'invention comprend au moins 0,1% en volume d'argent, et de préférence au moins 0,5% en volume d'argent, par rapport au volume total dudit matériau.The material of the invention comprises at least 0.1% by volume of silver, and preferably at least 0.5% by volume of silver, relative to the total volume of said material.

Le matériau de l'invention peut comprendre au moins 98% en volume de cuivre environ, et de préférence au moins 99% en volume de cuivre, par rapport au volume total dudit matériau.The material of the invention may comprise at least approximately 98% by volume of copper, and preferably at least 99% by volume of copper, relative to the total volume of said material.

Le matériau de l'invention peut comprendre au plus 99,9% en volume de cuivre environ, et de préférence au plus 99,5% en volume de cuivre, par rapport au volume total dudit matériau.The material of the invention may comprise at most approximately 99.9% by volume of copper, and preferably at most 99.5% by volume of copper, relative to the total volume of said material.

Le matériau comprend au plus au plus 0,1% en volume environ d'impuretés inévitables, par rapport au volume total dudit matériau.The material comprises at most approximately 0.1% by volume of unavoidable impurities, relative to the total volume of said material.

Les impuretés inévitables peuvent être choisies parmi les éléments Al, C, Fe, Ni, Pb, Si, Sn, Zn, Se, et un de leurs mélanges.The unavoidable impurities can be chosen from the elements Al, C, Fe, Ni, Pb, Si, Sn, Zn, Se, and one of their mixtures.

Dans un mode de réalisation particulier, le matériau comprend au plus 0,5% en volume environ, et de préférence au plus 0,1% en volume environ, d'autres impuretés choisies parmi O, S, P, Se, et un de leurs mélanges.In a particular embodiment, the material comprises at most approximately 0.5% by volume, and preferably at most approximately 0.1% by volume, of other impurities chosen from O, S, P, Se, and one of their mixtures.

Selon une forme de réalisation de l'invention, le matériau comprend uniquement du cuivre, de l'argent, et éventuellement des impuretés inévitables et/ou autres impuretés telles que définies dans l'invention.According to one embodiment of the invention, the material comprises only copper, silver, and possibly unavoidable impurities and/or other impurities as defined in the invention.

Selon l'invention, le matériau comprend essentiellement du cuivre et de l'argent. En d'autres termes, le cuivre et l'argent représentent au moins 99,9% en volume, et de préférence encore 100% en volume environ, par rapport au volume total dudit matériau.According to the invention, the material essentially comprises copper and silver. In other words, copper and silver represent at least 99.9% by volume, and more preferably approximately 100% by volume, relative to the total volume of said material.

Le cuivre et/ou l'argent sont sous la forme de grains ayant une forme filamentaire.The copper and/or silver are in the form of grains having a filamentary shape.

Le matériau de l'invention est de préférence anisotrope. En d'autres termes, il est composé de grains de cuivre (respectivement d'argent) allongés selon une direction préférentielle, également appelés grains de forme filamentaire.The material of the invention is preferably anisotropic. In other words, it is composed of copper grains (respectively silver) elongated in a preferred direction, also called filamentary grains.

Des grains de cuivre ayant une forme filamentaire sont des grains par exemple ayant :

  • une longueur (LCu), s'étendant selon une direction principale d'allongement,
  • deux dimensions (DCu1) et (DCu2), dites dimensions orthogonales, s'étendant selon deux directions transversales orthogonales entre elles et orthogonales à ladite direction principale d'allongement, lesdites dimensions orthogonales (DCu1, DCu2) étant inférieures à ladite longueur (LCu) et inférieures ou égales à 700 nm, de préférence inférieures ou égales à 500 nm environ, de préférence encore allant de 50 à 400 nm environ, et de préférence encore de 100 à 300 nm environ, et
  • deux rapports (FCu1) et (FCu2), dits facteurs de forme, entre ladite longueur (LCu) et chacune des deux dimensions orthogonales (DCu1) et (DCu2), lesdits facteurs de forme (FCu1, FCu2) étant supérieurs à 50, de préférence supérieurs ou égaux à 75 environ, de préférence encore allant de 100 à 400 environ, et de préférence encore de 100 à 300 environ.
Copper grains having a filamentary shape are grains for example having:
  • a length (L Cu ), extending in a main direction of elongation,
  • two dimensions (D Cu1 ) and (D Cu2 ), called orthogonal dimensions, extending in two transverse directions orthogonal to each other and orthogonal to said main direction of elongation, said orthogonal dimensions (D Cu1 , D Cu2 ) being less than said length (L Cu ) and less than or equal to 700 nm, preferably less than or equal to approximately 500 nm, more preferably ranging from approximately 50 to 400 nm, and more preferably from approximately 100 to 300 nm, and
  • two ratios (F Cu1 ) and (F Cu2 ), called shape factors, between said length (L Cu ) and each of the two orthogonal dimensions (D Cu1 ) and (D Cu2 ), said shape factors (F Cu1 , F Cu2 ) being greater than 50, preferably greater than or equal to approximately 75, more preferably ranging from approximately 100 to 400, and more preferably from approximately 100 to 300.

Selon un mode de réalisation particulier, les deux dimensions orthogonales (DCu1, DCu2) d'un grain ayant une forme filamentaire sont équivalentes ou proches. On parle alors de « bâtonnet » ou de « fil ».According to a particular embodiment, the two orthogonal dimensions (D Cu1 , D Cu2 ) of a grain having a filamentary shape are equivalent or close. We then speak of a “stick” or “thread”.

Selon un autre mode de réalisation particulier, un grain ayant une forme filamentaire peut être un « ruban » dans lequel les deux dimensions orthogonales (DCu1, DCu2) du grain selon l'invention sont sa largeur (Icu) (première dimension orthogonale) et son épaisseur (ECu) (deuxième dimension orthogonale), la largeur (Icu) étant notamment bien plus grande que l'épaisseur (ECu).According to another particular embodiment, a grain having a filamentary shape can be a “ribbon” in which the two orthogonal dimensions (D Cu1 , D Cu2 ) of the grain according to the invention are its width (I cu ) (first orthogonal dimension ) and its thickness (E Cu ) (second orthogonal dimension), the width (I cu ) being notably much greater than the thickness (E Cu ).

La longueur (LCu) des grains de cuivre (respectivement d'argent) peut être de taille micrométrique (i.e. inférieure à 1 mm), de préférence inférieure ou égale à 500 µm environ, de préférence inférieure ou égale à 200 µm environ, de préférence encore allant de 1 à 150 µm environ, et de préférence encore allant de 10 à 70 µm environ.The length (L Cu ) of the copper grains (respectively silver) can be of micrometric size (ie less than 1 mm), preferably less than or equal to approximately 500 µm, preferably less than or equal to approximately 200 µm, of more preferably ranging from approximately 1 to 150 µm, and more preferably ranging from approximately 10 to 70 µm.

Des grains d'argent ayant une forme filamentaire sont des grains par exemple ayant :

  • une longueur (LAg), s'étendant selon une direction principale d'allongement,
  • deux dimensions (DAg1) et (DAg2), dites dimensions orthogonales, s'étendant selon deux directions transversales orthogonales entre elles et orthogonales à ladite direction principale d'allongement, lesdites dimensions orthogonales (DAg1, DAg2) étant inférieures à ladite longueur (LAg) et inférieures ou égales à 700 nm, de préférence inférieures ou égales à 500 nm environ, de préférence encore allant de 50 à 400 nm environ, et de préférence encore de 100 à 300 nm environ, et
  • deux rapports (FAg1) et (FAg2), dits facteurs de forme, entre ladite longueur (LAg) et chacune des deux dimensions orthogonales (DAg1) et (DAg2), lesdits facteurs de forme (FAg1, FAg2) étant supérieurs à 50, de préférence supérieurs ou égaux à 75 environ, de préférence encore allant de 100 à 400 environ, et de préférence encore de 100 à 300 environ.
Silver grains having a filamentary shape are grains for example having:
  • a length (L Ag ), extending in a main direction of elongation,
  • two dimensions (D Ag1 ) and (D Ag2 ), called orthogonal dimensions, extending in two transverse directions orthogonal to each other and orthogonal to said main direction of elongation, said dimensions orthogonal (D Ag1 , D Ag2 ) being less than said length (L Ag ) and less than or equal to 700 nm, preferably less than or equal to approximately 500 nm, more preferably ranging from approximately 50 to 400 nm, and more preferably from approximately 100 to 300 nm, and
  • two ratios (F Ag1 ) and (F Ag2 ), called form factors, between said length (L Ag ) and each of the two orthogonal dimensions (D Ag1 ) and (D Ag2 ), said form factors (F Ag1 , F Ag2 ) being greater than 50, preferably greater than or equal to approximately 75, more preferably ranging from approximately 100 to 400, and more preferably from approximately 100 to 300.

Selon un mode de réalisation particulier, les deux dimensions orthogonales (DAg1, DAg2) d'un grain ayant une forme filamentaire sont équivalentes ou proches. On parle alors de « bâtonnet » ou de « fil ».According to a particular embodiment, the two orthogonal dimensions (D Ag1 , D Ag2 ) of a grain having a filamentary shape are equivalent or close. We then speak of a “stick” or “thread”.

Selon un autre mode de réalisation particulier, un grain ayant une forme filamentaire peut être un « ruban » dans lequel les deux dimensions orthogonales (DAg1, DAg2) du grain selon l'invention sont sa largeur (IAg) (première dimension orthogonale) et son épaisseur (EAg) (deuxième dimension orthogonale), la largeur (IAg) étant notamment bien plus grande que l'épaisseur (EAg).According to another particular embodiment, a grain having a filamentary shape can be a “ribbon” in which the two orthogonal dimensions (D Ag1 , D Ag2 ) of the grain according to the invention are its width (I Ag ) (first orthogonal dimension ) and its thickness (E Ag ) (second orthogonal dimension), the width (I Ag ) being notably much greater than the thickness (E Ag ).

La longueur (LAg) des grains d'argent peut être de taille micrométrique (i.e. inférieure à 1 mm), de préférence inférieure ou égale à 500 µm environ, de préférence inférieure ou égale à 200 µm environ, de préférence encore allant de 1 à 150 µm environ, et de préférence encore allant de 10 à 70 µm environ.The length (L Ag ) of the silver grains can be of micrometric size (ie less than 1 mm), preferably less than or equal to approximately 500 µm, preferably less than or equal to approximately 200 µm, more preferably ranging from 1 at approximately 150 µm, and more preferably ranging from approximately 10 to 70 µm.

Le matériau de l'invention a de préférence une densité relative d'au moins 99% environ, et de préférence d'au moins 99,5% environ.The material of the invention preferably has a relative density of at least approximately 99%, and preferably at least approximately 99.5%.

Dans l'invention, la densité relative est déterminée par la méthode Archimède à 20°C, le corps de référence étant l'eau pure à 4°C.In the invention, the relative density is determined by the Archimedes method at 20°C, the reference body being pure water at 4°C.

Le matériau de l'invention peut être sous la forme d'un fil, notamment de diamètre allant de 0,1 à 4 mm environ, de préférence de 0,2 à 1 mm environ, et de préférence encore de 0,25 à 0,8 mm environ.The material of the invention can be in the form of a wire, in particular with a diameter ranging from approximately 0.1 to 4 mm, preferably from approximately 0.2 to 1 mm, and more preferably from 0.25 to 0. .8 mm approximately.

L'invention a pour deuxième objet un procédé de préparation d'un matériau composite massif conforme au premier objet de l'invention, caractérisé en ce qu'il comprend au moins les étapes suivantes :

  1. i) une étape de dispersion de particules micrométriques de cuivre et de particules micrométriques ou sub-micrométriques d'argent, dans un milieu non-solvant,
  2. ii) une étape de séchage pour former une poudre composite comprenant lesdites particules de cuivre et d'argent, ladite poudre comprenant une quantité inférieure à 5% en volume environ de particules d'argent, par rapport au volume total de ladite poudre,
  3. iii) une étape de frittage flash à une température d'au plus 600°C environ, afin d'obtenir une masse solide composite, et
  4. iv) au moins une étape de tréfilage à froid, afin de mettre en forme la masse solide composite de l'étape iii).
The second object of the invention is a process for preparing a massive composite material conforming to the first object of the invention, characterized in that it comprises at least the following steps:
  1. i) a step of dispersing micrometric copper particles and micrometric or sub-micrometric silver particles, in a non-solvent medium,
  2. ii) a drying step to form a composite powder comprising said copper and silver particles, said powder comprising a quantity of less than approximately 5% by volume of silver particles, relative to the total volume of said powder,
  3. iii) a flash sintering step at a temperature of at most approximately 600°C, in order to obtain a composite solid mass, and
  4. iv) at least one cold drawing step, in order to shape the composite solid mass of step iii).

Ainsi le procédé de l'invention est simple et il permet en peu d'étapes d'obtenir un matériau composite conforme au premier objet de l'invention, présentant des propriétés électriques améliorées, en particulier en termes de conductivité électrique, tout en garantissant de bonnes propriétés mécaniques, en particulier en termes de résistance à la rupture. Par ailleurs, il évite des étapes de recuit et/ou de traitement thermique répétées telles d'effectuées dans les procédés de l'art antérieur, tout en évitant les phénomènes de diffusion et/ou de fusion du cuivre et de l'argent. Enfin, un tel procédé peut être aisément transposé à l'échelle industrielle.Thus the process of the invention is simple and it allows in a few steps to obtain a composite material conforming to the first object of the invention, having improved electrical properties, in particular in terms of electrical conductivity, while guaranteeing good mechanical properties, particularly in terms of breaking strength. Furthermore, it avoids repeated annealing and/or heat treatment steps such as those carried out in the processes of the prior art, while avoiding the phenomena of diffusion and/or melting of copper and silver. Finally, such a process can easily be transposed to an industrial scale.

Étape i)Step i)

L'étape i) permet de former un mélange de cuivre et d'argent homogène, tout en évitant les phénomènes de diffusion de métaux.Step i) makes it possible to form a homogeneous mixture of copper and silver, while avoiding metal diffusion phenomena.

L'étape i) peut être effectuée en dispersant une poudre de particules micrométriques de cuivre et une poudre de particules micrométriques ou sub-micrométriques d'argent dans ledit milieu non-solvant.Step i) can be carried out by dispersing a powder of micrometric copper particles and a powder of micrometric or sub-micrometric silver particles in said non-solvent medium.

Le milieu non-solvant est un liquide qui ne solubilise pas les grains de cuivre et d'argent. Il permet notamment de former une suspension.The non-solvent medium is a liquid which does not solubilize the copper and silver grains. It allows in particular to form a suspension.

Le milieu non-solvant peut être choisi parmi les alcools, l'eau, les cétones telles que l'acétone, et un de leurs mélanges.The non-solvent medium can be chosen from alcohols, water, ketones such as acetone, and one of their mixtures.

À titre d'exemples d'alcools, on peut citer l'éthanol.Examples of alcohols include ethanol.

En particulier, l'étape i) peut être effectuée selon les sous-étapes suivantes :

  • i-a) éventuellement disperser une poudre de particules micrométriques de cuivre dans un milieu non-solvant S1,
  • i-b) disperser une poudre de particules micrométriques ou sub-micrométriques d'argent dans un milieu non-solvant S2, et
  • i-c) mélanger la poudre de particules micrométriques de cuivre ou la dispersion de poudre de particules micrométriques de cuivre de la sous-étape i-a), avec la dispersion de poudre de particules micrométriques ou sub-micrométriques d'argent de la sous-étape i-b), notamment sous agitation.
In particular, step i) can be carried out according to the following substeps:
  • ia) optionally dispersing a powder of micrometric copper particles in a non-solvent medium S 1 ,
  • ib) dispersing a powder of micrometric or sub-micrometric particles of silver in a non-solvent medium S 2 , and
  • ic) mixing the powder of micrometric copper particles or the dispersion of powder of micrometric copper particles from sub-step ia), with the dispersion of powder of micrometric or sub-micrometric particles of silver from sub-step ib) , especially under agitation.

Les milieux non-solvants S1 et S2 peuvent avoir la même définition que celle donnée ci-dessus pour le milieu non-solvant S.The non-solvent media S 1 and S 2 can have the same definition as that given above for the non-solvent medium S.

De préférence, les milieux non-solvants S1 et S2 sont identiques.Preferably, the non-solvent media S 1 and S 2 are identical.

Les milieux non-solvants S1 et S2 sont de préférence mutuellement solubles.The non-solvent media S 1 and S 2 are preferably mutually soluble.

La sous-étape i-a) peut être effectuée sous agitation mécanique, magnétique ou en présence d'ultrasons.Substep i-a) can be carried out with mechanical or magnetic stirring or in the presence of ultrasound.

La sous-étape i-b) peut être effectuée sous agitation mécanique ou magnétique, notamment afin d'éviter la dégradation des particules micrométriques ou sub-micrométriques d'argent.Substep i-b) can be carried out with mechanical or magnetic stirring, in particular in order to avoid the degradation of the micrometric or sub-micrometric silver particles.

La sous-étape i-c) peut être effectuée sous agitation mécanique, magnétique ou en présence d'ultrasons.Substep i-c) can be carried out with mechanical or magnetic stirring or in the presence of ultrasound.

Les particules micrométriques de cuivre peuvent avoir au moins une de leurs dimensions allant de 0,5 à 20 µm environ, de préférence de 0,5 à 10 µm environ, de préférence de 0,5 à 4 µm environ, et de préférence encore de 0,5 à 1,5 µm environ.The micrometric copper particles can have at least one of their dimensions ranging from approximately 0.5 to 20 µm, preferably from 0.5 to 10 µm approximately, preferably from approximately 0.5 to 4 µm, and more preferably from approximately 0.5 to 1.5 µm.

Les particules micrométriques de cuivre sont de préférence des particules micrométriques sphériques.The micrometric copper particles are preferably spherical micrometric particles.

Les particules d'argent peuvent avoir au moins une de leurs dimensions allant de 0,1 à 150 µm environ, et de préférence de 0,5 à 70 µm environ.The silver particles can have at least one of their dimensions ranging from approximately 0.1 to 150 µm, and preferably from approximately 0.5 to 70 µm.

Les particules micrométriques ou sub-micrométriques d'argent peuvent être sphériques ou filiformes.The micrometric or sub-micrometric particles of silver can be spherical or filiform.

Les particules micrométriques ou sub-micrométriques sphériques d'argent peuvent avoir un diamètre allant de 0,5 à 20 µm environ, de préférence de 0,5 à 10 µm environ, de préférence de 0,5 à 4 µm environ, et de préférence encore de 0,5 à 1,5 µm environ.The micrometric or sub-micrometric spherical silver particles may have a diameter ranging from approximately 0.5 to 20 µm, preferably from approximately 0.5 to 10 µm, preferably from approximately 0.5 to 4 µm, and preferably another approximately 0.5 to 1.5 µm.

Selon une forme de réalisation de l'invention, les particules micrométriques ou sub-micrométriques d'argent sont filiformes.According to one embodiment of the invention, the micrometric or sub-micrometric silver particles are filiform.

En particulier, elles présentent :

  • une longueur (L'Ag), s'étendant selon une direction principale d'allongement,
  • deux dimensions (D'Ag1) et (D'Ag2), dites dimensions orthogonales, s'étendant selon deux directions transversales orthogonales entre elles et orthogonales à ladite direction principale d'allongement, lesdites dimensions orthogonales (D'Ag1, D'Ag2) étant inférieures à ladite longueur (L'Ag) et inférieures ou égale à 700 nm, et de préférence inférieures ou égale à 500 nm, et
  • deux rapports (F'Ag1) et (F'Ag2), dits facteurs de forme, entre ladite longueur (L'Ag) et chacune des deux dimensions orthogonales (D'Ag1) et (D'Ag2), lesdits facteurs de forme (F'Ag1, F'Ag2) étant de préférence supérieurs à 50.
In particular, they present:
  • a length (L' Ag ), extending in a main direction of elongation,
  • two dimensions (D' Ag1 ) and (D' Ag2 ), called orthogonal dimensions, extending in two transverse directions orthogonal to each other and orthogonal to said main direction of elongation, said orthogonal dimensions (D' Ag1 , D' Ag2 ) being less than said length (L' Ag ) and less than or equal to 700 nm, and preferably less than or equal to 500 nm, and
  • two ratios (F' Ag1 ) and (F' Ag2 ), called form factors, between said length (L' Ag ) and each of the two orthogonal dimensions (D' Ag1 ) and (D' Ag2 ), said form factors ( F' Ag1 , F' Ag2 ) being preferably greater than 50.

Selon une forme de réalisation préférée, les deux dimensions orthogonales (D'Ag1, D'Ag2) d'une particule filiforme sont équivalentes ou proches et représentent le diamètre (D'Ag) de sa section droite transversale. On parle alors de « bâtonnet » ou de « fil ».According to a preferred embodiment, the two orthogonal dimensions (D' Ag1 , D' Ag2 ) of a filiform particle are equivalent or close and represent the diameter (D' Ag ) of its cross section. We then speak of a “stick” or “thread”.

Selon une autre forme de réalisation préférée, une particule filiforme est un « ruban » dans lequel les deux dimensions orthogonales de la particule selon l'invention sont sa largeur (I'Ag) (première dimension orthogonale) et son épaisseur (E'Ag) (deuxième dimension orthogonale), la largeur (I'Ag) étant notamment bien plus grande que l'épaisseur (E'Ag).According to another preferred embodiment, a filiform particle is a “ribbon” in which the two orthogonal dimensions of the particle according to the invention are its width (I' Ag ) (first orthogonal dimension) and its thickness (E' Ag ) (second orthogonal dimension), the width (I' Ag ) being notably much greater than the thickness (E' Ag ).

De manière avantageuse, les particules micrométriques ou sub-micrométriques filiformes d'argent selon l'invention sont caractérisées par l'une au moins des caractéristiques suivantes :

  • les deux dimensions orthogonales (D'Ag1, D'Ag2) des particules filiformes vont de 50 nm à 400 nm environ, et de préférence de 100 nm à 300 nm environ ;
  • la longueur (L'Ag) va de 1 µm à 150 µm environ, et de préférence de 10 µm à 70 µm environ ;
  • les facteurs de forme (F'Ag1, F'Ag2) sont supérieurs ou égaux à 75 environ, de préférence vont de 100 à 400 environ, de préférence encore de 100 à 300 environ, et de préférence encore sont de l'ordre de 200.
Advantageously, the micrometric or sub-micrometric filiform particles of silver according to the invention are characterized by at least one of the following characteristics:
  • the two orthogonal dimensions (D' Ag1 , D' Ag2 ) of the filiform particles range from approximately 50 nm to 400 nm, and preferably from approximately 100 nm to 300 nm;
  • the length (L' Ag ) ranges from approximately 1 µm to 150 µm, and preferably from approximately 10 µm to 70 µm;
  • the form factors (F' Ag1 , F' Ag2 ) are greater than or equal to approximately 75, preferably range from approximately 100 to 400, more preferably from approximately 100 to 300, and more preferably are of the order of 200 .

Étape ii)Step ii)

L'étape ii) permet d'évaporer les milieux non-solvants.Step ii) allows the non-solvent media to evaporate.

Elle peut être effectuée à l'aide d'un évaporateur rotatif, notamment sous vide.It can be carried out using a rotary evaporator, particularly under vacuum.

La température de séchage va de préférence de 70 à 100°C environ, et est de préférence encore de l'ordre de 80°C.The drying temperature preferably ranges from approximately 70 to 100°C, and is more preferably of the order of 80°C.

Selon une forme de réalisation préférée de l'invention, la poudre composite comprend au plus 2% en volume environ de particules d'argent, de manière préférentielle au plus 1,5% en volume environ de particules d'argent, et de manière encore plus préférentielle au plus 1% en volume environ de particules d'argent, par rapport au volume total de ladite poudre.According to a preferred embodiment of the invention, the composite powder comprises at most approximately 2% by volume of silver particles, preferably at most approximately 1.5% by volume of silver particles, and even more more preferentially at most approximately 1% by volume of silver particles, relative to the total volume of said powder.

Étape ii')Step ii')

Le procédé peut comprendre en outre une étape ii') de réduction de la poudre composite séchée de l'étape ii), en présence de dihydrogène. Cette étape ii') peut permettre d'éliminer la couche d'oxyde de cuivre qui peut se former à la surface des particules de cuivre.The process may further comprise a step ii') of reduction of the dried composite powder from step ii), in the presence of dihydrogen. This step ii') can make it possible to eliminate the layer of copper oxide which can form on the surface of the copper particles.

L'étape ii') peut être réalisée à une température T1 de 100 à 300°C environ, de préférence de 110 à 240°C environ, et de préférence encore de 120 à 160°C environ.Step ii') can be carried out at a temperature T 1 of approximately 100 to 300°C, preferably of approximately 110 to 240°C, and more preferably of approximately 120 to 160°C.

L'étape ii') peut être réalisée en chauffant la poudre de la température ambiante à la température T1 telle que définie dans l'invention, à une vitesse allant de 1°C/min à 5°C/min environ, et de préférence encore allant de 2°C/min à 3°C/min environ.Step ii') can be carried out by heating the powder from room temperature to temperature T 1 as defined in the invention, at a speed ranging from 1°C/min to approximately 5°C/min, and preferably still ranging from approximately 2°C/min to 3°C/min.

Étape iii)Step iii)

Dans la présente invention, l'expression « frittage flash » signifie frittage sous pression uniaxiale basé sur l'utilisation d'un courant électrique. Le frittage flash est également bien connu sous l'anglicisme « Spark Plasma Sintering » ou SPS.In the present invention, the term "flash sintering" means uniaxial pressure sintering based on the use of an electric current. Flash sintering is also well known as “ Spark Plasma Sintering” or SPS.

L'étape iii) permet de consolider la poudre obtenue à l'étape précédente ii) ou ii'), tout en évitant les phénomènes de diffusion et/ou de fusion du cuivre et/ou de l'argent.Step iii) makes it possible to consolidate the powder obtained in the previous step ii) or ii'), while avoiding the phenomena of diffusion and/or melting of the copper and/or silver.

Cette étape iii) est de préférence réalisée à une température T2 d'au plus 550°C environ, de manière préférentielle allant de 375 à 525°C environ, et de manière encore plus préférentielle allant de 390 à 450°C environ. Ces températures permettent d'obtenir une masse solide composite ayant une porosité résiduelle suffisante pour pouvoir être tréfilée à froid dans les étapes ultérieures (e.g. sans cassures et/ou fissures et/ou ruptures).This step iii) is preferably carried out at a temperature T 2 of at most approximately 550°C, preferably ranging from approximately 375 to 525°C, and even more preferably ranging from approximately 390 to 450°C. These temperatures make it possible to obtain a solid composite mass having sufficient residual porosity to be able to be cold drawn in the subsequent stages (eg without breaks and/or cracks and/or ruptures).

Selon une forme de réalisation préférée de l'invention, le frittage est effectué en chauffant la poudre :

  • de la température ambiante à 350°C à une vitesse allant de 20 °C/min à 30°C/min environ, et
  • de 350°C à la température T2 à une vitesse allant de 40 °C/min à 60°C/min environ.
According to a preferred embodiment of the invention, sintering is carried out by heating the powder:
  • from room temperature to 350°C at a speed ranging from approximately 20°C/min to 30°C/min, and
  • from 350°C to temperature T 2 at a speed ranging from 40°C/min to approximately 60°C/min.

Le frittage est de préférence réalisé sous vide primaire ou secondaire, ou sous atmosphère d'argon ou d'azote.Sintering is preferably carried out under primary or secondary vacuum, or under an argon or nitrogen atmosphere.

La pression exercée sur la poudre composite issue de l'étape ii) ou ii') va de préférence de 20 à 100 MPa, et encore plus préférentiellement de 25 à 35 MPa.The pressure exerted on the composite powder resulting from step ii) or ii') preferably ranges from 20 to 100 MPa, and even more preferably from 25 to 35 MPa.

La durée du frittage varie en fonction de la température. Cette durée va généralement de 20 à 30 minutes environ.The duration of sintering varies depending on the temperature. This duration generally ranges from approximately 20 to 30 minutes.

Selon une forme de réalisation particulièrement préférée de l'invention, le frittage est réalisé sous vide secondaire, à une pression de 25 à 50 MPa environ, à une température maximale de 400 à 500°C, maintenue pendant une durée de 3 à 10 minutes. La durée totale du traitement thermique est, dans ce cas, inférieure à 1h30.According to a particularly preferred embodiment of the invention, the sintering is carried out under secondary vacuum, at a pressure of approximately 25 to 50 MPa, at a maximum temperature of 400 to 500°C, maintained for a period of 3 to 10 minutes . The total duration of the heat treatment is, in this case, less than 1 hour 30 minutes.

L'intensité du courant pulsé peut aller de 10 à 250 A environ. La durée de chaque impulsion de courant est de l'ordre de quelques millisecondes. Cette durée va de préférence de 2 à 4 ms environ.The intensity of the pulsed current can range from approximately 10 to 250 A. The duration of each current pulse is of the order of a few milliseconds. This duration preferably ranges from approximately 2 to 4 ms.

En particulier, la masse solide composite obtenue à l'issue de l'étape iii) présente une densité relative allant de 85 à 97% environ, de préférence de 90 à 95% environ, et de préférence encore de 92 à 96% environ. En effet, ces gammes de densité sont adaptées pour pouvoir mettre en oeuvre l'étape suivante de tréfilage, en évitant la formation de fissures et/ou fractures.In particular, the composite solid mass obtained at the end of step iii) has a relative density ranging from approximately 85 to 97%, preferably from approximately 90 to 95%, and more preferably from approximately 92 to 96%. Indeed, these density ranges are adapted to be able to implement the following wire drawing step, avoiding the formation of cracks and/or fractures.

À l'issue de l'étape iii) le matériau composite peut être sous la forme d'un cylindre ou d'un barreau, notamment présentant une hauteur ou longueur supérieure à son diamètre. Cela peut ainsi permettre de favoriser la mise en oeuvre de l'étape iv).At the end of step iii) the composite material can be in the form of a cylinder or a bar, in particular having a height or length greater than its diameter. This can thus make it possible to promote the implementation of step iv).

Selon un mode de réalisation particulier, le cylindre ou barreau a un diamètre allant de 5 à 80 mm environ, et de préférence de 5 à 40 mm environ.According to a particular embodiment, the cylinder or bar has a diameter ranging from approximately 5 to 80 mm, and preferably from approximately 5 to 40 mm.

L'étape iii) permet de conserver la taille micrométrique des particules de cuivre et la taille micrométrique ou sub-micrométrique des particules d'argent, et ainsi d'éviter la croissance des grains métalliques.Step iii) makes it possible to preserve the micrometric size of the copper particles and the micrometric or sub-micrometric size of the silver particles, and thus to avoid the growth of metallic grains.

La masse composite solide obtenue à l'étape iii) est de préférence isotrope. En d'autres termes, elle ne présente pas d'orientation préférentielle des grains de cuivre (respectivement d'argent), par rapport à sa propre forme géométrique macroscopique.The solid composite mass obtained in step iii) is preferably isotropic. In other words, it does not present a preferential orientation of the copper grains (respectively silver), compared to its own macroscopic geometric shape.

Étape iv)Step iv)

La ou les étapes de tréfilage à froid iv) sont de préférence réalisées à une température d'au plus 40°C environ, de préférence d'au plus 35°C environ, de façon particulièrement préférée allant de -196°C à 30°C environ, et de façon plus particulièrement préférée à température ambiante.The cold drawing step(s) iv) are preferably carried out at a temperature of at most approximately 40°C, preferably at most approximately 35°C, particularly preferably ranging from -196°C to 30°C. C approximately, and more particularly preferably at room temperature.

La température ambiante correspond à une température allant de 18 à 25°C environ.The ambient temperature corresponds to a temperature ranging from approximately 18 to 25°C.

Le procédé peut comprendre plusieurs étapes iv), notamment de 20 à 80 environ étapes iv), et en particulier une quarantaine d'étapes iv).The process can comprise several steps iv), in particular from approximately 20 to 80 steps iv), and in particular around forty steps iv).

Dans un mode de réalisation préféré, la ou les étapes de tréfilage iv) permettent d'obtenir un matériau composite sous la forme d'un fil, notamment de diamètre allant de 0,1 à 4 mm environ, de préférence de 0,2 à 1 mm environ, et de préférence encore de 0,25 à 0,8 mm environ.In a preferred embodiment, the drawing step(s) iv) make it possible to obtain a composite material in the form of a wire, in particular with a diameter ranging from approximately 0.1 to 4 mm, preferably from 0.2 to 4 mm. approximately 1 mm, and more preferably approximately 0.25 to 0.8 mm.

Dans un mode de réalisation préféré, la ou les étapes de tréfilage iv) permettent d'obtenir un matériau composite sous la forme d'un fil de longueur allant de 0,1 à 1000 m environ, et de préférence de 0,2 à 50 m environ.In a preferred embodiment, the drawing step(s) iv) make it possible to obtain a composite material in the form of a wire of length ranging from approximately 0.1 to 1000 m, and preferably from 0.2 to 50 m approximately.

Lors de l'étape iv), les phénomènes de rupture et/ou de fissures et/ou de cassures sont fortement réduits, voire évités.During step iv), the phenomena of rupture and/or cracks and/or breaks are greatly reduced, or even avoided.

Le procédé peut comprendre en outre entre les étapes iii) et iv) une étape de refroidissement de la masse composite solide, notamment à une vitesse de refroidissement allant de 4°C/min à 7°C/min environ.The method may further comprise between steps iii) and iv) a step of cooling the solid composite mass, in particular at a cooling rate ranging from approximately 4°C/min to 7°C/min.

Le procédé conforme au deuxième objet conduit à un matériau conforme au premier objet.The process conforming to the second object leads to a material conforming to the first object.

L'invention porte également sur un matériau composite massif tel que défini dans le premier objet de l'invention, susceptible d'être obtenu selon un procédé tel que défini dans le deuxième objet de l'invention.The invention also relates to a massive composite material as defined in the first subject of the invention, capable of being obtained according to a process as defined in the second subject of the invention.

L'invention a pour troisième objet l'utilisation d'un matériau composite massif conforme au premier objet de l'invention ou obtenu selon un procédé conforme au deuxième objet de l'invention, comme conducteur électrique, notamment pour câbles électriques et/ou de télécommunications, comme conducteur pour aimants à champs continus ou pulsés, dans le domaine des installations de champs intenses, ou dans le domaine du magnétoformage industriel.The third object of the invention is the use of a massive composite material conforming to the first object of the invention or obtained according to a process conforming to the second object of the invention, as an electrical conductor, in particular for electrical cables and/or telecommunications, as a conductor for continuous or pulsed field magnets, in the field of intense field installations, or in the field of industrial magnetoforming.

Un tel matériau composite massif présente un bon compromis entre conduction électrique et résistance à la rupture pour pouvoir être utilisé dans des câbles haute tension ou des lignes aériennes de transport de l'électricité, notamment comme conducteur électrique, ou dans des moteurs, des alternateurs, des transformateurs, ou des connecteurs.Such a massive composite material presents a good compromise between electrical conduction and breaking strength to be able to be used in high voltage cables or overhead electricity transmission lines, in particular as an electrical conductor, or in motors, alternators, transformers, or connectors.

En outre, ses bonnes propriétés électriques et mécaniques permettent de diminuer son diamètre, et ainsi la masse d'un fil conducteur constitué dudit matériau composite massif, en améliorant ou en conservant ses performances. Cela permet d'envisager son utilisation dans les domaines de l'Aéronautique, de l'Espace et de la Défense ; notamment dans les drones, avions, missiles, lanceurs, satellites, sondes, ou vaisseaux spatiaux ; ou dans les transports terrestres, notamment dans les caténaires ferroviaires.In addition, its good electrical and mechanical properties make it possible to reduce its diameter, and thus the mass of a conductive wire made of said massive composite material, by improving or maintaining its performance. This makes it possible to consider its use in the fields of Aeronautics, Space and Defense; particularly in drones, planes, missiles, launchers, satellites, probes, or spacecraft; or in land transport, particularly in railway catenaries.

Le matériau composite massif conforme au premier objet de l'invention peut également être utilisé dans les installations de champs magnétiques intenses, notamment de champs magnétiques pulsés non-destructifs supérieurs à 100 Teslas. En particulier, la faible résistivité électrique de ce matériau peut induire à puissance constante, une augmentation de la durée de l'impulsion du champ magnétique pulsé et une diminution de la puissance électrique nécessaire à l'alimentation des aimants continus.The massive composite material conforming to the first object of the invention can also be used in installations with intense magnetic fields, in particular non-destructive pulsed magnetic fields greater than 100 Tesla. In particular, the low electrical resistivity of this material can induce, at constant power, an increase in the duration of the pulse of the pulsed magnetic field and a reduction in the electrical power necessary to power the continuous magnets.

Enfin, il peut permettre d'augmenter la durée de vie des outils de magnétoformage tels que les aimants pulsés via l'intégration de fils en matériau composite massif conforme au premier objet de l'invention. En effet, les fils conducteurs dans ce domaine sont généralement mécaniquement sollicités largement au-delà de leur limite élastique.Finally, it can increase the lifespan of magnetoforming tools such as pulsed magnets via the integration of wires in massive composite material conforming to the first object of the invention. Indeed, the conductive wires in this area are generally mechanically stressed well beyond their elastic limit.

Ainsi, des fils en matériau composite massif conforme au premier objet de l'invention peuvent être intégrés dans des prototypes d'aimants de magnétoformage.Thus, wires made of solid composite material conforming to the first object of the invention can be integrated into prototypes of magnetoforming magnets.

Des fils en matériau composite massif conforme au premier objet de l'invention peuvent permettre le bobinage d'aimants industriels pour le magnétoformage.Wires made of solid composite material conforming to the first object of the invention can enable the winding of industrial magnets for magnetoforming.

EXEMPLESEXAMPLES

Les matières premières utilisées dans les exemples, sont listées ci-après :

  • poudre de cuivre, 0,5-1,5 µm, Alfa-Aesar,
  • AgNO3, Aldrich
  • éthylène glycol, Aldrich,
  • polyvinylpyrrolidinone PVP, 55000 g/mol, Aldrich.
The raw materials used in the examples are listed below:
  • copper powder, 0.5-1.5 µm, Alfa-Aesar,
  • AgNO 3 , Aldrich
  • ethylene glycol, Aldrich,
  • polyvinylpyrrolidinone PVP, 55000 g/mol, Aldrich.

Sauf indications contraires, toutes ces matières premières ont été utilisées telles que reçues des fabricants.Unless otherwise noted, all of these raw materials were used as received from the manufacturers.

EXEMPLE 1EXAMPLE 1 Préparation d'un matériau composite conforme à l'inventionPreparation of a composite material according to the invention

Des nanofils d'argent ont été préparés selon un procédé de croissance en solution à partir de nitrate d'argent (AgNO3), de PVP, et d'éthylène glycol, tel que décrit par Sun Y.G. et al., « Crystalline silver nanowires by soft solution processing »,. Nano Letters, 2002. 2(2): p. 165-168 , avec un ratio PVP/AgNO3 de 1,53. Les nanofils d'argent obtenus présentent une longueur allant de 30 à 60 µm environ, et un diamètre allant de 200 à 300 nm environ.Silver nanowires were prepared using a solution growth method from silver nitrate (AgNO 3 ), PVP, and ethylene glycol, as described by Sun YG et al., “Crystalline silver nanowires by soft solution processing,”. Nano Letters, 2002. 2(2): p. 165-168 , with a PVP/AgNO 3 ratio of 1.53. The silver nanowires obtained have a length ranging from approximately 30 to 60 μm, and a diameter ranging from approximately 200 to 300 nm.

Une suspension comprenant 0,178 g de nanofils d'argent et de 9 ml d'éthanol a été préparée.A suspension comprising 0.178 g of silver nanowires and 9 ml of ethanol was prepared.

La suspension de nanofils d'argent a été mélangée avec 15 g de poudre de cuivre, puis le mélange résultant a été homogénéisé sous ultrasons, puis évaporé à l'aide d'un évaporateur rotatif à 80°C. Une poudre composite PC1 comprenant 1% en volume d'argent, par rapport au volume total de la poudre a ainsi été obtenue.The suspension of silver nanowires was mixed with 15 g of copper powder, then the resulting mixture was homogenized under ultrasound, then evaporated using a rotary evaporator at 80°C. A PC 1 composite powder comprising 1% by volume of silver, relative to the total volume of the powder, was thus obtained.

La poudre composite a été réduite en présence de dihydrogène pendant 1 h à 160°C afin de réduire l'oxyde de cuivre formé en surface des particules de cuivre.The composite powder was reduced in the presence of dihydrogen for 1 h at 160°C in order to reduce the copper oxide formed on the surface of the copper particles.

La poudre résultante a ensuite été frittée par SPS à l'aide d'un appareil vendu sous la dénomination commerciale Dr Sinter 2080®, par la société Syntex Inc.The resulting powder was then sintered by SPS using a device sold under the trade name Dr Sinter 2080® , by the company Syntex Inc.

Pour ce faire, la poudre composite a été placée dans une filière/matrice en alliage de carbure de tungstène et de cobalt (WC/Co) de 8 mm de diamètre interne dont l'intérieur a été protégé par un film de graphite. La matrice a ensuite été fermée par des pistons symétriques puis introduite dans la chambre de la machine SPS. Le frittage a été effectué sous vide (pression résiduelle de la chambre < 10 Pa) en mettant en oeuvre des courants continus pulsés définis sur 14 périodes de 3,2 ms, dont 12 périodes de pulses et 2 périodes de non pulses. La température a été contrôlée à l'aide d'un thermocouple introduit dans un orifice (5 mm de profondeur) percé sur la surface externe de la filière. Une température de 500°C a été atteinte en 2 étapes : une rampe de 25°C.min-1 pendant 13 minutes pour aller de la température ambiante à 350°C, puis une rampe de 50°C.min-1 pendant 3 minutes pour aller de 350°C à 500°C. Cette température a alors été maintenue pendant 5 minutes. Ces rampes de température ont été obtenues par application de courants continus pulsés définis sur 14 périodes de 3,2 ms, dont 12 périodes de pulses et 2 périodes de non pulses. Une pression de 25 MPa a été atteinte en 1 minute et maintenue pendant le reste du frittage. La filière a alors été refroidie au sein de la chambre du SPS. La masse solide composite MSC1 obtenue est sous la forme d'un cylindre de 8 mm de diamètre et de 33 mm de longueur.To do this, the composite powder was placed in a die/matrix made of tungsten carbide and cobalt alloy (WC/Co) with an internal diameter of 8 mm, the interior of which was protected by a graphite film. The die was then closed by symmetrical pistons and then introduced into the chamber of the SPS machine. Sintering was carried out under vacuum (chamber residual pressure < 10 Pa) using pulsed direct currents defined over 14 periods of 3.2 ms, including 12 pulse periods and 2 non-pulse periods. The temperature was controlled using a thermocouple inserted into a hole (5 mm deep) drilled on the external surface of the die. A temperature of 500°C was reached in 2 stages: a ramp of 25°C.min -1 for 13 minutes to go from ambient temperature to 350°C, then a ramp of 50°C.min -1 for 3 minutes to go from 350°C to 500°C. This temperature was then maintained for 5 minutes. These temperature ramps were obtained by applying pulsed direct currents defined over 14 periods of 3.2 ms, including 12 pulse periods and 2 non-pulse periods. A pressure of 25 MPa was reached within 1 minute and maintained for the remainder of the sintering. The die was then cooled within the SPS chamber. The MSC 1 composite solid mass obtained is in the form of a cylinder of 8 mm in diameter and 33 mm in length.

La masse solide composite obtenue a ensuite été tréfilée à température ambiante à l'aide d'une filière en carbure de tungstène. Après 40 passages, un matériau composite sous la forme d'un fil FC1 de 0,29 mm de diamètre et de 25 m de longueur a été obtenu. Aucune rupture des fils n'a été observée.The composite solid mass obtained was then drawn at room temperature using a tungsten carbide die. After 40 passes, a composite material in the form of an FC 1 wire of 0.29 mm in diameter and 25 m in length was obtained. No breakage of the wires was observed.

Les poudres composites et les fils composites ont été analysés par microscopie électronique à balayage (MEB) mettant en oeuvre un canon à effet de champ, vendu sous la dénomination commerciale JEOL JSM 6700F par la société JEOL, et opérant à 200 kV.The composite powders and composite wires were analyzed by scanning electron microscopy (SEM) using a field effect gun, sold under the trade name JEOL JSM 6700F by the company JEOL, and operating at 200 kV.

La densité des masses solides composites et des fils composites a été déterminée par la méthode d'Archimède.The density of the composite solid masses and the composite wires was determined by the Archimedes method.

La résistivité électrique des fils composites a été déterminée à 77K (azote liquide) en utilisant la méthode des quatre pointes, avec un courant maximal de 100 mA afin d'éviter l'échauffement des fils.The electrical resistivity of the composite wires was determined to be 77K (liquid nitrogen) using the four-point method, with a maximum current of 100 mA to avoid heating of the wires.

La résistance à la rupture a été mesurée à l'aide d'un appareil vendu sous la dénomination commerciale INSTRON 1195 par la société INSTRON, à 77K (azote liquide) et à 293K sur des fils composites de 170 mm de longueur. Les tensions rencontrées spécifiques ont été mesurées avec un capteur de force (1000 N ou 250 N ; 1,6 X 10-5 m.s-1).The breaking strength was measured using a device sold under the trade name INSTRON 1195 by the company INSTRON, at 77K (liquid nitrogen) and at 293K on composite wires 170 mm long. The specific tensions encountered were measured with a force sensor (1000 N or 250 N; 1.6 X 10 -5 ms -1 ).

À titre comparatif, un procédé identique (conditions opératoires identiques) à celui tel que décrit ci-dessus a été utilisé, en remplaçant la proportion volumique d'argent qui était de 1% en volume environ, par une quantité volumique de 10% en volume environ. Une poudre composite PCA comprenant 10% en volume d'argent, par rapport au volume total de la poudre a ainsi été obtenue à l'issue de l'étape i). La poudre composite PCA ne fait pas partie de l'invention. Une masse solide composite MSCA et un fil composite FCA ne faisant pas partie de l'invention, ont également été obtenus.For comparison, an identical process (identical operating conditions) to that described above was used, replacing the volume proportion of silver which was approximately 1% by volume, by a volume quantity of 10% by volume. approximately. A PC A composite powder comprising 10% by volume of silver, relative to the total volume of the powder, was thus obtained at the end of step i). The PC A composite powder is not part of the invention. A composite solid mass MSC A and a composite wire FC A , not part of the invention, were also obtained.

La densité des masses solides composites MSC1 et MSCA est de 94% environ (± 2%).The density of the composite solid masses MSC 1 and MSC A is approximately 94% (± 2%).

La figure 1 est une image MEB de la poudre composite PC1 conforme à l'invention (cf. figure 1a : échelle 10 µm, et figure 1b : échelle 2 µm), et de la composite PCA non conforme à l'invention (cf. figure 1c : échelle 10 µm, et figure 1d : échelle 2 µm). La figure 1 montre la dispersion uniforme des nanofils d'argent au sein de la poudre de cuivre, induisant une poudre homogène. A contrario, l'utilisation d'une quantité volumique d'argent de 10% en volume environ ne permet pas d'obtenir une poudre homogène.There figure 1 is a SEM image of the PC 1 composite powder according to the invention (cf. figure 1a : scale 10 µm, and figure 1b : scale 2 µm), and the PC A composite not in accordance with the invention (cf. figure 1c : scale 10 µm, and figure 1d : scale 2 µm). There figure 1 shows the uniform dispersion of the silver nanowires within the copper powder, inducing a homogeneous powder. Conversely, the use of a volume quantity of silver of approximately 10% by volume does not make it possible to obtain a homogeneous powder.

La figure 2 montre la résistivité (en pQ.cm) à 77K d'un matériau composite sous la forme d'un fil FC1 conforme à l'invention (courbe avec les triangles pleins) et d'un matériau composite sous la forme d'un fil FCA non conforme à l'invention (courbe avec les ronds pleins), en fonction de leur diamètre respectif (en mm).There figure 2 shows the resistivity (in pQ.cm) at 77K of a composite material in the form of an FC 1 wire in accordance with the invention (curve with solid triangles) and of a composite material in the form of a wire FC A not in accordance with the invention (curve with solid circles), depending on their respective diameter (in mm).

La figure 3 montre la résistance à la rupture (en MPa) à 77K d'un matériau composite sous la forme d'un fil FC1 conforme à l'invention (courbe avec les triangles pleins) et d'un matériau composite sous la forme d'un fil FCA non conforme à l'invention (courbe avec les ronds pleins), en fonction de leur diamètre respectif (en mm).There Figure 3 shows the breaking strength (in MPa) at 77K of a composite material in the form of an FC 1 wire in accordance with the invention (curve with solid triangles) and of a composite material in the form of a FC A wire not in accordance with the invention (curve with solid circles), depending on their respective diameter (in mm).

La résistance à la rupture à 77K d'un fil composite conforme à l'invention est deux fois supérieure à celle d'un fil en cuivre pur à diamètres équivalents, tout en garantissant une faible résistivité électrique (0,38-0,50 pQ.cm). Ces valeurs de résistivité électrique sont en particulier plus faibles que celles obtenus pour des alliages ou composites de l'art antérieur présentant une résistance à la rupture similaire, mais comprenant 20 fois plus d'argent.The breaking strength at 77K of a composite wire according to the invention is twice that of a pure copper wire with equivalent diameters, while guaranteeing low electrical resistivity (0.38-0.50 pQ .cm). These electrical resistivity values are in particular lower than those obtained for alloys or composites of the prior art having a similar breaking strength, but comprising 20 times more silver.

Claims (14)

  1. A material comprising copper and silver, characterized in that it is a solid composite material containing grains of copper and grains of silver which are not mutually soluble, and in that it comprises a volume amount of silver of at least 0.1 % by volume and less than 5 % by volume relative to the total volume of said material, the copper and silver representing at least 99.9 % by volume relative to the total volume of said material, and wherein the silver and copper are in the form of grains of filament shape.
  2. The material according to claim 1, characterized in that the copper and silver are in the form of grains at least one dimension thereof being less than or equal to 500 nm.
  3. The material according to claim 1 or 2, characterized in that it has conductivity of at least 80 % IACS.
  4. The material according to any of the preceding claims, characterized in that it has a tensile strength of at least 1 GPa.
  5. The material according to any of the preceding claims, characterized in that it comprises at most 1.5 % by volume of silver relative to the total volume of said material.
  6. The material according to any of the preceding claims, characterized in that the copper grains have:
    - a length (LCu) extending in a main direction of elongation,
    - two dimensions (DCu1) and (DCu2) called orthogonal dimensions extending in two transverse directions orthogonal to each other and orthogonal to said main direction of elongation, said orthogonal dimensions (DCu1, DCu2) being less than said length (LCu) and ranging from 50 to 400 nm, and
    - two ratios (FCu1) and (FCu2) called form factors between said length (LCu) and each of the two orthogonal dimensions (DCu1) and (DCu2),said form factors (FCu1, FCu2) being greater than or equal to 75, and
    the silver grains have:
    - a length (LAg) extending in a main direction of elongation,
    - two dimensions (DAg1) and (DAg2) called orthogonal dimensions extending in two transverse directions orthogonal to each other and orthogonal to said main direction of elongation, said orthogonal dimensions (DAg1, DAg2) being less than said length (LAg) and ranging from 50 to 400 nm, and
    - two ratios (FAg1) and (FAg2) called form factors between said length (LAg) and each of the two orthogonal dimensions (DAg1) and (DAg2), said form factors (FAg1, FAg2) being greater than or equal to 75.
  7. A method for preparing a solid composite material such as defined in any of claims 1 to 6, characterized in that it comprises at least the following steps:
    i) a step to disperse micrometric particles of copper and micrometric or sub-micrometric particles of silver, in a non-solvent medium,
    ii) a drying step to form a composite powder comprising said particles of copper and silver, said powder comprising an amount of less than 5 % by volume of silver particles relative to the total volume of said powder,
    iii) a flash sintering step at a temperature of no more than 600 °C to obtain a composite solid mass, and
    iv) at least one cold drawing step to form the composite solid mass of step iii),
  8. The method according to claim 7, characterized in that the non-solvent medium at step i) is chosen from among alcohols, water, ketones and one of the mixtures thereof.
  9. The method according to claim 7 or 8, characterized in that the micrometric particles of copper have at least one of their dimensions ranging from 0.5 to 20 µm.
  10. The method according to any of claims 7 to 9, characterized in that the micrometric or sub-micrometric particles of silver are filiform particles having:
    - a length (L'Ag) extending in a main direction of elongation,
    - two dimensions (D'Ag1) and (D'Ag2) called orthogonal dimensions extending in two transverse directions orthogonal to each other and orthogonal to said main direction of elongation, said orthogonal dimensions (D'Ag1), D'Ag2) being less than said length (L'Ag), and
    - two ratios (F'Ag1) and (F'Ag2) called form factors between said length (L'Ag) and each of the two orthogonal dimensions (D'Ag1) and (D'Ag2), and
    being characterized by at least one of the following characteristics:
    - the two orthogonal dimensions (D'Ag1, D'Ag2) of the filiform particles range from 50 nm to 400 nm,
    - the length (L'Ag) ranges from 1 µm to 150 µm,
    - the form factors (F'Ag1, F'Ag2) are greater than or equal to 75.
  11. The method according to any of claims 7 to 10, characterized in that step iii) is performed at a temperature ranging from 375 to 525 °C.
  12. The method according to any of claims 7 to 10, characterized in that the composite solid mass obtained after step iii) has relative density ranging from 85 to 97 %.
  13. The method according to any of claims 8 to 13, characterized in that it further comprises a step ii') to reduce the composite powder dried at step ii), in the presence of dihydrogen.
  14. Use of a solid composite material such as defined in any of claims 1 to 6 as electrical conductor, as conductor for continuous or pulsed field magnets, in the field of intense field installations, or in the field of industrial electromagnetic forming.
EP19749620.1A 2018-07-27 2019-07-25 Copper-silver composite material Active EP3830309B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857040A FR3084376B1 (en) 2018-07-27 2018-07-27 COPPER-SILVER COMPOSITE MATERIAL
PCT/EP2019/069990 WO2020020986A1 (en) 2018-07-27 2019-07-25 Copper-silver composite material

Publications (3)

Publication Number Publication Date
EP3830309A1 EP3830309A1 (en) 2021-06-09
EP3830309C0 EP3830309C0 (en) 2024-05-22
EP3830309B1 true EP3830309B1 (en) 2024-05-22

Family

ID=63963183

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19749620.1A Active EP3830309B1 (en) 2018-07-27 2019-07-25 Copper-silver composite material

Country Status (5)

Country Link
US (1) US20210323060A1 (en)
EP (1) EP3830309B1 (en)
JP (1) JP7432577B2 (en)
FR (1) FR3084376B1 (en)
WO (1) WO2020020986A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102437192B1 (en) * 2017-08-10 2022-08-26 다나카 기킨조쿠 고교 가부시키가이샤 High-strength and high-conductivity copper alloy plate and its manufacturing method
CN114669979A (en) * 2022-05-30 2022-06-28 昆明理工大学 A kind of preparation method of copper-silver alloy with pattern on surface

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3401024A (en) * 1965-10-04 1968-09-10 Mallory & Co Inc P R Electrical contact material
JP5162383B2 (en) 2008-09-09 2013-03-13 国立大学法人東北大学 Method for producing silver-coated copper fines
JP2010065265A (en) 2008-09-10 2010-03-25 Hitachi Ltd Metal nanoparticle and method for producing the composite powder
US9017449B2 (en) 2010-12-09 2015-04-28 Carestream Health, Inc. Nanowire preparation methods, compositions, and articles
JP5202714B1 (en) 2011-11-18 2013-06-05 田中貴金属工業株式会社 Transfer substrate for forming metal wiring and method for forming metal wiring using the transfer substrate
CN102723144B (en) 2012-06-19 2013-12-18 西北有色金属研究院 Method for preparing Cu-Ag multi-core composite wire
JP6281900B2 (en) 2014-01-08 2018-02-21 国立大学法人東北大学 Method for forming functional sintered dense film and method for synthesizing nanoparticles
KR20150145892A (en) 2014-06-19 2015-12-31 (주)바이오니아 Silver Coated Copper Nano Wire and Method for Manufacturing Thereof
WO2017038465A1 (en) * 2015-08-31 2017-03-09 三井金属鉱業株式会社 Silver-coated copper powder
JP2017082263A (en) * 2015-10-26 2017-05-18 Dowaエレクトロニクス株式会社 Metal composite powder and manufacturing method thereof
CN106493353A (en) * 2016-12-06 2017-03-15 江苏大学 A kind of copper silver-based self-lubricating composite and preparation method thereof
CN106939381A (en) * 2017-03-30 2017-07-11 江苏大学 A kind of copper silver-based self-lubricating composite and preparation method thereof
KR102437192B1 (en) * 2017-08-10 2022-08-26 다나카 기킨조쿠 고교 가부시키가이샤 High-strength and high-conductivity copper alloy plate and its manufacturing method
CN109590481A (en) * 2019-01-30 2019-04-09 北京科技大学 A kind of Cu2-xMxThe high pressure method for preparing of Se alloy series thermoelectric material

Also Published As

Publication number Publication date
EP3830309C0 (en) 2024-05-22
WO2020020986A1 (en) 2020-01-30
JP2021531409A (en) 2021-11-18
FR3084376B1 (en) 2021-05-14
EP3830309A1 (en) 2021-06-09
US20210323060A1 (en) 2021-10-21
FR3084376A1 (en) 2020-01-31
JP7432577B2 (en) 2024-02-16

Similar Documents

Publication Publication Date Title
US7566414B2 (en) Method for manufacturing power-metallurgy processed Nb3Sn superconducting wire, precursor to powder-metallurgy processed Nb3Sn superconducting wire
KR101718257B1 (en) Copper alloy and process for manufacturing same
EP3559291B1 (en) Composite material containing aluminium or copper - carbon nanotubes, and production method thereof
EP3830309B1 (en) Copper-silver composite material
EP2544891B1 (en) Method for manufacturing a metal assembly
EP2927913A1 (en) Voltage non-linear resistance element
CH635459A5 (en) METHOD OF MANUFACTURING METAL COMPOSITES AND APPLICATION FOR OBTAINING A SUPERCONDUCTOR.
WO2020102539A1 (en) Scalable manufacturing of copper nanocomposites with unusual properties
FR2679806A1 (en) HIGH PERFORMANCE COPPER ALLOY ELECTRODE FOR ELECTROEROSION MACHINING AND METHOD OF MANUFACTURE.
CN111556902A (en) Aluminum alloy wire and method for manufacturing aluminum alloy wire
WO2012056598A1 (en) Spark plug
EP2853613A1 (en) Aluminium alloy with high electrical conductivity
DE102015216749A1 (en) Additive production of a molded article
WO2014057864A1 (en) Voltage nonlinear resistance element
EP3625833B1 (en) Superconductor wire based on mgb2 core with al based sheath and method of its production
WO2007147872A2 (en) Method of producing an aluminium wire covered with a copper layer, and wire obtained
Tardieu et al. Scale-Up of Silver–Copper Composite Wires by Spark Plasma Sintering and Room Temperature Wire-Drawing for Use in 100 T Triple Coil at LNCMI
Tardieu et al. High strength-high conductivity silver nanowire-copper composite wires by spark plasma sintering and wire-drawing for non-destructive pulsed fields
EP2816567B1 (en) Method for manufacturing an elongate electrically conductive member
WO2013057415A1 (en) Aluminum alloy resistant to high temperatures

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220428

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602019052600

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0047140000

Ipc: C22C0009000000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: C22C0047140000

Ipc: C22C0009000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 1/04 20060101ALI20231123BHEP

Ipc: B22F 9/24 20060101ALI20231123BHEP

Ipc: B22F 9/18 20060101ALI20231123BHEP

Ipc: B22F 9/02 20060101ALI20231123BHEP

Ipc: B22F 5/12 20060101ALI20231123BHEP

Ipc: B22F 3/16 20060101ALI20231123BHEP

Ipc: B22F 3/105 20060101ALI20231123BHEP

Ipc: B22F 1/054 20220101ALI20231123BHEP

Ipc: C22C 49/14 20060101ALI20231123BHEP

Ipc: C22C 47/14 20060101ALI20231123BHEP

Ipc: C22C 9/00 20060101AFI20231123BHEP

INTG Intention to grant announced

Effective date: 20231220

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNIVERSITE PAUL SABATIER TOULOUSE III

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019052600

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

U01 Request for unitary effect filed

Effective date: 20240624

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240730

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20240925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240822

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240922

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240823

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240522