EP3748168B1 - Hydraulic drive system with two pumps and energy recovery - Google Patents
Hydraulic drive system with two pumps and energy recovery Download PDFInfo
- Publication number
- EP3748168B1 EP3748168B1 EP20173200.5A EP20173200A EP3748168B1 EP 3748168 B1 EP3748168 B1 EP 3748168B1 EP 20173200 A EP20173200 A EP 20173200A EP 3748168 B1 EP3748168 B1 EP 3748168B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pump
- pressure
- actuator
- drive system
- orifice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/16—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
- F15B11/17—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
- E02F9/2232—Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
- E02F9/2235—Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
- E02F9/2239—Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
- E02F9/2242—Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2292—Systems with two or more pumps
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2296—Systems with a variable displacement pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B21/00—Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
- F15B21/14—Energy-recuperation means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/16—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
- F15B11/161—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
- F15B11/165—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20538—Type of pump constant capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20546—Type of pump variable capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20569—Type of pump capable of working as pump and motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/20576—Systems with pumps with multiple pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/265—Control of multiple pressure sources
- F15B2211/2656—Control of multiple pressure sources by control of the pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30505—Non-return valves, i.e. check valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/405—Flow control characterised by the type of flow control means or valve
- F15B2211/40523—Flow control characterised by the type of flow control means or valve with flow dividers
- F15B2211/4053—Flow control characterised by the type of flow control means or valve with flow dividers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/415—Flow control characterised by the connections of the flow control means in the circuit
- F15B2211/41509—Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/415—Flow control characterised by the connections of the flow control means in the circuit
- F15B2211/41509—Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
- F15B2211/41518—Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve being connected to multiple pressure sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/42—Flow control characterised by the type of actuation
- F15B2211/428—Flow control characterised by the type of actuation actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/505—Pressure control characterised by the type of pressure control means
- F15B2211/50509—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
- F15B2211/50536—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/515—Pressure control characterised by the connections of the pressure control means in the circuit
- F15B2211/5157—Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a return line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/52—Pressure control characterised by the type of actuation
- F15B2211/521—Pressure control characterised by the type of actuation mechanically
- F15B2211/522—Pressure control characterised by the type of actuation mechanically actuated by biasing means, e.g. spring-actuated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/52—Pressure control characterised by the type of actuation
- F15B2211/528—Pressure control characterised by the type of actuation actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6306—Electronic controllers using input signals representing a pressure
- F15B2211/6309—Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6306—Electronic controllers using input signals representing a pressure
- F15B2211/6313—Electronic controllers using input signals representing a pressure the pressure being a load pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6333—Electronic controllers using input signals representing a state of the pressure source, e.g. swash plate angle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/665—Methods of control using electronic components
- F15B2211/6652—Control of the pressure source, e.g. control of the swash plate angle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/71—Multiple output members, e.g. multiple hydraulic motors or cylinders
Definitions
- the invention relates to a hydraulic drive system according to the preamble of claim 1.
- a hydraulic drive system is known. This includes a first pump with a constant displacement volume and a second pump with an adjustable displacement volume. The flow of the first pump can be returned to the tank via an adjustable first aperture.
- the first aperture is part of a pressure regulator, which regulates the delivery pressure of the first pump depending on a highest load pressure of the first actuators.
- An advantage of the present invention is that the hydraulic drive system can be operated at very high pressures, while at the same time very high delivery flows are possible with a comparatively low pressure.
- the hydraulic drive system is still particularly cost-effective.
- the first diaphragm is acted upon in the closing direction by a predeterminable control force, which is independent of an individual load pressure acting in the at least one first actuator.
- the delivery pressure of the first pump is therefore no longer regulated. Rather, it is returned to the tank essentially without pressure when the pressure at the second control point or the delivery pressure of the second pump exceeds the pressure equivalent of the actuating force.
- the actuating force is fixed in such a way that the hydraulic drive system has a minimum energy consumption under the expected operating conditions.
- the control force is preferably also independent of an individual load pressure in the second actuator discussed below.
- the first aperture is preferred Monotonically adjustable between a fully open and a fully closed position. The opening cross section of the first aperture can change suddenly or continuously over the corresponding adjustment path. If several first actuators are provided, they are preferably connected in parallel to the second control point. Each first actuator can be assigned a second check valve, which only allows a fluid flow from the second control point to the relevant first actuator.
- the first pump can be designed as an external gear pump.
- the second pump can be designed as an axial piston machine with a swash plate design.
- the displacement volume of the second pump is preferably continuously adjustable.
- the first and second fluid flow paths are preferably designed differently from one another apart from their end points, namely the tank and the first control point.
- control force is generated exclusively by a preloaded first spring.
- the first orifice is preferably part of a pressure relief valve. This embodiment is particularly simple and inexpensive.
- first and the second pump are or can be brought into rotary drive connection with one another, their relative direction of rotation being fixed, the second pump being adjustable in two opposite directions starting from a position with the displacement volume zero so that it can be operated either as a pump or as a motor with the same direction of rotation.
- the first and second pumps are preferably permanently coupled to one another in a rotationally fixed manner.
- the first and second pumps are driven by a common motor.
- the drive system has a first operating state in which the pressure at the second control point is below one Pressure equivalent of the control force, wherein in the first operating state a part of the delivery flow of the first pump can be conducted into the tank via the second fluid flow path, so that the second pump is operated by a motor, the drive system having a second operating state in which the pressure at the second Control point is above the pressure equivalent of the control force, wherein in the second operating state the delivery flow of the first pump can be directed into the tank via the first aperture, so that the first pump runs essentially without pressure.
- further operating states can be present, in particular if the second actuator with the priority valve explained below is present.
- a priority valve can be provided with a continuously adjustable second aperture and a continuously adjustable third aperture, which are adjustable together, the second aperture being open in every position of the priority valve, with a pressure downstream of the third aperture moving the priority valve in the opening direction of the third Aperture is acted upon, wherein a second actuator is provided, which is fluidly connected to the first and/or the second pump via the second aperture, an individual load pressure of the second actuator acting on the priority valve in the closing direction of the third aperture.
- the second actuator is reliably supplied with pressurized fluid, even if the delivery flow of the first and/or the second pump is not sufficient to supply all actuators with pressurized fluid.
- the priority valve is assigned a second spring, which acts on the priority valve in the closing direction of the third aperture.
- the third aperture is preferably monotonically adjustable between a completely closed and a completely open position.
- the second and third apertures are preferably adjustable in opposite directions, i.e. if the opening cross section of the third aperture becomes larger over the adjustment path, the opening cross section of the second aperture becomes smaller.
- a third fluid flow path starts from the tank via the first pump, continues via the second aperture to the second actuator, the third aperture being arranged in the first fluid flow path between the first pump and the first check valve.
- This embodiment is particularly advantageous if the second actuator has a low pressure requirement. Then, in operating states in which the pressure at the second control point is high, the first pump can be used to supply the second actuator with pressurized fluid. This achieves a high level of security of supply with low energy losses at the same time.
- an individual load pressure is assigned to each first actuator and possibly the second actuator, with a first highest load pressure being determined exclusively from the individual load pressures of the at least one first actuator, with the displacement volume of the second pump depending on the first highest Load pressure is adjustable. This avoids energy losses when supplying the first actuators when the individual load pressure on the second consumer is high.
- the second actuator is fluidly connected to the second control point via the second aperture, wherein the at least one first actuator is fluidly connected to the second control point via the third aperture.
- This embodiment is particularly energy efficient if the delivery flow of the first pump is designed to be large compared to the delivery flow of the second pump. If several first actuators are provided, they are preferably connected in parallel to the third aperture.
- an individual load pressure is assigned to each first actuator and the second actuator, with a second highest load pressure being determined from all of the individual load pressures mentioned, the displacement volume of the second pump being adjustable depending on the second highest load pressure. This means that the delivery pressure of the second pump is always high enough to move the loads acting on all actuators.
- the displacement volume of the second pump is adjustable by means of an electrical control signal, the second pump being connected to a control device, a first pressure sensor being provided, by means of which the pressure at the first control point can be measured, the first pressure sensor being connected to the control device.
- the control of the second pump on which the invention is based can be implemented electronically in a particularly simple manner. A hydraulic control that is also possible would be much more complex.
- the control device preferably comprises a digital computer.
- a second pressure sensor can be provided, by means of which the first or second highest load pressure can be measured, the second pressure sensor being connected to the control device, the control device implementing a first controller, an actual variable of the first controller being a difference in the pressures first and on the second pressure sensor, wherein a manipulated variable of the first controller at least indirectly influences the control signal of the second pump.
- the first controller is preferably a continuous, linear controller, most preferably a PID controller.
- the first controller is preferably implemented digitally, with the corresponding digital values most preferably being determined in a predetermined time frame.
- the setpoint size of the first controller is preferably fixed, and it can also be dependent on the operating state of the hydraulic drive system, the rate of change being significantly lower than the rate of change of the pressures in the hydraulic drive system.
- the first controller is preferably supplied with a difference between the assigned actual and the assigned target variable as a control deviation.
- a position sensor can be provided, by means of which an adjustment of the displacement volume of the second pump can be measured, the position sensor being connected to the control device, the control device implementing a second controller, wherein a manipulated variable of the second controller at least indirectly influences the control signal of the second pump , where an actual variable of the second controller is the setting of the displacement volume of the second pump, where the The manipulated variable of the first controller is a setpoint variable of the second controller.
- the position sensor is preferably a rotation or swivel angle sensor, by means of which a rotational position of a swivel cradle of the second pump can most preferably be measured.
- the second controller is preferably a continuous, linear controller, most preferably a PID controller.
- the second controller is preferably implemented digitally, with the corresponding digital values most preferably being determined in a predetermined time frame.
- the second controller is preferably supplied with a difference between the assigned actual and the assigned target variable as a control deviation.
- Fig. 1 shows a hydraulic drive system 10 according to a first embodiment of the invention.
- the hydraulic drive system 10 includes a first pump 40 with a constant displacement volume, which is designed, for example, as an external gear pump.
- a second pump 50 with an adjustable displacement volume is provided, which is designed, for example, as an axial piston machine in a swash plate design.
- Both pumps 40; 50 are driven by a common engine 14, which is designed, for example, as a diesel engine.
- the second pump 50 can also be operated as a motor, with the drive direction of rotation not being reversed. It is therefore designed as a pump that can be adjusted beyond the zero displacement volume.
- the corresponding pivoting cradle can be pivotable in two opposite directions starting from the position in which the delivery flow or the displacement volume is zero.
- Fig. 1 several tank symbols 13 are shown, all of which refer to the same tank.
- the pressurized fluid is preferably a liquid and most preferably hydraulic oil.
- first actuators 20 are provided here, the number of which can be chosen arbitrarily.
- the first actuators 20 can be hydraulic cylinders or hydraulic motors, with any mixed forms being conceivable.
- a second actuator 30 is also provided. This can be the steering cylinder of a vehicle steering system. But it can also be the hydraulic motor of a hydraulic fan drive.
- the second actuator 30 can be omitted, and several second actuators 30 can also be provided.
- Each actuator has a main aperture 21; 31 and each a directional control valve 22; 32 assigned. These are preferably each connected by a common valve formed, whereby they are adjustable together.
- the main panel 21; 31 is the movement speed of the respectively assigned actuator 20; 30 set.
- the main panels 21; 31 can each be assigned a pressure compensator (not shown), with which the pressure drop at the relevant main aperture 21; 31 is adjusted to a predetermined value, so that the respective movement speed depends solely on the setting of the main aperture 21; 31 and not from the respective individual load pressure 23; 33 is dependent.
- With the directional control valve 22; 32 is the direction of movement of the respectively assigned actuator 20; 30 set.
- the directional control valves 22; 32 are each equipped with a load pressure tap, at which the inlet-side pressure on the relevant actuator 20; 30 is applied, which is referred to as individual load pressure in the context of this application.
- the directional control valves 22; 32 a middle locking position in which the relevant actuator 20; 30 not moved. In this blocking position, the load pressure tap is connected to the tank 13 in order to save energy.
- a first fluid flow path runs from the tank 13 via the first pump 40, further via a third aperture 72 of a priority valve 70, further via a first control point 11, further via a first check valve 43 to a second control point 12.
- the first check valve 43 only allows one Fluid flow to the second control point 12. If the second actuator 30 is not present, the priority valve 70 is omitted, with the first pump 40 as in Fig. 2 is connected directly to the first control point 11.
- a second fluid flow path runs completely bypassing the first fluid flow path from the tank 13 via the second pump 50 to the second control point 12.
- the pressurized fluid flows from the second control point 12 to the tank 13.
- a comparable reversal of the flow direction is not possible because of the first check valve 43.
- the first actuators 20 are supplied with pressurized fluid in parallel from the second control point 12.
- Each actuator can be assigned a second check valve 24, which only allows a fluid flow to the actuator 20.
- the second check valve 24 maintains the load so that the relevant first actuator 20 cannot move against the desired direction of movement when the delivery rate of the first and/or the second pump 40; 50 is not sufficient to hold the load acting on the relevant actuator 20.
- the second check valves 24 can be partially or completely omitted, for example to enable energy recovery when lowering external loads.
- a first aperture 41 is provided, by means of which pressurized fluid can be conducted from the first control point 11 to the tank 13.
- the first aperture 41 is preferably part of a pressure relief valve. It is acted upon by a predetermined control force 44 in the closing direction, this control force 44 preferably being generated by a preloaded first spring 42.
- this control force 44 is independent of the actuators 20; 30 attacking individual load pressures 23; 33. It is preferably selected so that the hydraulic drive system has the lowest possible energy consumption, taking into account the expected operating conditions.
- the first aperture 41 is subjected to the pressure at the second control point 12. Accordingly, the first aperture 41 opens when the pressure at the second control point 12 exceeds the pressure equivalent of the first spring 42.
- a steady, gentle transition is preferably provided between the open and closed positions of the first aperture 41, so that there is sufficient time to adapt the setting of the second pump 50 to the changed position of the first aperture 41.
- the optional priority valve 70 includes a continuously adjustable second aperture 72 and a continuously adjustable third aperture 73, which are adjustable together.
- the second aperture 72 is open in every position of the priority valve 70, with a pressure 71 downstream of the third aperture 73, the priority valve 70 is acted upon in the opening direction of the third aperture 73.
- the priority valve 70 is acted upon by a second spring 74 in the closing direction of the third aperture 73.
- the individual load pressure 33 of the second actuator 30 also acts on the priority valve 70 in the closing direction of the third aperture 73.
- the third aperture 73 is preferably monotonically adjustable between a completely closed and a completely open position.
- the second and third apertures are preferably adjustable in opposite directions, ie if the opening cross section of the third aperture 73 becomes larger over the adjustment path, the opening cross section of the second aperture 72 becomes smaller.
- the main aperture 31 of the second actuator 30 is connected to the first pump 40 via the second aperture 72. Accordingly, the second actuator 30 is always supplied with pressure fluid from the first pump 40, regardless of the operating state in which the hydraulic drive system 10 is. Too much pressurized fluid delivered by the first pump 40 flows either to the first actuators 20 or via the second pump 50 back into the tank 13. In this case, its hydraulic energy is used to relieve the load on the motor 14 and is therefore not lost.
- the first maximum load pressure 61 is determined from the individual load pressures 23 on the first actuators 20, with the individual load pressure 33 on the second actuator 30 being ignored. This can be done, for example, by means of a shuttle valve cascade 60, with each first actuator 20 being assigned a corresponding shuttle valve 64. However, other methods known from the prior art can also be used just as well to determine a highest load pressure from several individual load pressures. If only a first actuator 20 is present, the first maximum load pressure 61 is equal to its individual load pressure.
- the pressure at the second control point 12 is measured with a first pressure sensor 53, with the first highest load pressure 61 being measured with a second pressure sensor 63.
- the two pressure sensors 53; 63 are connected to a control device 51, which preferably comprises a programmable digital computer.
- the displacement volume of the second pump 50 becomes preferably adjusted by means of an electrical control signal 54.
- an electrically operated 3/2-way valve can be provided, by means of which an actuating cylinder in the second pump 50 is adjusted.
- a position sensor 52 can be assigned to the second pump, with which the setting of the relevant displacement volume can be measured.
- the position sensor 52 is preferably a rotation angle sensor, by means of which a rotational position of a pivoting cradle of the second pump 50 can most preferably be measured.
- the position sensor 52 is also connected to the control device 51. The position sensor 52 can be omitted, whereby the control dynamics are adversely affected.
- Fig. 2 shows a hydraulic drive system 10 'according to a second embodiment of the invention.
- the second embodiment is identical to the first embodiment except for the differences described below, so please refer to the comments in this regard Fig. 1 is referred.
- Fig. 1 and 2 The same or corresponding parts are provided with the same reference numbers.
- the second embodiment is preferably used when the displacement volume of the first pump is significantly larger than the maximum displacement volume of the second pump.
- the first pump would be significantly oversized if it only had to supply the second actuator. Such an operating state is avoided with the second embodiment.
- the priority valve 70 was arranged differently compared to the first embodiment.
- the second actuator 20 is now fluidic via the second aperture 72 connected to the second control point.
- the first actuators 20 are connected in parallel to the third aperture 73, whereby they are fluidly connected to the second control point 12 via this. All first actuators 20 and the second actuator 30 are now included in the determination of the second highest load pressure 62.
- the shuttle valve cascade 60' therefore includes a further shuttle valve 64', which is assigned to the second actuator 30.
- Fig. 3a shows a diagram in which different pressures p of the hydraulic drive system are plotted over time.
- Fig. 3b shows a diagram in which different volume flows Q of the hydraulic drive system are plotted over time.
- the time t is plotted along the horizontal axis, with these two axes plotted synchronously.
- Vertical dashed lines indicate a first, a third and a second operating state 101; 103; 102 separated from each other.
- Fig. 3a the pressure p is plotted on the vertical axis.
- the hydraulic drive system is used in accordance with Fig. 2 based on which no priority valve is arranged in the first fluid flow path.
- the solid line that is in Fig. 3a marked 11 shows the pressure at the first control point.
- the dashed line in Fig. 3a marked 12 shows the pressure at the second control point.
- the solid line that is in Fig. 3a at 61; 62 shows the highest load pressure of the respective hydraulic drive system.
- Fig. 3a horizontal dash-dotted line marked No. 44 is drawn, which shows the pressure equivalent of the actuating force, which is constant over time t.
- the pressure at the second control point 12 is higher by the pressure difference 82 than the highest load pressure 61; 62. Only at very low pressures can this pressure difference specified as a target value not be maintained.
- the pressure at the first control point 12 is smaller than the pressure equivalent of the control force 44.
- the first actuators are completely supplied with pressurized fluid by the first pump provided. The excess pressure fluid delivered by the first pump is returned to the tank via the second pump. Accordingly, the pressure at the first and second control points is the same, except for the pressure drop at the first check valve.
- Fig. 3b The flow rate Q is plotted on the vertical axis.
- the solid line, marked No. 40, shows the flow of the first pump. This is constant over time, since the first pump with a constant displacement volume is typically operated at a substantially constant drive speed.
- the solid line that is in Fig. 3b marked with number 50 shows the flow of the second pump.
- the dashed line in Fig. 3b marked with No. 104 shows the effective flow, which flows in particular to the first actuators. In this example, this should be constant over time.
- the first operating state 101 approximately half of the volume flow conveyed by the first pump 40 flows back into the tank via the second pump 50.
- the delivery flow of the second pump 50 is in Fig. 3b accordingly entered negatively.
- the first orifice No. 41 in Fig. 1 and 2
- a constant opening behavior is assumed in this case.
- the ones with reference to Fig. 4 The control explained compensates for this by adjusting the displacement volume of the first pump. In the present example, it changes continuously from a maximum negative value to a maximum positive value.
- the in Fig. 3a The pressure curve shown at the first control point 11 within the third operating state 103 is to be viewed as a very rough approximation. Only the initial and final pressures are specified exactly.
- the delivery pressure of the first pump is determined solely by the flow resistance of the fully opened first aperture, which is preferably designed to be very small. The first pump therefore runs largely without pressure.
- the first actuators are completely supplied with pressurized fluid by the second pump.
- the first and second pumps can also deliver in the same direction, resulting in a very high delivery flow.
- the possible delivery pressure is limited by the pressure equivalent of the control force 44.
- the second operating state in contrast, allows a much higher delivery pressure, with the maximum delivery flow being given by the maximum delivery flow of the second pump.
- Fig. 4 shows a circuit diagram of the control device 51 with the first and second controllers 80; 90.
- the first controller 80 is preferably a PID controller, which regulates the difference between the highest load pressure and the pressure at the second control point to a predetermined target value 83.
- the highest load pressure is measured with the second pressure sensor 63, with the pressure at the second control point 12 being measured with the first pressure sensor 53.
- the actual variable 81 of the first controller 80 is calculated from these two measured values by forming the difference.
- the control difference 84 which is supplied to the first controller 80, is determined by forming the difference between the target variable 82 and the actual variable 81.
- the setpoint size 82 of the first controller corresponds to that on the main apertures (No. 21; 31 in Fig. 1 and 2 ) desired pressure drop.
- the manipulated variable 83 of the first controller 80 could be used directly as a control signal 54 of the second pump 40. In the present case, however, a subordinate control with a second controller 90 is provided in order to improve the control dynamics and the control accuracy.
- the second controller 90 is preferably a PID controller. Its control difference 94 is formed from the manipulated variable 83 of the first controller 80 and the measured value of the position sensor 52 used as the actual variable 91. In the present case, the manipulated variable 93 of the second controller 90 forms the control signal 54 of the second pump 40, and further subordinate control loops can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Fluid-Pressure Circuits (AREA)
Description
Die Erfindung betrifft ein hydraulisches Antriebssystem gemäß dem Oberbegriff von Anspruch 1.The invention relates to a hydraulic drive system according to the preamble of claim 1.
Aus der
Ein Vorteil der vorliegenden Erfindung besteht darin, dass das hydraulische Antriebssystem mit sehr hohen Drücken betrieben werden kann, wobei gleichzeitig sehr hohe Förderströme mit einem vergleichsweise geringen Druck möglich sind. Das hydraulische Antriebssystem ist dennoch besonders kostengünstig.An advantage of the present invention is that the hydraulic drive system can be operated at very high pressures, while at the same time very high delivery flows are possible with a comparatively low pressure. The hydraulic drive system is still particularly cost-effective.
Gemäß dem selbständigen Anspruch wird vorgeschlagen, dass die erste Blende in Schließrichtung von einer fest vorgebbaren Steuerkraft beaufschlagt ist, welche unabhängig von einem in dem wenigstens einen ersten Aktuator wirkenden individuellen Lastdruck ist. Der Förderdruck der ersten Pumpe wird dementsprechend gerade nicht mehr geregelt. Er wird vielmehr im Wesentlichen drucklos in den Tank zurückgeleitet, wenn der Druck an der zweiten Steuerstelle bzw. der Förderdruck der zweiten Pumpe das Druckäquivalent der Stellkraft übersteigt. Die Stellkraft wird fest vorgegeben und zwar so, dass das hydraulische Antriebssystem unter den zu erwartenden Betriebsbedingungen einen minimalen Energieverbrauch hat.According to the independent claim, it is proposed that the first diaphragm is acted upon in the closing direction by a predeterminable control force, which is independent of an individual load pressure acting in the at least one first actuator. The delivery pressure of the first pump is therefore no longer regulated. Rather, it is returned to the tank essentially without pressure when the pressure at the second control point or the delivery pressure of the second pump exceeds the pressure equivalent of the actuating force. The actuating force is fixed in such a way that the hydraulic drive system has a minimum energy consumption under the expected operating conditions.
Die Steuerkraft ist vorzugsweise auch unabhängig von einem individuellen Lastdruck in dem unten angesprochenen zweiten Aktuator. Die erste Blende ist vorzugsweise zwischen einer ganz offenen und einer ganz geschlossenen Stellung monoton verstellbar. Der Öffnungsquerschnitt der ersten Blende kann sich über den entsprechenden Verstellweg sprungartig oder stetig ändern. Wenn mehrere erste Aktuatoren vorgesehen sind, sind diese vorzugsweise parallel an die zweite Steuerstelle angeschlossen. Jedem ersten Aktuator kann ein zweites Rückschlagventil zugeordnet sein, welches ausschließlich einen Fluidstrom von der zweiten Steuerstelle zum betreffenden ersten Aktuator hin zulässt. Die erste Pumpe kann als Außenzahnradpumpe ausgeführt sein. Die zweite Pumpe kann als Axialkolbenmaschine in Schrägscheibenbauweise ausgeführt sein. Das Verdrängungsvolumen der zweiten Pumpe ist vorzugsweise stetig verstellbar. Der erste und der zweite Fluidströmungspfad sind abseits ihrer Endpunkte, nämlich dem Tank und der ersten Steuerstelle, vorzugsweise verschieden voneinander ausgebildet. In den abhängigen Ansprüchen sind vorteilhafte Weiterbildungen und Verbesserungen der Erfindung angegeben.The control force is preferably also independent of an individual load pressure in the second actuator discussed below. The first aperture is preferred Monotonically adjustable between a fully open and a fully closed position. The opening cross section of the first aperture can change suddenly or continuously over the corresponding adjustment path. If several first actuators are provided, they are preferably connected in parallel to the second control point. Each first actuator can be assigned a second check valve, which only allows a fluid flow from the second control point to the relevant first actuator. The first pump can be designed as an external gear pump. The second pump can be designed as an axial piston machine with a swash plate design. The displacement volume of the second pump is preferably continuously adjustable. The first and second fluid flow paths are preferably designed differently from one another apart from their end points, namely the tank and the first control point. Advantageous developments and improvements of the invention are specified in the dependent claims.
Es kann vorgesehen sein, dass die Steuerkraft ausschließlich von einer vorgespannten ersten Feder erzeugt wird. Die erste Blende ist vorzugsweise Bestandteil eines Druckbegrenzungsventils. Diese Ausführungsform ist besonders einfach und kostengünstig.It can be provided that the control force is generated exclusively by a preloaded first spring. The first orifice is preferably part of a pressure relief valve. This embodiment is particularly simple and inexpensive.
Gemäß dem selbständigen Anspruch ist es ebenfalls vorgesehen, dass die erste und die zweite Pumpe in Drehantriebsverbindung miteinander stehen bzw. bringbar sind, wobei ihre relative Drehrichtung fest vorgegeben ist, wobei die zweite Pumpe ausgehend von einer Stellung mit dem Verdrängungsvolumen Null in zwei entgegengesetzte Richtungen verstellbar ist, so dass sie bei gleicher Drehrichtung wahlweise als Pumpe oder als Motor betrieben werden kann. Die erste und die zweite Pumpe sind vorzugsweise permanent drehfest miteinander gekoppelt. Vorzugsweise werden die erste und die zweite Pumpe von einem gemeinsamen Motor angetrieben.According to the independent claim, it is also provided that the first and the second pump are or can be brought into rotary drive connection with one another, their relative direction of rotation being fixed, the second pump being adjustable in two opposite directions starting from a position with the displacement volume zero so that it can be operated either as a pump or as a motor with the same direction of rotation. The first and second pumps are preferably permanently coupled to one another in a rotationally fixed manner. Preferably the first and second pumps are driven by a common motor.
Es kann vorgesehen sein, dass das Antriebssystem einen ersten Betriebszustand aufweist, in dem der Druck an der zweiten Steuerstelle unterhalb eines Druckäquivalents der Steuerkraft liegt, wobei im ersten Betriebszustand ein Teil des Förderstroms der ersten Pumpe über den zweiten Fluidströmungspfad in den Tank leitbar ist, so dass die zweite Pumpe motorisch betrieben wird, wobei das Antriebssystem einen zweiten Betriebszustand aufweist, in dem der Druck an der zweiten Steuerstelle oberhalb des Druckäquivalents der Steuerkraft liegt, wobei im zweiten Betriebszustand der Förderstrom der ersten Pumpe über die erste Blende in den Tank leitbar ist, so dass die erste Pumpe im Wesentlichen drucklos läuft. Neben den genannten zwei Betriebszuständen können weitere Betriebszustände vorhanden sein, insbesondere, wenn der unten erläuterte zweite Aktuator mit dem Prioritätsventil vorhanden ist.It can be provided that the drive system has a first operating state in which the pressure at the second control point is below one Pressure equivalent of the control force, wherein in the first operating state a part of the delivery flow of the first pump can be conducted into the tank via the second fluid flow path, so that the second pump is operated by a motor, the drive system having a second operating state in which the pressure at the second Control point is above the pressure equivalent of the control force, wherein in the second operating state the delivery flow of the first pump can be directed into the tank via the first aperture, so that the first pump runs essentially without pressure. In addition to the two operating states mentioned, further operating states can be present, in particular if the second actuator with the priority valve explained below is present.
Es kann ein Prioritätsventil mit einer stetig verstellbaren zweiten Blende und einer stetig verstellbaren dritten Blende, welche gemeinsam verstellbar sind, vorgesehen sein, wobei die zweite Blende in jeder Stellung des Prioritätsventils offen ist, wobei ein Druck stromabwärts der dritten Blende das Prioritätsventil in Öffnungsrichtung der dritten Blende beaufschlagt, wobei ein zweiter Aktuator vorgesehen ist, welcher über die zweite Blende fluidisch mit der ersten und/oder der zweiten Pumpe verbunden ist, wobei ein individueller Lastdruck des zweiten Aktuators das Prioritätsventil in Schließrichtung der dritten Blende beaufschlagt. Damit wird der zweite Aktuator sicher mit Druckfluid versorgt, selbst wenn der Förderstrom der ersten und/oder der zweiten Pumpe nicht ausreicht, um alle Aktuatoren mit Druckfluid zu versorgen. Vorzugsweise ist dem Prioritätsventil eine zweite Feder zugeordnet, welche das Prioritätsventil in Schließrichtung der dritten Blende beaufschlagt. Die dritte Blende ist vorzugsweise zwischen einer ganz geschlossenen und einer ganz offenen Stellung monoton verstellbar. Die zweite und die dritte Blende sind vorzugsweise gegenläufig verstellbar, d.h. wenn der Öffnungsquerschnitt der dritten Blende über den Verstellweg größer wird, wird der Öffnungsquerschnitt der zweiten Blende kleiner.A priority valve can be provided with a continuously adjustable second aperture and a continuously adjustable third aperture, which are adjustable together, the second aperture being open in every position of the priority valve, with a pressure downstream of the third aperture moving the priority valve in the opening direction of the third Aperture is acted upon, wherein a second actuator is provided, which is fluidly connected to the first and/or the second pump via the second aperture, an individual load pressure of the second actuator acting on the priority valve in the closing direction of the third aperture. This means that the second actuator is reliably supplied with pressurized fluid, even if the delivery flow of the first and/or the second pump is not sufficient to supply all actuators with pressurized fluid. Preferably, the priority valve is assigned a second spring, which acts on the priority valve in the closing direction of the third aperture. The third aperture is preferably monotonically adjustable between a completely closed and a completely open position. The second and third apertures are preferably adjustable in opposite directions, i.e. if the opening cross section of the third aperture becomes larger over the adjustment path, the opening cross section of the second aperture becomes smaller.
Es kann vorgesehen sein, dass ein dritter Fluidströmungspfand ausgehend vom Tank über die erste Pumpe, weiter über die zweite Blende zum zweiten Aktuator führt, wobei die dritte Blende im ersten Fluidströmungspfand zwischen der ersten Pumpe und dem ersten Rückschlagventil angeordnet ist. Diese Ausführungsform ist insbesondere dann vorteilhaft, wenn der zweite Aktuator einen geringen Druckbedarf hat. Dann kann in Betriebszuständen, in denen der Druck an der zweiten Steuerstelle hoch ist, die erste Pumpe genutzt werden, um den zweiten Aktuator mit Druckfluid zu versorgen. Hierdurch wird eine hohe Versorgungssicherheit bei gleichzeitig geringen Energieverlusten erreicht.It can be provided that a third fluid flow path starts from the tank via the first pump, continues via the second aperture to the second actuator, the third aperture being arranged in the first fluid flow path between the first pump and the first check valve. This embodiment is particularly advantageous if the second actuator has a low pressure requirement. Then, in operating states in which the pressure at the second control point is high, the first pump can be used to supply the second actuator with pressurized fluid. This achieves a high level of security of supply with low energy losses at the same time.
Es kann vorgesehen sein, dass jedem ersten Aktuator und ggf. dem zweiten Aktuator jeweils ein individueller Lastdruck zugeordnet ist, wobei ein erster höchster Lastdruck ausschließlich aus den individuellen Lastdrücken des wenigstens einen ersten Aktuators ermittelt wird, wobei das Verdrängungsvolumen der zweiten Pumpe abhängigen vom ersten höchsten Lastdruck verstellbar ist. Hierdurch werden Energieverluste bei der Versorgung der ersten Aktuatoren vermieden, wenn der individuelle Lastdruck am zweiten Verbraucher hoch ist.It can be provided that an individual load pressure is assigned to each first actuator and possibly the second actuator, with a first highest load pressure being determined exclusively from the individual load pressures of the at least one first actuator, with the displacement volume of the second pump depending on the first highest Load pressure is adjustable. This avoids energy losses when supplying the first actuators when the individual load pressure on the second consumer is high.
Es kann vorgesehen sein, dass der zweite Aktuator über die zweite Blende mit der zweiten Steuerstelle fluidisch verbunden ist, wobei der wenigstens eine erste Aktuator über die dritte Blende mit der zweiten Steuerstelle fluidisch verbunden ist. Diese Ausführungsform ist dann besonders energieeffizient, wenn der Förderstrom der ersten Pumpe im Vergleich zum Förderstrom der zweiten Pumpe groß ausgelegt ist. Wenn mehrere erste Aktuatoren vorgesehen sind, sind diese vorzugsweise parallel an die dritte Blende angeschlossen.It can be provided that the second actuator is fluidly connected to the second control point via the second aperture, wherein the at least one first actuator is fluidly connected to the second control point via the third aperture. This embodiment is particularly energy efficient if the delivery flow of the first pump is designed to be large compared to the delivery flow of the second pump. If several first actuators are provided, they are preferably connected in parallel to the third aperture.
Es kann vorgesehen sein, dass jedem ersten Aktuator und dem zweiten Aktuator jeweils ein individueller Lastdruck zugeordnet ist, wobei ein zweiter höchster Lastdruck aus allen genannten individuellen Lastdrücken ermittelt wird, wobei das Verdrängungsvolumen der zweiten Pumpe abhängig von dem zweiten höchsten Lastdruck verstellbar ist. Damit ist der Förderdruck der zweiten Pumpe immer hoch genug, um die an allen Aktuatoren angreifenden Lasten zu bewegen.It can be provided that an individual load pressure is assigned to each first actuator and the second actuator, with a second highest load pressure being determined from all of the individual load pressures mentioned, the displacement volume of the second pump being adjustable depending on the second highest load pressure. This means that the delivery pressure of the second pump is always high enough to move the loads acting on all actuators.
Es kann vorgesehen sein, dass das Verdrängungsvolumen der zweiten Pumpe mittels eines elektrischen Stellsignals verstellbar ist, wobei die zweite Pumpe an eine Steuervorrichtung angeschlossen ist, wobei ein erster Drucksensor vorgesehen ist, mittels dessen der Druck an der ersten Steuerstelle messbar ist, wobei der erste Drucksensor an die Steuervorrichtung angeschlossen ist. Die der Erfindung zugrundeliegende Regelung der zweiten Pumpe lässt sich auf besonders einfache Weise elektronisch realisieren. Eine ebenfalls mögliche hydraulische Regelung wäre demgegenüber weit aufwändiger. Die Steuervorrichtung umfasst vorzugsweise einen Digitalrechner.It can be provided that the displacement volume of the second pump is adjustable by means of an electrical control signal, the second pump being connected to a control device, a first pressure sensor being provided, by means of which the pressure at the first control point can be measured, the first pressure sensor being connected to the control device. The control of the second pump on which the invention is based can be implemented electronically in a particularly simple manner. A hydraulic control that is also possible would be much more complex. The control device preferably comprises a digital computer.
Es kann ein zweiter Drucksensor vorgesehen sein, mittels dessen der erste bzw. der zweite höchste Lastdruck messbar ist, wobei der zweite Drucksensor an die Steuervorrichtung angeschlossen ist, wobei die Steuervorrichtung einen ersten Regler implementiert, wobei eine Istgröße des ersten Reglers eine Differenz der Drücke am ersten und am zweiten Drucksensor ist, wobei eine Stellgröße des ersten Reglers zumindest mittelbar das Stellsignal der zweiten Pumpe beeinflusst. Damit ergibt sich im ersten Betriebszustand von selbst eine Einstellung der zweiten Pumpe, die einen motorischen Betrieb bewirkt, wenn von den Aktuatoren weniger Druckfluid verbraucht wird, als von der ersten Pumpe gefördert wird. Der erste Regler ist vorzugsweise ein stetiger, linearer Regler, höchst vorzugsweise eine PID-Regler. Der erste Regler ist vorzugsweise digital implementiert, wobei die entsprechenden Digitalwerte höchst vorzugsweise in einem vorgegebenen Zeitraster ermittelt werden. Die Sollgröße des ersten Reglers ist vorzugsweise fest vorgegeben, wobei sie auch abhängig vom Betriebszustand des hydraulischen Antriebssystems sein kann, wobei die Änderungsgeschwindigkeit erheblich niedriger als die Änderungsgeschwindigkeit der Drücke im hydraulischen Antriebssystem ist. Dem ersten Regler wird als Regelabweichung vorzugsweise eine Differenz aus der zugeordneten Ist- und der zugeordneten Sollgröße zugeführt.A second pressure sensor can be provided, by means of which the first or second highest load pressure can be measured, the second pressure sensor being connected to the control device, the control device implementing a first controller, an actual variable of the first controller being a difference in the pressures first and on the second pressure sensor, wherein a manipulated variable of the first controller at least indirectly influences the control signal of the second pump. This automatically results in a setting of the second pump in the first operating state, which causes motor operation when less pressure fluid is consumed by the actuators than is delivered by the first pump. The first controller is preferably a continuous, linear controller, most preferably a PID controller. The first controller is preferably implemented digitally, with the corresponding digital values most preferably being determined in a predetermined time frame. The setpoint size of the first controller is preferably fixed, and it can also be dependent on the operating state of the hydraulic drive system, the rate of change being significantly lower than the rate of change of the pressures in the hydraulic drive system. The first controller is preferably supplied with a difference between the assigned actual and the assigned target variable as a control deviation.
Es kann ein Stellungssensor vorgesehen sein, mittels dessen eine Einstellung des Verdrängungsvolumens der zweiten Pumpe messbar ist, wobei der Stellungssensor an die Steuervorrichtung angeschlossen ist, wobei die Steuervorrichtung einen zweiten Regler implementiert, wobei eine Stellgröße des zweiten Reglers zumindest mittelbar das Stellsignal der zweiten Pumpe beeinflusst, wobei eine Istgröße des zweiten Reglers die Einstellung des Verdrängungsvolumens der zweiten Pumpe ist, wobei die Stellgröße des ersten Reglers eine Sollgröße des zweiten Reglers ist. Hierdurch kann eine besonders dynamische und genaue Regelung erreicht werden. Bei dem Stellungssensor handelt es sich vorzugsweise um einen Dreh- bzw. Schwenkwinkelsensor, mittels dessen höchst vorzugsweise eine Drehstellung einer Schwenkwiege der zweiten Pumpe messbar ist. Der zweite Regler ist vorzugsweise eine stetiger, linearer Regler, höchst vorzugsweise ein PID-Regler. Der zweite Regler ist vorzugsweise digital implementiert, wobei die entsprechenden Digitalwerte höchst vorzugsweise in einem vorgegebenen Zeitraster ermittelt werden. Dem zweiten Regler wird als Regelabweichung vorzugsweise eine Differenz aus der zugeordneten Ist- und der zugeordneten Sollgröße zugeführt.A position sensor can be provided, by means of which an adjustment of the displacement volume of the second pump can be measured, the position sensor being connected to the control device, the control device implementing a second controller, wherein a manipulated variable of the second controller at least indirectly influences the control signal of the second pump , where an actual variable of the second controller is the setting of the displacement volume of the second pump, where the The manipulated variable of the first controller is a setpoint variable of the second controller. This allows particularly dynamic and precise control to be achieved. The position sensor is preferably a rotation or swivel angle sensor, by means of which a rotational position of a swivel cradle of the second pump can most preferably be measured. The second controller is preferably a continuous, linear controller, most preferably a PID controller. The second controller is preferably implemented digitally, with the corresponding digital values most preferably being determined in a predetermined time frame. The second controller is preferably supplied with a difference between the assigned actual and the assigned target variable as a control deviation.
Es versteht sich, dass die vorstehend genannten und die nachfolgend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen verwendbar solange diese Kombinationen nicht vom Rahmen der vorliegenden Erfindung abweichen, wie dieser durch die beigefügten Ansprüche definiert ist.It is understood that the features mentioned above and those to be explained below can be used not only in the combination specified in each case, but also in other combinations as long as these combinations do not deviate from the scope of the present invention, as defined by the appended claims.
Die Erfindung wird im Folgenden anhand der beigefügten Zeichnungen näher erläutert. Es zeigt:
- Fig. 1
- ein hydraulisches Antriebssystem gemäß einer ersten Ausführungsform der Erfindung;
- Fig. 2
- ein hydraulisches Antriebssystem gemäß einer zweiten Ausführungsform der Erfindung;
- Fig. 3a
- ein Diagramm, in dem verschiedene Drücke des hydraulischen Antriebssystems über die Zeit aufgetragen sind;
- Fig. 3b
- ein Diagramm, in dem verschiedene Volumenströme des hydraulischen Antriebssystems über die Zeit aufgetragen sind;
- Fig. 4
- ein Schaltbild der Steuervorrichtung mit dem ersten und dem zweiten Regler.
- Fig. 1
- a hydraulic drive system according to a first embodiment of the invention;
- Fig. 2
- a hydraulic drive system according to a second embodiment of the invention;
- Fig. 3a
- a graph plotting various pressures of the hydraulic drive system over time;
- Fig. 3b
- a diagram in which different volume flows of the hydraulic drive system are plotted over time;
- Fig. 4
- a circuit diagram of the control device with the first and second controllers.
In
Weiter sind vorliegend zwei erste Aktuatoren 20 vorgesehen, wobei deren Anzahl beliebig gewählt werden kann. Bei den ersten Aktuatoren 20 kann es sich um Hydraulikzylinder oder Hydromotore handeln, wobei beliebige Mischformen denkbar sind. Weiter ist ein zweiter Aktuator 30 vorgesehen. Bei diesem kann es sich um den Lenkzylinder einer Fahrzeuglenkung handeln. Es kann sich aber auch um den Hydromotor eines hydraulischen Lüfterantriebs handeln. Der zweite Aktuator 30 kann entfallen, wobei auch mehrere zweite Aktuatoren 30 vorgesehen sein können.Furthermore, two
Jedem Aktuator ist jeweils eine Hauptblende 21; 31 und jeweils ein Wegeventil 22; 32 zugeordnet. Diese werden vorzugsweise jeweils von einem gemeinsamen Ventil gebildet, wobei sie gemeinsam verstellbar sind. Mit der Hauptblende 21; 31 wird die Bewegungsgeschwindigkeit des jeweils zugeordneten Aktuators 20; 30 eingestellt. Den Hauptblenden 21; 31 kann jeweils eine (nicht dargestellte) Druckwaage zugeordnet sein, mit welcher der Druckabfall an der betreffenden Hauptblende 21; 31 jeweils auf einen vorgegebenen Wert eingeregelt wird, so dass die jeweilige Bewegungsgeschwindigkeit allein von der Einstellung der Hauptblende 21; 31 und nicht vom jeweiligen individuellen Lastdruck 23; 33 abhängig ist. Mit dem Wegeventil 22; 32 wird die Bewegungsrichtung des jeweils zugeordneten Aktuators 20; 30 eingestellt. Die Wegeventile 22; 32 sind jeweils mit einem Lastdruckabgriff ausgestattet, an welchen unabhängig von der Bewegungsrichtung der zulaufseitige Druck am betreffenden Aktuator 20; 30 anliegt, welcher im Rahmen dieser Anmeldung als individueller Lastdruck bezeichnet wird. Vorliegend haben die Wegeventile 22; 32 eine mittlere Sperrstellung, in welcher sich der betreffende Aktuator 20; 30 nicht bewegt. In dieser Sperrstellung ist der Lastdruckabgriff mit dem Tank 13 verbunden, um Energie einzusparen.Each actuator has a
Ein erster Fluidströmungspfad verläuft ausgehend vom Tank 13 über die erste Pumpe 40, weiter über eine dritte Blende 72 eines Prioritätsventils 70, weiter über eine erste Steuerstelle 11, weiter über ein erstes Rückschlagventil 43 zu einer zweiten Steuerstelle 12. Das erste Rückschlagventil 43 lässt ausschließlich einen Fluidstrom zur zweiten Steuerstelle 12 hin zu. Wenn der zweite Aktuator 30 nicht vorhanden ist, entfällt das Prioritätsventil 70, wobei die erste Pumpe 40 wie in
Ein zweiter Fluidströmungspfad verläuft unter vollständiger Umgehung des ersten Fluidströmungspfads ausgehend vom Tank 13 über die zweite Pumpe 50 zur zweiten Steuerstelle 12. Wenn die zweite Pumpe 50 motorisch betrieben wird, fließt das Druckfluid von der zweiten Steuerstelle 12 zum Tank 13 hin. Im ersten Fluidströmungspfad ist eine vergleichbare Umkehr der Strömungsrichtung wegen des ersten Rückschlagventils 43 nicht möglich.A second fluid flow path runs completely bypassing the first fluid flow path from the
Die ersten Aktuatoren 20 werden ausgehend von der zweiten Steuerstelle 12 parallel mit Druckfluid versorgt. Dabei kann jedem Aktuator ein zweites Rückschlagventil 24 zugeordnet sein, welches ausschließlich einen Fluidstrom zum Aktuator 20 hin zulässt. Das zweite Rückschlagventil 24 bewirkt eine Lasthaltung, so dass sich der betreffende erste Aktuator 20 nicht entgegen der gewünschten Bewegungsrichtung bewegen kann, wenn die Förderleistung der ersten und/oder der zweiten Pumpe 40; 50 nicht ausreicht, um die am betreffenden Aktuator 20 angreifende Last zu halten. Die zweiten Rückschlagventile 24 können teilweise oder ganz entfallen, um beispielsweise eine Energierückgewinnung beim Absenken von äußeren Lasten zu ermöglichen.The
Weiter ist eine erste Blende 41 vorgesehen, mittels derer Druckfluid ausgehend von der ersten Steuerstelle 11 zum Tank 13 leitbar ist. Die erste Blende 41 ist vorzugsweise Bestandteil eines Druckbegrenzungsventils. Sie wird von einer fest vorgegebenen Steuerkraft 44 in Schließrichtung beaufschlagt, wobei diese Steuerkraft 44 vorzugsweise von einer vorgespannten ersten Feder 42 erzeugt wird. Im Gegensatz zum hydraulischen Antriebssystem gemäß
In Öffnungsrichtung ist die erste Blende 41 mit dem Druck an der zweite Steuerstelle 12 beaufschlagt. Demnach öffnet die erste Blende 41, wenn der Druck an der zweiten Steuerstelle 12 das Druckäquivalent der ersten Feder 42 übersteigt. Zwischen der offenen und der geschlossenen Stellung der ersten Blende 41 ist vorzugsweise ein stetiger, sanfter Übergang vorgesehen, so dass ausreichend Zeit vorhanden ist, um die Einstellung der zweiten Pumpe 50 an die veränderte Stellung der ersten Blende 41 anzupassen.In the opening direction, the
Das optionale Prioritätsventil 70 umfasst eine stetig verstellbare zweite Blende 72 und eine stetig verstellbare dritte Blende 73, welche gemeinsam verstellbar sind. Die zweite Blende 72 ist in jeder Stellung des Prioritätsventils 70 offen, wobei ein Druck 71 stromabwärts der dritten Blende 73 das Prioritätsventil 70 in Öffnungsrichtung der dritten Blende 73 beaufschlagt. Das Prioritätsventil 70 wird von einer zweiten Feder 74 in Schließrichtung der dritten Blende 73 beaufschlagt. Der individuelle Lastdruck 33 des zweiten Aktuators 30 beaufschlagt das Prioritätsventil 70 ebenfalls in Schließrichtung der dritten Blende 73. Die dritte Blende 73 ist vorzugsweise zwischen einer ganz geschlossenen und einer ganz offenen Stellung monoton verstellbar. Die zweite und die dritte Blende sind vorzugsweise gegenläufig verstellbar, d.h. wenn der Öffnungsquerschnitt der dritten Blende 73 über den Verstellweg größer wird, wird der Öffnungsquerschnitt der zweiten Blende 72 kleiner. Die Hauptblende 31 des zweiten Aktuators 30 ist über die zweite Blende 72 an die erste Pumpe 40 angeschlossen. Dementsprechend wird der zweite Aktuator 30 immer von der ersten Pumpe 40 her mit Druckfluid versorgt, gleich in welchem Betriebszustand sich das hydraulische Antriebssystem 10 befindet. Von der ersten Pumpe 40 zu viel gefördertes Druckfluid fließt entweder zu den ersten Aktuatoren 20 oder über die zweite Pumpe 50 zurück in den Tank 13. Dabei wird dessen hydraulische Energie zur Entlastung des Motors 14 genutzt und ist mithin nicht verloren.The
Der erste maximale Lastdruck 61 wird aus den individuellen Lastdrücken 23 an den ersten Aktuatoren 20 ermittelt, wobei der individuelle Lastdruck 33 am zweiten Aktuator 30 außer Betracht bleibt. Dies kann beispielsweise mittels einer Wechselventilkaskade 60 geschehen, wobei jedem ersten Aktuator 20 ein entsprechendes Wechselventil 64 zugeordnet ist. Genauso gut können aber auch andere aus dem Stand der Technik bekannte Verfahren genutzt werden, um einen höchsten Lastdruck aus mehreren individuellen Lastdrücken zu ermitteln. Wenn nur eine erster Aktuator 20 vorhanden ist, ist der erste maximale Lastdruck 61 gleich dessen individuellem Lastdruck.The first
Der Druck an der zweiten Steuerstelle 12 wird vorliegend mit einem ersten Drucksensor 53 gemessen, wobei der erste höchste Lastdruck 61 mit einem zweiten Drucksensor 63 gemessen wird. Die beiden Drucksensoren 53; 63 sind an eine Steuervorrichtung 51 angeschlossen, welche vorzugsweise einen programmierbaren Digitalrechner umfasst. Das Verdrängungsvolumen der zweiten Pumpe 50 wird vorzugsweise mittels eines elektrischen Stellsignals 54 verstellt. Dafür kann beispielsweise ein elektrisch betätigtes 3/2-Wegeventil vorgesehen sein, mittels dessen ein Stellzylinder in der zweiten Pumpe 50 verstellt wird.In the present case, the pressure at the
Es versteht sich, dass anstelle dieser elektronischen Pumpenregelung auch eine rein hydraulische Pumpenregelung verwendbar ist. Die mit Bezug auf
Der zweiten Pumpe kann ein Stellungssensor 52 zugeordnet sein, mit welchem die Einstellung des betreffenden Verdrängungsvolumens messbar ist. Bei dem Stellungssensor 52 handelt es sich vorzugsweise um einen Drehwinkelsensor, mittels dessen höchst vorzugsweise eine Drehstellung einer Schwenkwiege der zweiten Pumpe 50 messbar ist. Der Stellungssensor 52 ist ebenfalls an die Steuervorrichtung 51 angeschlossen. Der Stellungssensor 52 kann entfallen, wobei hierdurch die Regeldynamik nachteilig beeinflusst wird.A
Die zweite Ausführungsform kommt vorzugsweise dann zum Einsatz, wenn das Verdrängungsvolumen der ersten Pumpe deutlich größer als das maximale Verdrängungsvolumen der zweiten Pumpe ist. In diesem Fall wäre die erste Pumpe deutlich überdimensioniert, wenn sie allein den zweiten Aktuator zu versorgen hätte. Ein solcher Betriebszustand wird mit der zweiten Ausführungsform vermieden.The second embodiment is preferably used when the displacement volume of the first pump is significantly larger than the maximum displacement volume of the second pump. In this case, the first pump would be significantly oversized if it only had to supply the second actuator. Such an operating state is avoided with the second embodiment.
Hierfür wurde das Prioritätsventil 70 gegenüber der ersten Ausführungsform anders angeordnet. Der zweite Aktuator 20 ist nunmehr über die zweite Blende 72 fluidisch mit der zweiten Steuerstelle verbunden. Die ersten Aktuatoren 20 sind parallel an die dritte Blende 73 angeschlossen, wobei sie über diese fluidisch mit der zweiten Steuerstelle 12 verbunden sind. In die Ermittlung des zweiten höchsten Lastdrucks 62 sind nunmehr alle ersten Aktuatoren 20 und der zweite Aktuator 30 einbezogen. Die Wechselventilkaskade 60' umfasst daher gegenüber der ersten Ausführungsform ein weiteres Wechselventil 64', welches dem zweiten Aktuator 30 zugeordnet ist.For this purpose, the
In
Entsprechend der mit Bezug auf
In
Im ersten Betriebszustand 101 fließt etwa die Hälfte des von der ersten Pumpe 40 geförderten Volumenstroms über die zweite Pumpe 50 in den Tank zurück. Der Förderstrom der zweiten Pumpe 50 ist in
Die erste und die zweite Pumpe können auch in die gleiche Richtung fördern, so dass sich ein sehr hoher Förderstrom ergibt. Der mögliche Förderdruck ist jedoch durch das Druckäquivalent der Steuerkraft 44 begrenzt. Der zweite Betriebszustand erlaubt demgegenüber einen sehr viel höheren Förderdruck, wobei der maximale Förderstrom durch den maximalen Förderstrom der zweiten Pumpe gegeben ist.The first and second pumps can also deliver in the same direction, resulting in a very high delivery flow. However, the possible delivery pressure is limited by the pressure equivalent of the
Die Stellgröße 83 des ersten Reglers 80 könnte unmittelbar als Stellsignal 54 der zweiten Pumpe 40 verwendet werden. Vorliegend ist jedoch eine unterlagerte Regelung mit einem zweiten Regler 90 vorgesehen, um die Regeldynamik und die Regelgenauigkeit zu verbessern.The manipulated variable 83 of the
Bei dem zweiten Regler 90 handelt es sich vorzugsweise um einen PID-Regler. Dessen Regeldifferenz 94 wird aus der Stellgröße 83 des ersten Reglers 80 und dem als Istgröße 91 verwendeten Messwert des Stellungssensors 52 gebildet. Die Stellgröße 93 des zweiten Reglers 90 bildet vorliegend das Stellsignal 54 der zweiten Pumpe 40, wobei noch weitere unterlagerte Regelkreise vorgesehen sein können.The
- 1010
- hydraulisches Antriebssystem (erste Ausführungsform)hydraulic drive system (first embodiment)
- 10'10'
- hydraulisches Antriebssystem (zweite Ausführungsform)hydraulic drive system (second embodiment)
- 1111
- erste Steuerstellefirst control point
- 1212
- zweite Steuerstellesecond control point
- 1313
- Tanktank
- 1414
- Motorengine
- 2020
- erster Aktuatorfirst actuator
- 2121
- erste Hauptblendefirst main aperture
- 2222
- erstes Wegeventilfirst directional control valve
- 2323
- individueller Lastdruck an einem ersten Aktuatorindividual load pressure on a first actuator
- 2424
- zweites Rückschlagventilsecond check valve
- 3030
- zweiter Aktuatorsecond actuator
- 3131
- zweite Hauptblendesecond main aperture
- 3232
- zweites Wegeventilsecond directional control valve
- 3333
- individueller Lastdruck an einem zweiten Aktuatorindividual load pressure on a second actuator
- 4040
- erste Pumpefirst pump
- 4141
- erste Blendefirst aperture
- 4242
- erste Federfirst feather
- 4343
- erstes Rückschlagventilfirst check valve
- 4444
- SteuerkraftTax power
- 5050
- zweite Pumpesecond pump
- 5151
- SteuervorrichtungControl device
- 5252
- StellungssensorPosition sensor
- 5353
- erster Drucksensorfirst pressure sensor
- 5454
- StellsignalControl signal
- 6060
- Wechselventilkaskade (erste Ausführungsform)Shuttle valve cascade (first embodiment)
- 60'60'
- Wechselventilkaskade (zweite Ausführungsform)Shuttle valve cascade (second embodiment)
- 6161
- erster höchster Lastdruckfirst highest load pressure
- 6262
- zweiter höchster Lastdrucksecond highest load pressure
- 6363
- zweiter Drucksensorsecond pressure sensor
- 6464
- Wechselventil, welches einem ersten Aktuator zugeordnet istShuttle valve, which is assigned to a first actuator
- 64'64'
- Wechselventil, welches dem zweiten Aktuator zugeordnet istShuttle valve, which is assigned to the second actuator
- 7070
- PrioritätsventilPriority valve
- 7171
- Druck stromabwärts der dritten BlendePressure downstream of the third orifice
- 7272
- zweite Blendesecond aperture
- 7373
- dritte Blendethird aperture
- 7474
- zweite Federsecond spring
- 8080
- erster Reglerfirst controller
- 8181
- Istgröße des ersten ReglersActual size of the first controller
- 8282
- Sollgröße des ersten ReglersSetpoint size of the first controller
- 8383
- Stellgröße des ersten ReglersControlling variable of the first controller
- 8484
- Regeldifferenz des erste ReglersControl difference of the first controller
- 9090
- zweiter Reglersecond controller
- 9191
- Istgröße des zweiten ReglersActual size of the second controller
- 9292
- Sollgröße des zweiten ReglersSetpoint size of the second controller
- 9393
- Stellgröße des zweiten ReglersControlling variable of the second controller
- 9494
- Regeldifferenz des zweiten ReglersControl difference of the second controller
- 101101
- erster Betriebszustandfirst operating state
- 102102
- zweiter Betriebszustandsecond operating state
- 103103
- dritter Betriebszustandthird operating state
- 104104
- effektiver Förderstromeffective flow
Claims (11)
- Hydraulic drive system (10; 10') comprising at least one first actuator (20), a tank (13), a first nonreturn valve (43) and a first and a second pump (40; 50), wherein the first pump (40) has a constant displacement volume, wherein the second pump (50) has an adjustable displacement volume, wherein a first fluid flow path starting from the tank (13) runs via the first pump (40), further via a first control point (11), further via the first nonreturn valve (43), to a second control point (12), wherein the at least one first actuator (20) is fluidically connected to the second control point (12), wherein the first nonreturn valve (43) permits a fluid flow only towards the second control point (12), wherein a second fluid flow path leads from the tank (13) to the second control point (12) via the second pump (40), wherein pressurized fluid can be conducted from the first control point (11) to the tank (13) via an adjustable first orifice (41), wherein the first orifice (41) is loaded in the opening direction by the pressure at the second control point (12), wherein the first and the second pump (40; 50) are or can be brought into a rotational drive connection to each other, wherein their relative direction of rotation is fixedly predefined, wherein the first orifice (41) is loaded in the closing direction by a fixedly predefinable control force (44) which is independent of an individual load pressure (23) acting in the at least one first actuator (20), characterized in that the second pump (50) is adjustable in two opposite directions from a position having a zero displacement volume, so that it can be operated optionally as a pump or as a motor with the same direction of rotation.
- Hydraulic drive system according to Claim 1, wherein the control force (44) is generated only by a preloaded first spring (42).
- Hydraulic drive system according to one of the preceding claims, wherein the drive system (10; 10') has a first operating state (101), in which the pressure at the second control point (12) lies below a pressure equivalent of the control force (44), wherein in the first operating state (101) part of the delivery flow from the first pump (40) can be conducted into the tank (13) via the second fluid flow path, so that the second pump (50) is motor-operated, wherein the drive system (10; 10') has a second operating state (101), in which the pressure at the second control point (12) lies above the pressure equivalent of the control force (44), wherein in the second operating state (102) the delivery flow from the first pump (40) can be conducted into the tank (13) via the first orifice (41), so that the first pump (40) runs substantially without pressure.
- Hydraulic drive system according to one of the preceding claims, wherein a priority valve (70) having a continuously adjustable second orifice (72) and a continuously adjustable third orifice (73) which are jointly adjustable is provided, wherein the second orifice (72) is open in any position of the priority valve (70), wherein a pressure (71) downstream of the third orifice (73) loads the priority valve (70) in the opening direction of the third orifice (73), wherein a second actuator (30) is provided, which is fluidically connected to the first and/or the second pump (40; 50) via the second orifice (72), wherein an individual load pressure (33) of the second actuator (30) loads the priority valve (70) in the closing direction of the third orifice (73).
- Hydraulic drive system according to Claim 4, wherein a third fluid flow path starting from the tank (13) leads to the second actuator (30) via the first pump (40), further via the second orifice (72), wherein the third orifice (73) is arranged in the first fluid flow path between the first pump (40) and the first nonreturn valve (43).
- Hydraulic drive system according to one of the preceding claims, wherein each first actuator (20) and possibly the second actuator (30) are each assigned an individual load pressure (23; 33), wherein a first highest load pressure (61) is determined only from the individual load pressures (23) of the at least one first actuator (20), wherein the displacement volume of the second pump (50) is adjustable as a function of the first highest load pressure (61).
- Hydraulic drive system according to Claim 4, wherein the second actuator (30) is fluidically connected to the second control point (12) via the second orifice (72), wherein the at least one first actuator (20) is fluidically connected to the second control point (12) via the third orifice (73).
- Hydraulic drive system according to Claim 7, wherein each first actuator (20) and the second actuator (30) are each assigned an individual load pressure (23; 33), wherein a second highest load pressure (62) is determined from all the aforementioned individual load pressures (23; 33), wherein the displacement volume of the second pump (50) is adjustable as a function of the second highest load pressure (62).
- Hydraulic drive system according to one of the preceding claims, wherein the displacement volume of the second pump (50) is adjustable by means of an electrical manipulated signal (54), wherein the second pump is connected to a control device (51), wherein a first pressure sensor (53) is provided, by means of which the pressure at the first control point (11) can be measured, wherein the first pressure sensor (53) is connected to the control device (51).
- Hydraulic drive system according to Claim 9, insofar as this depends on Claim 6 or 8, wherein a second pressure sensor (63) is provided, by means of which the first or the second highest load pressure (61; 62) can be measured, wherein the second pressure sensor (63) is connected to the control device (51), wherein the control device (51) implements a first closed-loop controller (80), wherein a current variable (81) of the first closed-loop controller (80) is a difference of the pressures at the first and at the second pressure sensor (53; 63), wherein a manipulated variable (83) of the first closed-loop controller (80) at least indirectly influences the manipulated signal (54) of the second pump (50).
- Hydraulic drive system according to Claim 9 or 10, wherein a position sensor (52) is provided, by means of which a setting of the displacement volume of the second pump (50) can be measured, wherein the position sensor (52) is connected to the control device (51), wherein the control device (51) implements a second closed-loop controller (90), wherein a manipulated variable (93) of the second closed-loop controller (90) at least indirectly influences the manipulated signal (54) of the second pump (50), wherein a current variable (91) of the second closed-loop controller (90) is the setting of the displacement volume of the second pump (50), wherein the manipulated variable (83) of the first closed-loop controller (80) is a setpoint variable (92) of the second closed-loop controller (90) .
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019208086.3A DE102019208086A1 (en) | 2019-06-04 | 2019-06-04 | Hydraulic drive system with two pumps and energy recovery |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3748168A1 EP3748168A1 (en) | 2020-12-09 |
EP3748168B1 true EP3748168B1 (en) | 2023-10-11 |
Family
ID=70613607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20173200.5A Active EP3748168B1 (en) | 2019-06-04 | 2020-05-06 | Hydraulic drive system with two pumps and energy recovery |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3748168B1 (en) |
CN (1) | CN112032126B (en) |
DE (1) | DE102019208086A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020205341A1 (en) * | 2020-04-28 | 2021-10-28 | Robert Bosch Gesellschaft mit beschränkter Haftung | Valve assembly for a reserve pump in a vehicle steering system |
DE102021210054A1 (en) * | 2021-09-13 | 2023-03-16 | Robert Bosch Gesellschaft mit beschränkter Haftung | Energy efficient electric-hydraulic control arrangement |
US11614101B1 (en) | 2021-10-26 | 2023-03-28 | Cnh Industrial America Llc | System and method for controlling hydraulic valve operation within a work vehicle |
US11608615B1 (en) | 2021-10-26 | 2023-03-21 | Cnh Industrial America Llc | System and method for controlling hydraulic valve operation within a work vehicle |
DE102022206501A1 (en) * | 2022-06-28 | 2023-12-28 | Robert Bosch Gesellschaft mit beschränkter Haftung | Hydraulic drive and method for regenerative lowering of an element of a work machine |
EP4530468A1 (en) * | 2023-07-10 | 2025-04-02 | SAFIM S.r.l. | Circuit for the flow rate control in a hydraulic circuit |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015216737A1 (en) * | 2015-09-02 | 2017-03-02 | Robert Bosch Gmbh | Hydraulic control device for two pumps and several actuators |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2684066B1 (en) * | 1991-11-26 | 1994-01-07 | Messier Bugatti | ACTUATOR ACTUATION SYSTEM FOR AN AIRCRAFT LANDING GEAR. |
DE19542275B4 (en) * | 1995-11-13 | 2006-07-27 | Bosch Rexroth Aktiengesellschaft | Priority flow circuit |
DE19842534A1 (en) * | 1998-08-01 | 2000-02-03 | Mannesmann Rexroth Ag | Hydrostatic drive system for an injection molding machine and method for operating such a drive system |
EP1099856A1 (en) * | 1999-05-28 | 2001-05-16 | Hitachi Construction Machinery Co., Ltd. | Pump capacity control device and valve device |
US7665299B2 (en) * | 2007-03-12 | 2010-02-23 | Clark Equipment Company | Hydraulic power management system |
DE102013114039A1 (en) * | 2013-12-13 | 2015-06-18 | Linde Hydraulics Gmbh & Co. Kg | Hydrostatic drive in a closed circuit with a hydraulic accumulator |
WO2015094023A1 (en) * | 2013-12-16 | 2015-06-25 | Volvo Construction Equipment Ab | Hydraulic system for driving a vibratory mechanism |
DE102013227032A1 (en) * | 2013-12-20 | 2015-06-25 | Hamm Ag | Drive system, in particular for a self-propelled construction machine, in particular soil compactor |
CN112627281A (en) * | 2015-08-14 | 2021-04-09 | 派克汉尼芬公司 | Boom potential energy recovery for hydraulic excavators |
CN204985136U (en) * | 2015-08-26 | 2016-01-20 | 徐工集团工程机械股份有限公司科技分公司 | Unloading valve piece, switching core hydraulic system and engineering machinery |
JP6510396B2 (en) * | 2015-12-28 | 2019-05-08 | 日立建機株式会社 | Work machine |
DE102016105159A1 (en) * | 2016-03-21 | 2017-09-21 | Claas Industrietechnik Gmbh | Hydraulic system of a land or building usable vehicle |
DE102016215747A1 (en) * | 2016-08-23 | 2018-03-01 | Robert Bosch Gmbh | Valve arrangement for a first and a second pump |
-
2019
- 2019-06-04 DE DE102019208086.3A patent/DE102019208086A1/en active Pending
-
2020
- 2020-05-06 EP EP20173200.5A patent/EP3748168B1/en active Active
- 2020-06-03 CN CN202010494586.7A patent/CN112032126B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015216737A1 (en) * | 2015-09-02 | 2017-03-02 | Robert Bosch Gmbh | Hydraulic control device for two pumps and several actuators |
Also Published As
Publication number | Publication date |
---|---|
CN112032126A (en) | 2020-12-04 |
DE102019208086A1 (en) | 2020-12-10 |
EP3748168A1 (en) | 2020-12-09 |
CN112032126B (en) | 2025-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3748168B1 (en) | Hydraulic drive system with two pumps and energy recovery | |
DE102015209074B3 (en) | DEVICE AND METHOD FOR CONTROLLING A HYDRAULIC MACHINE | |
EP1714764A2 (en) | Hydraulic mold closing unit | |
EP3759357B1 (en) | Valve arrangement for supplying a hydraulic consumer with pressure medium | |
DE4228599B4 (en) | Hydraulic circuit for the supply of several, serially operated consumers of a hydraulically controlled system | |
EP1989450B1 (en) | Hydraulic control arrangement | |
DE102020206343A1 (en) | Procedure for calibrating an electro-proportional adjustable proportional valve | |
EP1656224B1 (en) | Device for controlling the drawing process in a transfer press | |
DE102012208938A1 (en) | Hydraulic control device for mobile working machine e.g. hydraulic excavators, has delivery pressure regulator that includes shuttle valve connected to steering pressure and pump pressure, such that pressure set-point is derived | |
EP3371466B1 (en) | Method and device for controlling a hydraulically actuated drive unit of a valve | |
EP2126371B1 (en) | Valve arrangement | |
EP2199623A2 (en) | Hydraulic system | |
DE3421502A1 (en) | HYDRAULIC PRIORITY CONTROL DEVICE FOR AT LEAST TWO SERVO MOTORS | |
DE19742157C2 (en) | Control device for an adjustable hydraulic pump with several consumers | |
DE102020109134A1 (en) | Axial piston machine | |
DE102018212419A1 (en) | TORQUE CONTROL AND RETURN DEVICE | |
DE102009054217B4 (en) | Hydraulic arrangement | |
DE3805287C2 (en) | Valve arrangement for at least one hydraulic consumer fed by a pump with a variable delivery volume | |
DE102020204254A1 (en) | Hydraulic system | |
WO2001060734A1 (en) | Device for regulating the tilt function of a lifting mast, in particular for a fork-lift truck | |
DE4410156B4 (en) | Control device for a variable displacement pump | |
EP0707147B1 (en) | Control device for a hydrostatic machine | |
DE19756600C1 (en) | Capacity control valve | |
DE3844399A1 (en) | Variable-displacement pump for a plurality of consumers which can be actuated independently of one another | |
DE102012002435A1 (en) | Hydraulic drive system, has continuously adjustable inlet aperture, and control unit for providing command signal, where control unit is utilized for lowering control flow rates with respect to nominal volume flow when deficiency exists |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210609 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230710 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020005577 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20231011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240211 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240112 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240111 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240111 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502020005577 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240712 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240531 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240726 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240506 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20240506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231011 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240506 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240531 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20240531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240506 |