EP3686534B1 - Procédé et four pour le traitement thermique d'une bande d acier de haute résistance comprenant une chambre d homogénéisation en température - Google Patents
Procédé et four pour le traitement thermique d'une bande d acier de haute résistance comprenant une chambre d homogénéisation en température Download PDFInfo
- Publication number
- EP3686534B1 EP3686534B1 EP19218200.4A EP19218200A EP3686534B1 EP 3686534 B1 EP3686534 B1 EP 3686534B1 EP 19218200 A EP19218200 A EP 19218200A EP 3686534 B1 EP3686534 B1 EP 3686534B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strip
- temperature
- chamber
- oxidation
- radiant heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/561—Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/52—Methods of heating with flames
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/773—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/562—Details
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/562—Details
- C21D9/563—Rolls; Drums; Roll arrangements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
- C23C8/16—Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
- C23C8/18—Oxidising of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/28—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work
Definitions
- the invention relates to a process for the heat treatment of a high strength steel strip.
- the invention relates to a furnace for the heat treatment of a high resistance steel strip.
- High strength steels include alloying elements, for example manganese, silicon, chromium and / or aluminum.
- alloying elements for example manganese, silicon, chromium and / or aluminum.
- the alloying elements present in high strength steel can diffuse towards the surface of the steel and oxidize rapidly because of their high affinity for oxygen, even in areas with radiant tubes where the atmosphere is nevertheless reducing for iron oxides.
- This selective oxidation creates surface defects which make it difficult to adhere the zinc coating (or other metal or alloy) applied when galvanizing the surface. This problem of wettability is a limiting aspect of galvanizing which cannot be carried out correctly.
- a particularly studied method consists in subjecting, in the annealing furnace, the surface of the strips to temperature and atmospheric conditions suitable for rapidly and deeply oxidizing the alloying elements and thus preventing their surface migration. During this operation, an iron oxide layer is formed which will subsequently be removed in subsequent zones of the annealing furnace under a reducing atmosphere.
- the documents US 2017/137906 A1 and KR 20160085830 A describe an oxidation of a metal strip as it passes through a direct flame heating section with an excess of oxygen in the combustion atmosphere.
- the documents US 2010/173072 A1 and KR 20160085830 A describe the oxidation of a metal strip with injection of an oxidant during its passage through a radiant tube heating section.
- a problem generally encountered during the heat treatment of metal products with oxidation and reduction of the surface is to obtain a non-homogeneous surface state before the galvanizing step.
- one of the aims of the present invention is to provide a method of heat treatment of a high resistance steel strip making it possible to obtain on its surface an oxide formation with a more homogeneous and more controlled thickness. .
- the method of the invention allows during the heat treatment, thanks to the temperature homogenization step, the oxidation of the strip presenting a more homogeneous surface in temperature. This allows growth of an oxide layer having a more homogeneous thickness over the entire strip surface. A more homogeneous oxide thickness at the surface of the strip makes it possible to have a subsequent reduction of said oxide layer better controlled. Indeed, variations in the thickness of the oxide layer formed during the oxidation step require an adaptation of the reduction time during the reduction step in order to reduce the oxide over the entire surface. strip surface. Such an adaptation of the reduction time is based on the greatest oxide thicknesses. The method of the invention allows better control of the time of the reduction step because it guarantees a more homogeneous oxide thickness on the strip surface.
- the method of the invention is particularly advantageous because it makes it possible to compensate for the temperature inhomogeneity of the strip, in particular of the surface of the strip during step a) of heating the strip by direct flame.
- a direct flame heating zone allows a rapid rise in temperature of the strip to the detriment of the temperature homogeneity of the metal product.
- the oxidation chamber is positioned directly after the direct flame heating zone, so that the oxidation is carried out on a strip whose temperature homogeneity is not well controlled.
- step a) An oxidation carried out during heating by direct flame (step a)) makes an adjustment of the thickness of the FeO layer formed very difficult to control. Indeed, in EP 2 010 690 A1 , it was found that for the same oxidizing conditions in the atmosphere during heating by direct flame, a high scroll speed shows a thinner FeO layer compared to lower scroll speeds, demonstrating the high sensitivity from the iron oxide formation process to the various parameters involved.
- An advantage of the process of the invention over processes where the oxidation is carried out at the same time as the heating of the strip in a direct flame heating zone is that the process of the invention makes it possible to dissociate the heating of the strip. the strip, temperature homogenization and its oxidation with separate stages and furnace chambers. This allows better control of the iron oxide formation parameters at the surface of the strip while allowing strip heating by direct flame.
- the invention makes it possible to overcome the drawbacks of heating by direct flame by introducing a temperature homogenization chamber. Thanks to the invention, it is therefore possible to have an oven exhibiting a very good quality of heat treatment, as well as a better surface condition of the strip before it is galvanized, and this for reasonable operating costs.
- oxygen concentration (volume) should be understood to mean an O 2 (volume) concentration.
- the steps of the process of the invention are to be carried out in the following order: step a), step b), step c), and step d).
- the reduction zone has a reducing atmosphere having a hydrogen volume concentration greater than 3% and of preferably greater than 5%, and even more preferably greater than 8%.
- An advantage associated with such volume hydrogen concentrations in the reduction zone for these preferred embodiments is to increase the assurance that reduction will take place.
- the remainder of the composition of the atmosphere of the reduction zone comprises nitrogen.
- the process of the invention is particularly effective for high strength steel strips, for example having a Cr composition by weight of less than 5%, preferably less than 3% and even more preferably less. at 1%.
- high strength steel is understood to mean a steel comprising alloying elements such as manganese, silicon, chromium and / or aluminum.
- the strip has a thickness between 0.3 mm and 3.2 mm.
- the homogenization chamber comprising at least one radiant heating tube is intended to allow standardization / homogenization of the temperature of the strip when the latter is present in the homogenization chamber.
- the temperature uniformization of the strip takes place gradually during its passage through the homogenization chamber in order to obtain a temperature that is as uniform as possible at the outlet of the homogenization chamber.
- the homogenization chamber is not primarily intended to vary the average temperature of the strip but rather is intended to make the temperature of the strip uniform.
- the homogenization chamber may be present radiant and / or heating elements which have a power that can be changed quickly, which makes it possible to adjust the temperature quickly so as to maintain an optimum temperature at the entrance to the chamber. oxidation and ensure regular oxidation of the surface of the steel strip.
- the temperature homogenization chamber comprises two, three, or four radiant heating tubes.
- the temperature of the strip is included in the present application as being a temperature measured at the surface of the strip and representing the temperature over the entire thickness of the strip.
- a temperature of the strip at a point of the strip at its surface is representative of the temperature throughout the thickness of the strip. This is particularly true when the strip is in a chamber that is substantially homogeneous in temperature.
- a homogeneity or an inhomogeneity of temperature can be characterized by measurements of the surface temperature of the strip at very distinct places.
- a temperature inhomogeneity is observed on a strip section when there is a temperature difference greater than 5%, preferably greater than 2% and even more preferably greater than 1% between a point located at the center of the strip. and a point on the edge of the strip.
- the strip temperature is for example an average strip temperature taken on a section of strip at several different points, for example the strip temperature is the average of the temperatures measured at the level of the two edges as well as at its center.
- a target band temperature is reached when the average band temperature and the target band temperature are equal or in any case have a deviation of less than 2%, preferably less than 1%.
- the strip temperature remains essentially the same but it is surface homogenized.
- the oxidizing atmosphere in the oxidation chamber has a volume oxygen concentration of between 1.5% and 5% and even more preferably between 2% and 5%.
- the oxidation chamber of the invention does not include a radiant heating tube inside thereof.
- the oxidation chamber is confined, for example insulated within a radiant heating furnace section so that it is indirectly heated by the radiant heating tubes of the radiant heating furnace section.
- Direct flame heating is used to clean high strength steel strip (eg degreasing).
- the cleaning makes it possible in particular to remove organic residues present on the surface of the steel strip.
- the oxidation step is carried out at a strip temperature of between 650 ° C and 750 ° C.
- a strip temperature of between 650 ° C and 750 ° C allows good control of the oxidation kinetics of the strip surface during its passage in an oxidation chamber in which the volume oxygen concentration is greater than 1% .
- the volume concentration of oxygen in the oxidation chamber is between 1.5% and 5% and even more preferably between 2% and 5%. Control of the homogeneity of the oxidation kinetics is ensured by passing the strip through the homogenization chamber.
- volume oxygen concentration values in the oxidation chamber of between 1.5% and 5% and even more preferably between 2% and 5% allow an oxidation step which is not. or little influenced by any gas leaks, without generating an excessively thick layer of iron oxide.
- the duration of exposure of said steel strip in the oxidation chamber is between 2 and 8 seconds, preferably ranging from 2 to 4 seconds.
- the oxidation step is carried out in a confined or relatively confined manner in the oxidation chamber.
- RTF Radiant Tubes Furnaces
- the oxidation step is homogeneous in that it allows homogeneous oxidation at the surface of said steel strip.
- the oxidation step is carried out by propelling an oxidizing gas by means of a carrier gas, preferably nitrogen.
- a carrier gas preferably nitrogen.
- the method according to the invention comprises the application of a pressure inside said oxidation chamber and in the rest of the furnace, said pressures being substantially equal.
- the process according to the invention makes it possible to maintain an easily controllable oxidation which avoids the disturbances caused by the atmosphere which surrounds the oxidation chamber.
- the heating step a), the temperature homogenization step b) as well as the reduction step d) are carried out with a reducing atmosphere having a volume concentration of hydrogen greater than 3%.
- the reducing atmosphere in the reduction zone has an atmosphere having a hydrogen concentration of between 3% and 5%.
- the reduction zone has a composition comprising a hydrogen concentration of between 3% and 5%, the remainder of the composition comprising nitrogen.
- the temperature homogenization step is carried out at a strip temperature of between 650 ° C and 750 ° C.
- such a temperature range allows good control of the kinetics of oxide formation in the oxidation chamber, that is to say in the presence of a volume concentration of oxygen generally between 1% and 5. %.
- it is particularly advantageous to homogenize the strip temperature at a target temperature. Homogenization at a target temperature means that there is a supply of heat at the strip strictly equal to the heat lost by the strip.
- the homogenization is carried out with an essentially zero heat input / loss balance so as to prevent the introduction of other temperature inhomogeneities to the strip.
- step a) of heating is carried out so as to obtain a strip temperature of between 650 ° C and 750 ° C.
- step a) is carried out under reducing condition in the presence of carbon monoxide and hydrogen.
- Such conditions are generated by using a non-stoichiometric fuel / oxidizer mixture which is particularly poor in oxygen.
- the temperature homogenization step is carried out with an atmosphere having an oxygen volume concentration of less than 0.01% by volume, preferably with an oxygen-free atmosphere.
- the temperature homogenization step is carried out in a chamber adjacent to the oxidation chamber, the atmosphere in the homogenization chamber can be kept poor, or even very poor, in oxygen. This can be made possible according to a preferred embodiment, by the presence of confinement means positioned between the oxidation chamber and the homogenization chamber, for example by using an airlock.
- Such containment means may be particularly desired because large or poorly controlled gas passages between the oxidation chamber and the reduction zone and / or the temperature homogenization chamber, can cause harmful gas exchanges between the different oven chambers.
- oxygen escapes from the oxidation chamber to a chamber under a reducing atmosphere, the water vapor content increases in this zone. Then, the increase in the water vapor content influences the dew point and can give rise to unwanted oxidation phenomena, such as for example the oxidation of alloy compounds on the surface of the steel.
- these alloying compounds have a high affinity for oxygen, and their selective oxidation has a deleterious influence on the adhesion of the coating obtained after galvanization.
- the volume concentration of oxygen in the oxidation chamber can represent a volume concentration which is particularly sensitive to unwanted gas exchanges. with adjacent rooms.
- Step a) of heating is carried out with an atmosphere having an oxygen volume concentration of less than 0.01% by volume, preferably with an oxygen-free atmosphere.
- the temperature homogenization step is carried out by the movement of the strip near said at least one radiant heating tube.
- the advantage of running the strip near a radiant heating tube is that it allows a well-controlled amount of heat to be supplied to the strip over the entire width of the strip.
- the movement of the strip near the radiant heating tube allows heat exchange between the strip and the radiant heating tube.
- This makes it possible to maintain the strip at a temperature, for example at the target temperature, while allowing homogenization of the temperature of the strip.
- the invention thus makes it possible to benefit from the advantages of heating by direct flame while compensating for the drawbacks associated with heating by direct flame (inhomogeneity of strip temperature).
- the strip runs at a distance from a radiant heating tube of between 0.1 m and 0.2 m.
- said homogenization section comprises at least two radiant heating tubes.
- the metal product passes between said two radiant heating tubes.
- the movement of the steel strip in front of two radiant heating tubes allows an improvement in the temperature uniformity of the steel strip by allowing more time for the steel strip to equilibrate in temperature while receiving a amount of heat from the radiant heating tubes to maintain a target band temperature.
- the target band temperature is generally between 650 ° C and 750 ° C and corresponds to a temperature at which the oxidation of the band in the oxidation chamber is well controlled. The same reasoning can be applied for three, four, six radiant heating tubes.
- the heating of the strip in step a) is carried out until a target strip temperature of between 650 ° C and 750 ° C is reached, and the temperature homogenization of the strip in step b) is reached. is produced so as to homogenize the temperature of the strip according to said temperature target.
- the homogenization step of step b) makes it possible to maintain the strip at the target temperature.
- the heat communicated by the radiant heating tube (s) to the strip has the sole purpose of maintaining the temperature of the strip according to the target temperature as well as of homogenizing the temperature of the strip. this.
- the radiant heating tubes during the temperature homogenization step radiate uniformly towards the strip, allowing good temperature homogenization of the strip, at the surface as well as according to the thickness of the strip.
- the temperature homogenization chamber is positioned between the direct flame heating zone and the oxidation chamber.
- a radiant heated furnace section is an RTF.
- the homogenization chamber is located in the radiant heating furnace section, as is the oxidation chamber.
- said homogenization chamber comprises at least two radiant heating tubes and even more preferably at least three radiant heating tubes.
- the number of radiant heating tubes in the homogenization chamber makes it possible to define its length, along which the strip can equilibrate in temperature while remaining at the target strip temperature.
- the number of radiant heating tubes and the length of the temperature homogenization chamber depend on the direct flame heating zone and the temperature inhomogeneity of the strip which emerges from it as well as the desired temperature homogeneity of the strip in the oxidation chamber.
- the number of radiant tubes and the length of the homogenization chamber can also depend on the target temperature at the outlet of the homogenization chamber.
- the metallic product is positioned scrolling between at least two radiant heating tubes.
- Such an embodiment allows better homogenization of the temperature of the strip as described for the process according to the first aspect of the invention.
- the furnace further comprises a first and a second rollers for guiding the moving web, the first roll being positioned downstream of the direct flame heating zone and the second roll being positioned downstream of the oxidation chamber.
- the strip is preferably kept under tension in the homogenization chamber so that when moving, said strip describes an essentially rectilinear path as it passes through the homogenization chamber and into the reduction zone.
- the first and second rollers are positioned so that said metal strip is stretched in a substantially vertical orientation between said rollers.
- An essentially vertical strip orientation corresponds to a strip orientation with respect to a flat ground describing an angle with the normal to the flat ground between 0 ° and 15 °.
- the strip is under tension in the oven so that it is stretched as it passes through the homogenization chamber and then into the oxidation chamber.
- the furnace is configured such that the metal strip is stretched in a substantially horizontal orientation.
- the oxidation chamber is further delimited by two locks which are each formed by at least two lock rollers.
- two locks which are each formed by at least two lock rollers.
- the oxidation chamber is confined from the homogenization chamber and from the reduction zone by two confinement means allowing the strip to travel through said oxidation chamber, for example the two confinement means are two locks.
- the oxidation chamber is provided with vents in order to balance the incoming and outgoing volumes to balance the pressure inside the chamber and also to reduce the possible transfers of gas by leaks.
- the figure 1 shows a schematic illustration of the oven 1 according to the second aspect of the invention making it possible to implement the method according to the first aspect of the invention.
- the furnace 1 comprises in the direction of travel of the strip 5, a direct flame heating zone 10, a temperature homogenization chamber 20, an oxidation chamber 30 and a reduction zone 40 for the reduction of the temperature. oxide and heat treatment of the tape.
- the furnace 1 comprises a direct heating furnace section 2 comprising the direct flame heating zone 10 and a radiant heating furnace section 3 comprising the temperature homogenization chamber 20, the oxidation chamber 30 and the heating zone. reduction 40.
- the method according to the invention comprises the implementation of step a) of heating the strip 5 by direct flame in the direct flame heating zone 10.
- the method then comprises the implementation of step b) , that is to say the movement of the strip 5 near at least one radiant heating tube 25 so, for example, to allow time for the strip 5 preheated to a target temperature, to homogenize in temperature while maintaining said target temperature.
- the strip 5 can be heated in the homogenization chamber 20 so as to have an outlet (homogenized) temperature higher than the inlet temperature.
- the method then comprises the implementation of the oxidation step c), that is to say the movement of the strip 5 in the oxidation chamber 30 comprising a volume concentration of oxygen greater than 1% and preferably between 1.5% and 5%.
- step c) an oxide layer forms on the surface of the strip 5.
- the oxide formed is essentially iron II, II-III or III oxide in general.
- the method of heat treatment of a steel strip 5 comprises after step c), step d) during which, the steel strip 5 oxidized in step c) undergoes a heat treatment at a temperature of band up to 800 ° C and preferably up to 850 ° C.
- the strip 5 is subjected to a reducing atmosphere preferably comprising a volume concentration of hydrogen greater than 3%, and more preferably between 3% and 5%.
- the remaining volume fraction being nitrogen in general.
- the temperature of the heat treatment in the reduction zone during step d) can be changed relatively easily without, however, steps a), b) and c) being changed significantly.
- the figure 2 shows an overall view of a furnace 1 according to the second aspect of the invention, with a schematic representation of the path of the strip 5 through the direct flame heating zone 10, the homogenization chamber 20, the chamber of oxidation 30 and the reduction zone 40 included in the furnace 1.
- the strip 5 describes a succession of vertical passes during which it passes through the direct heating furnace section 2 then the radiant heating furnace section 3 After having passed through the direct flame heating zone 10, the strip 5 enters the radiant heating furnace section 3 through the homogenization chamber 20.
- the direct flame heating zone 10 comprises two pass lines. Then the strip 5 is directed towards the temperature homogenization chamber 20.
- the pass line comprising the temperature homogenization chamber 20 and the oxidation chamber 30 is located in the RTF section (radiant heating furnace section) of furnace 1.
- the oxidation chamber 30 is at a similar temperature. of the RTF section which surrounds it while being preferably isolated in terms of the oxygen and hydrogen content.
- the reduction zone 40 comprises a series of vertical passes surrounded by radiant heating tubes 25 allowing adjustment of the temperature of the strip 5 in order to achieve the desired heat treatment of the high strength steel strip 5.
- the figure 3 shows a schematic view of the feed of the strip 5 to the temperature homogenization chamber 20, then to the oxidation chamber 30 and the path of the strip 5 to the reduction zone 40.
- the figure 3 shows a particular embodiment of the chamber temperature homogenization 20 which exemplarily illustrates three radiant heating tubes 25 arranged so that the strip 5 passes close by as it travels through the temperature homogenization chamber 20.
- the temperature homogenization chamber 20 illustrated allows good homogenization of the temperature of the strip 5 at a target temperature, the target temperature being defined as a function of the composition of the steel. Thus a precisely defined and homogeneous oxide thickness over the entire surface of the strip 5 can be obtained.
- a strip of steel is fed into a direct flame heating zone 10 and is heated under a reducing condition in the presence of carbon monoxide and hydrogen, preferably so as to reach a strip temperature. between 650 to 750 ° C.
- the steel strip is then fed to the oxidation chamber 30 which is confined in the section of the radiant heating furnace (RTF), where the oxidation takes place with an oxygen content greater than 1%.
- RTF radiant heating furnace
- This oxidation step allows the formation at the surface of a layer of iron oxide, for example.
- the oxide layer is removed during the heat treatment step in a reducing atmosphere in order to proceed with the galvanizing step according to a method well known to those skilled in the art.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Description
- Selon un premier aspect, l'invention se rapporte à un procédé de traitement thermique d'une bande d'acier de haute résistance. Selon un deuxième aspect, l'invention se rapporte à un four pour le traitement thermique d'une bande d'acier de haute résistance.
- Des aciers de haute résistance couramment utilisés comprennent des éléments d'alliage, par exemple du manganèse, du silicium, du chrome et/ou de l'aluminium. Lors d'une étape de recuit, les éléments d'alliage présents dans l'acier de haute résistance peuvent diffuser vers la surface de l'acier et s'oxyder rapidement à cause de leur grande affinité pour l'oxygène et ce, même dans des zones à tubes radiants où l'atmosphère est pourtant réductrice pour les oxydes de fer. Cette oxydation sélective crée des défauts de surface qui rendent difficile l'adhérence du revêtement en zinc (ou d'autre métal ou alliage) appliqué lors de la galvanisation de la surface. Ce problème de mouillabilité est un aspect limitant de la galvanisation qui ne peut pas se réaliser correctement.
- Des études ont été menées afin de comprendre la cinétique de ces phénomènes d'oxydation et d'apporter des solutions aux problèmes posés lors de la galvanisation. Une voie particulièrement étudiée consiste à soumettre, dans le four de recuit, la surface des bandes à des conditions de température et d'atmosphère propres à oxyder rapidement et en profondeur les éléments d'alliage et éviter ainsi leur migration en surface. Durant cette opération se forme une couche d'oxyde de fer qui sera ultérieurement éliminée dans des zones suivantes du four de recuit sous atmosphère réductrice.
- Il est connu des documents de l'état de la technique, et en particulier de
EP 2 732 062 B1 , qu'une oxydation des produits métalliques peut être réalisée lors du chauffage par flamme directe. Selon ce document, le potentiel d'oxydation de l'atmosphère autour du produit métallique lors du chauffage par flamme directe peut être ajusté en modifiant l'excès en oxygène.US 9 279 175 B2 EP 2 732 062 B1 précise toutefois que l'ajustement spécifique d'une épaisseur d'oxyde, c'est-à-dire obtenir une distribution uniforme sur la surface de l'acier, ne peut seulement être contrôlé qu'avec grande difficulté. Ce que décrit égalementEP 2 010 690 B1 . Les documentsUS 2017/137906 A1 etKR 20160085830 A US 2010/173072 A1 etKR 20160085830 A - Ainsi, un problème généralement rencontré lors du traitement thermique de produits métalliques avec oxydation et réduction de la surface est l'obtention d'un état de surface non-homogène avant l'étape de galvanisation.
- Selon un premier aspect, un des buts de la présente invention est de fournir un procédé de traitement thermique d'une bande d'acier de haute résistance permettant d'obtenir à sa surface une formation d'oxyde avec une épaisseur plus homogène et plus contrôlée.
- A cet effet, les inventeurs proposent un procédé de traitement thermique d'une bande d'acier de haute résistance en défilement, ledit procédé comprenant les étapes suivantes :
- a) chauffage de la bande dans une zone de chauffage à flamme directe;
- b) homogénéisation en température de la bande dans une chambre d'homogénéisation comprenant au moins un tube de chauffage radiant, de sorte à homogénéiser une température de la bande après son passage dans la zone de chauffage à flamme directe de l'étape précédente;
- c) oxydation de la bande dans une chambre d'oxydation avec une atmosphère oxydante ayant une concentration volumique en oxygène supérieure 1 %;
- d) réduction de la bande dans une zone de réduction.
- Le procédé de l'invention permet lors du traitement thermique, grâce à l'étape d'homogénéisation en température, l'oxydation de la bande présentant une surface plus homogène en température. Cela permet une croissance d'une couche d'oxyde ayant une épaisseur plus homogène sur toute la surface de bande. Une épaisseur d'oxyde plus homogène à la surface de la bande permet d'avoir une réduction ultérieure de ladite couche d'oxyde mieux contrôlée. En effet, des variations de l'épaisseur de la couche d'oxyde formée lors de l'étape d'oxydation nécessitent une adaptation du temps de réduction lors de l'étape de réduction afin de réduire l'oxyde sur l'entièreté de la surface de la bande. Une telle adaptation du temps de réduction est basée sur les épaisseurs d'oxyde les plus importantes. Le procédé de l'invention permet un meilleur contrôle du temps de l'étape de réduction car il garantit une épaisseur d'oxyde plus homogène sur la surface de bande.
- Le procédé de l'invention est particulièrement avantageux car il permet de compenser l'inhomogénéité de température de la bande, en particulier de la surface de la bande lors de l'étape a) de chauffage de la bande par flamme directe. En effet l'utilisation d'une zone de chauffage à flamme directe permet une montée en température rapide de la bande au détriment de l'homogénéité de température du produit métallique. Or dans un grand nombre de fours, la chambre d'oxydation est positionnée directement après la zone de chauffage à flamme directe, de sorte que l'oxydation est réalisée sur une bande dont l'homogénéité en température n'est pas bien contrôlée.
- Comme indiqué précédemment, un bon contrôle de la température de la bande lors de son oxydation dans la chambre d'oxydation permet d'obtenir une couche d'oxyde en surface ayant une épaisseur plus homogène sur toute la surface de la bande. Il apparaît que la cinétique de formation d'une couche d'oxyde à la surface d'une bande d'acier de haute résistance dépend principalement de la température de surface de la bande ainsi que de la composition de l'atmosphère oxydante dans la chambre d'oxydation. Des inhomogénéités en température à la surface de la bande peuvent donc provoquer de grandes variations de l'épaisseur de la couche d'oxyde à la surface de la bande.
- Lors de la réduction de la couche d'oxyde dans la zone de réduction, il est nécessaire de réduire toute l'épaisseur d'oxyde formée en chambre d'oxydation. Or lorsqu'une couche d'oxyde présente une épaisseur variable, il est nécessaire d'assurer une réduction suffisante pour réduire la couche d'oxyde aux endroits où celle-ci est la plus épaisse. Cela peut résulter en un ralentissement de la vitesse de défilement dans la zone de réduction, ou en une atmosphère réductrice en zone de réduction, plus riche en hydrogène, ou encore en un allongement de la zone de réduction afin de conserver une cadence de production acceptable. Ainsi l'inhomogénéité de la température de surface d'une bande d'acier de haute résistance lors de l'oxydation de celle-ci en chambre d'oxydation peut avoir des conséquences sur le rendement du procédé de traitement thermique en terme de cadence de production et/ou de coûts.
- Une oxydation réalisée lors du chauffage par flamme directe (étape a)) rend un ajustement de l'épaisseur de la couche de FeO formée très difficile à contrôler. En effet, dans
EP 2 010 690 A1 , il a été constaté que pour des mêmes conditions oxydantes au niveau de l'atmosphère lors du chauffage par flamme directe, une vitesse de défilement élevée montre une couche de FeO plus fine par rapport à des vitesses de défilement plus faibles, démontrant la grande sensibilité du procédé de formation d'oxyde de fer aux différents paramètres mis en jeu. - Un avantage du procédé de l'invention par rapport à des procédés où l'oxydation est réalisée en même temps que le chauffage de la bande dans une zone de chauffage à flamme directe est que le procédé de l'invention permet de dissocier le chauffage de la bande, l'homogénéisation en température et son oxydation avec des étapes et des chambres de four distinctes. Cela permet un meilleur contrôle des paramètres de formation de l'oxyde de fer en surface de la bande tout en autorisant un chauffage de bande par flamme directe. Ainsi l'invention permet de pallier les inconvénients du chauffage par flamme directe en introduisant une chambre d'homogénéisation en température. Grâce à l'invention, il est donc possible d'avoir un four présentant une très bonne qualité de traitement thermique, ainsi qu'un meilleur état de surface de la bande avant sa galvanisation et ce pour des coûts d'exploitation raisonnables.
- Dans l'ensemble du document, il faut comprendre par concentration (volumique) en oxygène, une concentration (volumique) en O2. Les étapes du procédé de l'invention sont à réaliser selon l'ordre suivant : étape a), étape b), étape c), et étape d).
- De préférence, la zone de réduction a une atmosphère réductrice ayant une concentration volumique en hydrogène supérieure à 3% et de manière préférée supérieure à 5 %, et de manière encore plus préférée supérieure à 8%. Un avantage associé à de telles concentrations volumiques en hydrogène dans la zone de réduction pour ces modes de réalisation préférés, est d'augmenter la garantie que la réduction aura bien lieu. De préférence, le reste de la composition de l'atmosphère de la zone de réduction comprend de l'azote.
- Dans l'ensemble du document, il faut comprendre par concentration (volumique) en hydrogène, une concentration (volumique) en H2.
- Il a par ailleurs été constaté que le procédé de l'invention est particulièrement efficace pour des bandes d'acier de haute résistance par exemple ayant une composition en poids en Cr inférieure à 5 %, de préférence inférieure à 3 % et encore plus préférentiellement inférieure à 1 %. Au sens de la présente invention, il est entendu par les termes « acier de haute résistance », un acier comprenant des éléments d'alliages tels que du manganèse, du silicium, du chrome et/ou l'aluminium. De préférence, la bande a une épaisseur comprise entre 0,3 mm et 3,2 mm.
- La chambre d'homogénéisation comprenant au moins un tube de chauffage radiant est destinée à permettre une uniformisation / homogénéisation de la température de la bande lorsque cette dernière est présente dans la chambre d'homogénéisation. L'uniformisation en température de la bande se produit progressivement lors de son passage dans la chambre d'homogénéisation afin d'obtenir une température aussi uniforme que possible en sortie de chambre d'homogénéisation. La chambre d'homogénéisation n'est pas destinée principalement à faire varier la température moyenne de la bande mais est plutôt destinée à uniformiser la température de la bande.
- Dans la chambre d'homogénéisation peuvent être présents des éléments radiants et/ou de chauffage qui disposent d'une puissance qui peut être modifiée rapidement, ce qui permet d'ajuster la température rapidement de manière à maintenir une température optimale en entrée de la chambre d'oxydation et à assurer une oxydation régulière de la surface de la bande d'acier.
- De préférence, la chambre d'homogénéisation en température comprend deux, trois, ou quatre tubes de chauffage radiant.
- La température de la bande est comprise dans la présente demande comme étant une température mesurée en surface de la bande et représentant la température sur toute l'épaisseur de la bande. En effet pour des bandes ayant une épaisseur comprise entre 0,6 mm et 2,5 mm, la diffusion de la chaleur dans toute l'épaisseur est très rapide et il peut donc être estimé qu'une température de la bande en un point de la bande à sa surface est représentative de la température dans toute l'épaisseur de la bande. Cela est particulièrement vrai lorsque la bande est dans une chambre essentiellement homogène en température. Ainsi une homogénéité ou une inhomogénéité de température peut être caractérisée par des mesures de température de surface de la bande à des endroits bien distincts. Par exemple une inhomogénéité de température est constatée sur une section de bande lorsqu'il existe une différence de température supérieure à 5 %, de préférence supérieure à 2 % et de manière encore plus préférée supérieure à 1 % entre un point situé au centre la bande et un point situé sur le bord de la bande. La température de bande est par exemple une température de bande moyenne prise sur une section de bande en plusieurs points différents, par exemple la température de bande est la moyenne des températures mesurées au niveau des deux bords ainsi qu'en son centre. Une température de bande cible est atteinte lorsque la température de bande moyenne et la température de bande cible sont égales ou en tout cas présentent un écart inférieur à 2 %, de préférence inférieur à 1 %. Dans la chambre d'homogénéisation en température, la température de bande reste essentiellement la même mais elle est homogénéisée en surface.
- De préférence, l'atmosphère oxydante dans la chambre d'oxydation a une concentration volumique en oxygène comprise entre 1,5 % et 5 % et de manière encore plus préférée comprise entre 2 % et 5 %.
- De préférence, la chambre d'oxydation de l'invention ne comprend pas de tube de chauffage radiant à l'intérieur de celle-ci. Par exemple, la chambre d'oxydation est confinée, par exemple isolée à l'intérieur d'une section de four à chauffage radiant de sorte qu'elle est chauffée indirectement par les tubes de chauffage radiant de la section de four à chauffage radiant.
- Avantageusement, le procédé suivant l'invention comprend en outre une étape d'homogénéisation du gaz oxydant de la chambre d'oxydation, comprenant :
- une aspiration d'au moins une partie du gaz oxydant hors de la chambre d'oxydation,
- un refroidissement de ladite au moins une partie du gaz oxydant,
- un entraînement par un ventilateur de ladite au moins une partie dudit gaz oxydant,
- un enrichissement en oxygène de ladite au moins une partie dudit gaz oxydant par injection d'air,
- une réinjection de ladite au moins une partie dudit gaz oxydant dans la chambre d'oxydation.
- Il a été observé que l'homogénéisation du gaz oxydant permet d'améliorer le contrôle sur l'étape d'oxydation et d'obtenir la formation d'une couche d'oxyde à la surface de la bande d'acier dont l'épaisseur est plus homogène et/ou reproductible.
- Le chauffage par flamme directe est utilisé pour nettoyer la bande d'acier de haute résistance (dégraissage par exemple). Le nettoyage permet en particulier de retirer des résidus organiques présents à la surface de la bande d'acier.
- De préférence, l'étape d'oxydation est réalisée à une température de bande comprise entre 650 °C et 750 °C.
- Il a été observé que lorsque ladite étape d'oxydation est réalisée dans la gamme de température entre 650 °C et 750°C, cela procure un bon contrôle sur l'épaisseur de la couche d'oxyde de fer formée pendant l'étape d'oxydation et procure de la stabilité à l'ensemble du procédé de recuit.
- Une température de bande comprise entre 650 °C et 750 °C permet un bon contrôle de la cinétique d'oxydation de la surface de la bande lors de son passage en chambre d'oxydation dans laquelle la concentration volumique en oxygène est supérieure à 1 %. De préférence, la concentration volumique en oxygène dans la chambre d'oxydation est comprise entre 1,5 % et 5 % et de manière encore plus préférée entre 2 % et 5 %. Le contrôle de l'homogénéité de la cinétique d'oxydation est assuré grâce au passage de la bande dans la chambre d'homogénéisation.
- Il a été observé qu'une teneur accrue en oxygène dans la chambre d'oxydation permet de réduire l'impact néfaste des fuites de gaz. Cependant, une teneur trop élevée en oxygène a pour conséquence d'oxyder la bande d'acier trop en profondeur, ce qui nécessite une étape ultérieure d'élimination de ladite couche d'oxyde de fer d'une durée plus longue, ce qui représente un désavantage en terme de temps et donc de coût. Les inventeurs ont déterminé que des valeurs de concentration volumique en oxygène dans la chambre d'oxydation comprises entre 1,5 % et 5 % et de manière encore plus préférée entre 2 % et 5 % permettent une étape d'oxydation qui n'est pas ou peu influencée par les éventuelles fuites de gaz, sans pour autant générer une couche d'oxyde de fer trop épaisse.
- Préférentiellement, la durée d'exposition de ladite bande d'acier dans la chambre d'oxydation est comprise entre 2 et 8 secondes, de préférence allant de 2 à 4 secondes.
- Avantageusement, l'étape d'oxydation est opérée de manière confinée ou relativement confinée dans la chambre d'oxydation.
- Au sens de l'invention, il est entendu par les termes « relativement isolé » ou « confiné » qu'une étanchéité relative est garantie dans l'élément considéré. Des moyens techniques appropriés peuvent être mis en œuvre pour contrôler cette étanchéité relative afin de réduire autant que possible les échanges de gaz entre l'atmosphère oxydante de ladite chambre d'oxydation et l'atmosphère régnant en dehors de ladite chambre d'oxydation, par exemple dans le reste du RTF. Un RTF est une section de four comprenant essentiellement des tubes de chauffage radiant et est un acronyme connu d'un homme du métier (RTF pour Radiant Tubes Furnaces).
- Préférentiellement, l'étape d'oxydation est homogène en ce qu'elle permet l'oxydation homogène en surface de ladite bande d'acier.
- De préférence, l'étape d'oxydation est réalisée par propulsion d'un gaz oxydant au moyen d'un gaz porteur, de préférence de l'azote.
- Il a été observé que cette propulsion au moyen d'un gaz porteur permet d'amener le gaz oxydant à la surface de ladite bande d'acier et de traverser la couche limite entraînée par la bande d'acier. Il en résulte alors comme effet avantageux qu'au moins une des couches de fer située en dessous de ladite surface de ladite bande d'acier peut aussi être oxydée. Un meilleur contrôle et une meilleure reproductibilité et/ou homogénéité peuvent ainsi être garantis lors de la formation de la couche d'oxyde de fer formée pendant l'étape d'oxydation.
- Avantageusement, le procédé selon l'invention comprend l'application d'une pression à l'intérieur de ladite chambre d'oxydation et dans le reste du four, lesdites pressions étant sensiblement égales.
- Il a été observé que le risque de transferts gazeux entre la chambre d'oxydation et le reste du four utilisé dans le procédé selon l'invention sont fortement réduits lorsque la pression dans la chambre d'oxydation et dans le dispositif sont sensiblement égales.
- De plus, le procédé selon l'invention permet de maintenir une oxydation facilement contrôlable qui évite les perturbations causées par l'atmosphère qui entoure la chambre d'oxydation.
- De préférence, l'étape a) de chauffage, l'étape b) d'homogénéisation en température ainsi que l'étape d) de réduction sont réalisées avec une atmosphère réductrice ayant une concentration volumique en hydrogène supérieure à 3%.
- De préférence, l'atmosphère réductrice dans la zone de réduction a une atmosphère ayant une concentration en hydrogène comprise entre 3 % et 5 %. De préférence, la zone de réduction a une composition comprenant une concentration en hydrogène comprise entre 3 % et 5 %, le reste de la composition comprenant de l'azote.
- De préférence, l'étape d'homogénéisation en température est réalisée à une température de bande comprise entre 650 °C et 750 °C.
- Comme évoqué précédemment une telle plage de température permet un bon contrôle de la cinétique de formation d'oxyde en chambre d'oxydation, c'est-à-dire en présence d'une concentration volumique en oxygène comprise en général entre 1 % et 5 %. De plus il est particulièrement avantageux d'homogénéiser la température de bande à une température cible. Une homogénéisation à une température cible signifie qu'il existe un apport de chaleur à la bande strictement égal à la chaleur perdue par la bande. Ainsi, l'homogénéisation est réalisée avec un bilan apport/perte de chaleur essentiellement nul de sorte à prévenir l'introduction d'autres inhomogénéités de température à la bande.
- De préférence, l'étape a) de chauffage est réalisée de sorte à obtenir une température de bande comprise entre 650 °C et 750 °C.
- Une telle plage de température de bande est facilement atteignable par chauffage par flamme directe, ce qui rend l'étape a) relativement aisée à mettre en œuvre. De préférence, l'étape a) est réalisée en condition réductrice en présence de monoxyde de carbone et d'hydrogène. De telles conditions sont générées en utilisant un mélange carburant/comburant non-stœchiométrique et particulièrement pauvre en oxygène.
- L'étape d'homogénéisation en température est réalisée avec une atmosphère ayant une concentration volumique en oxygène inférieure à 0,01% en volume, de préférence avec une atmosphère sans oxygène.
- Bien que l'étape d'homogénéisation en température est réalisée dans une chambre adjacente à la chambre d'oxydation, l'atmosphère dans la chambre d'homogénéisation peut être maintenue pauvre, voire très pauvre en oxygène. Cela peut être rendu possible selon un mode de réalisation préféré, par la présence de moyens de confinement positionnés entre la chambre d'oxydation et la chambre d'homogénéisation, par exemple en utilisant un sas.
- De tels moyens de confinement peuvent être particulièrement désirés car des passages de gaz importants ou mal contrôlés entre la chambre d'oxydation et la zone de réduction et/ou la chambre d'homogénéisation en température, peuvent provoquer des échanges de gaz néfastes entre les différentes chambres du four. Lorsque de l'oxygène s'échappe à partir de la chambre d'oxydation vers une chambre sous atmosphère réductrice, la teneur en vapeur d'eau augmente dans cette zone. Ensuite, l'augmentation de la teneur en vapeur d'eau influence le point de rosée et peut donner lieu à des phénomènes d'oxydation non désirés, comme par exemple l'oxydation de composés d'alliage en surface de l'acier. Comme déjà expliqué, ces composés d'alliage ont une grande affinité pour l'oxygène, et leur oxydation sélective a une influence délétère sur l'adhérence du revêtement obtenu après galvanisation.
- Par ailleurs, la concentration volumique en oxygène dans la chambre d'oxydation (supérieure à 1%, voir comprise entre 1.5% et 5% selon un mode de réalisation préféré), peut représenter une concentration volumique particulièrement sensible à des échanges de gaz non souhaités avec les chambres adjacentes. Des moyens de confinement positionnés entre la chambre d'oxydation et la chambre d'homogénéisation, par exemple un sas, permettent de contrôler davantage la concentration en oxygène dans la chambre d'oxydation. Cela est important car lorsque de l'hydrogène s'échappe à partir d'une chambre sous atmosphère réductrice vers l'intérieur de la chambre d'oxydation, l'oxydation n'est plus aussi efficace car une partie de l'oxygène est consommé par réaction avec l'hydrogène. Ces phénomènes influencent négativement les propriétés de la couche d'oxyde de fer formée lors de l'étape d'oxydation. Ce problème est amplifié lorsque la teneur en oxygène est relativement faible dans la chambre d'oxydation, car l'oxygène sera alors consommé encore plus rapidement par réaction avec l'hydrogène.
- De manière générale, ces fuites réduisent donc fortement le contrôle des conditions du procédé de recuit, ce qui, en conséquent, provoque un manque de contrôle sur la qualité d'un acier haute résistance galvanisé obtenu après galvanisation de la bande traitée selon le premier aspect de l'invention, notamment en terme d'adhérence de la couche de revêtement en surface de la bande d'acier.
- L'étape a) de chauffage est réalisée avec une atmosphère ayant une concentration volumique en oxygène inférieure à 0,01% en volume, de préférence avec une atmosphère sans oxygène.
- Il est particulièrement important de préchauffer la bande d'acier avec une atmosphère pauvre en oxygène et de préférence sans oxygène de sorte à ce que la bande d'acier ne commence pas à s'oxyder en surface avant qu'elle ne pénètre dans la chambre d'oxydation. Ainsi, il en résulte un meilleur contrôle de l'épaisseur d'oxydation lorsque celle-ci est uniquement réalisée dans la chambre d'oxydation. De plus, la température de la bande n'étant pas homogène lors de l'étape a) de chauffage, il est important qu'aucune oxydation ne soit faite dans de telles conditions d'inhomogénéité de température de bande.
- De préférence, l'étape d'homogénéisation en température est réalisée par le défilement de la bande à proximité dudit au moins un tube de chauffage radiant.
- L'avantage d'un défilement de la bande à proximité d'un tube de chauffage radiant est de permettre de fournir une quantité de chaleur à la bande bien contrôlée sur toute la largeur de la bande. Ainsi le défilement de la bande à proximité du tube de chauffage radiant permet un échange de chaleur entre la bande et le tube de chauffage radiant. Cela permet de maintenir la bande en température, par exemple à la température cible, tout en permettant une homogénéisation de la température de la bande. Ainsi l'invention permet de bénéficier des avantages d'un chauffage par flamme directe tout en compensant les inconvénients liés au chauffage par flamme directe (inhomogénéité de température de bande). Par exemple la bande défile à une distance d'un tube de chauffage radiant comprise entre 0,1 m et 0,2 m.
- De préférence, ladite section d'homogénéisation comprend au moins deux tubes de chauffage radiant. De préférence, le produit métallique défile entre lesdits deux tubes de chauffage radiant.
- Le défilement de la bande d'acier devant deux tubes de chauffage radiant permet une amélioration de l'homogénéité de température de la bande d'acier en laissant plus de temps à la bande d'acier de s'équilibrer en température tout en recevant une quantité de chaleur des tubes de chauffage radiant permettant de conserver une température de bande cible. La température de bande cible est en général comprise entre 650 °C et 750 °C et correspond à une température à laquelle l'oxydation de la bande en chambre d'oxydation est bien contrôlée. Un même raisonnement peut être appliqué pour trois, quatre, six tubes de chauffage radiant.
- De préférence, le chauffage de la bande à l'étape a) est réalisé jusqu'à atteindre une température de bande cible comprise entre 650 °C et 750 °C, et l'homogénéisation en température de la bande à l'étape b) est réalisée de sorte à homogénéiser la température de la bande selon ladite température cible. Préférentiellement, l'étape d'homogénéisation de l'étape b) permet de maintenir la bande à la température cible.
- Lors de l'étape d'homogénéisation en température, la chaleur communiquée par le/les tube de chauffage radiant à la bande a pour unique but de maintenir la température de la bande selon la température cible ainsi que d'homogénéiser la température de celle-ci. De préférence, les tubes de chauffage radiant lors de l'étape d'homogénéisation en température rayonnent vers la bande de manière uniforme, permettant une bonne homogénéisation de la température de la bande, en surface ainsi que selon l'épaisseur de la bande.
- Selon un deuxième aspect, un des buts de la présente invention est de fournir un four pour le traitement thermique d'une bande d'acier de haute résistance par défilement permettant une formation d'oxyde à la surface de la bande avec une épaisseur plus homogène et plus contrôlée. À cet effet, les inventeurs proposent un four pour le traitement thermique d'une bande métallique de haute résistance par défilement comprenant :
- une section de four à chauffage direct comprenant :
- une zone de chauffage à flamme directe;
- une section de four à chauffage radiant comprenant :
- une chambre d'oxydation ;
- une zone de réduction ;
- une chambre d'homogénéisation en température positionnée après la zone de chauffage à flamme directe et avant la chambre d'oxydation, la chambre d'homogénéisation comprenant au moins un tube de chauffage radiant.
- Ainsi, la chambre d'homogénéisation en température est positionnée entre la zone de chauffage à flamme directe et la chambre d'oxydation. Une section de four à chauffage radiant est un RTF. La chambre d'homogénéisation est située dans la section de four à chauffage radiant, de même que la chambre d'oxydation.
- De préférence, ladite chambre d'homogénéisation comprend au moins deux tubes de chauffage radiant et de manière encore plus préférée au moins trois tubes de chauffage radiant.
- Le nombre de tubes de chauffage radiant dans la chambre d'homogénéisation permet de définir sa longueur, le long de laquelle la bande peut s'équilibrer en température tout en restant à la température de bande cible. Le nombre de tubes de chauffage radiant et la longueur de la chambre d'homogénéisation en température dépendent de la zone de chauffage par flamme directe et de l'inhomogénéité en température de la bande qui en ressort ainsi que de l'homogénéité en température souhaitée de la bande dans la chambre d'oxydation. Le nombre de tubes radiants et la longueur de la chambre d'homogénéisation peuvent également dépendre de la température cible en sortie de la chambre d'homogénéisation.
- De préférence, dans la chambre d'homogénéisation en température, le produit métallique est positionné en défilement entre au moins deux tubes de chauffage radiant. Un tel mode de réalisation permet une meilleure homogénéisation de la température de la bande comme cela est décrit pour le procédé selon le premier aspect de l'invention.
- Par exemple, le four comprend en outre un premier et un deuxième rouleaux pour guider la bande en défilement, le premier rouleau étant positionné en aval de la zone de chauffage à flamme directe et le deuxième rouleau étant positionné en aval de la chambre d'oxydation. La bande est de préférence maintenue sous traction dans la chambre d'homogénéisation de sorte qu'en défilement, ladite bande décrit une trajectoire essentiellement rectiligne lors de son passage dans la chambre d'homogénéisation et dans la zone de réduction.
- Par exemple, les premier et deuxième rouleaux sont positionnés de sorte que ladite bande métallique est tendue selon une orientation essentiellement verticale entre lesdits rouleaux. Une orientation de bande essentiellement verticale correspond à une orientation de bande par rapport à un sol plat décrivant un angle avec la normale au sol plat compris entre 0° et 15°. La bande est sous traction dans le four afin qu'elle soit tendue lors de son passage dans la chambre d'homogénéisation puis dans la chambre d'oxydation.
- Dans un autre mode de réalisation possible, le four est configuré de sorte que la bande métallique est tendue selon une orientation essentiellement horizontale.
- Dans un mode de réalisation préféré, la chambre d'oxydation est par ailleurs délimitée par deux sas qui sont chacun constitués par au moins deux rouleaux de sas. Dans un tel cas, bien qu'il n'y ait pas de contact permanent entre la bande et de tels rouleaux de sas, il est possible que la bande entre en contact avec eux, par exemple suite à un mouvement de la bande.
- La chambre d'oxydation est confinée de la chambre d'homogénéisation et de la zone de réduction par deux moyens de confinement permettant le défilement de la bande au travers de ladite chambre d'oxydation, par exemple les deux moyens de confinement sont deux sas. Les avantages associés décrits pour le procédé de l'invention s'appliquent au four, mutatis mutandis.
- De préférence, la chambre d'oxydation est munie d'évents afin d'équilibrer les volumes entrants et sortants pour équilibrer la pression à l'intérieur de la chambre et aussi pour réduire les transferts éventuels de gaz par des fuites.
- Ces aspects de l'invention ainsi que d'autres seront clarifiés dans la description détaillée de modes de réalisation particuliers de l'invention, référence étant faite aux dessins des figures, dans lesquelles:
- la
Fig.1 montre un mode de réalisation selon l'invention; - la
Fig.2 montre un mode de réalisation selon l'invention; - la
Fig.3 montre une vue schématique de l'amenée d'une bande vers une chambre d'homogénéisation en température, puis vers une chambre d'oxydation et le cheminement de la bande vers une zone de réduction. - La
figure 1 montre une illustration schématique du four 1 selon le deuxième aspect de l'invention permettant de mettre en œuvre le procédé selon le premier aspect de l'invention. Le four 1 comprend dans le sens de défilement de la bande 5, une zone de chauffage à flamme directe 10, une chambre d'homogénéisation en température 20, une chambre d'oxydation 30 et une zone de réduction 40 pour la réduction de l'oxyde et le traitement thermique de la bande. Le four 1 comprend une section de four à chauffage direct 2 comprenant la zone de chauffage à flamme directe 10 et une section de four à chauffage radiant 3 comprenant la chambre d'homogénéisation en température 20, la chambre d'oxydation 30 et la zone de réduction 40. - Le procédé selon l'invention comprend la mise en œuvre de l'étape a) de chauffage de la bande 5 par flamme directe dans la zone de chauffage à flamme directe 10. Le procédé comprend ensuite la mise en œuvre de l'étape b), c'est-à-dire le défilement de la bande 5 à proximité d'au moins un tube de chauffage radiant 25 de sorte, par exemple, à laisser du temps à la bande 5 préchauffée à une température cible, de s'homogénéiser en température tout en conservant ladite température cible. Selon un autre cas de figure possible, la bande 5 peut être chauffée dans la chambre d'homogénéisation 20 de manière à avoir une température (homogénéisée) de sortie plus élevée que la température d'entrée. Le procédé comprend ensuite la mise en œuvre de l'étape d'oxydation c), c'est-à-dire le défilement de la bande 5 dans la chambre d'oxydation 30 comprenant une concentration volumique en oxygène supérieure à 1% et de préférence comprise entre 1,5 % et 5 %. Lors de l'étape c), une couche d'oxyde se forme en surface de la bande 5. L'oxyde formé est essentiellement de l'oxyde de fer II, II-III, ou III en général. Le procédé de traitement thermique d'une bande 5 d'acier comprend après l'étape c), l'étape d) pendant laquelle, la bande d'acier 5 oxydée à l'étape c) subit un traitement thermique à une température de bande jusqu'à 800 °C et de préférence jusqu'à 850 °C. Lors de cette étape d), la bande 5 est soumise à une atmosphère réductrice comprenant de préférence une concentration volumique en hydrogène supérieure à 3%, et de manière encore préférée comprise entre 3% et 5 %. La fraction volumique restante étant de l'azote en général. La température du traitement thermique en zone de réduction lors de l'étape d) peut être modifiée relativement facilement sans pour autant que les étapes a), b) et c) ne soient modifiées fortement.
- La
figure 2 montre une vue d'ensemble d'un four 1 selon le deuxième aspect de l'invention, avec une représentation schématique du cheminement de la bande 5 à travers la zone de chauffage à flamme directe 10, la chambre d'homogénéisation 20, la chambre d'oxydation 30 et la zone de réduction 40 comprises dans le four 1. La bande 5 décrit une succession de passes verticales pendant lesquelles elle défile au travers de la section de four à chauffage direct 2 puis de la section de four à chauffage radiant 3. Après avoir défilé au travers de la zone de chauffage à flamme directe 10, la bande 5 entre dans la section de four à chauffage radiant 3 par la chambre d'homogénéisation 20. Dans l'exemple non limitatif montré à lafigure 2 , la zone de chauffage à flamme directe 10 comprend deux lignes de passe. Ensuite la bande 5 est dirigée vers la chambre d'homogénéisation en température 20. - La ligne de passe comprenant la chambre d'homogénéisation en température 20 et la chambre d'oxydation 30 est située dans la section RTF (section de four à chauffage radiant) du four 1. Ainsi la chambre d'oxydation 30 est à une température similaire de la section RTF qui l'entoure tout en étant de préférence isolée au niveau de la teneur en oxygène et en hydrogène.
- Après avoir quitté la chambre d'oxydation 30, la bande 5 entre en zone de réduction 40 pour son traitement thermique. La zone de réduction 40 comprend une série de passes verticales entourées de tubes de chauffage radiant 25 permettant un ajustement de la température de la bande 5 afin de réaliser le traitement thermique désiré de la bande d'acier 5 de haute résistance.
- La
figure 3 montre une vue schématique de l'amenée de la bande 5 vers la chambre d'homogénéisation en température 20, puis vers la chambre d'oxydation 30 et le cheminement de la bande 5 vers la zone de réduction 40. Lafigure 3 montre un mode de réalisation particulier de la chambre d'homogénéisation en température 20 qui illustre de façon exemplative trois tubes de chauffage radiant 25 disposés de sorte que la bande 5 passe à proximité lors de son défilement dans la chambre d'homogénéisation en température 20. La chambre d'homogénéisation en température 20 illustrée permet une bonne homogénéisation de la température de la bande 5 à une température cible, la température cible étant définie en fonction de la composition de l'acier. Ainsi une épaisseur d'oxyde précisément définie et homogène sur toute la surface de la bande 5 peut être obtenue. - Par exemple, en fonctionnement, une bande 5 d'acier est alimentée dans une zone de chauffage à flamme directe 10 et est chauffée en condition réductrice en présence de monoxyde de carbone et d'hydrogène, de préférence de sorte à atteindre une température de bande comprise entre 650 à 750 °C. La bande d'acier est ensuite amenée vers la chambre d'oxydation 30 qui est confinée dans la section du four à chauffage radiant (RTF), où a lieu l'oxydation avec une teneur en oxygène supérieure à 1%. Cette étape d'oxydation permet la formation en surface d'une couche d'oxyde de fer par exemple . Ensuite, la couche d'oxyde est éliminée au cours de l'étape de traitement thermique en atmosphère réductrice afin de procéder à l'étape de galvanisation selon une méthode bien connue de l'homme du métier.
- La présente invention a été décrite en relation avec des modes de réalisations spécifiques, qui ont une valeur purement illustrative et ne doivent pas être considérés comme limitatifs. D'une manière générale, la présente invention n'est pas limitée aux exemples illustrés et/ou décrits ci-dessus. L'usage des verbes « comprendre », « inclure », « comporter », ou toute autre variante, ainsi que leurs conjugaisons, ne peut en aucune façon exclure la présence d'éléments autres que ceux mentionnés. L'usage de l'article indéfini « un », « une », ou de l'article défini « le », « la » ou « l' », pour introduire un élément n'exclut pas la présence d'une pluralité de ces éléments. Les numéros de référence dans les revendications ne limitent pas leur portée.
Claims (12)
- Procédé de traitement thermique d'une bande d'acier de haute résistance (5) en défilement, ledit procédé comprenant les étapes suivantes :a) chauffage de la bande (5) dans une zone de chauffage à flamme directe (10), l'étape de chauffage étant réalisée avec une atmosphère ayant une concentration volumique en oxygène inférieure à 0,01% en volume, de préférence avec une atmosphère sans oxygène ;b) homogénéisation en température de la bande (5) dans une chambre d'homogénéisation (20) comprenant au moins un tube de chauffage radiant (25), de sorte à homogénéiser la bande (5) en température après son passage dans la zone de chauffage à flamme directe (10) de l'étape précédente, l'étape d'homogénéisation en température étant réalisée avec une atmosphère ayant une concentration volumique en oxygène inférieure à 0,01% en volume, de préférence avec une atmosphère sans oxygène ;c) oxydation de la bande (5) dans une chambre d'oxydation (30) avec une atmosphère oxydante ayant une concentration volumique en oxygène supérieure à 1 % ;d) réduction de la bande (5) dans une zone de réduction (40).
- Procédé selon la revendication précédente caractérisé en ce que la zone de réduction (40) a une atmosphère réductrice ayant une concentration volumique en hydrogène supérieure à 3%.
- Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape d'oxydation est réalisée à une température de bande (5) comprise entre 650 °C et 750 °C.
- Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ladite concentration volumique en oxygène est comprise entre 1,5 % et 5 %, de préférence comprise entre 2 % et 5 %.
- Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape d'homogénéisation en température est réalisée à une température de bande (5) comprise entre 650 °C et 750 °C.
- Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape a) de chauffage est réalisée de sorte à obtenir une température de bande (5) comprise entre 650 °C et 750 °C.
- Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape d'homogénéisation en température est réalisée par le défilement de la bande (5) à proximité dudit au moins un tube de chauffage radiant (25).
- Procédé selon la revendication précédente, caractérisé en ce que ladite section d'homogénéisation comprend deux tubes de chauffage radiant (25) et en ce que la bande (5) défile entre lesdits deux tubes de chauffage radiant (25).
- Four (1) pour le traitement thermique d'une bande d'acier de haute résistance (5) par défilement comprenant :- une section de four à chauffage direct (2) comprenant :• une zone de chauffage à flamme directe (10) ;- une section de four à chauffage radiant (3) comprenant :caractérisé en ce que la section de four à chauffage radiant (3) comprend en outre une chambre d'homogénéisation en température (20) positionnée entre ladite zone de chauffage à flamme directe (10) et ladite chambre d'oxydation (30), ladite chambre d'homogénéisation (20) comprenant au moins un tube de chauffage radiant (25) ;• une chambre d'oxydation (30) ;• une zone de réduction (40) ;
et en ce que la chambre d'oxydation (30) est isolée de la chambre d'homogénéisation (20) et de la zone de réduction (40) par deux moyens de confinement (35) permettant le défilement de la bande (5) au travers de ladite chambre d'oxydation (30). - Four (1) selon la revendication précédente caractérisé en ce que ladite chambre d'homogénéisation (20) comprend au moins deux tubes de chauffage radiant (25) et de manière plus préférée au moins trois tubes de chauffage radiant (25).
- Four (1) selon la revendication précédente caractérisé en ce qu'il est configuré de sorte que dans la chambre d'homogénéisation (20), la bande d'acier de haute résistance (5) est apte à être positionnée en défilement entre au moins deux tubes de chauffage radiant (25).
- Four (1) selon la revendication 9 caractérisé en ce que les deux moyens de confinement (35) sont deux sas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201930065T SI3686534T1 (sl) | 2019-01-23 | 2019-12-19 | Postopek in peč za toplotno obdelavo visoko odpornega jeklenega traku, vključno s temperaturno komoro za homogenizacijo |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE20195038A BE1026986B1 (fr) | 2019-01-23 | 2019-01-23 | Procédé et four pour le traitement thermique d’une bande d’acier de haute résistance comprenant une chambre d’homogénéisation en température |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3686534A1 EP3686534A1 (fr) | 2020-07-29 |
EP3686534B1 true EP3686534B1 (fr) | 2021-03-10 |
Family
ID=65324126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19218200.4A Active EP3686534B1 (fr) | 2019-01-23 | 2019-12-19 | Procédé et four pour le traitement thermique d'une bande d acier de haute résistance comprenant une chambre d homogénéisation en température |
Country Status (10)
Country | Link |
---|---|
US (2) | US20200232063A1 (fr) |
EP (1) | EP3686534B1 (fr) |
KR (1) | KR20200092253A (fr) |
CN (1) | CN111471847B (fr) |
BE (1) | BE1026986B1 (fr) |
BR (1) | BR102020001356A2 (fr) |
ES (1) | ES2874752T3 (fr) |
MX (1) | MX2019015493A (fr) |
RU (1) | RU2766264C2 (fr) |
SI (1) | SI3686534T1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4303516A1 (fr) | 2022-07-05 | 2024-01-10 | John Cockerill S.A. | Dispositif pour améliorer la préoxydation dans un four de recuit |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2555104B (en) * | 2016-10-14 | 2022-06-01 | Liberty Performance Steels Ltd | Manufacture of a stress relieved length of steel having an oxidised surface layer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090199931A1 (en) | 2006-04-26 | 2009-08-13 | Ronny Leuschner | Method for Melt Immersion Coating of a Flat Steel Product Made of High Strength Steel |
US20100173072A1 (en) | 2007-09-03 | 2010-07-08 | Siemens Vai Metals Technologies Sas | Method and device for controlling oxidizing-reducing of the surface of a steel strip running continuously through a radiant tubes furnace for its galvanizing |
EP2458022A1 (fr) | 2010-11-30 | 2012-05-30 | Tata Steel UK Limited | Procédé de galvanisation de bande d'acier dans une ligne de galvanisation à chaud en continu |
KR20160085830A (ko) | 2013-12-10 | 2016-07-18 | 아르셀러미탈 | 강판의 어닐링 방법 |
WO2016169918A1 (fr) | 2015-04-22 | 2016-10-27 | Cockerill Maintenance & Ingenierie S.A. | Procédé et dispositif de contrôle de réaction |
US20170137906A1 (en) | 2014-06-06 | 2017-05-18 | Arcelormittal | High Strength Multiphase Steel, Production Method and Use |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2668701A (en) * | 1951-02-03 | 1954-02-09 | Selas Corp Of America | Heating control system |
SU377349A1 (ru) * | 1969-08-04 | 1973-04-17 | Вснсо^ознай | |
JPS586939A (ja) * | 1981-07-06 | 1983-01-14 | Nippon Kokan Kk <Nkk> | 連続熱処理炉における鋼帯の加熱方法 |
CN1011982B (zh) * | 1985-07-10 | 1991-03-13 | 日本钢管株式会社 | 具有明火加热炉的带钢连续处理作业线 |
JP3143937B2 (ja) * | 1991-03-11 | 2001-03-07 | 日本鋼管株式会社 | 連続焼鈍炉 |
US20020104597A1 (en) * | 1999-07-09 | 2002-08-08 | Ipsco Enterprises Inc. | Method and apparatus for producing steel |
EP1829983B1 (fr) * | 2004-12-21 | 2016-04-13 | Kabushiki Kaisha Kobe Seiko Sho | Procédé et installation pour zingage par trempage à chaud |
JP4427527B2 (ja) * | 2006-07-20 | 2010-03-10 | 三菱日立製鉄機械株式会社 | 表面処理鋼板製造設備 |
JP4386144B2 (ja) | 2008-03-07 | 2009-12-16 | Jfeスチール株式会社 | 耐熱性に優れるフェライト系ステンレス鋼 |
MX2011012371A (es) * | 2009-05-27 | 2011-12-08 | Nippon Steel Corp | Lamina de acero de alta resistencia, lamina de acero bañada en caliente, y lamina de acero bañada en caliente aleada que tienen excelentes caracteristicas a la fatiga, alargamiento y colision y metodo de fabricacion para tales laminas de acero. |
DE102010037254B4 (de) | 2010-08-31 | 2012-05-24 | Thyssenkrupp Steel Europe Ag | Verfahren zum Schmelztauchbeschichten eines Stahlflachprodukts |
DE102011051731B4 (de) | 2011-07-11 | 2013-01-24 | Thyssenkrupp Steel Europe Ag | Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts |
TR201809068T4 (tr) * | 2011-07-15 | 2018-07-23 | Tata Steel Ijmuiden Bv | Tavlanmış çelikler üretmeye yönelik aparat ve söz konusu çelikleri üretmeye yönelik proses. |
JP5505461B2 (ja) * | 2012-05-24 | 2014-05-28 | Jfeスチール株式会社 | 鋼帯の連続焼鈍炉、鋼帯の連続焼鈍方法、連続溶融亜鉛めっき設備及び溶融亜鉛めっき鋼帯の製造方法 |
JP5655956B2 (ja) * | 2012-06-13 | 2015-01-21 | Jfeスチール株式会社 | 鋼帯の連続焼鈍方法および溶融亜鉛めっき鋼帯の製造方法 |
JP6139943B2 (ja) * | 2013-03-29 | 2017-05-31 | 株式会社神戸製鋼所 | 酸洗い性に優れた軟磁性部品用鋼材、および耐食性と磁気特性に優れた軟磁性部品とその製造方法 |
WO2016001704A1 (fr) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Procédé de fabrication d'une tôle d'acier à haute résistance et tôle ainsi obtenue |
-
2019
- 2019-01-23 BE BE20195038A patent/BE1026986B1/fr active IP Right Grant
- 2019-12-18 MX MX2019015493A patent/MX2019015493A/es unknown
- 2019-12-19 ES ES19218200T patent/ES2874752T3/es active Active
- 2019-12-19 EP EP19218200.4A patent/EP3686534B1/fr active Active
- 2019-12-19 SI SI201930065T patent/SI3686534T1/sl unknown
- 2019-12-20 CN CN201911325696.4A patent/CN111471847B/zh active Active
- 2019-12-20 US US16/722,637 patent/US20200232063A1/en not_active Abandoned
- 2019-12-20 RU RU2019142708A patent/RU2766264C2/ru active
- 2019-12-20 KR KR1020190172013A patent/KR20200092253A/ko active Pending
-
2020
- 2020-01-22 BR BR102020001356-4A patent/BR102020001356A2/pt unknown
-
2023
- 2023-12-07 US US18/532,051 patent/US12258649B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090199931A1 (en) | 2006-04-26 | 2009-08-13 | Ronny Leuschner | Method for Melt Immersion Coating of a Flat Steel Product Made of High Strength Steel |
US20100173072A1 (en) | 2007-09-03 | 2010-07-08 | Siemens Vai Metals Technologies Sas | Method and device for controlling oxidizing-reducing of the surface of a steel strip running continuously through a radiant tubes furnace for its galvanizing |
EP2458022A1 (fr) | 2010-11-30 | 2012-05-30 | Tata Steel UK Limited | Procédé de galvanisation de bande d'acier dans une ligne de galvanisation à chaud en continu |
KR20160085830A (ko) | 2013-12-10 | 2016-07-18 | 아르셀러미탈 | 강판의 어닐링 방법 |
US20170137906A1 (en) | 2014-06-06 | 2017-05-18 | Arcelormittal | High Strength Multiphase Steel, Production Method and Use |
WO2016169918A1 (fr) | 2015-04-22 | 2016-10-27 | Cockerill Maintenance & Ingenierie S.A. | Procédé et dispositif de contrôle de réaction |
Non-Patent Citations (1)
Title |
---|
"INDUSTRIAL COMBUSTION TESTING", article MICHAEL FLAMME: "24 Radiant 2011 Tube Burners", pages: 487 - 504, XP055893689 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4303516A1 (fr) | 2022-07-05 | 2024-01-10 | John Cockerill S.A. | Dispositif pour améliorer la préoxydation dans un four de recuit |
WO2024008480A1 (fr) | 2022-07-05 | 2024-01-11 | John Cockerill Sa | Dispositif pour améliorer la pré-oxydation dans un four de recuit |
Also Published As
Publication number | Publication date |
---|---|
CN111471847A (zh) | 2020-07-31 |
SI3686534T1 (sl) | 2021-07-30 |
BE1026986A1 (fr) | 2020-08-17 |
ES2874752T3 (es) | 2021-11-05 |
EP3686534A1 (fr) | 2020-07-29 |
US20200232063A1 (en) | 2020-07-23 |
BE1026986B1 (fr) | 2020-08-25 |
BR102020001356A2 (pt) | 2020-08-04 |
RU2766264C2 (ru) | 2022-02-10 |
US12258649B2 (en) | 2025-03-25 |
RU2019142708A (ru) | 2021-06-21 |
RU2019142708A3 (fr) | 2021-12-09 |
US20240102124A1 (en) | 2024-03-28 |
CN111471847B (zh) | 2023-10-31 |
MX2019015493A (es) | 2020-07-28 |
KR20200092253A (ko) | 2020-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1999287B1 (fr) | Procede de recuit et de preparation en continu d'une bande d'acier a haute resistance en vue de sa galvanisation au trempe | |
EP3686534B1 (fr) | Procédé et four pour le traitement thermique d'une bande d acier de haute résistance comprenant une chambre d homogénéisation en température | |
EP2321232A2 (fr) | Unite et procede de traitements de surface de verre plat avec conditionnement thermique du verre | |
EP0511044A1 (fr) | Dépôt de couches pyrolysées à performances améliorées et vitrage revêtu d'une telle couche | |
EP0979879B1 (fr) | Procédé de galvanisation d'une bande métallique | |
CH670819A5 (fr) | ||
EP1285972A1 (fr) | Procédé de galvanisation à chaud de bandes métalliques d'aciers à haute résistance | |
BE1014997A3 (fr) | Procede de recuit en continu de bandes en acier en vue de leur galvanisation au trempe et four pour sa mise en oeuvre. | |
EP0879897B2 (fr) | Procédé de recuit d'un substrat métallique au défilé | |
EP0761829A1 (fr) | Dispositif de refroidissement d'un produit laminé | |
EP3596240A1 (fr) | Ligne continue de recuit ou de galvanisation comprenant un bloc tensionneur entre deux fours consécutifs | |
EP0707661B1 (fr) | Procede pour la nitruration a basse pression d'une piece metallique et four pour la mise en uvre dudit procede | |
FR3114375A1 (fr) | Bruleur, notamment pour section de prechauffage a flamme directe de ligne continue de traitement d’une bande metallique | |
EP3397786B1 (fr) | Dispositif et procede pour realiser une oxydation controlee de bandes metalliques dans un four de traitement en continu | |
FR2722212A1 (fr) | Procede et installation de traitement de cementation et de carbonitruration des aciers | |
FR2544342A1 (fr) | Installation pour le revetement au choix sur une ou deux faces d'une bande en circulation sans fin, notamment pour la galvanisation de bande d'acier | |
EP1386012A1 (fr) | Procede pour ameliorer la qualite metallurgique de produits traites dans un four | |
BE1011131A6 (fr) | Procede de revetement d'une bande d'acier par galvanisation a chaud. | |
EP4217516B1 (fr) | Section de prechauffage a flamme directe pour ligne continue de traitement de bandes metalliques | |
WO1996035822A1 (fr) | Dispositif et installation pour revetir une bande d'acier | |
EP4370719A1 (fr) | Refroidissement liquide d'une bande en defilement dans une ligne continue | |
FR3114324A1 (fr) | Section de prechauffage a flamme directe pour ligne continue de traitement de bandes metalliques | |
LU88730A1 (fr) | Procédé pour revêtir un substrat en acier d'une couche de zinc allié | |
EP1386016B1 (fr) | Procede et dispositif pour le revetement d'une bande metallique au trempe | |
FR2768157A1 (fr) | Tole d'acier galvanise allie, procedes et installation pour la fabrication d'une telle tole |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17P | Request for examination filed |
Effective date: 20200716 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20200729 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602019003120 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F27B0009280000 Ipc: C21D0001340000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C21D 9/46 20060101ALI20200930BHEP Ipc: C23C 8/10 20060101ALI20200930BHEP Ipc: C21D 1/52 20060101ALI20200930BHEP Ipc: F27B 9/28 20060101ALI20200930BHEP Ipc: C23C 8/18 20060101ALI20200930BHEP Ipc: C21D 1/34 20060101AFI20200930BHEP Ipc: C21D 9/56 20060101ALI20200930BHEP Ipc: C23C 8/80 20060101ALI20200930BHEP |
|
INTG | Intention to grant announced |
Effective date: 20201020 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1369867 Country of ref document: AT Kind code of ref document: T Effective date: 20210315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019003120 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210611 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210610 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210610 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 37467 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2874752 Country of ref document: ES Kind code of ref document: T3 Effective date: 20211105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210710 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210712 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602019003120 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MDE Opponent name: JOHN COCKERILL SA |
|
26 | Opposition filed |
Opponent name: JOHN COCKERILL SA Effective date: 20211209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
PLBD | Termination of opposition procedure: decision despatched |
Free format text: ORIGINAL CODE: EPIDOSNOPC1 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R100 Ref document number: 602019003120 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211219 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1369867 Country of ref document: AT Kind code of ref document: T Effective date: 20210310 |
|
PLBM | Termination of opposition procedure: date of legal effect published |
Free format text: ORIGINAL CODE: 0009276 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602019003120 Country of ref document: DE Owner name: JOHN COCKERILL S.A., BE Free format text: FORMER OWNER: DREVER INTERNATIONAL S.A., LIEGE, BE Ref country code: DE Ref legal event code: R081 Ref document number: 602019003120 Country of ref document: DE Owner name: DREVER INTERNATIONAL S.A., BE Free format text: FORMER OWNER: DREVER INTERNATIONAL S.A., LIEGE, BE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: PD Owner name: JOHN COCKERILL SA; BE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT Effective date: 20221214 |
|
27C | Opposition proceedings terminated |
Effective date: 20221028 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 1369867 Country of ref document: AT Kind code of ref document: T Owner name: JOHN COCKERILL SA, BE Effective date: 20230228 Ref country code: AT Ref legal event code: PC Ref document number: 1369867 Country of ref document: AT Kind code of ref document: T Owner name: DREVER INTERNATIONAL, BE Effective date: 20230228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: JOHN COCKERILL SA Effective date: 20230420 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
P02 | Opt-out of the competence of the unified patent court (upc) changed |
Effective date: 20230605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20191219 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231129 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240118 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231227 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20241211 Year of fee payment: 6 Ref country code: NL Payment date: 20241212 Year of fee payment: 6 Ref country code: FI Payment date: 20241224 Year of fee payment: 6 Ref country code: LU Payment date: 20241224 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241217 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241211 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20241218 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20241217 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20241217 Year of fee payment: 6 Ref country code: SK Payment date: 20241217 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241220 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20241224 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SI Payment date: 20241216 Year of fee payment: 6 |