EP3457052A1 - Moteur à vapeur froide atmosphérique et son procédé de fonctionnement - Google Patents
Moteur à vapeur froide atmosphérique et son procédé de fonctionnement Download PDFInfo
- Publication number
- EP3457052A1 EP3457052A1 EP18174541.5A EP18174541A EP3457052A1 EP 3457052 A1 EP3457052 A1 EP 3457052A1 EP 18174541 A EP18174541 A EP 18174541A EP 3457052 A1 EP3457052 A1 EP 3457052A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- refrigerant fluid
- energy
- heat
- thermal energy
- mechanical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K11/00—Plants characterised by the engines being structurally combined with boilers or condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/02—Heat pumps of the compression type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/04—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
Definitions
- the invention relates to energy transformation machines. Thermal energy is converted into mechanical energy.
- Low-temperature (0 °C to 90 °C) thermal energy is usually released into the environment as waste.
- Almost all modern heat engines operate under the Carnot cycle, i.e., they work within a certain temperature range that is very far from the temperatures of the phase transition of the used material - energy carrier.
- Higher temperature thermal energy that is easily converted to other types of energy is derived from the chemical energy of a combustible fuel, which is associated with intense environmental pollution. The environment is polluted by combustion waste and heated by excessive heat.
- Heat pumps operate in a different way, the most common being compressor heat pumps.
- the heat pumps characterize by collecting and concentrating the low-temperature thermal energy, thereby turning it into higher temperature thermal energy. In order to do this, the heat pumps use mechanical energy, which is in turn transformed from electrical energy.
- Heat pumps as mechanisms are unique by the fact that they consume several times less energy than they collect from the environment and concentrate. This becomes possible because heat pumps use the phase-transition heat of the material: the material is cyclically changed from the liquid phase to gaseous, and back.
- heat pumps have one major disadvantage: they provide thermal energy in the form of a final product that is however of inadequate quality, i.e., the temperature is not high enough to be transformed effectively into other forms of energy that are more in demand, for example, mechanical or electrical.
- There are multi-stage heat pumps whose final product is relatively high-temperature thermal energy; however, these heat pumps lose their meaning with the diminishing of their main advantage: absorbing from the environment and providing the consumer with significantly more energy than is used to maintain their operating process
- the patented idea is how, by taking advantage of the unique properties of a heat pump, the thermal energy concentrated by a heat pump can be used for changing the states of matter of the material (refrigerant fluid, suitably selected according to the phase transition temperatures, the specific heat and the specific heat of vaporization) by inducing changes in volumes and pressures, and using the latter for generating mechanical energy. In other words, to convert low-temperature environmental or waste heat into useful mechanical energy.
- Patent application DE3001315 provides the principle and one of the structures that can be realized: the device uses environmental energy that it can partly convert into mechanical energy. It is different from the current device by the fact that it uses only one refrigerant fluid circulating through a compressor and a turbine, which is a completely different way of obtaining mechanical energy than a membrane and atmospheric pressure. In addition, gas condensation in liquid is not used, therefore only a very small part of the thermal energy will be converted into mechanical. In other words, more significant compensation of mechanical energy with thermal energy is impossible.
- the device described in patent application DE102010049337 operates not on a reversed, but direct Carnot cycle, using heat of significantly higher temperature that is released as excess by, for example, an internal combustion engine.
- the main difference is that the device uses the atmospheric environment as a cooler rather than as a heat source.
- Patent application FR2547399 describes a device similar to the patented device, i.e. it operates on a reversed Carnot cycle, converts part of the environmental energy into mechanical energy, but differs by the fact that there is one circuit, it circulates gas that remains in the gas phase, i.e. there are no phase changes, and at the same time it does not use the heat of phase transitions and changes in volumes and pressures.
- its adaptability raises some doubts as, even in the ideal case, in the absence of losses the amount of energy released to and taken from the environment is equal; the balance is zero.
- the operating principle of the device described in another patent application RU2132470 is also substantially similar to the device to be patented: as the refrigerant fluid evaporates, thermal energy is taken from the environment, and as a sufficient amount of energy is absorbed, pressure increases and performs mechanical work.
- the problem is that it fails to describe the return of the gas (in the patent application, helium, and nitrogen are given as examples) into the liquid state.
- the operating principle of the atmospheric cold steam engine is based on materials with the characteristic of absorbing or releasing thermal energy in phase transitions, e.g., from the liquid to gaseous and vice versa. It is also based on their characteristic of significantly changing in volume when changing from one state of matter to another.
- the essence of the operating principle is that atmospheric pressure is suppressed with the help of heat absorbed from the environment and concentrated through the evaporation of the working material. When this material is condensed, the atmospheric pressure transforms the thermal energy transmitted to the material into mechanical energy.
- the energy absorption and concentration processes are continuous, and the process of transformation into mechanical energy is cyclic.
- the purpose of the invention is to expand the possibilities of a heat pump by converting the thermal energy collected from the environment (air, water, soil, by-products of production processes, etc.) and concentrating it into mechanical energy.
- the mechanical energy generated can be used for the compressor of the heat pump itself (which would significantly reduce energy consumption and increase efficiency) or transformed into another type of energy (electricity etc.) and used by external consumers as needed.
- the operating principle of the atmospheric cold steam engine of this invention is based on overcoming the atmospheric pressure by evaporating the working material, adsorbed from the environment, using the concentrated heat.
- the atmospheric pressure transforms the thermal energy transmitted to the material into mechanical energy.
- the energy absorption and concentration processes are continuous, and the process of transformation into mechanical energy is cyclic.
- the engine operation can be described by distinguishing the four main stages of the process together with the structural units and the two refrigerant fluids circulating in them.
- the compressor 2 maintains a low pressure, and, in the same way as the refrigerant liquid in heat pumps, this fluid evaporates using for evaporation its own heat energy and that of the surrounding structures, and absorbs the energy deficiency from the environment.
- this fluid evaporates using for evaporation its own heat energy and that of the surrounding structures, and absorbs the energy deficiency from the environment.
- conditions for maximum interaction of the fluid with the heat exchange through the circuit 1 with the environment are provided.
- the properties of the first refrigerant fluid are very close to those of fluids used in conventional heat pumps.
- the compressor 2 and valve 4 maintain a high pressure; the first refrigerant fluid material enters this zone and condenses, thus returning to the liquid state and releasing the energy collected from the environment.
- the processes of phase transition and thermal energy transfer at the first and the second stages described above are almost the same as in case of a conventional heat pump, and the ratio between the energy consumed by the compressor, and the energy received from the environment, is approximately 1: 4.
- the second-stage processes are isolated from the environment.
- the thermal energy obtained is used for evaporation of the second refrigerant fluid.
- This fluid material and its characteristics - boiling point, specific heat, evaporation (condensation) specific heat, evaporation pressure, and other parameters - are selected so that, having consumed the heat energy obtained at the second stage and evaporated, the material in the gaseous phase reaches a pressure close to or higher than atmospheric pressure.
- the processes are isolated from the environment.
- the process takes place cyclically: through the valve 15, the second refrigerant steam enters chamber 10 separated by a mobile membrane 12 from the environment.
- the membrane is connected to a flywheel 11 with a crank.
- the flywheel returns the membrane to the right-hand side position, and steam fills the entire chamber 10, and the valves 9 and 15 close, steam condensation is initiated by injecting the second refrigerant fluid, cooled in heat exchanger 5, through the valve 13 and nozzle 14 with the help of the pump 16, by absorbing the thermal energy and returning it to the previous stages.
- the second refrigerant material, which filled the chamber 10 changes from the gaseous to the liquid state, the pressure in the chamber 10 drops significantly, and becomes considerably lower than atmospheric pressure.
- Atmospheric pressure starts acting on the membrane 12 from the other side, moving it to the other - left-hand side - position by transferring the force and energy of the atmospheric pressure P to the flywheel 11.
- atmospheric pressure energy might be used: compressed air, a spring or other potential energy, previously generated by the evaporating second refrigerant fluid, therefore the concept of "atmospheric" in the title of the engine is conditional.
- Atmospheric pressure was selected as the potential energy collector because it is approximately in line with the required pressure value. Furthermore, no additional units are required in the structure. Part of the thermal energy generated during steam condensation at the fourth stage is returned to the third stage through the valve 9, tank 8 and valve 7 together with part of the fluid.
- Energy supplementation takes place at the first stage.
- the energy, absorbed as thermal energy at the first stage and generated as mechanical energy at the fourth stage, can be used for the needs of external consumers, or a part of this energy can be returned through the mechanism to power the service nodes.
- the above actualization of the invention is just one possible actualization.
- the structure and the work process may be optimized for generating mechanical energy, or only a part of the heat absorbed from the environment may be used for generating mechanical energy (to the extent required for the provision of mechanical energy to the engine units), and, as in case of a conventional heat pump, the remaining energy may be supplied to consumers in the form of heat, as schematically depicted in Figure 2 .
- 100% of the energy is considered to be energy that circulates through the engine in the form of thermal and mechanical energy, i.e., not the absolute energy value, but energy changes and exchanges within the engine and between the engine and the environment, as well as the energy transformations.
- the engine can absorb from the environment approximately 25% - 50% of the thermal energy required for operation; calculating from the energy circulating in the engine, it needs another 25% in the form of mechanical energy, and up to 50% of the thermal energy can be recovered from the fourth stage and returned to the first and third stages (through the heat exchanger 5 and evaporator 6).
- this optimized engine can supply up to 50% of the energy, transformed into mechanical energy, in the output circuit, i.e. the engine can generate more mechanical energy than it gets by compensating for the deficit present with environmental thermal energy.
- up to 25% of the mechanical energy output can be achieved, even if 25% of it is returned to power the mechanical units.
- the engine does not automatically deliver 25% of the mechanical energy output; however, its unique operating principle makes it possible to transform all thermal losses into useful work. Considering the fact that mechanical and hydraulic losses are largely converted to heat, and heat is used for purposeful work, the output can be very close to the theoretical one.
- the entire mechanism is designed so that those structural elements that have to absorb energy from the environment can achieve maximum interaction with the environment through heat exchange, and those whose temperature must remain constant, are insulated.
- the characteristics of the refrigerant liquids are selected taking into account the ambient temperature, in order to maximize the use of thermal energy from the environment and/or optimally transfer it from stage to stage. Therefore, the engine filled with specific refrigerant liquids (analogous to heat pumps) can work efficiently only within a certain temperature range of the heat source. However, unlike heat pumps, not only thermal, but also mechanical energy is produced as a result.
- the thermal energy source of these devices may be air, water bodies, groundwater, soil or waste heat from technical and household processes: heat from ventilation or wastewater systems, low temperature waste heat from production processes, etc., i.e. all heat sources used by conventional heat pumps or recuperators are suitable.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LT2017522A LT6635B (lt) | 2017-09-06 | 2017-09-06 | Atmosferinio slėgio šaltojo garo variklis ir jo veikimo būdas |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3457052A1 true EP3457052A1 (fr) | 2019-03-20 |
EP3457052B1 EP3457052B1 (fr) | 2020-01-08 |
Family
ID=62386241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18174541.5A Active EP3457052B1 (fr) | 2017-09-06 | 2018-05-28 | Moteur à vapeur froide atmosphérique et son procédé de fonctionnement |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3457052B1 (fr) |
LT (1) | LT6635B (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113623034A (zh) * | 2021-08-17 | 2021-11-09 | 西安交通大学 | 一种带两级蒸汽喷射器的热电解耦系统及运行方法 |
US11813568B2 (en) | 2019-07-23 | 2023-11-14 | Kleener Power Solutions Oy | Purification composition, method for producing purification composition and method for purifying flue gas by purification composition |
EP4509701A1 (fr) | 2023-08-14 | 2025-02-19 | Vilniaus Gedimino technikos universitetas | Moteur à vapeur froide opposée et procédé de fonctionnement |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LT7106B (lt) | 2024-03-29 | 2024-11-11 | VšĮ Vilniaus Gedimino technikos universitetas | Opozicinis šaltojo garo variklis ir jo veikimo būdas |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3001315A1 (de) | 1980-01-16 | 1981-07-23 | Hellmuth 1000 Berlin Butenuth | Gewinn mechanischer leistung aus umwelt- oder abwaerme, antrieb einer waermepumpen- bzw. kaeltepumpenanlage |
FR2547399A1 (fr) | 1983-06-13 | 1984-12-14 | Ancet Victor | Pompe a chaleur a coefficient de performance eleve |
CH647590A5 (en) | 1979-02-12 | 1985-01-31 | Tchernev Dimiter I | Process and equipment for producing useful energy from low-grade heat sources |
CN1180790A (zh) | 1997-10-27 | 1998-05-06 | 天然国际新科学技术研究院 | 负温差热力发动机 |
CN1181461A (zh) | 1997-10-27 | 1998-05-13 | 易元明 | 负温差饱和蒸气热力发动机 |
RU2132470C1 (ru) | 1996-10-24 | 1999-06-27 | Чекунков Александр Никандрович | Атмосферный энергодвигатель чекункова а.н. - карпенко а.н. |
DE102010049337A1 (de) | 2010-10-22 | 2012-04-26 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Vorrichtung zur Nutzung der Abwärme einer Verbrennungskraftmaschine |
US9644850B2 (en) * | 2010-04-12 | 2017-05-09 | Drexel University | Heat pump water heater |
-
2017
- 2017-09-06 LT LT2017522A patent/LT6635B/lt not_active IP Right Cessation
-
2018
- 2018-05-28 EP EP18174541.5A patent/EP3457052B1/fr active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH647590A5 (en) | 1979-02-12 | 1985-01-31 | Tchernev Dimiter I | Process and equipment for producing useful energy from low-grade heat sources |
DE3001315A1 (de) | 1980-01-16 | 1981-07-23 | Hellmuth 1000 Berlin Butenuth | Gewinn mechanischer leistung aus umwelt- oder abwaerme, antrieb einer waermepumpen- bzw. kaeltepumpenanlage |
FR2547399A1 (fr) | 1983-06-13 | 1984-12-14 | Ancet Victor | Pompe a chaleur a coefficient de performance eleve |
RU2132470C1 (ru) | 1996-10-24 | 1999-06-27 | Чекунков Александр Никандрович | Атмосферный энергодвигатель чекункова а.н. - карпенко а.н. |
CN1180790A (zh) | 1997-10-27 | 1998-05-06 | 天然国际新科学技术研究院 | 负温差热力发动机 |
CN1181461A (zh) | 1997-10-27 | 1998-05-13 | 易元明 | 负温差饱和蒸气热力发动机 |
US9644850B2 (en) * | 2010-04-12 | 2017-05-09 | Drexel University | Heat pump water heater |
DE102010049337A1 (de) | 2010-10-22 | 2012-04-26 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Vorrichtung zur Nutzung der Abwärme einer Verbrennungskraftmaschine |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11813568B2 (en) | 2019-07-23 | 2023-11-14 | Kleener Power Solutions Oy | Purification composition, method for producing purification composition and method for purifying flue gas by purification composition |
CN113623034A (zh) * | 2021-08-17 | 2021-11-09 | 西安交通大学 | 一种带两级蒸汽喷射器的热电解耦系统及运行方法 |
CN113623034B (zh) * | 2021-08-17 | 2022-10-28 | 西安交通大学 | 一种带两级蒸汽喷射器的热电解耦系统及运行方法 |
EP4509701A1 (fr) | 2023-08-14 | 2025-02-19 | Vilniaus Gedimino technikos universitetas | Moteur à vapeur froide opposée et procédé de fonctionnement |
Also Published As
Publication number | Publication date |
---|---|
LT6635B (lt) | 2019-06-25 |
LT2017522A (lt) | 2019-03-12 |
EP3457052B1 (fr) | 2020-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6606860B2 (en) | Energy conversion method and system with enhanced heat engine | |
US6827104B2 (en) | Seal and valve systems and methods for use in expanders and compressors of energy conversion systems | |
US8584463B2 (en) | Thermoelectric energy storage system having two thermal baths and method for storing thermoelectric energy | |
US4503682A (en) | Low temperature engine system | |
EP3457052B1 (fr) | Moteur à vapeur froide atmosphérique et son procédé de fonctionnement | |
US9500185B2 (en) | System and method using solar thermal energy for power, cogeneration and/or poly-generation using supercritical brayton cycles | |
EP2157317B2 (fr) | Système de stockage d'énergie thermoélectrique et procédé de stockage d'énergie thermoélectrique | |
RU95358U1 (ru) | Устройство для осуществления термодинамического циклического процесса | |
US20120222423A1 (en) | Thermoelectric energy storage system having an internal heat exchanger and method for storing thermoelectric energy | |
US20110030404A1 (en) | Heat pump with intgeral solar collector | |
US20150135714A1 (en) | Pressure power unit | |
CN109804139B (zh) | 热力学循环装置和方法 | |
WO2011147701A1 (fr) | Système de stockage d'énergie thermoélectrique et procédé pour stocker de l'énergie thermoélectrique | |
DK2574741T3 (en) | System for improved heat application | |
Paanu et al. | Waste heat recovery: bottoming cycle alternatives | |
US10676373B2 (en) | Thermal utilization system and methods | |
WO2010048100A2 (fr) | Moteurs à ultra haut rendement et système thermodynamique correspondant | |
CN101397983B (zh) | 工质相变焓差海水温差动力机 | |
US10815835B2 (en) | Apparatus and method for energy storage | |
US20090044535A1 (en) | Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator | |
US20170089612A1 (en) | Multi-stage heat engine | |
Enslin | Economic aspects of utilizing heat transformer technology | |
CN116608022A (zh) | 蒸汽循环型卡诺电池及其储能方法 | |
Alelyani et al. | Parametric study of an integrated organic Rankine/reverse Brayton refrigeration cycle and multiple-effect desalination unit | |
CZ2011179A3 (cs) | Zpusob využití nízkoteplotních energetických zdroju |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190830 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20191015 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018001979 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1223195 Country of ref document: AT Kind code of ref document: T Effective date: 20200215 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200108 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200531 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200508 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200409 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018001979 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1223195 Country of ref document: AT Kind code of ref document: T Effective date: 20200108 |
|
26N | No opposition filed |
Effective date: 20201009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210421 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220525 Year of fee payment: 5 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220528 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602018001979 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231201 |