[go: up one dir, main page]

EP3668808B1 - Direktantrieb für saumwickler in der metallbearbeitung - Google Patents

Direktantrieb für saumwickler in der metallbearbeitung Download PDF

Info

Publication number
EP3668808B1
EP3668808B1 EP18755467.0A EP18755467A EP3668808B1 EP 3668808 B1 EP3668808 B1 EP 3668808B1 EP 18755467 A EP18755467 A EP 18755467A EP 3668808 B1 EP3668808 B1 EP 3668808B1
Authority
EP
European Patent Office
Prior art keywords
drive
winding mandrel
rotor
winding
winder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18755467.0A
Other languages
English (en)
French (fr)
Other versions
EP3668808A1 (de
Inventor
Peter De Kock
Walter Timmerbeul
Frank PLATE
Emir Mustafi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3668808A1 publication Critical patent/EP3668808A1/de
Application granted granted Critical
Publication of EP3668808B1 publication Critical patent/EP3668808B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/08Web-winding mechanisms
    • B65H18/10Mechanisms in which power is applied to web-roll spindle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • B21C47/04Winding-up or coiling on or in reels or drums, without using a moving guide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/02Supporting web roll
    • B65H18/028Both ends type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2402/00Constructional details of the handling apparatus
    • B65H2402/40Details of frames, housings or mountings of the whole handling apparatus
    • B65H2402/44Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2403/00Power transmission; Driving means
    • B65H2403/90Machine drive
    • B65H2403/92Electric drive
    • B65H2403/923Synchronous motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2403/00Power transmission; Driving means
    • B65H2403/90Machine drive
    • B65H2403/94Other features of machine drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2555/00Actuating means
    • B65H2555/20Actuating means angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/17Nature of material
    • B65H2701/173Metal

Definitions

  • the invention relates to a winder in metalworking, the winder having at least one winding mandrel for winding up a strip-shaped material, preferably metal material, and a drive with an electric motor.
  • Winding machines are used in many places in metal processing. For example, there is a decoiler for the metal strips to be processed on the entry side of a strip treatment system, while a take-up reel is provided on the exit side. Furthermore, paper winders are used for unwinding and winding up paper interleaves. In the area of the trimming shears, hem winders with one or two winding mandrels are used.
  • the DE 28 44 882 A1 describes an exemplary hem winder.
  • the hem winder is driven by an electric motor, which interacts with a two-part winding mandrel via a gear unit and a telescopic coupling.
  • Hem winders are expediently arranged below the trimming shears so that the so-called winding chamber can be easily filled.
  • a comparatively large installation space caused by the complex drive train of the machine, which is made up of many moving components, for example one or more clutches, a gearbox, a cardan shaft, a brake and a classic three-phase motor, is a problem with current designs.
  • the winding mandrel is driven with the interposition of a complex reduction gear, usually provided with a circulating oil lubrication system.
  • the conventional electric motors are installed either on the gearbox or behind the gearbox.
  • the winding mandrel is rotatably mounted in the housing or on the frame of the winder via roller bearings.
  • the torque is now transmitted from the drive to the winding mandrel via one or more clutches, a drive spindle that can be designed as a cardan shaft, a reduction gear with gears, bearings, braking means and other mechanical components.
  • a drive spindle that can be designed as a cardan shaft
  • a reduction gear with gears bearings
  • braking means and other mechanical components can arise that both the coupling and the transition from the gear to the coupling and from the coupling to the rotor of the drive are not torque-resistant to the desired extent against torsional loads. Due to the torsional flexibility, the speed and the angle of rotation of the winding mandrel can oscillate against the drive, which can lead to problems with the control accuracy. This results in high costs and performance losses in the drive train. Many moving parts must be protected by appropriate protective devices, they also lead to high maintenance costs and reduce reliability.
  • the EP 1 460 010 A2 describes a machine with a winding roll and an electric motor for driving the same, in particular for use in the paper industry. Another winding machine is from the JP S62-130948 A known.
  • the DE 40 39 606 A1 describes a reel for winding and / or unwinding metal strips with tensile forces between 10kN and 1000kN.
  • One object of the invention is to provide a winder in metalworking with at least one winding mandrel for winding up a strip-shaped material, preferably metal material, and a drive which overcomes at least one of the above-mentioned technical disadvantages.
  • the winder should have high reliability with a compact design.
  • the winder is preferably used for unwinding and winding up metal strips in metalworking, in particular strips and hems that arise when machining metal strips made of steel or non-ferrous metals, the so-called non-ferrous metals.
  • the winder can also be designed for unwinding and winding up paper, for example paper interleaves.
  • the winder according to the invention has at least one winding mandrel.
  • the term "winding mandrel” here includes any cylindrical - not just circular cylindrical - rotatably mounted body that is designed for unwinding or winding such strips or tapes.
  • the winding mandrel can be made in several parts, or several winding mandrels can be provided, which cooperate in accordance with preferred embodiments described later.
  • the winder also has a housing. The case does not have to be closed, but rather fall also a frame, a base frame and the like under the designation "housing".
  • the housing has one or more bearings for the rotatable mounting of the winding mandrel or a shaft which is connected to the winding mandrel.
  • the winder has at least one drive which has an electric motor with a stator and a rotor.
  • the electric motor can be designed as a compact motor with its own bearings or without bearings.
  • the electric motor can be a permanently excited three-phase motor; it preferably has a motor housing or motor frame in which the rotor is mounted, which, for example, is set in rotation in a conventional manner by the force exerted by a magnetic field on current-carrying conductors of a coil.
  • the electric motor is preferably a torque motor or a synchronous motor. Such motors can generate very high torques at relatively low speeds, which makes them particularly suitable as motors for direct drives.
  • a reduction gear can be dispensed with in many cases.
  • the rotor is connected to the winding mandrel, whereby the rotation of the rotor is transmitted to the winding mandrel.
  • the stator is mounted directly on the housing of the winder and / or the rotor is directly connected to the winding mandrel or the above-mentioned shaft of the winding mandrel. Any drive housing or motor housing, drive frame or motor frame is regarded as part of the stator.
  • the mechanical components concerned are in direct contact with one another, preferably in a rigid manner. This can be achieved, for example, by screwing, riveting or welding, but a one-piece design is also included.
  • the drive has at least one catch magnet, which can for example be arranged in a ring around a rotor extension.
  • the catch magnet is set up to catch magnetic particles and keep them away from the electric motor.
  • the drive functions as a direct drive for the rotary operation of the winding mandrel. If the stator of the drive is directly connected to the housing, the housing of the machine and the drive are "locked" to one another in this way. Due to the special integration, on the one hand an extremely high torsional rigidity between the electric motor and the winding mandrel is achieved, on the other hand complex mechanical components such as gears, clutches, cardan shafts, etc., can be omitted in the drive train. This simplifies the drive train, it is compact, low-maintenance, light and reliable. The winder achieves an improvement in the control properties of the winding mandrel at low cost due to its high torsional rigidity.
  • the foundations and halls to accommodate the machine can be made smaller.
  • the drive system shown allows a simple increase in the drive power, for example when converting or modernizing the system, for example when new materials are to be processed without the existing drive having to be replaced.
  • maintenance work on the winder is reduced, which means that the production time of the system can be extended.
  • this is accompanied by a reduction in safety-related expenses.
  • the reduction in the drive train is favorable with regard to a possible standardization or normalization of such drive systems.
  • the housing can also be used as a heat sink or cooling surface for the electric motor.
  • Any passage for media for example hydraulic oil and / or cooling water, is also possible from the drive side of the winding mandrel.
  • the electric motor is preferably designed as an internal rotor, the rotor being connected directly to the winding mandrel or directly to a shaft of the winding mandrel. According to a particularly preferred embodiment, this includes a one-piece configuration of the rotor and the shaft or of the rotor and the winding mandrel. This allows the torsional rigidity between the drive and the winding mandrel to be further improved.
  • the electric motor of the drive can be designed as an external rotor, with a jacket section of the winding mandrel being connected to the rotor.
  • a “jacket section” is understood not only to mean the outermost circumference of the cylindrical winding mandrel, but also to include sections further inside, insofar as they allow a connection to the externally running rotor.
  • the shaft if the winding mandrel has one, can, according to this embodiment, be mounted on the drive side in the housing or in the drive. However, embodiments are also possible in which a shaft can be dispensed with due to the close connection of the casing section to the rotor.
  • the jacket section of the winding mandrel and the rotor are preferably connected directly to one another in order to further improve the torsional rigidity, which, according to a particularly preferred embodiment, comprises a one-piece or partially one-piece design.
  • the housing preferably supports the winding mandrel on only one side, while the winding mandrel is mounted on the opposite side, ie the drive side, via the shaft or the rotor in the drive.
  • the mandrel and the rotor can share a bearing.
  • the shaft can be supported by two bearings on the housing, which means that a bearing for the rotor in the drive can be omitted.
  • Two winding mandrels are preferably provided along an axis, at least one of the two being displaceable in the axial direction and being able to be brought into engagement with the other winding mandrel on the face side or being able to be pressed against it.
  • facing end faces of the two winding mandrels are preferably each conical and complementary to one another.
  • the two mandrels can also be viewed as mandrel halves of one and the same mandrel.
  • the supplied metal strip can be automatically detected by moving the two winding mandrels towards one another.
  • the two winding mandrels can be moved apart and towards one another, for example by means of pressure cylinders.
  • a winding mandrel is connected to the drive, while the other winding mandrel is rotated along by a force fit between the end faces or via a possibly clamped metal band and thus does not need its own drive.
  • the direct drive shown here allows both mandrels to be provided with their own drive without sacrificing the advantages of a compact installation space.
  • This two-sided drive represents a particularly preferred embodiment, since it equalizes the power transmission to the winding mandrel and the weight distribution, which can result in advantages for the control technology. If two co-operating winding mandrels are provided and the two winding mandrels are not completely frictionally and / or positively engaged with one another in the moved together state, then a slight difference in speed between the two drives can be compensated for.
  • Two drives are preferably connected to the winding mandrel on opposite sides of the housing in order to equalize the force and weight distribution and / or to increase the drive power while maintaining a compact installation space.
  • the rotor of the drive is preferably connected to the winding mandrel without the interposition of a torque gear, in particular a reduction gear. By doing without a torque gear, there is a direct and immediate torque transmission from the drive to the winding mandrel.
  • torque transmission includes all those types of transmission that convert an input torque or an input speed into an output torque or output speed of a different magnitude and thus perform a torque conversion or speed conversion.
  • the drive can be connected to the shaft via a spindle and / or a cardan shaft. This is particularly useful for high-performance drives or in adverse environmental conditions, such as in a hot rolling mill.
  • the drive has a brake and / or holding device for rapid braking and, if necessary, locking of the machine.
  • the drive described above can be built up modularly.
  • the electric motor as a basic module can be expanded with a brake module, for example.
  • the drive can be extended by further modules, which are preferably cylindrical or disk-shaped.
  • Possible expansion modules include, for example, a power enhancement module with drive means (such as rotor and stator) to increase the power of the base module and / or a gear module. So that the modules can be combined with one another, they have technically compatible components, in particular housings that can be connected to one another or flanged to one another.
  • Such a modular design allows the repetition frequency of structurally identical parts (motor disks, stator disks, stator laminations, stator coils, brake disks, brake linings, etc.) to be increased, whereby the costs can be reduced and the reliability of the device can be increased.
  • the drive preferably has a rotary encoder or speedometer for measuring the angle of rotation and / or the speed of rotation.
  • the rotary encoder can be provided as a separate module or as part of a module. An encoderless operation is also possible.
  • the drive can also be equipped with a cooling device.
  • a cooling device This can for example be arranged as a separate module between the brake and the electric motor and / or as a cooling jacket in the motor housing of the drive.
  • the cooling can be implemented by means of a fan and / or as water or fluid cooling.
  • the drive can have one or more integrated inverters.
  • the drive described here can be used particularly well as a direct drive for mandrels in reel systems for unwinding and winding up metal strips or metal strips.
  • the invention is particularly preferred in the technical field of metalworking, in the steel and non-ferrous industries, the invention can also be implemented in other areas.
  • winding applications in paper machines or textile machines may be mentioned as examples.
  • FIG 1 contains figure excerpts a) and b) which show two examples of how the modules set out below can be combined to produce the drive. Other individual arrangements are of course possible. Together with a suitable grading of diameters, a modular construction kit is provided as the basis for the economical production of direct drives.
  • the drive is mounted directly on a shaft 1.
  • the shaft 1 is preferably used in a one-piece manner as the rotor shaft of the drive and as the shaft of a working machine, such as one of the winders shown below.
  • the drive has end shields 2 with roller bearings that support the shaft 1 and at the same time can serve as bearings for the machine.
  • the drive is divided into modules for power adjustment, a basic module is also required provided, which is composed essentially of a rotor element 3, which is a rotor according to the present application, winding elements 10 and a housing element 9.
  • the housing element 9 is part of the stator of the drive.
  • a winding head element 5 is provided to accommodate winding heads.
  • expansion modules 4 An individual expansion or adaptation of the drive to the desired working conditions is made possible by expansion modules 4. Furthermore, a holding module 6 can be mounted. The modules and elements are preferably connected to one another by tie rod screw connections 7. Steps and indentations in the respective modules and elements ensure a tolerance-conforming fit. An encoder module 8 can optionally be added. The base module and possibly further modules of the drive can be arranged both between the end shields 2 and outside, according to a so-called floating mounting, explained in more detail below with reference to FIG Figure 2 .
  • the above design represents an exemplary possibility of the modular structure of drives, in particular direct drives. It is particularly suitable for driving reels and winders, but is not limited to this type of machine. Rather, the modular drive can also be used for other work machines, such as backup and work rolls, tension roller sets, winches and shears.
  • the Figure 2 shows schematically a tape reel with a modular direct drive.
  • the figure section 2b shows a reel shaft 101, which is a winding mandrel according to the present application and is supported by the bearings 102.
  • the reel shaft 101 can the shaft 1 from the Figure 1 but it can also be integrally connected to it.
  • the bearings 102, the end shields 2 with the built-in roller bearings from the Figure 1 be, whereby a close connection between the drive and the work machine is realized.
  • the bearings 102 stand on a base frame 103, which here functions as the housing of the tape reel, even if it is not the tape reel encloses.
  • the base frame 103 holds a base module 104, an expansion module 105, such as a power enhancement module, and a brake module 106, which together build the drive for the reel.
  • a media and / or energy feed-through 107 can be provided on the side opposite the reel shaft 101.
  • a cooling fan can be provided on the outside of the modules of the drive, whereby, for example, a separate cooling fan 109 can be assigned to each module, as shown in FIG. 2a, or alternatively a cooling fan 108 can span several modules, as shown in FIG. 2b and 2c is shown.
  • a cooling module (not shown) can be flanged onto the drive as a cylindrical element, in the same way as the expansion module 105 or brake module 106.
  • the Figure 3 shows schematically a winder with two drives 200a and 200b, each according to the embodiments of FIG Figures 1 or 2 can be formed.
  • the two drives 200a, 200b each have a rotor 201a, 201b and a stator 202a, 202b.
  • the winder has two winding mandrels 300a and 300b, which can also be viewed as two halves of one and the same winding mandrel.
  • the winding mandrels 300a and 300b can each have a shaft (not shown), which is also referred to as a shaft journal, which in turn connects directly to the rotor 201a, 201b of the corresponding drive 200a, 200b is connected, for example is clamped therein.
  • the winding mandrel 300a, 300b is in this way connected directly to the rotor 201a, 201b of the drive 200a, 200b.
  • the rotor of the drive is designated with the reference numerals 201a, 201b instead of the reference numerals 1 and 3 of Figure 1 to make it clear that the in the Figure 1
  • the drive shown is an exemplary, albeit well-suited, direct drive.
  • the housing of the winder is designated by the reference numeral 302.
  • the housing 302 has a winding chamber 303 in which the strip material is wound.
  • the two mandrels 300a and 300b protrude at least partially into the winding chamber 303, the mandrels 300a and 300b being arranged along an axis and rotatably supported by corresponding bearings (not shown) which can be provided in the housing.
  • winding mandrels 300a, 300b are provided such that they can be displaced in the axial direction, so that their end faces 301a, 301b can be brought into engagement or pressed against one another and released again.
  • facing ends 301a, 301b of the two winding mandrels 300a, 300b are preferably each conical and complementary to one another.
  • the supplied metal strip can be automatically detected by moving the two winding mandrels 300a, 300b against one another.
  • the two winding mandrels 300a, 300b can be moved apart and towards one another, for example by means of a pressure cylinder, an electric motor or in some other way.
  • each of the two mandrels 300a, 300b is driven by its own direct drive 200a, 200b.
  • Such a drive on both sides equalizes the torque distribution on the winding mandrel 300a, 300b and the weight distribution, which can result in advantages for the control technology. If the two winding mandrels 300a, 300b are not completely frictionally and / or positively engaged with one another in the moved together state, a slight difference in speed between the two drives 200a, 200b can be compensated for.
  • a winding mandrel is connected to a drive, while the other winding mandrel is rotated by a force fit between the end faces or via a possibly clamped metal band and in this case does not have its own drive.
  • a drive-side bearing for the rotor 201a, 201b or the associated winding mandrel 300a, 300b may be dispensed with.
  • the stator 202a, 202b of the drive 200a, 200b is connected directly, i.e. in this case mechanically rigid, to the housing 302.
  • the winder has at least one drive 200a, 200b for the rotary operation of the winding mandrel 300a, 300b, with high torsional rigidity being ensured between the drive 200a, 200b and the winding mandrel 300a, 300b on the one hand, and one or more on the other conventional components in the drive train, such as gearboxes, clutches, cardan shafts, etc., can be dispensed with.
  • drives 200a, 200b in the Figure 3 are internal rotors, it should be noted that one or more drives can also be designed as external rotors.
  • the stationary parts of the electric motor ie the stator
  • the rotor rotates around the outside of the stator.
  • the rotor can merge directly into the winding mandrel, be designed in one piece with it or be rigidly connected to it.
  • the jacket section of the winding mandrel is in contact with the rotor.
  • the “jacket section” is understood here not only to mean the outermost circumference of the winding mandrel, but also sections that lie radially outside of a possible shaft of the winding mandrel, provided that they allow the winding mandrel to be connected to the outer rotor.
  • the wave of The winding mandrel is possibly rotatably mounted in a bearing integrated in the drive. In certain exemplary embodiments, if the rotor or the winding mandrel is supported externally, a shaft and its bearings can optionally be dispensed with.
  • the direct drive or drives 200a, 200b according to FIG Figure 3 can also be equipped with a cooling device (not shown).
  • a cooling device (not shown).
  • This can be arranged, for example, as a separate, cylindrical module between a high-performance brake and the electric motor and / or as a cooling jacket in the housing of the drive.
  • the cooling can take the form of a fan and / or water or fluid cooling.
  • the close, integral connection between the drive and the winding mandrel allows a space-saving system construction. This is accompanied by simplifications in plant construction, for example by saving foundations, better accessibility of the plant, a reduction in spare parts, a reduction in maintenance costs, and a downsizing of the hall.
  • the motors are not or less endangered by collars or other falling parts.
  • a major advantage of the concept presented here becomes clear in the thermal design of the motors. Due to the close connection of the drives with the machine, the mass and the surface of the mechanical device can also be used for heat dissipation. The performance of the electric motors can thus be increased without structural measures. The power loss of the drive train is significantly reduced. In many cases, external ventilation or water cooling can be dispensed with.
  • the Motors can be designed as internal or external rotors.
  • the integral concept described also offers improvements in terms of safety, since rotating external drive parts such as cardan shafts, clutches, brake disks, etc., can be dispensed with.
  • rotating external drive parts such as cardan shafts, clutches, brake disks, etc.
  • There are no components such as bearings, shafts, couplings, motor bases, gear bases, etc.
  • a reduction in the number of moving parts also results in higher control accuracy.
  • the drive train as a whole is extremely resilient, especially with regard to any shock loads. Furthermore, a reduction in operating noises and the safety-related effort is achieved, for example by eliminating covers for moving parts.
  • the system planning is simplified because the drive trains generally have to be planned individually on a foundation with a lot of effort. If the drive is integrated or "blocked" with the winding mandrel, as described in detail above, the effort involved in system planning is reduced. The drive can also be blocked with the winder housing at the factory if necessary. This means that the machine can be tested in the production facility and is then tested on the construction site.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Winding Of Webs (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft einen Wickler in der Metallbearbeitung, wobei der Wickler mindestens einen Wickeldorn zum Aufwickeln eines bandförmigen Materials, vorzugsweise Metallmaterials, und einen Antrieb mit einem Elektromotor aufweist.
  • Hintergrund der Erfindung
  • Bei der Metallverarbeitung werden an vielen Stellen Wickelmaschinen eingesetzt. Beispielsweise befindet sich an der Einlaufseite einer Bandbehandlungsanlage eine Abwickelhaspel für die zu bearbeitenden Metallbänder, während eine Aufwickelhaspel an der Auslaufseite vorgesehen ist. Ferner werden Papierwickler für das Abwickeln und Aufwickeln von Papierzwischenlagen angewendet. Im Bereich der Besäumscheren kommen Saumwickler mit einem oder auch zwei Wickeldornen zum Einsatz.
  • Die DE 28 44 882 A1 beschreibt einen beispielhaften Saumwickler. Der Saumwickler wird über einen Elektromotor angetrieben, der über ein Getriebe und eine Teleskopkupplung mit einem zweigeteilten Wickeldorn zusammenwirkt.
  • Saumwickler sind für eine gute Befüllbarkeit der sogenannten Wickelkammer zweckmäßigerweise unterhalb der Besäumschere angeordnet. Dabei stört bei den gegenwärtigen Konstruktionen ein vergleichsweise großer Bauraum, verursacht durch den aufwändigen Antriebsstrang der Maschine, der aus vielen beweglichen Komponenten aufgebaut ist, beispielsweise einer oder mehreren Kupplungen, einem Getriebe, einer Kardanwelle, einer Bremse und einem klassischen Drehstrommotor. Eine Verkleinerung des Bauraums von Saumwicklern, insbesondere in Längsrichtung, d.h. der axialen Richtung des Wickeldorns, ist daher wünschenswert.
  • Bei Haspelmaschinen zum Abwickeln und Aufwickeln von Metallbändern wird der Wickeldorn unter Zwischenschaltung eines aufwändigen Untersetzungsgetriebes, meist mit einer Ölumlaufschmierung versehen, angetrieben. Die herkömmlichen Elektromotoren sind entweder auf dem Getriebe oder hinter dem Getriebe angebaut.
  • Insofern liegt bei herkömmlichen Wicklern eine technologische Trennung zwischen dem anzutreibenden Wickeldorn und dem elektrischen Antrieb vor. Eine solche Trennung führt dazu, dass die Schnittstelle zwischen dem Wickeldorn und dem Antrieb nicht optimal ist.
  • Genauer gesagt ist der Wickeldorn über Wälzlager drehbar im Gehäuse oder am Gestell des Wicklers gelagert. Die Übertragung des Drehmoments vom Antrieb auf den Wickeldorn erfolgt nun gegenwärtig über eine oder mehrere Kupplungen, eine Antriebsspindel, die etwa als Kardanwelle ausgeführt sein kann, ein Untersetzungsgetriebe mit Zahnrädern, Lager, Bremsmittel und andere mechanische Komponenten. Bei der Regelung eines solchen Wickeldorns kann das Problem auftreten, dass sowohl die Kupplung als auch der Übergang vom Getriebe zur Kupplung und von der Kupplung zum Rotor des Antriebs gegen Torsionsbelastungen nicht in dem gewünschten Maß drehmomentsteif sind. Durch die Torsionsnachgiebigkeit können die Drehzahl und der Drehwinkel des Wickeldorns gegen den Antrieb schwingen, was zu Problemen bei der Regelgenauigkeit führen kann. Dies hat hohe Kosten sowie Leistungsverluste im Antriebsstrang zur Folge. Viele bewegliche Teile müssen durch entsprechende Schutzeinrichtungen geschützt werden, sie führen außerdem zu einem hohen Wartungsaufwand und verringern die Zuverlässigkeit.
  • Die EP 1 460 010 A2 beschreibt eine Maschine mit einer Wickelrolle und einem Elektromotor zum Antrieb derselben, insbesondere zur Verwendung in der Papierindustrie. Eine weitere Wickelmaschine ist aus der JP S62-130948 A bekannt. Die DE 40 39 606 A1 beschreibt eine Haspel zum Auf- und/oder Abwickeln von Metallbändern mit Bandzugkräften zwischen 10kN und 1000kN.
  • Darstellung der Erfindung
  • Eine Aufgabe der Erfindung besteht darin, einen Wickler in der Metallbearbeitung mit mindestens einem Wickeldorn zum Aufwickeln eines bandförmigen Materials, vorzugsweise Metallmaterials, und einem Antrieb anzugeben, der wenigstens einen der oben genannten technischen Nachteile überwindet. Insbesondere soll der Wickler bei kompakter Bauart eine hohe Zuverlässigkeit aufweisen.
  • Gelöst wird die Aufgabe durch einen Wickler mit den Merkmalen des Anspruchs 1. Vorteilhafte Weiterbildungen folgen aus den Unteransprüchen, der folgenden Darstellung der Erfindung sowie der Beschreibung bevorzugter Ausführungsbeispiele.
  • Der Wickler dient vorzugsweise zum Abwickeln und Aufwickeln von Metallbändern bei der Metallbearbeitung, insbesondere von Bändern und Säumen, die bei der Bearbeitung von Metallbändern aus Stahl oder Nichteisenmetallen, den sogenannten NE-Metallen, anfallen. Gemäß besonderen Ausführungsformen kann der Wickler auch für das Abwickeln und Aufwickeln von Papier, etwa Papierzwischenlagen, ausgelegt sein.
  • Der erfindungsgemäße Wickler weist mindestens einen Wickeldorn auf. Die Bezeichnung "Wickeldorn" umfasst hierbei jedweden zylindrischen - nicht nur kreiszylindrischen - drehbar gelagerten Körper, der zum Abwickeln bzw. Aufwickeln solcher Streifen oder Bänder ausgelegt ist. Der Wickeldorn kann mehrteilig ausgeführt sein, oder es können mehrere Wickeldorne vorgesehen sein, die gemäß bevorzugten, später beschriebenen Ausführungsformen zusammenwirken. Der Wickler weist ferner ein Gehäuse auf. Das Gehäuse muss nicht geschlossen sein, vielmehr fallen auch ein Gestell, ein Grundrahmen und dergleichen unter die Bezeichnung "Gehäuse". Gemäß einer bevorzugten Ausführungsform weist das Gehäuse ein oder mehrere Lager zur drehbaren Lagerung des Wickeldorns oder einer Welle, die mit dem Wickeldorn verbunden ist, auf.
  • Ferner weist der Wickler erfindungsgemäß mindestens einen Antrieb auf, der einen Elektromotor mit einem Stator und einem Rotor hat. Der Elektromotor kann etwa als Kompaktmotor mit eigenen Lagern oder lagerlos ausgeführt sein. Der Elektromotor kann ein permanent erregter Drehstrommotor sein, er hat vorzugsweise ein Motorgehäuse oder Motorgestell, in dem der Rotor gelagert ist, der beispielsweise auf herkömmliche Weise durch die Kraft, die von einem Magnetfeld auf stromdurchflossene Leiter einer Spule ausgeübt wird, in Drehung versetzt wird. Vorzugsweise ist der Elektromotor ein Torquemotor oder Synchronmotor. Derartige Motoren können sehr hohe Drehmomente bei relativ kleinen Drehzahlen erzeugen, wodurch sie als Motoren für Direktantriebe besonders geeignet sind. Beispielsweise kann bei Verwendung eines Torquemotors in vielen Fällen auf ein Untersetzungsgetriebe verzichtet werden. Der Rotor ist mit dem Wickeldorn verbunden, wodurch die Drehung des Rotors auf den Wickeldorn übertragen wird. Der Stator ist direkt am Gehäuse des Wicklers montiert und/oder der Rotor ist direkt mit dem Wickeldorn oder der oben genannten Welle des Wickeldorns verbunden. Ein etwaiges Antriebsgehäuse oder Motorgehäuse, Antriebsgestell oder Motorgestell wird hierbei als Teil des Stators angesehen. Bei einer "direkten Verbindung", "direkten Befestigung" oder "direkten Montage" im Sinne der vorliegenden Anmeldung stehen die betreffenden mechanischen Komponenten unmittelbar miteinander in Kontakt, vorzugsweise auf eine starre Weise. Dies kann beispielsweise durch Verschrauben, Vernieten oder Verschweißen erreicht werden, aber auch eine einstückige Ausbildung ist umfasst.
  • Ferner weist der Antrieb mindestens einen Fangmagneten auf, der beispielsweise ringförmig um eine Rotorverlängerung angeordnet sein kann. Der Fangmagnet ist eingerichtet, um magnetische Partikel aufzufangen und sie vom Elektromotor fernzuhalten. Dadurch kann trotz des integralen Aufbaus des Antriebs verhindert werden, dass magnetische Partikel in den Elektromotor geraten, wodurch die Zuverlässigkeit des Antriebs verbessert wird.
  • Gemäß dem obigen Aufbau fungiert der Antrieb als Direktantrieb zum rotarischen Betrieb des Wickeldorns. Wenn der Stator des Antriebs direkt mit dem Gehäuse verbunden ist, sind das Gehäuse der Maschine und der Antrieb auf diese Weise miteinander "verblockt". Durch die besondere Integration wird einerseits eine ausgesprochen hohe Drehsteifigkeit zwischen dem Elektromotor und dem Wickeldorn erzielt, auf der anderen Seite können aufwendige mechanische Komponenten, wie etwa Getriebe, Kupplungen, Kardanwellen usw., im Antriebsstrang entfallen. Damit wird der Antriebsstrang vereinfacht, er ist kompakt, wartungsarm, leicht und zuverlässig. Der Wickler erzielt bei geringen Kosten eine Verbesserung der regelungstechnischen Eigenschaften des Wickeldorns, aufgrund der hohen Drehsteifigkeit. Dies führt neben der Gewichtsreduzierung auch zu einer Verbesserung des energetischen Wirkungsgrads. Die Fundamente und Hallen zur Aufnahme der Maschine können verkleinert werden. Ferner erlaubt das dargestellte Antriebssystem eine einfache Erhöhung der Antriebsleistung, beispielsweise bei einem Umbau oder einer Modernisierung der Anlage, wenn etwa neue Materialien verarbeitet werden sollen, ohne dass der bestehende Antrieb ausgetauscht werden muss. Durch die Verringerung der Anzahl der Komponenten wird die Wartungsarbeit am Wickler vermindert, wodurch die Produktionszeit der Anlage verlängert werden kann. Ferner geht damit eine Reduzierung von sicherheitstechnischen Aufwendungen einher. Insgesamt werden die Freiheitsgrade der Maschine in Bezug auf Funktion und Design erhöht. Die Reduktion im Antriebsstrang ist günstig im Hinblick auf eine etwaige Standardisierung bzw. Normierung solcher Antriebssysteme. Durch die besondere Nähe des Antriebs zum Wickeldorn kann das Gehäuse ferner als Kühlkörper oder Kühloberfläche des Elektromotors genutzt werden. Eine etwaige Durchführung für Medien, beispielsweise Hydrauliköl und/oder Kühlwasser, ist auch von der Antriebsseite des Wickeldorns möglich.
  • Vorzugsweise ist der Elektromotor als Innenläufer ausgebildet, wobei der Rotor direkt mit dem Wickeldorn oder direkt mit einer Welle des Wickeldorns verbunden ist. Dies schließt gemäß einer besonders bevorzugten Ausführungsform eine einstückige Ausgestaltung des Rotors und der Welle oder des Rotors und des Wickeldorns ein. Dadurch lässt sich die Drehsteifigkeit zwischen dem Antrieb und dem Wickeldorn weiter verbessern.
  • Alternativ kann der Elektromotor des Antriebs als Außenläufer konzipiert sein, wobei hierbei ein Mantelabschnitt des Wickeldorns mit dem Rotor verbunden ist. Unter einem "Mantelabschnitt" wird nicht nur der äußerste Umfang des zylindrischen Wickeldorns verstanden, sondern auch weiter innenliegende Abschnitte, soweit sie eine Verbindung mit dem außenlaufenden Rotor erlauben, sind umfasst. Die Welle, sofern der Wickeldorn eine solche aufweist, kann gemäß dieser Ausführungsform antriebsseitig im Gehäuse oder im Antrieb gelagert sein. Allerdings sind auch Ausführungsformen möglich, in denen auf eine Welle verzichtet werden kann, aufgrund der engen Verbindung des Mantelabschnitts mit dem Rotor. Der Mantelabschnitt des Wickeldorns und der Rotor sind zur weiteren Verbesserung der Drehsteifigkeit vorzugsweise direkt miteinander verbunden, womit gemäß einer besonders bevorzugten Ausführungsform eine einstückige oder teilweise einstückige Ausbildung umfasst ist.
  • Zur weiteren Reduzierung von mechanischen Komponenten lagert das Gehäuse den Wickeldorn vorzugsweise nur auf einer Seite, während auf der entgegengesetzten Seite, d.h. der Antriebsseite, der Wickeldorn über die Welle oder den Rotor im Antrieb gelagert ist. Auf diese Weise können sich der Wickeldorn und der Rotor eine Lagerung teilen. Alternativ kann die Welle über zwei Lager am Gehäuse gelagert werden, wodurch ein Lager für den Rotor im Antrieb gegebenenfalls entfallen kann.
  • Vorzugsweise sind zwei Wickeldorne entlang einer Achse vorgesehen, wobei mindestens einer der beiden in axialer Richtung verschiebbar und stirnseitig mit dem anderen Wickeldorn in Eingriff bringbar oder gegen diesen pressbar ist. Zu diesem Zweck sind einander zugewandte Stirnseiten der beiden Wickeldorne vorzugsweise jeweils konisch und komplementär zueinander ausgebildet. Die beiden Wickeldorne können in diesem Fall auch als Dornhälften ein und desselben Wickeldorns angesehen werden. Gemäß dieser bevorzugten Ausführungsform kann das zugeführte Metallband automatisch durch Gegeneinanderfahren der beiden Wickeldorne erfasst werden. Die beiden Wickeldorne können beispielsweise durch Druckmittelzylinder auseinander und aufeinander zu gefahren werden. Gemäß einer besonderen Ausführungsform ist ein Wickeldorn mit dem Antrieb verbunden, während der andere Wickeldorn durch Kraftschluss zwischen den Stirnseiten oder über ein etwaiges eingeklemmtes Metallband rotarisch mitgenommen wird und somit ohne eigenen Antrieb auskommt.
  • Allerdings erlaubt der hier dargestellte Direktantrieb, dass beide Wickeldorne mit jeweils einem eigenen Antrieb versehen sein können, ohne dass die Vorteile eines kompakten Bauraums aufgegeben werden. Dieser zweiseitige Antrieb stellt eine besonders bevorzugte Ausführungsform dar, da er die Kraftübertragung auf den Wickeldorn und die Gewichtsverteilung vergleichmäßigt, woraus sich Vorteile für die Regelungstechnik ergeben können. Wenn zwei zusammenwirkende Wickeldorne vorgesehen sind und die beiden Wickeldorne im zusammengefahrenen Zustand nicht vollständig kraft- und/oder formschlüssig miteinander im Eingriff stehen, dann kann ein geringer Drehzahlunterschied zwischen den beiden Antrieben ausgeglichen werden.
  • Vorzugsweise sind zwei Antriebe auf gegenüberliegenden Seiten des Gehäuses mit dem Wickeldorn verbunden, um die Kraft- und Gewichtsverteilung zu vergleichmäßigen und/oder die Antriebsleistung unter Beibehaltung eines kompakten Bauraums zu erhöhen.
  • Der Rotor des Antriebs ist vorzugsweise ohne Zwischenschaltung eines Drehmomentgetriebes, insbesondere Untersetzungsgetriebes, mit dem Wickeldorn verbunden. Indem auf ein Drehmomentgetriebe verzichtet wird, findet eine direkte und unmittelbare Drehmomentübertragung vom Antrieb auf den Wickeldorn statt. Unter die Bezeichnung "Drehmomentgetriebe" fallen all jene Getriebeformen, die ein Eingangsdrehmoment oder eine Eingangsdrehzahl in ein Ausgangsdrehmoment oder Ausgangsdrehzahl anderer Größe umwandeln, die somit eine Drehmomentwandlung bzw. Drehzahlwandlung durchführen.
  • Der Antrieb kann in bestimmten Ausführungsvarianten über eine Spindel und/oder eine Kardanwelle mit der Welle verbunden sein. Dies kommt insbesondere bei Antrieben mit großer Leistung oder in widrigen Umgebungsbedingungen, etwa im Warmwalzwerk, in Betracht.
  • Gemäß einer bevorzugten Ausführungsform weist der Antrieb zusätzlich zum Elektromotor eine Bremse und/oder Haltevorrichtung auf, zum raschen Abbremsen und gegebenenfalls Arretieren der Maschine.
  • Der oben dargelegte Antrieb lässt sich modular aufbauen. Der Elektromotor als Basismodul kann etwa durch ein Bremsmodul erweitert werden. Der Antrieb kann bei Bedarf durch weitere Module, die vorzugsweise zylindrisch oder scheibenförmig sind, erweitert werden. Mögliche Erweiterungsmodule umfassen beispielsweise ein Leistungssteigerungsmodul mit Antriebsmitteln (etwa Rotor und Stator) zur Erhöhung der Leistung des Basismoduls und/oder ein Getriebemodul. Damit die Module miteinander kombinierbar sind, weisen sie technisch kompatible Komponenten, insbesondere miteinander verbindbare bzw. aneinander flanschbare Gehäuse auf. Durch eine solche modulare Bauweise kann die Wiederholhäufigkeit baugleicher Teile (Motorscheiben, Statorscheiben, Statorbleche, Statorspulen, Bremsscheiben, Bremsbeläge usw.) erhöht werden, wodurch die Kosten reduziert und die Zuverlässigkeit der Vorrichtung erhöht werden können.
  • Der Antrieb weist vorzugsweise einen Drehgeber oder Geschwindigkeitsmesser zum Messen des Drehwinkels und/oder der Drehgeschwindigkeit auf. Der Drehgeber kann als eigenes Modul oder als Bestandteil eines Moduls, vorgesehen sein. Ebenso ist eine geberlose Fahrweise möglich.
  • Der Antrieb kann ferner mit einer Kühleinrichtung ausgestattet sein. Diese kann beispielsweise als separates Modul zwischen der Bremse und dem Elektromotor und/oder als Kühlmantel im Motorgehäuse des Antriebs angeordnet sein. Die Kühlung kann mittels eines Gebläses und/oder als Wasser- bzw. Fluidkühlung ausgebildet sein.
  • Eine etwaige Durchführung für Medien, etwa Hydrauliköl und/oder Kühlwasser, ist durch den Rotor des Antriebs möglich. Ferner kann der Antrieb einen oder mehrere integrierte Wechselrichter aufweisen.
  • Der hier beschriebene Antrieb ist besonders gut als Direktantrieb für Wickeldorne in Haspelanlagen zum Abwickeln und Aufwickeln von Metallbändern oder Metallstreifen anwendbar. Doch wenngleich die Erfindung besonders bevorzugt im technischen Umfeld der Metallbearbeitung, in der Stahl- und NE-Industrie, zum Einsatz kommt, kann die Erfindung auch in anderen Bereichen umgesetzt werden. Diesbezüglich seien beispielhaft Wickelanwendungen bei Papiermaschinen oder Textilmaschinen genannt.
  • Weitere Vorteile und Merkmale der vorliegenden Erfindung sind aus der folgenden Beschreibung bevorzugter Ausführungsbeispiele ersichtlich. Die dort beschriebenen Merkmale können alleinstehend oder in Kombination mit einem oder mehreren der oben dargelegten Merkmale umgesetzt werden, insofern sich die Merkmale nicht widersprechen. Die folgende Beschreibung der bevorzugten Ausführungsbeispiele erfolgt dabei unter Bezugnahme auf die begleitenden Zeichnungen.
  • Kurze Beschreibung der Figuren
    • Die Figur 1 zeigt zwei schematische Querschnitte durch einen modular aufgebauten Antrieb, der als Direktantrieb für Wickler geeignet ist.
    • Die Figur 2 zeigt schematisch eine Bandhaspel mit einem modular aufgebauten Direktantrieb.
    • Die Figur 3 zeigt schematisch einen Saumwickler mit zwei Direktantrieben.
    Detaillierte Beschreibung bevorzugter Ausführungsbeispiele
  • Im Folgenden werden bevorzugte Ausführungsbeispiele anhand der Figuren beschrieben. Bevor Ausführungsbeispiele für Wickler dargestellt werden, soll zunächst ein beispielhafter modular aufgebauter Antrieb - geeignet als Direktantrieb für Wickler - mit einem Elektromotor und einer Vorrichtung zum Abbremsen der Maschine im Detail mit Bezug auf die Figur 1 beschrieben werden.
  • Die Figur 1 enthält Figurenausschnitte a) und b), die beispielhaft zwei Formen zeigen, wie die im Folgenden dargelegten Module zur Herstellung des Antriebs kombiniert werden können. Andere individuelle Anordnungen sind selbstverständlich möglich. Zusammen mit einer geeigneten Durchmesserstaffelung ist ein modularer Baukasten als Grundlage für eine wirtschaftliche Herstellung von Direktantrieben gegeben.
  • Wie aus der Figur 1 hervorgeht, ist der Antrieb direkt auf einer Welle 1 montiert. Die Welle 1 dient vorzugsweise auf eine einstückige Weise als Rotorwelle des Antriebs und als Welle einer Arbeitsmaschine, etwa eines der unten dargestellten Wickler. Der Antrieb weist Lagerschilde 2 mit Wälzlagerungen auf, die die Welle 1 lagern und gleichzeitig als Lager der Arbeitsmaschine dienen können. Der Antrieb ist zur Leistungsanpassung in Module aufgeteilt, dazu ist ein Basismodul vorgesehen, das im Wesentlichen aus einem Rotorelement 3, das ein Rotor gemäß der vorliegenden Anmeldung ist, Wicklungselementen 10 und einem Gehäuseelement 9 aufgebaut ist. Das Gehäuseelement 9 ist Teil des Stators des Antriebs. Zur Aufnahme von Wickelköpfen ist ein Wickelkopfelement 5 vorgesehen. Eine individuelle Erweiterung oder Anpassung des Antriebs an die gewünschte Arbeitsbedingung wird durch Erweiterungsmodule 4 ermöglicht. Ferner kann ein Haltemodul 6 montiert werden. Die Module und Elemente werden vorzugsweise durch Zugankerverschraubungen 7 miteinander verbunden. Absätze und Eindrehungen in den jeweiligen Modulen und Elementen sorgen für einen toleranzhaltigen Sitz. Optional kann ein Gebermodul 8 hinzugefügt werden. Das Basismodul und gegebenenfalls weitere Module des Antriebs können sowohl zwischen den Lagerschilden 2 als auch außerhalb, gemäß einer sogenannten fliegenden Lagerung angeordnet sein, unten genauer dargelegt mit Bezug auf die Figur 2.
  • Die obige Bauform stellt eine beispielhafte Möglichkeit des modularen Aufbaus von Antrieben, insbesondere Direktantrieben, dar. Sie ist besonders zum Antrieb von Haspeln und Wicklern geeignet, jedoch nicht auf diesen Maschinentyp beschränkt. Vielmehr ist der modulare Antrieb auch für andere Arbeitsmaschinen, wie etwa Stütz- und Arbeitswalzen, Spannrollensätzen, Winden und Scheren, anwendbar.
  • Die Figur 2 zeigt schematisch eine Bandhaspel mit einem modular aufgebauten Direktantrieb. Der Figurenausschnitt 2b zeigt eine Haspelwelle 101, die ein Wickeldorn gemäß der vorliegenden Anmeldung ist und von den Lagerungen 102 gelagert wird. Die Haspelwelle 101 kann die Welle 1 aus der Figur 1 sein, sie kann mit dieser aber auch integral verbunden sein. Ferner können die Lagerungen 102 die Lagerschilde 2 mit den eingebauten Wälzlagern aus der Figur 1 sein, wodurch eine enge Verbindung zwischen dem Antrieb und der Arbeitsmaschine realisiert wird. Die Lagerungen 102 stehen auf einem Grundrahmen 103, der hier als Gehäuse der Bandhaspel fungiert, auch wenn dieser die Bandhaspel nicht umschließt. Vom Grundrahmen 103 wird ein Basismodul 104, ein Erweiterungsmodul 105, etwa ein Leistungssteigerungsmodul, und ein Bremsmodul 106 gehalten, die gemeinsam den Antrieb für die Haspel aufbauen. Eine Medien- und/oder Energiedurchführung 107 kann an der Seite, die der Haspelwelle 101 gegenüberliegt, vorgesehen sein. Ferner kann ein Kühlgebläse außen an den Modulen des Antriebs vorgesehen sein, wobei beispielsweise ein separates Kühlgebläse 109 je Modul zugeordnet sein kann, wie es im Figurenausschnitt 2a dargestellt ist, oder alternativ ein Kühlgebläse 108 mehrere Module überspannen kann, wie es in den Figurenausschnitten 2b und 2c dargestellt ist. Alternativ oder zusätzlich kann ein Kühlmodul (nicht dargestellt) als zylindrisches Element am Antrieb angeflanscht sein, auf gleiche Weise wie das Erweiterungsmodul 105 oder Bremsmodul 106.
  • Der Vergleich zwischen den Figurenausschnitten 2b und 2c zeigt, dass der Antrieb zwischen den Lagerungen 102 der Arbeitsmaschine (Figurenausschnitt 2b) oder als fliegende Lagerung (Figurenausschnitt 2c) vorgesehen sein kann.
  • Die Figur 3 zeigt schematisch einen Wickler mit zwei Antrieben 200a und 200b, die jeweils gemäß den oben dargelegten Ausführungsbeispielen der Figuren 1 oder 2 ausgebildet sein können. Die beiden Antriebe 200a, 200b weisen jeweils einen Rotor 201a, 201b und einen Stator 202a, 202b auf. Der Wickler weist zwei Wickeldorne 300a und 300b auf, die auch als zwei Hälften ein und desselben Wickeldorns angesehen werden können.
  • Zur Anbindung der Wickeldorne 300a und 300b an die jeweiligen Antriebe 200a und 200b können die Wickeldorne 300a und 300b jeweils eine Welle (nicht dargestellt aufweisen), die auch als Wellenzapfen bezeichnet wird, aufweisen, der wiederrum direkt mit dem Rotor 201a, 201b des entsprechenden Antriebs 200a, 200b verbunden ist, beispielsweise darin eingespannt ist. Der Wickeldorn 300a, 300b ist auf diese Weise direkt mit dem Rotor 201a, 201b des Antriebs 200a, 200b verbunden.
  • In der Systematik der Figur 3 ist der Rotor des Antriebs mit den Bezugszeichen 201a, 201b bezeichnet, statt den Bezugszeichen 1 und 3 der Figur 1, um deutlich zu machen, dass der in der Figur 1 dargestellte Antrieb ein beispielhafter, wenn auch gut geeigneter Direktantrieb ist.
  • Mit dem Bezugszeichen 302 ist das Gehäuse des Wicklers bezeichnet. Das Gehäuse 302 weist eine Wickelkammer 303 auf, in der das Bandmaterial aufgewickelt wird. Dazu ragen die beiden Wickeldorne 300a und 300b zumindest teilweise in die Wickelkammer 303 hinein, wobei die Wickeldorne 300a und 300b entlang einer Achse angeordnet sind und von entsprechenden Lagern (nicht dargestellt), die im Gehäuse vorgesehen sein können, drehbar gelagert werden.
  • Ein oder beide Wickeldorne 300a, 300b sind in der axialen Richtung verschiebbar vorgesehen, so dass ihre Stirnseiten 301a, 301b in Eingriff bringbar oder gegeneinander pressbar und wieder lösbar sind. Zu diesem Zweck sind einander zugewandte Stirnseiten 301a, 301b der beiden Wickeldorne 300a, 300b vorzugsweise jeweils konisch und komplementär zueinander ausgebildet. Dadurch kann das zugeführte Metallband automatisch durch Gegeneinanderfahren der beiden Wickeldorne 300a, 300b erfasst werden. Die beiden Wickeldorne 300a, 300b können etwa durch Druckmittelzylinder, elektromotorisch oder auf andere Weise auseinander und aufeinander zu gefahren werden.
  • In der in Figur 3 dargestellten Ausführungsform wird jeder der beiden Wickeldorne 300a, 300b von einem eigenen Direktantrieb 200a, 200b angetrieben. Ein solcher beidseitiger Antrieb vergleichmäßigt die Drehmomentverteilung auf den Wickeldorn 300a, 300b sowie die Gewichtsverteilung, woraus sich Vorteile für die Regelungstechnik ergeben können. Wenn die beiden Wickeldorne 300a, 300b im zusammengefahrenen Zustand nicht vollständig kraft- und/oder formschlüssig miteinander im Eingriff stehen, kann ein geringer Drehzahlunterschied zwischen den beiden Antrieben 200a, 200b ausgeglichen werden.
  • Gemäß einer alternativen Ausführungsform ist es möglich, dass ein Wickeldorn mit einem Antrieb verbunden ist, während der andere Wickeldorn durch Kraftschluss zwischen den Stirnseiten oder über ein etwaiges eingeklemmtes Metallband rotarisch mitgenommen wird und in diesem Fall keinen eigenen Antrieb aufweist.
  • Durch die direkte Anbindung des Wickeldorns 300a, 300b an den Antrieb 200a, 200b kann gegebenenfalls auf ein antriebsseitiges Lager für den Rotor 201a, 201b bzw. den zugehörigen Wickeldorn 300a, 300b verzichtet werden. Stattdessen ist der Stator 202a, 202b des Antriebs 200a, 200b direkt, d.h. in diesem Fall mechanisch starr, mit dem Gehäuse 302 verbunden.
  • Der Wickler weist gemäß der obigen Beschreibung mindestens einen Antrieb 200a, 200b zum rotarischen Betrieb des Wickeldorns 300a, 300b auf, wobei einerseits eine hohe Drehsteifigkeit zwischen dem Antrieb 200a, 200b und dem Wickeldorn 300a, 300b sichergestellt ist, auf der anderen Seite eine oder mehrere herkömmliche Komponenten im Antriebsstrang, wie etwa Getriebe, Kupplungen, Kardanwellen usw., entfallen können.
  • Wenngleich die Antriebe 200a, 200b in der Figur 3 jeweils Innläufer sind, sei darauf hingewiesen, dass ein oder mehrere Antriebe auch als Außenläufer ausgeführt sein können. Zu diesem Zweck befinden sich die stationären Teile des Elektromotors, d.h. der Stator, im Innern des Antriebs, während der Rotor außen um den Stator umläuft. Auch in diesem Fall kann der Rotor direkt in den Wickeldorn übergehen, mit diesem einstückig ausgebildet oder starr mit diesem verbunden sein. Dazu steht der Mantelabschnitt des Wickeldorns mit dem Rotor in Kontakt. Unter dem "Mantelabschnitt" wird hierbei nicht nur der äußerste Umfang des Wickeldorns verstanden, sondern auch Abschnitte, die radial außerhalb einer etwaigen Welle des Wickeldorns liegen, sind umfasst, sofern sie eine Anbindung des Wickeldorns an den außenliegenden Rotor erlauben. Die Welle des Wickeldorns ist gegebenenfalls in einem im Antrieb integrierten Lager drehbar gelagert. In bestimmten Ausführungsbeispielen, bei einer äußeren Lagerung des Rotors oder des Wickeldorns kann gegebenenfalls auf eine Welle und deren Lager verzichtet werden.
  • Der oder die Direktantriebe 200a, 200b gemäß der Figur 3 können ferner mit einer Kühleinrichtung (nicht dargestellt) ausgestattet sein. Diese kann beispielsweise als separates, zylindrisches Modul zwischen einer Hochleistungsbremse und dem Elektromotor und/oder als Kühlmantel im Gehäuse des Antriebs angeordnet sein. Die Kühlung kann über ein Gebläse und/oder als Wasser- bzw. Fluidkühlung ausgebildet sein. Zur einfachen Aufrüstung des Antriebs mit einer Kühleinheit kann der modulartige Aufbau gemäß der Figur 1 entsprechend erweitert werden.
  • Eine Durchführung für Medien, etwa Hydrauliköl und/oder Kühlwasser, ist von der Antriebsseite möglich, indem entsprechende Leitungen durch den Rotor 201a, 201b und gegebenenfalls durch den zugehörigen Wickeldorn 300a, 300b geführt werden.
  • Die enge, integrale Verbindung zwischen dem Antrieb und dem Wickeldorn erlaubt einen bauraumsparenden Anlagenbau. Damit gehen Vereinfachungen beim Anlagenbau einher, beispielsweise durch eine Fundamenteinsparung, eine bessere Zugänglichkeit der Anlage, eine Verringerung der Reserveteile, eine Verringerung des Wartungsaufwands, eine Verkleinerung der Halle. Die Motoren sind nicht oder weniger durch Bunde oder andere herabfallende Teile gefährdet. Ein großer Vorteil des hier dargestellten Konzepts wird bei der thermischen Auslegung der Motoren deutlich. Durch die innige Verbindung der Antriebe mit der Arbeitsmaschine kann die Masse und die Oberfläche der mechanischen Einrichtung zur Wärmeableitung mitgenutzt werden. Die Leistung der Elektromotoren kann dadurch ohne bauliche Maßnahmen gesteigert werden. Die Verlustleistung des Antriebsstrangs wird erheblich reduziert. Auf eine Fremdlüftung oder Wasserkühlung kann in vielen Fällen verzichtet werden. Die Motoren können als Innenläufer oder Außenläufer konzipiert sein. Das beschriebene Integralkonzept bietet zudem Verbesserungen im Hinblick auf die Sicherheit, da auf drehende äußere Antriebsteile, wie etwa Gelenkwellen, Kupplungen, Bremsscheiben usw., verzichtet werden kann. Es entfallen Bauteile wie Lager, Wellen, Kupplungen, Motoruntersätze, Getriebeuntersätze usw.. Eine Verringerung der sich bewegenden Teile hat zudem eine höhere Regelgenauigkeit zur Folge.
  • Die Reduzierung der Bauteile im Vergleich mit einem herkömmlichen Antriebsstrang äußert sich dadurch, dass auf Zahnräder, Kupplungen und Wälzlager in bestimmten Ausführungsformen ganz, zumindest aber teilweise verzichtet werden kann. Bewegliche und stationäre Komponenten werden deutlich reduziert, wodurch eine höhere Drehsteifigkeit, eine verbesserte Regelgüte und ein höherer Wirkungsgrad des Antriebssystems erzielt werden. Die Notwendigkeit einer Ölschmierung kann teilweise entfallen, wodurch die Verlustleistung des Antriebs weiter verringert wird. Motorlüfter oder Wasserkühler können entfallen oder kleiner ausfallen, da das Gehäuse des Wicklers und der Stator des Antriebs eng miteinander integriert sind, wodurch die Verlustleistung weiter reduziert wird. Durch eine deutliche Verringerung von Verschleißteilen, wie etwa Zahnrädern und deren Lager, verbessert sich die Wartungsfreundlichkeit und Zuverlässigkeit der Maschine. Darüber hinaus ist der Antriebsstrang insgesamt ausgesprochen belastbar, insbesondere mit Blick auf etwaige Stoßbelastungen. Ferner werden eine Verminderung von Betriebsgeräuschen und des sicherheitstechnischen Aufwands erreicht, etwa durch Wegfall von Abdeckungen für bewegliche Teile. Es vereinfacht sich die Anlagenplanung, da die Antriebsstränge im Allgemeinen mit viel Aufwand auf einem Fundament individuell geplant werden müssen. Bei einer Integration oder "Verblockung" des Antriebs mit dem Wickeldorn, wie oben im Detail beschrieben, verringert sich der Aufwand bei der Anlagenplanung. Der Antrieb kann zudem gegebenenfalls schon ab Werk mit dem Gehäuse des Wicklers verblockt werden. Damit kann die Maschine in der Fertigungsstätte getestet werden und kommt geprüft auf die Baustelle.
  • Bezugszeichenliste
  • 1
    Welle
    2
    Lagerschilde mit Wälzlagerungen
    3
    Rotorelement
    4
    Erweiterungsmodul
    5
    Wickelkopfmodul
    6
    Haltemodul
    7
    Verschraubungen
    8
    Geber
    9
    Gehäuseelement
    10
    Wicklungselement
    101
    Haspelwelle
    102
    Lagerungen
    103
    Grundrahmen
    104
    Basismodul
    105
    Erweiterungsmodul
    106
    Bremsmodul
    107
    Energiedurchführung
    108
    Kühlgebläse für beide Module
    109
    separate Kühlgebläse je Modul
    200a, 200b
    Antrieb
    201a, 201b
    Rotor
    202a, 202b
    Stator
    300a, 300b
    Wickeldorn
    301a, 301b
    Stirnseite des Wickeldorns
    302
    Gehäuse
    303
    Wickelkammer

Claims (10)

  1. Wickler für ein bandförmiges Material, vorzugsweise Metallband, in der Metallbearbeitung, wobei der Wickler aufweist:
    mindestens einen Wickeldorn (101, 300a, 300b), der zum Aufwickeln des bandförmigen Materials vorgesehen ist, und
    einen Antrieb (200a, 200b), der einen Elektromotor, vorzugsweise einen Torquemotor oder Synchronmotor, mit einem Stator und einem Rotor (3, 201a, 201b) aufweist, wobei
    der Wickler ferner ein Gehäuse (103, 302) aufweist, der Rotor (3, 201a, 201b) mit dem Wickeldorn (101, 300a, 300b) verbunden ist, wodurch die Drehung des Rotors (3, 201a, 201b) auf den Wickeldorn (101, 300a, 300b) übertragen wird, und der Stator direkt am Gehäuse (103, 302) montiert ist und/oder der Rotor (3, 201a, 201b) direkt mit dem Wickeldorn (101, 300a, 300b) oder einer Welle des Wickeldorns (101, 300a, 300b) verbunden ist,
    dadurch gekennzeichnet, dass
    der Antrieb mindestens einen Fangmagneten aufweist, der eingerichtet ist, um magnetische Partikel aufzufangen und sie vom Elektromotor fernzuhalten.
  2. Wickler nach Anspruch 1, dadurch gekennzeichnet, dass der Elektromotor des Antriebs (200a, 200b) ein Innenläufer ist, der Rotor (3, 201a, 201b) und der Wickeldorn (101, 300a, 300b) oder der Rotor (3, 201a, 201b) und eine Welle des Wickeldorns (101, 300a, 300b) einstückig ausgebildet sind.
  3. Wickler nach Anspruch 1, dadurch gekennzeichnet, dass der Elektromotor des Antriebs (200a, 200b) ein Außenläufer ist und ein Mantelabschnitt des Wickeldorns (101, 300a, 300b) mit dem Rotor (3, 201a, 201b) verbunden ist, wobei der Mantelabschnitt des Wickeldorns (101, 300a, 300b) und der Rotor (3, 201a, 201b) vorzugsweise direkt miteinander verbunden oder einstückig ausgebildet sind.
  4. Wickler nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (103, 302) den Wickeldorn (101, 300a, 300b) auf einer Seite lagert, während das Gehäuse (103, 302) keine zweite Lagerung für den Wickeldorn (101, 300a, 300b) aufweist, sondern der Wickeldorn (101, 300a, 300b) auf der gegenüberliegenden Seite über eine Rotorlagerung des Antriebs (200a, 200b) gelagert ist, oder
    das Gehäuse (103, 302) den Wickeldorn (101, 300a, 300b) auf zwei Seiten lagert, wobei eine Lagerung des Rotors (3, 201a, 201b) im Antrieb entfällt.
  5. Wickler nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass zwei Wickeldorne (300a, 300b) entlang einer Achse vorgesehen sind, wobei mindestens einer der beiden Wickeldorne (300a) in axialer Richtung verschiebbar und stirnseitig mit dem anderen Wickeldorn (300b) in Eingriff bringbar oder gegen diesen pressbar ist.
  6. Wickler nach Anspruch 5, dadurch gekennzeichnet, dass einander zugewandte Stirnseiten (301a, 301b) der beiden Wickeldorne (300a, 300b) jeweils konisch und komplementär zueinander ausgebildet sind.
  7. Wickler nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass zwei Antriebe (200a, 200b) auf gegenüberliegenden Seiten des Gehäuses (103, 302) mit dem Wickeldorn (101, 300a, 300b) verbunden sind.
  8. Wickler nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass der Rotor (3, 201a, 201b) des Antriebs ohne Zwischenschaltung eines Drehmomentgetriebes mit dem Wickeldorn (101, 300a, 300b) verbunden ist.
  9. Wickler nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass der Antrieb einen modularen Aufbau aufweist, wobei dieser durch Zusatzmodule erweiterbar ist, beispielsweise Bremsmodul (106) und/oder Haltemodul (6) und/oder Getriebemodul und/oder Leistungssteigerungsmodul (105).
  10. Wickler nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass der Wickler eine Haspelanlage zum Abwickeln und Aufwickeln von Metallbändern oder Metallstreifen, vorzugsweise ein Saumwickler ist.
EP18755467.0A 2017-08-18 2018-08-15 Direktantrieb für saumwickler in der metallbearbeitung Active EP3668808B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017214414.9A DE102017214414A1 (de) 2017-08-18 2017-08-18 Direktantrieb für Saumwickler in der Metallbearbeitung
PCT/EP2018/072094 WO2019034680A1 (de) 2017-08-18 2018-08-15 Direktantrieb für saumwickler in der metallbearbeitung

Publications (2)

Publication Number Publication Date
EP3668808A1 EP3668808A1 (de) 2020-06-24
EP3668808B1 true EP3668808B1 (de) 2021-01-20

Family

ID=63209424

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18755467.0A Active EP3668808B1 (de) 2017-08-18 2018-08-15 Direktantrieb für saumwickler in der metallbearbeitung

Country Status (4)

Country Link
EP (1) EP3668808B1 (de)
CN (1) CN111183105B (de)
DE (1) DE102017214414A1 (de)
WO (1) WO2019034680A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022156957A1 (de) * 2021-01-25 2022-07-28 Achenbach Buschhütten GmbH & Co. KG Haspel zum aufwickeln oder abwickeln von bandförmigen material und verfahren

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2844882A1 (de) 1978-10-14 1980-04-30 Schloemann Siemag Ag Haspelvorrichtung zum aufwickeln von saumstreifen
JPS62130948A (ja) * 1985-11-28 1987-06-13 Mitsubishi Heavy Ind Ltd 巻取機におけるスピンドル駆動装置
DE4039606A1 (de) * 1989-12-13 1991-06-20 Sundwiger Eisen Maschinen Haspel zum auf- und/oder abwickeln von metallbaendern mit bandzugkraeften zwischen 10kn und 1000kn
DE4143597C5 (de) * 1991-11-22 2008-06-26 Baumüller Nürnberg GmbH Druckmaschine mit wenigstens einem elektromotorisch angetriebenen, axial verstellbaren Zylinder oder sonstigen Drehkörper
DE19621171A1 (de) * 1996-05-24 1997-11-27 Schloemann Siemag Ag Direkt angetriebener Haspel
AU2003229565A1 (en) * 2002-03-24 2003-10-08 Vomag Gmbh Device for supporting a shaft
EP1460010B1 (de) * 2003-03-19 2010-08-04 Voith Patent GmbH Maschine mit einem vorzugsweise als Synchronmotor ausgeführten und zum Direktantrieb eines Wickelkerns einer Wickelrolle dienenden Elektromotors, insbesondere zur Verwendung in der Papierindustrie, und sich hierauf beziehendes Umbauverfahren
EP1697054B1 (de) * 2003-12-12 2009-06-17 WIFAG Maschinenfabrik AG Aussenläuferantrieb
DE102008011589B3 (de) * 2008-02-28 2009-04-09 Metabowerke Gmbh Elektrohandwerkzeuggerät mit Magneten zum Absorbieren von Staub
DE102013216375A1 (de) * 2013-08-19 2015-02-19 Sms Siemag Ag Saumwickler für bandförmiges Material
EP3141499A1 (de) * 2015-09-09 2017-03-15 Siemens Aktiengesellschaft Antrieb für eine bandförderanlage, verfahren zum montieren eines antriebs an eine bandförderanlage sowie bandförderanlage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022156957A1 (de) * 2021-01-25 2022-07-28 Achenbach Buschhütten GmbH & Co. KG Haspel zum aufwickeln oder abwickeln von bandförmigen material und verfahren

Also Published As

Publication number Publication date
WO2019034680A1 (de) 2019-02-21
CN111183105B (zh) 2022-01-21
CN111183105A (zh) 2020-05-19
DE102017214414A1 (de) 2019-02-21
EP3668808A1 (de) 2020-06-24

Similar Documents

Publication Publication Date Title
EP3668662B1 (de) Direktantrieb bei rollen, walzen und winden in der stahl/nichteisen-industrie
EP0376178B1 (de) Werkzeugmaschine mit gekühlter Motorspindel
EP2413483A1 (de) Elektrische Antriebsvorrichtung für ein Luftfahrzeug
DE2005802A1 (de) Induktionsmotor
EP2379879B1 (de) Generatoranordnung für eine windenergieanlage
EP2541096A1 (de) Antriebssystem für eine Windkraftanlage
EP2989711B1 (de) Luftgekühlte elektrische maschine mit kühlrippen aus statorblech
EP3058641B1 (de) Antriebsvorrichtung
EP3668808B1 (de) Direktantrieb für saumwickler in der metallbearbeitung
DE102021212153B4 (de) Elektrische Maschine
DE19532976A1 (de) Antrieb von Motorspindeln für Werkzeugmaschinen
DE19919553C5 (de) Werkzeugwechselvorrichtung
DE102009012353A1 (de) Rollenmühle
EP3510690B1 (de) Segmentblech für ein statorblechpaket, statorblechpaket, sowie generator und windenergieanlage mit selbigen
EP3493370B1 (de) Antriebseinrichtung sowie achsantriebseinrichtung für ein kraftfahrzeug
WO2020094514A1 (de) Elektrische maschine mit einer fluid-kühleinrichtung
DE102010020426A1 (de) Elektrische Maschine, insbesondere für eine Windkraftanlage
WO2019034679A1 (de) Schere zur metallbearbeitung mit elektrischem direktantrieb
DE102014001922A1 (de) Motorenreihe und Verfahren zur Schaffung der Motorenreihe
DE102005011020A1 (de) Getriebeloser und kompakter Hebezeugantrieb in Außenläuferausführung
EP3668661B1 (de) Verfahren und vorrichtung zur elektrischen bremsung mit mechanischer haltevorrichtung für einen direktantrieb bei der metallbearbeitung
EP2555394B1 (de) Elektrischer Antrieb für eine Presse
EP3990793B1 (de) Ölgeräumte elektrische maschine mit wälzlager für ein kraftfahrzeug
DE2924255A1 (de) Antriebsvorrichtung mit elektromotor fuer einen walzenmantel, insbesondere einer kalanderwalze
DE4232322A1 (de) Kühleinrichtung für einen Asynchronmotor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200318

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B65H 18/10 20060101ALI20200630BHEP

Ipc: B65H 18/02 20060101AFI20200630BHEP

Ipc: B21C 47/04 20060101ALI20200630BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20200818

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018003742

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1356221

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210120

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018003742

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

26N No opposition filed

Effective date: 20211021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210520

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210815

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210120

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180815

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240821

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1356221

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230815