EP3720648A1 - Steel material composite, method for producing a component, and use - Google Patents
Steel material composite, method for producing a component, and useInfo
- Publication number
- EP3720648A1 EP3720648A1 EP17811278.5A EP17811278A EP3720648A1 EP 3720648 A1 EP3720648 A1 EP 3720648A1 EP 17811278 A EP17811278 A EP 17811278A EP 3720648 A1 EP3720648 A1 EP 3720648A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- optional
- steel
- layer
- composite
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 81
- 239000010959 steel Substances 0.000 title claims abstract description 81
- 239000000463 material Substances 0.000 title claims abstract description 51
- 239000002131 composite material Substances 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000005275 alloying Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 6
- 238000007747 plating Methods 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 4
- 238000005098 hot rolling Methods 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 54
- 239000010936 titanium Substances 0.000 description 10
- 238000003754 machining Methods 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 6
- 230000002411 adverse Effects 0.000 description 5
- 239000012792 core layer Substances 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052745 lead Inorganic materials 0.000 description 4
- 239000011265 semifinished product Substances 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000008092 positive effect Effects 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910000915 Free machining steel Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- -1 aluminum nitrides Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 102000008857 Ferritin Human genes 0.000 description 1
- 238000008416 Ferritin Methods 0.000 description 1
- 108050000784 Ferritin Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000009734 composite fabrication Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/011—Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/02—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
- B23K20/023—Thermo-compression bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0233—Sheets, foils
- B23K35/0238—Sheets, foils layered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/006—Vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12972—Containing 0.01-1.7% carbon [i.e., steel]
Definitions
- the invention relates to a composite steel material with at least two layers of steel. Furthermore, the invention relates to a method for producing a component and a use of the component.
- machinable and / or shearable steels can usually be formed from a flat product to a pre-geometry before they are machined or machined to produce the final geometry.
- Good machinable and / or shearable steels generally have poor forming properties, since the alloying components, such as lead, phosphorus and / or sulfur, which cause good machinability, counteract the formability.
- Steels are used which are easy to form, but do not show the desired chip pattern during machining, but form so-called flow chips.
- the disadvantage of the formation of the flow chips is that they can damage the surface of the workpiece to be machined. Furthermore, this can enforce the chip tool, which increases the cleaning effort and thereby in turn can extend the processing time. The service life of the cutting tool can be shortened. Summary of Invention
- the invention is therefore based on the object to provide a semifinished product, which combines the above-mentioned opposing properties, whereby the aforementioned disadvantages can be substantially compensated or reduced.
- a steel composite material is proposed with at least two layers, which at least a first layer of a machinable and / or shearable steel and at least one second layer of a malleable steel, which materially with the first layer is connected.
- the steel composite according to the invention ensures sufficient formability with good machinability and / or shearability.
- Machinable and / or shearable steels are in particular free-cutting steels (EN 10087). Also, tempered steels (EN 10083), case hardening steels (EN 10084) or nickel steels (EN 10085), each with a sulfur content of at least 0.01% by weight, can be used.
- steels of the grades DC (DIN EN 10130), DD (DIN EN 10111), DX (DIN EN 10346) or fine grain steels for cold forming (EN 10149) are to be understood as malleable steels.
- Steels that can be shaped in particular under the influence of temperature in such a way that the required final geometry of the component to be manufactured can be imaged without failure can be used.
- the at least first layer of the steel composite material is composed, by way of example, of Fe and, in terms of production, unavoidable impurities in% by weight
- first layer may optionally comprise one or more of the following optional alloying elements:
- optional Nb up to 0.050%
- optional N up to 0.020%
- optional B up to 0.010%
- optional AI up to 1.0%.
- C is a strength-increasing alloying element and contributes to the increase in hardness to the hardness by either dissolved as an interstitial atom in austenite or forms with Fe or the optionally alloyed alloying elements Cr, Ti, Nb and / or V carbides, on the one hand harder than the surrounding Can be matrix or at least distort it so that the hardness of the matrix increases.
- C is therefore present at levels of at least 0.020 wt.%, More preferably at least 0.070 wt.%, Preferably at least 0.10 wt.%, To achieve a desired hardness and some mechanical resistance To ensure processing.
- the C content is limited to a maximum of 0.60 wt .-%, in particular a maximum of 0.55 wt .-%.
- Si is an alloying element that can contribute to solid solution hardening and, depending on the content, has a positive effect in increasing the hardness, so that a content of at least 0.020% by weight, in particular at least 0.050% by weight, can be present. At lower levels of effectiveness of Si is not clearly demonstrated. Si, however, does not negatively affect the properties of the steel. If too much silicon is added to the steel, it has a negative influence on the deformability and toughness properties. Therefore, the alloying element is limited to not more than 1.00% by weight, in particular not more than 0.60% by weight, preferably not more than 0.40% by weight, in particular to ensure adequate rolling properties.
- Si can be used for deoxidizing the steel, if an optional use of Al, for example, should be avoided in order to avoid undesired setting z. B. of N to avoid.
- Mn is an alloying element which can contribute to hardenability and is used in particular for bonding S to MnS so that a content of at least 0.20% by weight, in particular at least 0.40% by weight, is present can.
- Manganese reduces the critical cooling rate, which can increase the hardenability, especially in a heat treatment process.
- the alloying element is to a maximum of 2.00 wt .-%, in particular a maximum of 1.50 wt .-%, to ensure a good forming behavior.
- Mn has a strong segregation and is therefore preferably limited to a maximum of 1.30 wt .-%.
- P is an iron companion, which has a strong toughening effect and is usually one of the unwanted accompanying elements. Due to its low diffusion rate, solidification of the melt can lead to strong segregations. For these reasons, the element is limited to a maximum of 0, 150 wt .-%, in particular at most 0, 110 wt .-%.
- S has a strong propensity for segregation in steel and forms undesirable FeS, as a result of which it can be set by alloying Mn.
- the S content is therefore limited to a maximum of 0.50 wt .-%, in particular at most 0.45 wt .-%.
- Pb can be alloyed up to a maximum of 0.50 wt .-%, in particular at most 0.40 wt .-%, preferably at most 0.350 wt .-%, which can lead to a smooth surface of the steel in a mechanical processing. Alloy contents above the stated upper limit would result in exceeding the legal restrictions.
- At least one of the alloying elements S, P, Pb due to the positive influence on the machinability by forming brittle inclusions in the steel, at which chips can break during mechanical or machining machining, individually or in total from either S and P or S. and Pb or P and Pb or S and P and Pb having at least 0.020% by weight, in particular at least 0.050% by weight, preferably at least at least 0, 10 wt .-%, particularly preferably at least 0, 150 wt .-% present. Total in sum SP + S + Pb> 0.020 wt .-%.
- Cr may contribute to the adjustment of the strength as an optional alloying element, in particular with a content of at least 0.020% by weight.
- Cr can be used alone or in combination with other elements as carbide formers. Because of the positive effect on the toughness of the material, the Cr content can preferably be adjusted to at least 0.15% by weight.
- the alloying element can be limited to a maximum of 3.0% by weight, in particular a maximum of 2.50% by weight, preferably a maximum of 2.0% by weight.
- Cu can contribute to hardness increase as an optional alloying element by precipitation hardening and in particular with a content of at least 0.010% by weight. be alloyed. Cu can be limited to a maximum of 0.50 wt .-%.
- Ti, Nb, and / or V may be added as optional alloying elements singly or in combination for grain refining.
- Ti can be used to set N. Above all, however, these elements can be used as micro-alloying elements to form strengthen keitssteigernde carbides, nitrides and / or carbonitrides.
- Ti, Nb and / or V can be used at levels of in each case or in total at least 0.010% by weight. For complete setting of N, the content of Ti should be at least 3.42 * N.
- Nb is at most 0.050 wt.%, In particular at most 0.030 wt.%, Ti is at most 0.020 wt.%, In particular at most 0.0150 wt.%, And V is at most 0.40 wt. -%, in particular limited to a maximum of 0.250 wt .-%, since higher contents may adversely affect the material properties, in particular adversely affect the toughness of the first layer.
- Mo can optionally be added as a carbide former to increase the yield strength and improve toughness.
- a content of at least 0.010 wt .-% can be alloyed.
- the maximum content is limited to a maximum of 1.0% by weight, preferably a maximum of 0.70% by weight.
- N as an optional alloying element, can exert a similar effect as C because its ability to form nitrides can have a positive effect on strength.
- AI is optional
- aluminum nitrides can be formed to enhance nucleation and to improve the efficiency of nucleation Hamper grain growth.
- the content is limited to a maximum of 0.020 wt .-%.
- a maximum level of 0.0150 wt% is adjusted to avoid the undesirable formation of coarse titanium nitrides in the event of an optional presence of Ti which would adversely affect toughness.
- the optional alloying element Boron this is bound by nitrogen, if the aluminum or titanium content is not high enough or not present.
- Ni which can optionally be alloyed up to a maximum of 5.0% by weight, can positively influence the deformability of the material.
- B as an optional alloying element in atomic form, retards the microstructure transformation to ferritin / bainite and improves the strength, in particular if N is bound by optionally strong nitride formers such as Al and / or Nb, and can have a content in particular of at least 0.0005 wt. -% to be available.
- the alloying element is limited to a maximum of 0.010 wt .-%, in particular to a maximum of 0.0070 wt .-%, since higher contents may adversely affect the material properties, in particular based on the toughness at the grain boundaries.
- Sn, As, and / or Co are optional alloying elements that can be counted as contaminants, individually or in combination, unless specifically added to set specific properties.
- the contents are limited to a maximum of 0.050 wt.% Sn, in particular a maximum of 0.040 wt.% Sn, to a maximum of 0.020 wt.% Co, to a maximum of 0.020 wt.
- oxide occupancies particularly on the release layer between the first and second layers, hinder diffusion between the deliberately differently alloyed steels, such as For example, in the German Offenlegungsschrift DE 10 2016 204 567 Al described.
- the maximum content of oxygen is given as 0.0050 wt%, preferably 0.0020 wt%.
- H is optional and as the smallest atom on interstitial sites in steel very flexible and can lead to tears in the core especially when cooling from the hot rolling.
- the element hydrogen is therefore reduced to a maximum content of 0.0010% by weight, in particular of which at most 0.0006% by weight, preferably at most 0.0004% by weight, more preferably at most 0.0002% by weight are reduced.
- Ca can optionally be added to the melt as desulphurising agent and for targeted sulphide addition in amounts of up to 0.0150% by weight, preferably up to 0.0050% by weight, which leads to an altered plasticity of the sulphides in the case of Hot rolling leads.
- the cold-forming behavior is preferably improved by the Ca addition.
- the described effects are effective from the level of 0.0005 wt .-%, which is why this limit can be chosen with optional use of Ca as a minimum.
- AI can contribute in particular to the deoxidation, which is why optionally a content of at least 0.010 wt .-% can be adjusted.
- the alloying element is limited to a maximum of 1.0% by weight in order to ensure the best possible castability, preferably a maximum of 0.30% by weight, in order essentially to reduce unwanted precipitations in the material, in particular in the form of non-metallic oxidic inclusions. or to avoid which may adversely affect the material properties.
- the content is set between 0.020 and 0.30 wt .-%.
- AI can also be used to tie off the nitrogen that is available in the steel as an option.
- the at least second layer of the steel composite material consists of a steel having an elongation at break A 80 > 10, in particular an elongation at break A 80 > 15, preferably an elongation at break A 80 > 20, particularly preferably an elongation at break A 80 > 25.
- the first layer has a material thickness of between 5% and 70%, in particular between 10% and 50%, preferably between 20% and 40%, based on the total material thickness of the steel material composite.
- the material thickness of the first layer of at least 5% should be ensured that a mechanical processing can be implemented exclusively in the first position.
- the restriction of the material thickness of the first layer to a maximum of 70% should give the steel composite material a certain malleability.
- the total material thickness is between 0.5 and 20.0 mm, in particular between 1.0 and 15.0 mm, preferably between 2.0 and 10.0 mm.
- the steel composite material has exactly one first layer and one second layer.
- the composite steel material can also be designed to have at least three layers, wherein the first layer as a core layer between two cover layers, each formed from the second layer are, can be arranged.
- the second layer can be arranged as a core layer between two cover layers, which are each formed from the first layer.
- the cover layers may have either a symmetrical or asymmetrical structure in the at least three-layered design.
- the steel-material composite is produced by means of plating, in particular roll-cladding, preferably hot-rolled cladding, as described, for example, in German Patent DE 10 2005 006 606 B3. Reference is made to this patent, the contents of which are hereby incorporated by reference. Composite fabrication is generally known in the art.
- the invention relates to a method for producing a component, wherein a steel composite material according to the invention is provided, which is shaped into a preform, in particular cold-formed, and the preform for producing a final shape or a further shape, in particular for further process steps at least partially machined in the region of the first layer.
- Mechanical processing is to be understood as meaning, in particular, a machining operation, for example, turning, milling and / or drilling in sections in the region of the first layer.
- a substantially complete machining of the surface can take place. If the first layer is only partially accessible, for example if it is arranged as a core layer in the at least three-layered component, the first layer can also be machined only in the region of the front side of the component.
- the final shape or the further shape may be heat treated.
- further properties or improved properties can be set on the component, for example by flash annealing or hardening with optionally subsequent tempering or surface hardening in the course of carburizing or nitriding.
- the invention relates to a use of a component produced by one of the aforementioned methods as a component in vehicle or metal construction, in particular in the drive train of a vehicle.
- the powertrain of a vehicle includes all components that transmit the engine power to the wheels. These include, starting with the engine, the assemblies of clutch and gearbox, cardan shaft, drive shafts and differentials. In the hybrid vehicles, full hybrid and plug-in, as well as the pure electric vehicles, the electric motors are added.
- Exemplary components may be plate carriers, rotor carriers, stator carriers, pressure plates, toothed belt wheels, donor wheels, rotor wheels and shafts.
- the use relates to all rotationally symmetrical components that still need to be machined at least in sections after a non-cutting shaping.
- FIG. 1 shows a first exemplary embodiment of a component according to the invention in different representations
- steel composite materials according to the invention can be produced by means of hot-rolled plating, in particular to provide semi-finished products, which can unite opposing properties, such as play a sufficient formability with good machinability and / or shearability.
- sheet metal blanks and / or slabs from at least two layers (1, 2, 3, 4) with different properties are stacked on one another, which at least partially along their edges cohesively, preferably by means of welding to a pre-bond miteinan- are connected.
- the pre-bond is brought to a temperature of at least 1000 ° C and hot rolled in several steps to a composite steel material with a total material thickness, for example from 2.0 to 10.0 mm.
- the steel composite can be further reduced to lower overall material thicknesses, in particular by means of cold rolling.
- 1 shows a first exemplary embodiment of a component (10) according to the invention in different representations, in a perspective view and in a sectional view according to section II and in an enlarged partial sectional view.
- the component (10) is formed by a composite steel material, which was produced in the course of the abovementioned hot-rolling plating and comprises a first layer (1) and a second layer (2), which are connected to one another in a material-locking manner.
- the first layer (1) consists of a readily machinable and / or shearable steel and the second layer (2) consists of a good deformable steel.
- the first layer (1) can in particular be made of a free-cutting steel according to EN 10087, for example a steel with the designation l lSMn30, or of a tempered steel according to EN 10083 with a sulfur content of at least 0.01% by weight, for example of a steel with the designation 42CrMoS4.
- the second layer (2) can consist of a steel with an elongation at break A 80 > 10, in particular an elongation at break A 80 > 15, for example from a steel with the designation DC according to DIN EN 10130, with the designation DD according to DIN EN 10111 , with the designation DX according to DIN EN 10346 or with the designation S355MC according to DIN EN 10149-2.
- a substantially planar steel material composite was provided, which had a first layer (1) with a material thickness of at least 25%, based on the total material thickness of the composite steel material. Due to the percentage higher proportion of good formable steel (second layer, 2), a sufficient and complex shape can be ensured.
- the composite steel material was cold-formed into a preform by means of suitable forming means, not shown, and the surface of the preform was unilaterally machined by suitable means (20) to its final shape, or brought into another form for further process steps. Alternatively, the steel material composite can also be thermoformed to produce a preform if required. The cutting removal reduced the material thickness of the first layer (1) to less than half of the original material thickness of the first layer before machining.
- FIG. 2 shows a second exemplary embodiment of a component (10 ') according to the invention in different representations, in a perspective view and in a sectional view along section II-II and in an enlarged partial sectional view.
- the component (10 ') is formed in comparison to the component (10) by a three-layer steel composite material.
- the steel composite material comprises a second layer (2) arranged as a core layer between two cover layers, which are each formed from the first layer (1, 3).
- a substantially planar steel material composite was provided, which had two first layers (1, 3), each with a material thickness of at least 20%, based on the total material thickness of the composite steel material.
- the steel composite was cold formed into a preform by means of suitable forming means not shown, and the preform on both sides, more specifically, the two surfaces of the first layer (1, 3) were machined by suitable means (20) to produce a final shape or shape , Alternatively, if required, the steel material composite can also be thermoformed to produce a preform.
- a cutting removal took place on both sides, the material thickness being reduced on both sides by approximately 1/4 of the original material thicknesses of the first layers (1, 3).
- the mechanical processing does not have to be carried out completely on the entire surface of the first layers (1, 3), but can also be carried out in sections only as required.
- the mechanical processing may also be followed by a heat treatment on the final mold or on the further mold to improve the properties.
- FIG. 3 shows a third exemplary embodiment of a component (10 ") according to the invention in different illustrations, in a perspective view and in a sectional view according to section III-III and in an enlarged partial sectional view.
- the component (10 ") is like the component (10 ') also formed by a three-layer steel composite material, but with the difference that the first layer (1) as a core layer between two cover layers, each consisting of the second layer (2, 4) are formed, is arranged.
- a substantially planar steel material composite was provided, which had a first layer (1) with a material thickness of at least 50%, based on the total material thickness of the steel material composite.
- the steel composite material has become a preform by means of suitable and not shown cold molded and the preform for producing a final shape from the front side of a mechanical or machining machining by means of suitable means (20) drove, wherein in the front side a circumferential groove-shaped geometry was machined into the component (10 ") was introduced.
- the steel material composite can also be thermoformed to produce a preform if required.
- the mechanical processing can also be followed by a heat treatment on the final shape to improve the properties.
- the component according to the invention or the component which can be produced from the steel material composite according to the invention can be used as a component in vehicle or metal construction, in particular as a component in the drive train of a vehicle, preferably in the form of a rotationally symmetrical component.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
Claims
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2017/081484 WO2019110087A1 (en) | 2017-12-05 | 2017-12-05 | Steel material composite, method for producing a component, and use |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3720648A1 true EP3720648A1 (en) | 2020-10-14 |
Family
ID=60627625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17811278.5A Withdrawn EP3720648A1 (en) | 2017-12-05 | 2017-12-05 | Steel material composite, method for producing a component, and use |
Country Status (5)
Country | Link |
---|---|
US (1) | US11351754B2 (en) |
EP (1) | EP3720648A1 (en) |
JP (1) | JP2021505761A (en) |
CN (1) | CN111432981A (en) |
WO (1) | WO2019110087A1 (en) |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51119612A (en) * | 1975-04-15 | 1976-10-20 | Nippon Steel Corp | A composite steel plate for use as a sliding part in a machine by weld ing assembling |
JPH0356644A (en) * | 1989-07-26 | 1991-03-12 | Nippon Steel Corp | Clad steel sheet excellent in burr resistance at the time of press forming and its production |
JPH03133630A (en) * | 1989-10-20 | 1991-06-06 | Nippon Steel Corp | Good formability clad steel plate with excellent dent resistance and surface strain resistance |
JPH0639655B2 (en) * | 1990-01-30 | 1994-05-25 | 新日本製鐵株式会社 | Good formability composite steel sheet with excellent burr resistance during press forming and method for producing the same |
CN2418330Y (en) * | 2000-04-21 | 2001-02-07 | 叶万青 | Double-metal tube |
DE102005006606B3 (en) | 2005-02-11 | 2006-03-16 | Thyssenkrupp Steel Ag | Production of roll-plated hot roll strip, involves having rectangular plates produced from steel and placed on top of each other with surfaces of plates treated before being placed on top of each other |
JP5114672B2 (en) * | 2008-04-17 | 2013-01-09 | 新日鐵住金株式会社 | Laminated steel sheet and manufacturing method thereof |
WO2011052517A1 (en) | 2009-10-26 | 2011-05-05 | 株式会社Neomaxマテリアル | Aluminum-bonding alloy, clad material having bonding alloy layer formed from the alloy, and composite material including bonded aluminum |
DE102011015071A1 (en) | 2011-03-24 | 2012-09-27 | Thyssenkrupp Steel Europe Ag | Composite material and structural component for a motor vehicle |
EP2886332B1 (en) * | 2013-12-20 | 2018-11-21 | ThyssenKrupp Steel Europe AG | Flat steel product, and method of producing a component of a motor vehicle body and of a motor vehicle body. |
JP6543439B2 (en) * | 2014-04-01 | 2019-07-10 | 東洋鋼鈑株式会社 | Method of manufacturing metal laminate |
DE102014114365A1 (en) * | 2014-10-02 | 2016-04-07 | Thyssenkrupp Steel Europe Ag | Multilayered flat steel product and component made from it |
DE102015114989B3 (en) * | 2015-09-07 | 2016-09-29 | Thyssenkrupp Ag | Method for producing a component structure with improved joining properties and component structure |
DE102016204567A1 (en) | 2016-03-18 | 2017-09-21 | Thyssenkrupp Ag | Method for producing a hot-rolled material composite, flat product package, hot-rolled material composite and its use |
-
2017
- 2017-12-05 CN CN201780097523.4A patent/CN111432981A/en active Pending
- 2017-12-05 US US16/769,033 patent/US11351754B2/en active Active
- 2017-12-05 EP EP17811278.5A patent/EP3720648A1/en not_active Withdrawn
- 2017-12-05 JP JP2020530459A patent/JP2021505761A/en active Pending
- 2017-12-05 WO PCT/EP2017/081484 patent/WO2019110087A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
US20210213708A1 (en) | 2021-07-15 |
JP2021505761A (en) | 2021-02-18 |
WO2019110087A1 (en) | 2019-06-13 |
US11351754B2 (en) | 2022-06-07 |
CN111432981A (en) | 2020-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60033772T2 (en) | Martensitic hardening steel with high fatigue strength and martensitic hardening steel strip | |
EP3168312B1 (en) | Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part | |
WO2019223854A1 (en) | Shaped sheet-metal part with a high tensile strength formed from a steel and method for the production thereof | |
DE112017002177B4 (en) | Protective composite steel sheet and process for its manufacture | |
EP3325678B1 (en) | Formable lightweight steel with improved mechanical properties and method for producing semi-finished products from said steel | |
EP3591078A1 (en) | Use of a steel for an additive production method, method for producing a steel component and steel component | |
EP2228459A1 (en) | Component with different stability characteristics | |
EP3625047A1 (en) | Safety steel or wear-resistant steel, and use | |
DE102017208252A1 (en) | Three-layer wear steel or safety steel, method of making a component and use | |
DE60024495T2 (en) | Steel with excellent forgeability and machinability | |
EP3589487A1 (en) | Flat steel semi-finished product, method for producing a component, and use thereof | |
EP3625045B1 (en) | Hot-working material, component and use | |
DE102016115618A1 (en) | Process for producing a high-strength steel strip with improved properties during further processing and such a steel strip | |
EP2289770A1 (en) | Corrosion protected taylored welded blank for a motor vehicle and its method of production | |
DE102015220195A1 (en) | Carburized alloy steel with improved durability and method of making the same | |
EP3625044B1 (en) | Hot-working material, component and use | |
DE69816948T2 (en) | UNHARDENED STEEL FOR MECHANICAL STRUCTURES | |
DE102008022401A1 (en) | Method for the production of steel mold part e.g. automobile body with predominantly bainitic structure, comprises providing starting material in the form of a steel plate or a preformed steel part and through-heating the starting material | |
EP3720648A1 (en) | Steel material composite, method for producing a component, and use | |
DE112017002175B4 (en) | Protective steel sheet with powerful cold bending properties and its manufacturing process | |
WO2020048599A1 (en) | Hot-rolled flat steel product and method for the production thereof | |
CH642109A5 (en) | FAST WORK STEEL. | |
WO2017050558A1 (en) | Semifinished part and method for producing a vehicle component, use of a semifinished part, and vehicle component | |
WO2018210779A1 (en) | Hot-working material, component and use | |
DE10156999B4 (en) | High-strength steel forging and crankshaft made from it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200528 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210429 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20220621 |