[go: up one dir, main page]

EP2816567B1 - Method for manufacturing an elongate electrically conductive member - Google Patents

Method for manufacturing an elongate electrically conductive member Download PDF

Info

Publication number
EP2816567B1
EP2816567B1 EP14168409.2A EP14168409A EP2816567B1 EP 2816567 B1 EP2816567 B1 EP 2816567B1 EP 14168409 A EP14168409 A EP 14168409A EP 2816567 B1 EP2816567 B1 EP 2816567B1
Authority
EP
European Patent Office
Prior art keywords
metal
carbon nanotubes
metal tube
carried out
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14168409.2A
Other languages
German (de)
French (fr)
Other versions
EP2816567A1 (en
Inventor
Emilien Comoret
Christian-Eric Bruzek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexans SA
Original Assignee
Nexans SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexans SA filed Critical Nexans SA
Publication of EP2816567A1 publication Critical patent/EP2816567A1/en
Application granted granted Critical
Publication of EP2816567B1 publication Critical patent/EP2816567B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • C22C49/06Aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes

Definitions

  • the present invention relates to a method for manufacturing a conductor comprising functionalized carbon nanotubes and at least one metal, to an elongate electrically conductive element obtained by the implementation of said method and to an electrical cable comprising such a conductive element. .
  • low-voltage in particular less than 6kV
  • medium-voltage in particular 6 to 45-60 kV
  • high-voltage especially greater than 60 kV
  • the invention relates to an electrical cable having good mechanical properties and electrical conductivity.
  • US 2011/0003174 discloses a method of manufacturing an electrically conductive member comprising carbon nanotubes.
  • a method comprising a step of functionalizing carbon nanotubes to obtain functionalized carbon nanotubes, and a step of contacting said functionalized carbon nanotubes with metal particles to form a composite material, said composite material being able to be used to the manufacture of electric cables.
  • the step of functionalization of the carbon nanotubes according to this process makes it possible to obtain carbon nanotubes which have, on the surface, particular chemical groups, such as enol functions.
  • this method does not describe the steps for the manufacture of an electrical cable from said composite material, and therefore does not guarantee an electrical cable having good mechanical and electrical properties.
  • the object of the present invention is to overcome the disadvantages of the techniques of the prior art by proposing a method of manufacturing an electrical conductor comprising functionalized carbon nanotubes and at least one metal, said method being easy to implement and to guarantee and maintain a good mechanical and electrical charge transfer between the metal and the carbon nanotubes and thus to obtain a conductor with good mechanical and electrical properties.
  • an elongated electrically conductive element comprising functionalized carbon nanotubes and at least one metal can thus be easily formed, while having good mechanical properties and electrical conductivity.
  • Carbon nanotubes are in particular an allotropic form of carbon belonging to the family of fullerenes.
  • the carbon nanotubes are layers of graphene wound on themselves and closed at their ends by half-spheres similar to fullerenes.
  • the carbon nanotubes comprise both single-walled nanotubes ( single wall carbon nanotubes, SWNTs ) comprising a single sheet of graphene and multiwall or multiwall nanotubes (in English: Multi Wall Carbon Nanotubes, MWNT ) comprising several sheets of graphene nested inside each other in the manner of Russian dolls, or a single sheet of graphene rolled up several times on itself.
  • “Functionalized” carbon nanotubes are understood to mean carbon nanotubes that have chemical groups on the surface. Said chemical groups may represent sites of attachment between the carbon nanotubes, and / or between the metal and the carbon nanotubes during the implementation of step i).
  • Such chemical groups may be chosen from SO 3 H, COOH, PO 3 H 2 , OOH, OH, CHO, CN, COCI, X, COSH, SH, R'CHOH, NHR ', COOR', SR ', CONHR'. , OR ', NHCO 2 R' and R ", where X is a halogen, R 'is selected from hydrogen, alkyl, aryl, arylSH, cycloalkyl, aralkyl, cycloaryl and poly (alkylether) and R" is selected from fluoroalkyl, fluoroaryl , fluorocycloalkyl and fluoroaralkyl. Carbon nanotubes are thus functionalized by the direct incorporation on the surface of such chemical groups. This modification represents a covalent surface modification.
  • commercial grades of functionalized carbon nanotubes can be used directly during the implementation of step i) of the process according to the invention.
  • This prior step a) makes it possible to obtain functionalized carbon nanotubes which will be used during step i).
  • the methods of functionalization of carbon nanotubes are well known to those skilled in the art.
  • said surface oxidation can be carried out by dissolving nonfunctionalized carbon nanotubes by ultrasonically dispersing them in a solvent such as a lower alcohol (i.e., an alcohol having from 1 to 5 carbon atoms), and adding to the dispersion an oxidizing agent such as the nitric acid / sulfuric acid mixture or hydrogen peroxide.
  • Functionalized carbon nanotubes having, on the surface, oxygenated chemical groups of the type consisting of diketones, ethers, carboxylic acids, esters, hydroxyls, enols, etc., are thus obtained.
  • the functionalization of the carbon nanotubes advantageously improves the dispersion of the carbon nanotubes in the composite mixture and, therefore, promotes the transfer of mechanical charge and between the carbon nanotubes, and between the metal and the carbon nanotubes.
  • carbon nanotubes as such i.e., non-functionalized carbon nanotubes
  • carbon nanotubes even if they have excellent electrical, thermal and mechanical properties, are difficult to disperse in the composite mixture.
  • the amount of functionalized carbon nanotubes in the composite mixture of step i) of the process according to the invention may range from about 0.3 to 15% by weight and preferably from 5 to 10% by weight. % about.
  • the metal used in step i) may be chosen from among copper, aluminum, silver, a copper alloy, an aluminum alloy, a silver alloy and one of their mixtures.
  • the mixture according to step i) is made by solid route.
  • said solid mixture is made by mechanical mixing of the functionalized carbon nanotubes with at least one metal, said functionalized carbon nanotubes and said metal being in the form of powders.
  • said mechanical mixture can be carried out at room temperature, and preferably under a non-oxidizing atmosphere.
  • Said mechanical mixture of carbon nanotubes functionalized with at least one metal is a method of mixing powders that is easy to implement, and can be carried out using, for example, means such as a planetary mixer, an ultrasonic apparatus, a steel or ceramic ball mixer, said means being able to be used alone or in combination.
  • the mixture according to step i) is produced by liquid means, that is to say by placing in solution the functionalized carbon nanotubes and at least one metal.
  • Said liquid mixture may in particular be carried out by applying ultrasound to the functionalized carbon nanotubes and to at least one metal placed in solution.
  • This method is particularly suitable in the case where the functionalized carbon nanotubes of step 1a) have been previously functionalized according to step a) by surface oxidation.
  • This mixing method allows the functionalized carbon nanotubes to be implanted directly between the metal particles and not simply deposited on the surface of the metal particles.
  • this mixing step i) is carried out by solid or liquid route (first and second variants), the nanotube agglomerates of functionalized carbon break and can thus distribute homogeneously in the composite mixture.
  • the metal used in step i) comprises metal particles having an average particle size size ranging from 10 nm to 50 ⁇ m and preferably from 10 nm. at 50 nm.
  • step 3b) can be carried out by techniques well known to those skilled in the art such as mechanical stirring, magnetic stirring or the use of an electromagnetic current.
  • the metal used in step i) is in the form of a brick.
  • the functionalized carbon nanotubes used in step i) having an average diameter of diameter ranging from 1 nm to 50 nm.
  • Step ii) makes it possible to densify the composite mixture of step i), and thus to obtain a solid mass, in particular of the one-piece type such as, for example, a solid bar.
  • step ii) can be performed by sintering, that is to say by consolidation by action of heat.
  • Step ii) is preferably carried out by flash sintering.
  • step ii) is carried out by flash sintering at a pressure that may range from about 10 to 100 bars and / or at a temperature that may range from about 400 to 900 ° C.
  • a pressure that may range from about 10 to 100 bars and / or at a temperature that may range from about 400 to 900 ° C.
  • the metal used is aluminum, it is preferred to apply a temperature ranging from 400 to 550 ° C and in the case where the metal used is copper, it is preferred to apply a temperature ranging from 700 to 900 ° C about.
  • the flash sintering time may preferably range from a few seconds to a few hours.
  • step ii) is carried out by flash sintering, the control of the diffusion of the functionalized carbon nanotubes in the composite mixture is easier and the risk of degradation of the nanotubes carbon / metal interfaces is avoided.
  • the chemical groups serving as attachment sites on the surface of the carbon nanotubes react with the metal during this step ii), thus making it possible to obtain a good interface between the metal and the carbon nanotubes.
  • step iii a solid element is introduced into a metal tube according to step iii), this solid element being obtained directly or indirectly from the solid mass of step ii).
  • the solid element of step iii) is the solid mass as obtained in step ii).
  • step iii) is obtained according to at least one intermediate step between step ii) and step iii).
  • the solid element of step iii) comprises granules.
  • Step ii-1) of the process according to the invention may be carried out by grinding, using apparatus such as ball mill, hammer, grinding wheel, knives, jet gas or the using any other grinding system capable of transforming the solid mass of step ii) into granules.
  • This transformation step ii-1) makes it possible to obtain a homogeneous distribution of the functionalized carbon nanotubes in the composite mixture following the steps of mixing i) and forming a solid mass ii).
  • the granules have an average size ranging from about 1 to 200 microns, and preferably from 1 to about 50 microns. This facilitates the flow of the granules in the metal tube and the deformation of said metal tube containing said granules in the following steps iii) and iv).
  • the granules are too small, that is to say less than 1 micron size, they clog the tools with which they are in contact.
  • the granules are too large, that is to say greater than 200 ⁇ m in size, the stresses suffered by said granules during step iv) of deformation of the metal tube are difficult to achieve. control and may be too important and, as a result, lead to the degradation of nanotubes carbon / metal interfaces.
  • the solid element of step iii) is a solid mass different from the solid mass of step ii).
  • This step ii-2) makes it possible to obtain a solid mass, in particular of the one-piece type such as for example a solid bar.
  • the compacting is preferably carried out using a hydraulic press or an isostatic press, cold or hot. Said compaction is preferably carried out with the aid of a hydraulic press and / or cold, to allow easier handling of the composite mixture.
  • the solid mass thus formed according to this step ii-2) can be more easily and more rapidly introduced than the granules in the metal tube during the next step iii).
  • step ii) or of step ii-2), or the granules of step ii-1) are then introduced into a metal tube according to step iii) of the process according to the invention .
  • the metal tube of step iii) is a metal tube whose metal is selected from among copper, aluminum, silver, a copper alloy, an aluminum alloy, a silver alloy and a mixture thereof.
  • step iv) of deformation of the metal tube of step iii) makes it possible to deform said metal tube, and thus to obtain a metal tube with the desired dimensions and shape.
  • step iv) is carried out by spinning and / or by drawing and / or by rolling and / or hammering.
  • step iv) the solid element of step iii) moves and is oriented in the metal tube so as to minimize its deformation and thus the stresses it undergoes.
  • Stage v) of heating the metal tube makes it possible to expand the outer casing of said metal tube so as to create space for the granules or the solid mass to be able to move again without stress during a deformation step higher.
  • the heating according to step v) can be carried out at a temperature ranging from about 200 to 500 ° C., and preferably from about 200 to 300 ° C., optionally under a neutral or reducing atmosphere, in particular at using an electric oven, an induction oven or a gas oven.
  • a temperature ranging from about 200 to 500 ° C., and preferably from about 200 to 300 ° C. optionally under a neutral or reducing atmosphere, in particular at using an electric oven, an induction oven or a gas oven.
  • a temperature range carbon nanotubes as well as nanotube carbon / metal interfaces are little or not solicited.
  • said carbon / metal nanotube interfaces and the functionalization of the carbon nanotubes are preserved during said step v).
  • the method further comprises step vi) deformation of said metal tube.
  • Step vi) of deformation of the metal tube serves to deform said metal tube, and thus to obtain a metal tube of the desired size and shape.
  • step vi) is carried out by spinning and / or drawing and / or by rolling and / or hammering.
  • step vi the solid element of step iii) moves and is oriented in the metal tube so as to minimize its deformation and thus the stresses it undergoes.
  • steps v) and vi) are performed as many times as necessary to obtain the metal tube with the desired final dimensions and shape.
  • the heating of the metal tube can be achieved by conventional sintering, flash sintering or melting. It makes it possible to redensify the solid element of step iii), and thus to obtain and / or maintain a good interface between the metal and the carbon nanotubes.
  • step vii) is carried out by flash sintering.
  • the final heating step vii) of the deformed metal tube of step iv) or vi) allows to "reactivate" the nanotube interfaces of carbon / metal if they have been slightly deteriorated during steps iv), and v) and vi) if they exist.
  • the nanotube carbon / metal interfaces are not or very little mechanically solicited and they are preserved throughout the process.
  • This method then makes it possible to obtain an elongated electrically conductive element having good electrical properties, especially in terms of conductivity, and mechanical properties.
  • the present invention also relates to an elongate electrically conductive element obtained by the method as defined in the present invention.
  • the process according to the invention makes it possible to obtain an elongate electrically conductive element having a mechanical strength 2 to 3 times greater than that obtained with an elongated electrically conductive element formed solely of a metal of the copper or aluminum type. , silver or one of their alloy, and an electrical conductivity increased by about 20% with respect to the latter.
  • the present invention also relates to an electrical cable comprising an elongate electrically conductive element obtained by the method as defined in the present invention.
  • the cable has improved mechanical and electrical properties.
  • the electric cable according to the invention may be an electric cable type energy cable.
  • the elongate electrical conductive element of the invention is surrounded by a first semiconductor layer, the first semiconductor layer being surrounded by an electrically insulating layer, and the electrically insulating layer being surrounded by a second semiconductor layer. -conductrice.
  • the first semiconductor layer, the electrically insulating layer and the second semiconductor layer constitute a three-layer insulation.
  • the electrically insulating layer is in direct physical contact with the first semiconductor layer
  • the second semiconductor layer is in direct physical contact with the electrically insulating layer.
  • the electrical cable of the invention may further comprise a metal screen surrounding the second semiconductor layer.
  • This metal screen may be a "wired” screen composed of a set of copper or aluminum conductors arranged around and along the second semiconductor layer, a so-called “ribbon” screen composed of one or more ribbons conductive metal laid helically around the second semiconductor layer, or a so-called “waterproof” screen of metal tube type surrounding the second semiconductor layer.
  • This last type of screen makes it possible in particular to provide a moisture barrier that tends to penetrate the electrical cable radially.
  • All types of metal screens can play the role of grounding the electric cable and can thus carry fault currents, for example in the event of a short circuit in the network concerned.
  • the cable of the invention may comprise an outer protective sheath surrounding the second semiconductor layer, or more particularly surrounding said metal screen when it exists.
  • This outer protective sheath can be made conventionally from suitable thermoplastic materials such as HDPE, MDPE or LLDPE; or else materials retarding the propagation of the flame or resistant to the propagation of the flame. In particular, if they do not contain halogen, it is called cladding type HFFR (for the Anglicism " Halogen Free Flame Retardant ").
  • Other layers such as swelling layers in the presence of moisture may be added between the second semiconductor layer and the metal screen when it exists and / or between the metal screen and the outer sheath where they exist , these layers for insuring the longitudinal tightness of the electric cable to water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Powder Metallurgy (AREA)

Description

La présente invention se rapporte à un procédé de fabrication d'un conducteur comprenant des nanotubes de carbone fonctionnalisés et au moins un métal, à un élément électriquement conducteur allongé obtenu par la mise en oeuvre dudit procédé et à un câble électrique comprenant un tel élément conducteur.The present invention relates to a method for manufacturing a conductor comprising functionalized carbon nanotubes and at least one metal, to an elongate electrically conductive element obtained by the implementation of said method and to an electrical cable comprising such a conductive element. .

Elle s'applique typiquement mais non exclusivement, aux câbles d'énergie à basse tension (notamment inférieure à 6kV) ou à moyenne tension (notamment de 6 à 45-60 kV) ou à haute tension (notamment supérieure à 60 kV, et pouvant aller jusqu'à 800 kV), qu'ils soient en courant continu ou alternatif, dans les domaines du transport d'électricité aérien, sous-marin, terrestre et de l'aéronautique.It typically, but not exclusively, applies to low-voltage (in particular less than 6kV) or medium-voltage (in particular 6 to 45-60 kV) or high-voltage (especially greater than 60 kV) energy cables, and may up to 800 kV), whether DC or AC, in the fields of overhead, underwater, terrestrial and aeronautical transmission.

Plus particulièrement, l'invention concerne un câble électrique présentant de bonnes propriétés mécaniques et de conductivité électrique.More particularly, the invention relates to an electrical cable having good mechanical properties and electrical conductivity.

US 2011/0003174 divulgue un procédé de fabrication d'un élément électriquement conducteur comprenant des nanotubes de carbone. US 2011/0003174 discloses a method of manufacturing an electrically conductive member comprising carbon nanotubes.

Du document FR 2 950 333 A1 est connu un procédé comprenant une étape de fonctionnalisation de nanotubes de carbone pour obtenir des nanotubes de carbone fonctionnalisés, et une étape de mise en contact desdits nanotubes de carbone fonctionnalisés avec des particules métalliques pour former un matériau composite, ledit matériau composite pouvant être utilisé pour la fabrication de câbles électriques. L'étape de fonctionnalisation des nanotubes de carbone selon ce procédé permet d'obtenir des nanotubes de carbone qui présentent en surface des groupements chimiques particuliers, tels que des fonctions énols. Toutefois, ce procédé ne décrit pas les étapes permettant la fabrication d'un câble électrique à partir dudit matériau composite, et de ce fait, ne permet pas de garantir un câble électrique ayant de bonnes propriétés mécaniques et électriques.Of the document FR 2 950 333 A1 is known a method comprising a step of functionalizing carbon nanotubes to obtain functionalized carbon nanotubes, and a step of contacting said functionalized carbon nanotubes with metal particles to form a composite material, said composite material being able to be used to the manufacture of electric cables. The step of functionalization of the carbon nanotubes according to this process makes it possible to obtain carbon nanotubes which have, on the surface, particular chemical groups, such as enol functions. However, this method does not describe the steps for the manufacture of an electrical cable from said composite material, and therefore does not guarantee an electrical cable having good mechanical and electrical properties.

Le but de la présente invention est de pallier les inconvénients des techniques de l'art antérieur en proposant un procédé de fabrication d'un conducteur électrique comprenant des nanotubes de carbone fonctionnalisés et au moins un métal, ledit procédé étant facile à mettre en oeuvre et permettant de garantir et de maintenir un bon transfert de charge mécanique et électrique entre le métal et les nanotubes de carbone et ainsi, d'obtenir un conducteur avec de bonnes propriétés mécaniques et électriques.The object of the present invention is to overcome the disadvantages of the techniques of the prior art by proposing a method of manufacturing an electrical conductor comprising functionalized carbon nanotubes and at least one metal, said method being easy to implement and to guarantee and maintain a good mechanical and electrical charge transfer between the metal and the carbon nanotubes and thus to obtain a conductor with good mechanical and electrical properties.

La présente invention a pour objet un procédé de fabrication d'un élément électriquement conducteur allongé comprenant des nanotubes de carbone fonctionnalisés et au moins un métal, comprenant l'étape suivante :

  1. i) mélanger des nanotubes de carbone fonctionnalisés avec au moins un métal, pour obtenir un mélange composite,
    ledit procédé étant caractérisé en ce qu'il comprend en outre les étapes suivantes :
  2. ii) former une masse solide à partir du mélange composite de l'étape i),
  3. iii) introduire dans un tube métallique, un élément solide obtenu à partir de la masse solide de l'étape ii)
  4. iv) déformer ledit tube métallique de l'étape iii), pour obtenir un élément électriquement conducteur allongé.
The present invention relates to a method of manufacturing an elongated electrically conductive element comprising functionalized carbon nanotubes and at least one metal, comprising the following step:
  1. i) mixing functionalized carbon nanotubes with at least one metal, to obtain a composite mixture,
    said method being characterized in that it further comprises the following steps:
  2. ii) forming a solid mass from the composite mixture of step i),
  3. iii) introducing into a metal tube, a solid element obtained from the solid mass of step ii)
  4. iv) deforming said metal tube of step iii), to obtain an elongated electrically conductive member.

Grâce au procédé de l'invention, un élément électriquement conducteur allongé comprenant des nanotubes de carbone fonctionnalisés et au moins un métal peut être ainsi facilement formé, tout en présentant de bonnes propriétés mécaniques et de conductivité électrique.Thanks to the method of the invention, an elongated electrically conductive element comprising functionalized carbon nanotubes and at least one metal can thus be easily formed, while having good mechanical properties and electrical conductivity.

Les nanotubes de carbone sont notamment une forme allotropique du carbone appartenant à la famille des fullerènes.Carbon nanotubes are in particular an allotropic form of carbon belonging to the family of fullerenes.

Plus particulièrement, les nanotubes de carbone sont des feuillets de graphène enroulés sur eux-mêmes et fermés à leur extrémité par des demi-sphères semblables à des fullerènes. Dans la présente invention, les nanotubes de carbone comprennent aussi bien les nanotubes monoparois ou monofeuillets (en anglais : Single Wall Carbon Nanotubes, SWNT) comprenant un seul feuillet de graphène et les nanotubes multiparois ou multifeuillets (en anglais : Multi Wall Carbon Nanotubes, MWNT) comprenant plusieurs feuillets de graphène emboîtés les uns dans les autres à la manière des poupées russes, ou bien un seul feuillet de graphène enroulé plusieurs fois sur lui-même.More particularly, the carbon nanotubes are layers of graphene wound on themselves and closed at their ends by half-spheres similar to fullerenes. In the present invention, the carbon nanotubes comprise both single-walled nanotubes ( single wall carbon nanotubes, SWNTs ) comprising a single sheet of graphene and multiwall or multiwall nanotubes (in English: Multi Wall Carbon Nanotubes, MWNT ) comprising several sheets of graphene nested inside each other in the manner of Russian dolls, or a single sheet of graphene rolled up several times on itself.

On entend par nanotubes de carbone « fonctionnalisés » des nanotubes de carbone qui présentent en surface des groupements chimiques. Lesdits groupements chimiques peuvent représenter des sites d'accroche entre les nanotubes de carbone, et/ou entre le métal et les nanotubes de carbone lors de la mise en oeuvre de l'étape i)."Functionalized" carbon nanotubes are understood to mean carbon nanotubes that have chemical groups on the surface. Said chemical groups may represent sites of attachment between the carbon nanotubes, and / or between the metal and the carbon nanotubes during the implementation of step i).

De tels groupements chimiques peuvent être choisis parmi SO3H, COOH, PO3H2, OOH, OH, CHO, CN, COCI, X, COSH, SH, R'CHOH, NHR', COOR', SR', CONHR', OR', NHCO2R' et R", où X est un halogène, R' est choisi parmi hydrogène, alkyle, aryle, aryleSH, cycloalkyle, aralkyle, cycloaryle et poly(alkyléther) et R" est choisi parmi fluoroalkyle, fluoroaryle, fluorocycloalkyle et fluoroaralkyle. Les nanotubes de carbone sont ainsi fonctionnalisés par l'incorporation directe en surface de tels groupements chimiques. Cette modification représente une modification de surface covalente.Such chemical groups may be chosen from SO 3 H, COOH, PO 3 H 2 , OOH, OH, CHO, CN, COCI, X, COSH, SH, R'CHOH, NHR ', COOR', SR ', CONHR'. , OR ', NHCO 2 R' and R ", where X is a halogen, R 'is selected from hydrogen, alkyl, aryl, arylSH, cycloalkyl, aralkyl, cycloaryl and poly (alkylether) and R" is selected from fluoroalkyl, fluoroaryl , fluorocycloalkyl and fluoroaralkyl. Carbon nanotubes are thus functionalized by the direct incorporation on the surface of such chemical groups. This modification represents a covalent surface modification.

Selon une première variante, des grades commerciaux de nanotubes de carbone fonctionnalisés peuvent être utilisés directement lors de la mise en oeuvre de l'étape i) du procédé conforme à l'invention.According to a first variant, commercial grades of functionalized carbon nanotubes can be used directly during the implementation of step i) of the process according to the invention.

Selon une deuxième variante, le procédé conforme à l'invention comprend en outre, préalablement à l'étape i), l'étape suivante :

  1. a) fonctionnaliser des nanotubes de carbone.
According to a second variant, the method according to the invention further comprises, prior to step i), the following step:
  1. a) functionalize carbon nanotubes.

Etape a)Step a)

Cette étape préalable a) permet d'obtenir des nanotubes de carbone fonctionnalisés qui seront utilisés lors de l'étape i). Les méthodes de fonctionnalisation des nanotubes de carbone sont bien connues de l'homme du métier. On citera à titre d'exemple, l'oxydation de surface des nanotubes de carbone, qui est actuellement une des méthodes les plus utilisées pour fonctionnaliser lesdits nanotubes de carbone. En particulier, ladite oxydation de surface peut être effectuée en mettant en solution des nanotubes de carbone non fonctionnalisés, en les dispersant par ultrasons dans un solvant tel qu'un alcool inférieur (c'est-à-dire un alcool ayant de 1 à 5 atomes de carbone), et en ajoutant à la dispersion un agent oxydant tel que le mélange acide nitrique/acide sulfurique ou de l'eau oxygénée. On obtient ainsi des nanotubes de carbone fonctionnalisés présentant en surface des groupements chimiques oxygénés de type groupements dicétones, éthers, acides carboxyliques, esters, hydroxyles, énols, etc...This prior step a) makes it possible to obtain functionalized carbon nanotubes which will be used during step i). The methods of functionalization of carbon nanotubes are well known to those skilled in the art. By way of example, mention may be made of the surface oxidation of carbon nanotubes, which is currently one of the most widely used methods for functionalizing said carbon nanotubes. In particular, said surface oxidation can be carried out by dissolving nonfunctionalized carbon nanotubes by ultrasonically dispersing them in a solvent such as a lower alcohol (i.e., an alcohol having from 1 to 5 carbon atoms), and adding to the dispersion an oxidizing agent such as the nitric acid / sulfuric acid mixture or hydrogen peroxide. Functionalized carbon nanotubes having, on the surface, oxygenated chemical groups of the type consisting of diketones, ethers, carboxylic acids, esters, hydroxyls, enols, etc., are thus obtained.

La fonctionnalisation des nanotubes de carbone améliore avantageusement la dispersion des nanotubes de carbone dans le mélange composite et de ce fait, favorise le transfert de charge mécanique et électrique entre les nanotubes de carbone, et entre le métal et les nanotubes de carbone.The functionalization of the carbon nanotubes advantageously improves the dispersion of the carbon nanotubes in the composite mixture and, therefore, promotes the transfer of mechanical charge and between the carbon nanotubes, and between the metal and the carbon nanotubes.

En effet, les nanotubes de carbone en tant que tels (i.e. nanotubes de carbones non fonctionnalisés), même s'ils présentent d'excellentes propriétés électriques, thermiques et mécaniques, se dispersent difficilement dans le mélange composite. L'enchevêtrement des nanotubes de carbone en pelotes, associé à une faible réactivité de surface, empêche leur dispersion. Il est donc avantageux d'avoir des nanotubes de carbone dont la surface est modifiée de façon covalente.Indeed, carbon nanotubes as such (i.e., non-functionalized carbon nanotubes), even if they have excellent electrical, thermal and mechanical properties, are difficult to disperse in the composite mixture. The entanglement of carbon nanotubes in balls, combined with a low surface reactivity, prevents their dispersion. It is therefore advantageous to have carbon nanotubes whose surface is covalently modified.

Etape i)Step i)

Dans un mode de réalisation particulier, la quantité de nanotubes de carbone fonctionnalisés dans le mélange composite de l'étape i) du procédé conforme à l'invention peut aller de 0,3 à 15% en poids environ et de préférence de 5 à 10% environ.In a particular embodiment, the amount of functionalized carbon nanotubes in the composite mixture of step i) of the process according to the invention may range from about 0.3 to 15% by weight and preferably from 5 to 10% by weight. % about.

Au-delà de 15% en poids de nanotubes de carbone dans le mélange composite, on observe une diminution du taux de densification de la masse solide obtenue lors de l'étape ii), liée à une agglomération trop importante des nanotubes de carbone fonctionnalisés dans le mélange composite, induisant la formation de pores dans ladite masse solide et ainsi, la dégradation de ses propriétés électriques et mécaniques.Beyond 15% by weight of carbon nanotubes in the composite mixture, there is a decrease in the densification rate of the solid mass obtained in step ii), linked to excessive agglomeration of the functionalized carbon nanotubes in the composite mixture, inducing the formation of pores in said solid mass and thus the degradation of its electrical and mechanical properties.

Dans un mode de réalisation particulier, le métal utilisée dans l'étape i) peut être choisi parmi le cuivre, l'aluminium, l'argent, un alliage de cuivre, un alliage d'aluminium, un alliage d'argent et un de leurs mélanges.In a particular embodiment, the metal used in step i) may be chosen from among copper, aluminum, silver, a copper alloy, an aluminum alloy, a silver alloy and one of their mixtures.

Selon une première variante, le mélange selon l'étape i) est réalisé par voie solide.According to a first variant, the mixture according to step i) is made by solid route.

Dans un mode de réalisation particulier, ledit mélange par voie solide est effectué par mélange mécanique des nanotubes de carbone fonctionnalisés avec au moins un métal, lesdits nanotubes de carbone fonctionnalisés et ledit métal étant sous forme de poudres.In a particular embodiment, said solid mixture is made by mechanical mixing of the functionalized carbon nanotubes with at least one metal, said functionalized carbon nanotubes and said metal being in the form of powders.

Dans un mode de réalisation particulier, ledit mélange mécanique peut être réalisé à température ambiante, et de préférence sous atmosphère non oxydante.In a particular embodiment, said mechanical mixture can be carried out at room temperature, and preferably under a non-oxidizing atmosphere.

Ledit mélange mécanique des nanotubes de carbone fonctionnalisés avec au moins un métal est une méthode de mélange des poudres facile à mettre en oeuvre, et peut être effectuée à l'aide notamment de moyens tels qu'un mélangeur planétaire, un appareil à ultrasons, un mélangeur à boules en acier ou en céramique, lesdits moyens pouvant être utilisés seuls ou en combinaison.Said mechanical mixture of carbon nanotubes functionalized with at least one metal is a method of mixing powders that is easy to implement, and can be carried out using, for example, means such as a planetary mixer, an ultrasonic apparatus, a steel or ceramic ball mixer, said means being able to be used alone or in combination.

Selon une deuxième variante, le mélange selon l'étape i) est réalisé par voie liquide, c'est-à-dire en plaçant en solution les nanotubes de carbone fonctionnalisés et au moins un métal. Ledit mélange par voie liquide peut être notamment effectué en appliquant des ultrasons aux nanotubes de carbone fonctionnalisés et à au moins un métal placés en solution.According to a second variant, the mixture according to step i) is produced by liquid means, that is to say by placing in solution the functionalized carbon nanotubes and at least one metal. Said liquid mixture may in particular be carried out by applying ultrasound to the functionalized carbon nanotubes and to at least one metal placed in solution.

Lorsque ledit mélange de l'étape i) est effectué par application d'ultrasons, il s'effectue préférentiellement selon les sous-étapes suivantes :

  • 1a) mettre en solution les nanotubes de carbone fonctionnalisés, et les disperser par ultrasons, notamment pendant au moins 1 heure, dans un solvant tel qu'un alcool inférieur, pour former une suspension homogène,
  • 2a) ajouter au moins un sel de métal à la suspension homogène telle qu'obtenue à l'étape 1a), et appliquer des ultrasons, notamment pendant 1 à 3 heures,
  • 3a) évaporer le solvant, notamment à une température pouvant aller de 100°C à 250°C environ, de préférence à l'air, pour obtenir une poudre,
  • 4a) calciner la poudre obtenue à l'étape 3a), notamment à une température pouvant aller de 250°C à 500°C environ, pour obtenir une poudre calcinée,
  • 5a) réduire la poudre calcinée obtenue à l'étape 4a), notamment sous hydrogène.
When said mixture of step i) is carried out by the application of ultrasound, it is preferentially carried out according to the following substeps:
  • 1a) dissolving the functionalized carbon nanotubes, and dispersing them ultrasonically, in particular for at least 1 hour, in a solvent such as a lower alcohol, to form a homogeneous suspension,
  • 2a) adding at least one metal salt to the homogeneous suspension as obtained in step 1a), and applying ultrasound, in particular for 1 to 3 hours,
  • 3a) evaporating the solvent, especially at a temperature ranging from about 100 ° C. to 250 ° C., preferably in air, to obtain a powder,
  • 4a) calcining the powder obtained in step 3a), in particular at a temperature ranging from 250 ° C. to 500 ° C., to obtain a calcined powder,
  • 5a) reducing the calcined powder obtained in step 4a), in particular under hydrogen.

Cette méthode est particulièrement adaptée dans le cas où les nanotubes de carbone fonctionnalisés de l'étape 1a) ont été préalablement fonctionnalisés selon l'étape a) par oxydation de surface.This method is particularly suitable in the case where the functionalized carbon nanotubes of step 1a) have been previously functionalized according to step a) by surface oxidation.

Cette méthode de mélange permet aux nanotubes de carbone fonctionnalisés d'être implantés directement entre les particules de métal et non simplement déposés en surface des particules de métal.This mixing method allows the functionalized carbon nanotubes to be implanted directly between the metal particles and not simply deposited on the surface of the metal particles.

Lorsque cette étape de mélange i) est effectuée par voie solide ou par voie liquide (première et deuxième variantes), les agglomérats de nanotubes de carbone fonctionnalisés se cassent et peuvent ainsi se répartir de manière homogène dans le mélange composite.When this mixing step i) is carried out by solid or liquid route (first and second variants), the nanotube agglomerates of functionalized carbon break and can thus distribute homogeneously in the composite mixture.

Dans un mode de réalisation particulier de ces première et deuxième variantes, le métal utilisé lors de l'étape i) comprend des particules de métal présentant une taille moyenne de diamètre de particules allant de 10 nm à 50 µm et de préférence, de 10 nm à 50 nm.In a particular embodiment of these first and second variants, the metal used in step i) comprises metal particles having an average particle size size ranging from 10 nm to 50 μm and preferably from 10 nm. at 50 nm.

Selon une troisième variante, le mélange selon l'étape i) est réalisé par voie fondue, c'est-à-dire en mélangeant des nanotubes de carbone fonctionnalisés avec au moins un métal fondu. Ledit mélange par voie fondue peut être préférentiellement réalisé selon les sous-étapes suivantes :

  • 1b) chauffer le métal à une température supérieure à sa température de fusion, de manière à former une solution liquide de métal fondu,
  • 2b) couler la solution liquide de métal fondu telle qu'obtenue à l'étape 1b), dans les nanotubes de carbone fonctionnalisés ou introduire les nanotubes de carbone fonctionnalisés dans la solution liquide de métal fondu tel qu'obtenue à l'étape 1b), et
  • 3b) mélanger les nanotubes de carbone fonctionnalisés avec la solution liquide de métal fondu telle qu'obtenue à l'étape 2b).
According to a third variant, the mixture according to step i) is carried out by molten means, that is to say by mixing functionalized carbon nanotubes with at least one molten metal. Said melt blend may be preferably carried out according to the following sub-steps:
  • 1b) heating the metal to a temperature above its melting temperature, so as to form a molten metal liquid solution,
  • 2b) casting the liquid solution of molten metal as obtained in step 1b), in the functionalized carbon nanotubes or introducing the functionalized carbon nanotubes in the molten metal liquid solution as obtained in step 1b) , and
  • 3b) mixing the functionalized carbon nanotubes with the molten metal liquid solution as obtained in step 2b).

Selon cette troisième variante, le mélange de l'étape 3b) peut être effectué par des techniques bien connues de l'homme du métier telles que le brassage mécanique,le brassage magnétique ou l'utilisation d'un courant électromagnétique.According to this third variant, the mixing of step 3b) can be carried out by techniques well known to those skilled in the art such as mechanical stirring, magnetic stirring or the use of an electromagnetic current.

Dans un mode de réalisation particulier de cette troisième variante, le métal utilisé lors de l'étape i) est sous forme de brique.In a particular embodiment of this third variant, the metal used in step i) is in the form of a brick.

Dans un mode de réalisation particulier de l'invention, les nanotubes de carbone fonctionnalisés utilisés lors de l'étape i) présentant une taille moyenne de diamètre allant de 1 nm à 50 nm.In a particular embodiment of the invention, the functionalized carbon nanotubes used in step i) having an average diameter of diameter ranging from 1 nm to 50 nm.

Etape ii)Step ii)

L'étape ii) permet de densifier le mélange composite de l'étape i), et ainsi d'obtenir une masse solide, notamment de type monobloc tel que par exemple un barreau massif.Step ii) makes it possible to densify the composite mixture of step i), and thus to obtain a solid mass, in particular of the one-piece type such as, for example, a solid bar.

Dans un mode de réalisation particulier, l'étape ii) peut être réalisée par frittage, c'est-à-dire par consolidation par action de la chaleur.In a particular embodiment, step ii) can be performed by sintering, that is to say by consolidation by action of heat.

Il existe globalement deux techniques de frittage : le frittage conventionnel et le frittage flash. L'étape ii) est de préférence effectuée par frittage flash.There are generally two sintering techniques: conventional sintering and flash sintering. Step ii) is preferably carried out by flash sintering.

La différence majeure entre le frittage conventionnel et le frittage flash réside dans le fait que la source de chaleur n'est pas externe mais qu'un courant électrique (continu, continu pulsé ou alternatif), appliqué via des électrodes, passe à travers l'enceinte de pressage conductrice et également dans les cas appropriés, à travers l'échantillon. C'est ce courant électrique qui va chauffer l'échantillon, directement en son sein. De façon générale, le frittage flash permet de consolider des matériaux en des temps beaucoup plus brefs et avec une densité souvent bien meilleure que le frittage conventionnel.The major difference between conventional sintering and flash sintering is that the heat source is not external but that an electric current (continuous, pulsed or alternating DC), applied via electrodes, passes through the conductive pressing enclosure and also in appropriate cases, through the sample. It is this electric current that will heat the sample, directly within it. In general, flash sintering makes it possible to consolidate materials in much shorter times and with a density that is often much better than conventional sintering.

Dans un mode de réalisation particulier, l'étape ii) est réalisée par frittage flash à une pression pouvant aller de 10 à 100 bars environ et/ou à une température pouvant aller de 400 à 900°C environ. Dans le cas où le métal utilisé est l'aluminium, on préfèrera appliquer une température pouvant aller de 400 à 550°C environ et dans le cas où le métal utilisé est le cuivre, on préfèrera appliquer une température pouvant aller de 700 à 900°C environ. Le temps de frittage flash peut aller de préférence de quelques secondes à quelques heures environ.In a particular embodiment, step ii) is carried out by flash sintering at a pressure that may range from about 10 to 100 bars and / or at a temperature that may range from about 400 to 900 ° C. In the case where the metal used is aluminum, it is preferred to apply a temperature ranging from 400 to 550 ° C and in the case where the metal used is copper, it is preferred to apply a temperature ranging from 700 to 900 ° C about. The flash sintering time may preferably range from a few seconds to a few hours.

Lorsque l'étape ii) est réalisée par frittage flash, le contrôle de la diffusion des nanotubes de carbone fonctionnalisés dans le mélange composite est plus facile et le risque de dégradation des interfaces nanotubes de carbone /métal est évité.When step ii) is carried out by flash sintering, the control of the diffusion of the functionalized carbon nanotubes in the composite mixture is easier and the risk of degradation of the nanotubes carbon / metal interfaces is avoided.

La formation d'une masse solide par frittage flash permet d'obtenir un matériau composite avec un taux de densification d'au moins 70% environ et de préférence d'au moins 80% environ.The formation of a solid mass by flash sintering makes it possible to obtain a composite material with a densification rate of at least about 70% and preferably at least about 80%.

Par ailleurs, les groupements chimiques servant de sites d'accroche à la surface des nanotubes de carbone réagissent avec le métal lors de cette étape ii), permettant ainsi l'obtention d'une bonne interface entre le métal et les nanotubes de carbone.Moreover, the chemical groups serving as attachment sites on the surface of the carbon nanotubes react with the metal during this step ii), thus making it possible to obtain a good interface between the metal and the carbon nanotubes.

Etape iii)Step iii)

A la suite de l'étape ii), un élément solide est introduit dans un tube métallique selon l'étape iii), cet élément solide étant obtenu directement ou indirectement à partir de la masse solide de l'étape ii).Following step ii), a solid element is introduced into a metal tube according to step iii), this solid element being obtained directly or indirectly from the solid mass of step ii).

Selon une première variante, dite « directe », l'élément solide de l'étape iii) est la masse solide telle qu'obtenue à l'étape ii).According to a first variant, called "direct", the solid element of step iii) is the solid mass as obtained in step ii).

Selon une deuxième variante, dite « indirecte », l'élément solide de l'étape iii) est obtenu selon au moins une étape intermédiaire entre l'étape ii) et l'étape iii).According to a second variant, referred to as "indirect", the solid element of step iii) is obtained according to at least one intermediate step between step ii) and step iii).

Dans un premier mode de réalisation de la deuxième variante, l'élément solide de l'étape iii) comprend des granulés.In a first embodiment of the second variant, the solid element of step iii) comprises granules.

Selon ce premier mode de réalisation, le procédé conforme à l'invention comprend de préférence, entre l'étape ii) et l'étape iii), l'étape suivante :

  • ii-1) transformer la masse solide de l'étape ii) en granulés.
According to this first embodiment, the method according to the invention preferably comprises, between step ii) and step iii), the following step:
  • ii-1) transforming the solid mass of step ii) into granules.

L'étape ii-1) du procédé conforme à l'invention peut être effectuée par broyage, à l'aide d'appareils tels que broyeur à boulets, à marteaux, à meules, à couteaux, à jet de gaz ou à l'aide de tout autre système de broyage susceptible de transformer la masse solide de l'étape ii) en granulés.Step ii-1) of the process according to the invention may be carried out by grinding, using apparatus such as ball mill, hammer, grinding wheel, knives, jet gas or the using any other grinding system capable of transforming the solid mass of step ii) into granules.

Cette étape de transformation ii-1) permet d'obtenir une distribution homogène des nanotubes de carbone fonctionnalisés dans le mélange composite suite aux étapes de mélange i) et de formation d'une masse solide ii).This transformation step ii-1) makes it possible to obtain a homogeneous distribution of the functionalized carbon nanotubes in the composite mixture following the steps of mixing i) and forming a solid mass ii).

Dans un mode de réalisation particulier, les granulés présentent une taille moyenne pouvant aller de 1 à 200 µm environ, et de préférence de 1 à 50 µm environ. Cela permet de faciliter l'écoulement des granulés dans le tube métallique et la déformation dudit tube métallique contenant lesdits granulés lors des étapes suivantes iii) et iv).In a particular embodiment, the granules have an average size ranging from about 1 to 200 microns, and preferably from 1 to about 50 microns. This facilitates the flow of the granules in the metal tube and the deformation of said metal tube containing said granules in the following steps iii) and iv).

En effet, si les granulés sont de trop petite taille, c'est-à-dire de taille inférieure à 1 µm, ces derniers colmatent les outillages avec lesquels ils sont en contact. Lorsque, par contre, les granulés sont de trop grande taille, c'est-à-dire de taille supérieure à 200 µm, les contraintes subies par lesdits granulés lors de l'étape iv) de déformation du tube métallique, sont difficiles à contrôler et risquent d'être trop importantes et de ce fait, d'entraîner la dégradation des interfaces nanotubes de carbone/métal.Indeed, if the granules are too small, that is to say less than 1 micron size, they clog the tools with which they are in contact. When, on the other hand, the granules are too large, that is to say greater than 200 μm in size, the stresses suffered by said granules during step iv) of deformation of the metal tube are difficult to achieve. control and may be too important and, as a result, lead to the degradation of nanotubes carbon / metal interfaces.

Dans un deuxième mode de réalisation de la deuxième variante, l'élément solide de l'étape iii) est une masse solide différente de la masse solide de l'étape ii).In a second embodiment of the second variant, the solid element of step iii) is a solid mass different from the solid mass of step ii).

Selon ce deuxième mode de réalisation, le procédé conforme à l'invention comprend de préférence, entre l'étape ii-1) et l'étape iii), l'étape suivante :

  • ii-2) former une masse solide à partir des granulés de l'étape ii-1).
According to this second embodiment, the method according to the invention preferably comprises, between step ii-1) and step iii), the following step:
  • ii-2) forming a solid mass from the granules of step ii-1).

Cette étape ii-2) permet d'obtenir une masse solide, notamment de type monobloc tel que par exemple un barreau massif.This step ii-2) makes it possible to obtain a solid mass, in particular of the one-piece type such as for example a solid bar.

Elle peut être réalisée en compactant les granulés de l'étape ii-1).It can be carried out by compacting the granules of step ii-1).

Le compactage est de préférence réalisé à l'aide d'une presse hydraulique ou d'une presse isostatique, à froid ou à chaud. Ledit compactage est réalisée de préférence, à l'aide d'une presse hydraulique et/ou à froid, pour permettre une manipulation plus aisée du mélange composite.The compacting is preferably carried out using a hydraulic press or an isostatic press, cold or hot. Said compaction is preferably carried out with the aid of a hydraulic press and / or cold, to allow easier handling of the composite mixture.

La masse solide ainsi formée selon cette étape ii-2) peut être plus facilement et plus rapidement introduite que les granulés dans le tube métallique lors de l'étape suivante iii).The solid mass thus formed according to this step ii-2) can be more easily and more rapidly introduced than the granules in the metal tube during the next step iii).

La masse solide de l'étape ii) ou de l'étape ii-2), ou les granulés de l'étape ii-1) sont ensuite introduits dans un tube métallique selon l'étape iii) du procédé conforme à l'invention.The solid mass of step ii) or of step ii-2), or the granules of step ii-1) are then introduced into a metal tube according to step iii) of the process according to the invention .

Dans un mode de réalisation particulier, le tube métallique de l'étape iii) est un tube de métal dont le métal est choisi parmi parmi le cuivre, l'aluminium, l'argent, un alliage de cuivre, un alliage d'aluminium, un alliage d'argent et un de leurs mélanges.In a particular embodiment, the metal tube of step iii) is a metal tube whose metal is selected from among copper, aluminum, silver, a copper alloy, an aluminum alloy, a silver alloy and a mixture thereof.

Etape iv)Step iv)

L'étape iv) de déformation du tube métallique de l'étape iii), permet de déformer ledit tube métallique, et ainsi d'obtenir un tube métallique aux dimensions et à la forme voulues.The step iv) of deformation of the metal tube of step iii) makes it possible to deform said metal tube, and thus to obtain a metal tube with the desired dimensions and shape.

Dans un mode de réalisation particulier, l'étape iv) est réalisée par filage et/ou par tréfilage et/ou par laminage et/ou par martelage.In a particular embodiment, step iv) is carried out by spinning and / or by drawing and / or by rolling and / or hammering.

Ces diverses étapes de déformation et/ou de mise en forme peuvent être réalisées à l'aide de moyens bien connus de l'homme du métier.These various steps of deformation and / or shaping can be carried out using means well known to those skilled in the art.

Lors de cette étape iv), l'élément solide de l'étape iii) bouge et s'oriente dans le tube métallique de manière à minimiser sa déformation et ainsi les contraintes qu'il subit.During this step iv), the solid element of step iii) moves and is oriented in the metal tube so as to minimize its deformation and thus the stresses it undergoes.

Lorsque ledit élément solide de l'étape iii) ne peut plus bouger dans le tube métallique suite à l'étape de déformation iv), et que le tube n'a pas encore la forme et les dimensions voulues, le procédé conforme à l'invention peut comprendre en outre postérieurement à l'étape iv) les étapes suivantes :

  • v) chauffer ledit tube métallique tel que déformé à l'issue de l'étape iv), et
  • vi) déformer ledit tube métallique de l'étape v).
When said solid element of step iii) can not move in the metal tube after the deformation step iv), and the tube has not yet the shape and dimensions, the method according to The invention may furthermore comprise, after step iv), the following steps:
  • v) heating said metal tube as deformed at the end of step iv), and
  • vi) deforming said metal tube of step v).

Etape v)Step v)

L'étape v) de chauffage du tube métallique permet de dilater l'enveloppe extérieure dudit tube métallique de manière à créer de l'espace pour que les granulés ou la masse solide puissent se déplacer à nouveau sans contrainte lors d'une étape de déformation ultérieure.Stage v) of heating the metal tube makes it possible to expand the outer casing of said metal tube so as to create space for the granules or the solid mass to be able to move again without stress during a deformation step higher.

Dans un mode de réalisation particulier, le chauffage selon l'étape v) peut être réalisé à une température allant de 200 à 500°C environ, et de préférence de 200 à 300°C environ, éventuellement sous atmosphère neutre ou réductrice, notamment à l'aide d'un four électrique, d'un four à induction ou d'un four à gaz. Dans cette gamme de température, les nanotubes de carbone ainsi que les interfaces nanotubes de carbone/métal sont peu ou pas sollicités. De ce fait, lesdites interfaces nanotubes de carbone/métal et la fonctionnalisation des nanotubes de carbone sont conservées pendant ladite étape v).In a particular embodiment, the heating according to step v) can be carried out at a temperature ranging from about 200 to 500 ° C., and preferably from about 200 to 300 ° C., optionally under a neutral or reducing atmosphere, in particular at using an electric oven, an induction oven or a gas oven. In this temperature range, carbon nanotubes as well as nanotube carbon / metal interfaces are little or not solicited. As a result, said carbon / metal nanotube interfaces and the functionalization of the carbon nanotubes are preserved during said step v).

Etape vi)Step vi)

Suite à l'étape v) permettant de créer à nouveau de l'espace dans le tube métallique, le procédé comprend en outre, l'étape vi) de déformation dudit tube métallique. L'étape vi) de déformation du tube métallique permet de déformer ledit tube métallique, et ainsi d'obtenir un tube métallique aux dimensions et à la forme voulues.Following step v) to create new space in the metal tube, the method further comprises step vi) deformation of said metal tube. Step vi) of deformation of the metal tube serves to deform said metal tube, and thus to obtain a metal tube of the desired size and shape.

Dans un mode de réalisation particulier, l'étape vi) est réalisée par filage et/ou par tréfilage et/ou par laminage et/ou par martelage.In a particular embodiment, step vi) is carried out by spinning and / or drawing and / or by rolling and / or hammering.

Ces diverses étapes de déformation et/ou de mise en forme peuvent être réalisées à l'aide de moyens bien connus de l'homme du métier.These various steps of deformation and / or shaping can be carried out using means well known to those skilled in the art.

Lors de cette étape vi), l'élément solide de l'étape iii) bouge et s'oriente dans le tube métallique de manière à minimiser sa déformation et ainsi les contraintes qu'il subit.During this step vi), the solid element of step iii) moves and is oriented in the metal tube so as to minimize its deformation and thus the stresses it undergoes.

Dans un mode de réalisation particulier, les étapes v) et vi) sont réalisées autant de fois que nécessaire jusqu'à obtenir le tube métallique avec les dimensions et la forme finales voulues.In a particular embodiment, steps v) and vi) are performed as many times as necessary to obtain the metal tube with the desired final dimensions and shape.

Dans un mode de réalisation particulier, le procédé conforme à l'invention peut comprendre en outre, après la mise en oeuvre de l'étape de déformation iv), ou vi) si elle existe, l'étape suivante :

  • vii) chauffer ledit tube métallique déformé de l'étape iv), ou vi) si elle existe.
In a particular embodiment, the method according to the invention may further comprise, after the implementation of the deformation step iv), or vi) if it exists, the following step:
  • vii) heating said deformed metal tube of step iv), or vi) if it exists.

Etape vii)Step vii

Le chauffage du tube métallique peut être réalisé par frittage conventionnel, frittage flash ou par fusion. Il permet de redensifier l'élément solide de l'étape iii), et ainsi d'obtenir et/ou de maintenir une bonne interface entre le métal et les nanotubes de carbone.The heating of the metal tube can be achieved by conventional sintering, flash sintering or melting. It makes it possible to redensify the solid element of step iii), and thus to obtain and / or maintain a good interface between the metal and the carbon nanotubes.

Dans un mode de réalisation préféré, l'étape vii) est réalisée par frittage flash.In a preferred embodiment, step vii) is carried out by flash sintering.

L'étape finale de chauffage vii) du tube métallique déformé de l'étape iv) ou vi), permet de « réactiver » les interfaces nanotubes de carbone/métal si elles ont été faiblement détériorées au cours des étapes iv), et v) et vi) si elles existent.The final heating step vii) of the deformed metal tube of step iv) or vi) allows to "reactivate" the nanotube interfaces of carbon / metal if they have been slightly deteriorated during steps iv), and v) and vi) if they exist.

Ainsi, grâce au procédé de l'invention, les interfaces nanotubes de carbone/métal ne sont pas ou très peu sollicitées mécaniquement et elles sont conservées tout au long du procédé. Ce procédé permet alors d'obtenir un élément électriquement conducteur allongé, possédant de bonnes propriétés électriques, notamment en terme de conductivité, et mécaniques.Thus, thanks to the method of the invention, the nanotube carbon / metal interfaces are not or very little mechanically solicited and they are preserved throughout the process. This method then makes it possible to obtain an elongated electrically conductive element having good electrical properties, especially in terms of conductivity, and mechanical properties.

La présente invention a également pour objet un élément électriquement conducteur allongé obtenu par le procédé tel que défini dans la présente invention.The present invention also relates to an elongate electrically conductive element obtained by the method as defined in the present invention.

La demanderesse a découvert que le procédé conforme à l'invention permet d'obtenir un élément électriquement conducteur allongé possédant une résistance mécanique 2 à 3 fois supérieure à celle obtenue avec un élément électriquement conducteur allongé formé uniquement d'un métal de type cuivre, aluminium, argent ou un de leur alliage, et une conductivité électrique augmentée d'environ 20% par rapport à ce dernier.The applicant has discovered that the process according to the invention makes it possible to obtain an elongate electrically conductive element having a mechanical strength 2 to 3 times greater than that obtained with an elongated electrically conductive element formed solely of a metal of the copper or aluminum type. , silver or one of their alloy, and an electrical conductivity increased by about 20% with respect to the latter.

La présente invention a également pour objet un câble électrique comprenant un élément électriquement conducteur allongé obtenu par le procédé tel que défini dans la présente invention.The present invention also relates to an electrical cable comprising an elongate electrically conductive element obtained by the method as defined in the present invention.

Ledit câble présente des propriétés mécaniques et électriques améliorées.The cable has improved mechanical and electrical properties.

Plus particulièrement, le câble électrique conforme à l'invention peut être un câble électrique de type câble d'énergie. Dans ce cas, l'élément conducteur électrique allongé de l'invention est entouré par une première couche semi-conductrice, la première couche semi-conductrice étant entourée par une couche électriquement isolante, et la couche électriquement isolante étant entourée par une deuxième couche semi-conductrice.More particularly, the electric cable according to the invention may be an electric cable type energy cable. In this case, the elongate electrical conductive element of the invention is surrounded by a first semiconductor layer, the first semiconductor layer being surrounded by an electrically insulating layer, and the electrically insulating layer being surrounded by a second semiconductor layer. -conductrice.

Dans un mode de réalisation particulier, généralement conforme au câble électrique de type câble d'énergie de l'invention, la première couche semi-conductrice, la couche électriquement isolante et la deuxième couche semi-conductrice constituent une isolation tricouche. En d'autres termes, la couche électriquement isolante est directement en contact physique avec la première couche semi-conductrice, et la deuxième couche semi-conductrice est directement en contact physique avec la couche électriquement isolante.In a particular embodiment, generally in accordance with the energy cable type electrical cable of the invention, the first semiconductor layer, the electrically insulating layer and the second semiconductor layer constitute a three-layer insulation. In other words, the electrically insulating layer is in direct physical contact with the first semiconductor layer, and the second semiconductor layer is in direct physical contact with the electrically insulating layer.

Le câble électrique de l'invention peut comprendre en outre un écran métallique entourant la deuxième couche semi-conductrice.The electrical cable of the invention may further comprise a metal screen surrounding the second semiconductor layer.

Cet écran métallique peut être un écran dit « filaire » composé d'un ensemble de conducteurs en cuivre ou en aluminium arrangé autour et le long de la deuxième couche semi-conductrice, un écran dit « rubané » composé d'un ou de plusieurs rubans métalliques conducteurs posé(s) en hélice autour de la deuxième couche semi-conductrice, ou d'un écran dit « étanche » de type tube métallique entourant la deuxième couche semi-conductrice. Ce dernier type d'écran permet notamment de faire barrière à l'humidité ayant tendance à pénétrer le câble électrique en direction radiale.This metal screen may be a "wired" screen composed of a set of copper or aluminum conductors arranged around and along the second semiconductor layer, a so-called "ribbon" screen composed of one or more ribbons conductive metal laid helically around the second semiconductor layer, or a so-called "waterproof" screen of metal tube type surrounding the second semiconductor layer. This last type of screen makes it possible in particular to provide a moisture barrier that tends to penetrate the electrical cable radially.

Tous les types d'écrans métalliques peuvent jouer le rôle de mise à la terre du câble électrique et peuvent ainsi transporter des courants de défaut, par exemple en cas de court-circuit dans le réseau concerné.All types of metal screens can play the role of grounding the electric cable and can thus carry fault currents, for example in the event of a short circuit in the network concerned.

En outre, le câble de l'invention peut comprendre une gaine extérieure de protection entourant la deuxième couche semi-conductrice, ou bien entourant plus particulièrement ledit écran métallique lorsqu'il existe. Cette gaine extérieure de protection peut être réalisée classiquement à partir de matériaux thermoplastiques appropriés tels que des HDPE, des MDPE ou des LLDPE ; ou encore des matériaux retardant la propagation de la flamme ou résistant à la propagation de la flamme. Notamment, si ces derniers ne contiennent pas d'halogène, on parle de gainage de type HFFR (pour l'anglicisme « Halogen Free Flame Retardant »).In addition, the cable of the invention may comprise an outer protective sheath surrounding the second semiconductor layer, or more particularly surrounding said metal screen when it exists. This outer protective sheath can be made conventionally from suitable thermoplastic materials such as HDPE, MDPE or LLDPE; or else materials retarding the propagation of the flame or resistant to the propagation of the flame. In particular, if they do not contain halogen, it is called cladding type HFFR (for the Anglicism " Halogen Free Flame Retardant ").

D'autres couches, telles que des couches gonflantes en présence d'humidité peuvent être ajoutées entre la deuxième couche semi-conductrice et l'écran métallique lorsqu'il existe et/ou entre l'écran métallique et la gaine extérieure lorsqu'ils existent, ces couches permettant d'asurer l'étanchéité longitudinale du câble électrique à l'eau.Other layers, such as swelling layers in the presence of moisture may be added between the second semiconductor layer and the metal screen when it exists and / or between the metal screen and the outer sheath where they exist , these layers for insuring the longitudinal tightness of the electric cable to water.

Claims (17)

  1. A method for manufacturing an elongated electrically conducting element comprising functionalized carbon nanotubes and at least one metal, comprising the following step:
    i) mixing functionalized carbon nanotubes with at least one metal, in order to obtain a composite mixture,
    said method being characterized in that the method further comprises the following steps:
    ii) forming a solid mass from the composite mixture from step i),
    iii) introducing into a metal tube, a solid element obtained from the solid mass of step ii), and
    iv) deforming said metal tube from step iii), in order to obtain an elongated electrically conducting element.
  2. The method according to claim 1, characterized that it further comprises, prior to step i), the following step:
    a) functionalizing carbon nanotubes.
  3. The method according to claim 1 or 2, characterized in that the amount of functionalized carbon nanotubes in the composite mixture, during step i) ranges from 0.3 to 15% by weight.
  4. The method according to any of the preceding claims, characterized in that the metal used in step i) is selected from among copper, aluminium, silver, a copper alloy, an aluminium alloy, a silver alloy and one of their mixtures.
  5. The method according to any of the preceding claims, characterized in that step ii) is carried out by flash sintering.
  6. The method according to claim 5, characterized in that flash sintering is carried out at a pressure ranging from 10 to 100 bars.
  7. The method according to claim 5 or 6, characterized in that flash sintering is carried out at a temperature ranging from 400 to 900°C.
  8. The method according to any of the preceding claims, characterized in that it comprises between step ii) and step iii), the following step:
    ii-1) transforming the solid mass from step ii) into granules.
  9. The method according to claim 8, characterized in that step ii-1) gives the possibility of obtaining granules having a size ranging from 1 to 50 µm.
  10. The method according to claim 8 or 9, characterized in that it comprises between step ii-1) and step iii), the following step:
    ii-2) forming a solid mass from granules of step ii-1).
  11. The method according to any of the preceding claims, characterized in that the metal tube is a tube of metal selected from among copper, aluminium, silver, a copper alloy, an aluminium alloy, a silver alloy and one of their mixtures.
  12. The method according to any of the preceding claims, characterized in that it further comprises after step iv), the following steps:
    v) heating said metal tube as deformed at the end of step iv), and
    vi) deforming said metal tube from step v).
  13. The method according to claim 12, characterized in that the heating according to step v) is carried out at a temperature ranging from 200 to 500°C.
  14. The method according to any of the preceding claims, characterized in that it further comprises the following step:
    vii) heating the deformed metal tube.
  15. The method according to claim 14, characterized in that step vii) is carried out by flash sintering.
  16. An elongated electrically conducting element obtained by the method as defined according to any of claims 1 to 15.
  17. An electric cable, characterized in that it comprises an elongated electrically conducting element according to claim 16, a first semiconducting layer surrounding said elongated electrically conducting element, an electrically insulating layer surrounding said first semiconducting layer, and a second semiconducting layer surrounding said electrically insulating layer.
EP14168409.2A 2013-06-17 2014-05-15 Method for manufacturing an elongate electrically conductive member Not-in-force EP2816567B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1355615A FR3007189B1 (en) 2013-06-17 2013-06-17 METHOD FOR MANUFACTURING AN ELECTRICALLY CONDUCTIVE ELEMENT

Publications (2)

Publication Number Publication Date
EP2816567A1 EP2816567A1 (en) 2014-12-24
EP2816567B1 true EP2816567B1 (en) 2016-02-17

Family

ID=48874410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14168409.2A Not-in-force EP2816567B1 (en) 2013-06-17 2014-05-15 Method for manufacturing an elongate electrically conductive member

Country Status (5)

Country Link
US (1) US9818497B2 (en)
EP (1) EP2816567B1 (en)
CA (1) CA2851729A1 (en)
ES (1) ES2569403T3 (en)
FR (1) FR3007189B1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20315006U1 (en) * 2002-11-15 2004-02-19 Leoni Kabel Gmbh & Co Kg Metal-free electric conductor comprises a conductive core and a conductive screen element made of nonmetal resistor materials
CA2423215A1 (en) * 2003-03-20 2004-09-20 Jack B. Smith Carbon-core transmission cable
JP4412052B2 (en) * 2003-10-28 2010-02-10 富士ゼロックス株式会社 Composite material and method for producing the same
JP2007280731A (en) * 2006-04-05 2007-10-25 National Institute Of Advanced Industrial & Technology Manufacturing method of carbon nanotube electric wire
WO2008051302A2 (en) * 2006-04-28 2008-05-02 University Of Pittsburgh - Of The Commonwealth System Of Higher Education End-to-end joining of nanotubes
WO2009038048A1 (en) * 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
EP2298697B1 (en) * 2008-05-16 2019-02-13 Sumitomo Electric Industries, Ltd. Method for producing a carbon wire assembly and a conductive film
KR101078079B1 (en) * 2008-12-10 2011-10-28 엘에스전선 주식회사 Conductive Paste Containing Silver-Decorated Carbon Nanotubes
US20120175547A1 (en) * 2009-09-17 2012-07-12 Bayer Materialscience Ag Compound material comprising a metal and nanoparticles
FR2950333B1 (en) * 2009-09-23 2011-11-04 Arkema France METHOD FOR FUNCTIONALIZING NANOTUBES
US20120263951A1 (en) * 2011-04-15 2012-10-18 Los Alamos National Security, Llc. Electrically conducting nanocomposite wire comprising tow of multiwalled carbon nanotubes and transverse metal bridges
US8853540B2 (en) * 2011-04-19 2014-10-07 Commscope, Inc. Of North Carolina Carbon nanotube enhanced conductors for communications cables and related communications cables and methods
US20160057544A1 (en) * 2014-08-21 2016-02-25 Plugged Inc. Carbon Nanotube Copper Composite Wire for Acoustic Applications

Also Published As

Publication number Publication date
FR3007189B1 (en) 2015-05-22
ES2569403T3 (en) 2016-05-10
CA2851729A1 (en) 2014-12-17
US9818497B2 (en) 2017-11-14
US20140367145A1 (en) 2014-12-18
EP2816567A1 (en) 2014-12-24
FR3007189A1 (en) 2014-12-19

Similar Documents

Publication Publication Date Title
EP3559291B1 (en) Composite material containing aluminium or copper - carbon nanotubes, and production method thereof
JP2021536421A (en) Graphene Material-Metal Nanocomposites and Their Manufacturing and Usage
Menon et al. Ignition studies of Al/Fe 2 O 3 energetic nanocomposites
KR101646573B1 (en) Aluminium-graphene composite, and preparing method of the same
Huang et al. Influence of aluminum nanoparticle surface treatment on the electrical properties of polyethylene composites
KR101879594B1 (en) Complex material wire for transmission line and Manufacturing method thereof
CA2802592A1 (en) Ptfe material having an anti-corona effect
EP3119917B1 (en) Process for manufacturing a composite material
Giunchi et al. Advancements in the Reactive Liquid ${\rm Mg} $ Infiltration Technique to Produce Long Superconducting ${\rm MgB} _ {2} $ Tubular Wires
EP2816567B1 (en) Method for manufacturing an elongate electrically conductive member
WO1986006871A1 (en) New alloys having high electrical and mechanical performances, fabrication thereof and applications thereof, particularly in the electric, electronic and connectics fields
EP3830309B1 (en) Copper-silver composite material
US20200090836A1 (en) Process for manufacturing a composite material
US8709979B2 (en) Method of preparing MgB2 superconducting wire and the MgB2 superconducting wire prepared thereby
WO2011021546A1 (en) Chalcogen compound powder, chalcogen compound paste, and method for producing chalcogen compound powder
CN108349007B (en) Method for producing a continuous conductor and conductor produced according to said method
US11090722B2 (en) Method for preparing nickel nanopowders and method for making nickel nanopowders into paste
WO2005117032A1 (en) METHOD FOR PRODUCING Nb3Sn SUPERCONDUCTIVE WIRE BY POWDER PROCESS
EP1625598A1 (en) Method for the production of an electrically insulating and mechanically structuring sleeve on an electric conductor
FR3015763A1 (en) Metal container comprising a carbonaceous agent
Martins et al. Comparison Between Graphene Oxides Reduced by Microwave System with Different Power Sets
JP4652889B2 (en) Powder method Nb3Sn superconducting wire manufacturing method
Jung et al. Electrical and mechanical properties of ethylene ethylacrylate-carbon nanotube (EEA-CNT) composites
Temkin et al. Ignition studies of AlÕFe2O3 energetic nanocomposites

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150624

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: B22F 5/00 20060101ALI20150728BHEP

Ipc: H01B 1/04 20060101AFI20150728BHEP

Ipc: H01B 13/016 20060101ALI20150728BHEP

Ipc: C01B 31/02 20060101ALI20150728BHEP

Ipc: B22F 1/02 20060101ALI20150728BHEP

Ipc: B22F 7/08 20060101ALI20150728BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150910

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 775976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014000896

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2569403

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160510

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160217

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 775976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160517

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160617

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014000896

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160515

26N No opposition filed

Effective date: 20161118

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160517

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160515

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180626

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190521

Year of fee payment: 6

Ref country code: IT

Payment date: 20190527

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190523

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014000896

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200515