EP3439825B1 - Changing station and method for the automatic changing of abrasives - Google Patents
Changing station and method for the automatic changing of abrasives Download PDFInfo
- Publication number
- EP3439825B1 EP3439825B1 EP17715148.7A EP17715148A EP3439825B1 EP 3439825 B1 EP3439825 B1 EP 3439825B1 EP 17715148 A EP17715148 A EP 17715148A EP 3439825 B1 EP3439825 B1 EP 3439825B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- grinding
- wheel
- stack
- grinding wheel
- grinding machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 54
- 239000003082 abrasive agent Substances 0.000 title 1
- 238000000227 grinding Methods 0.000 claims description 514
- 238000001514 detection method Methods 0.000 claims description 7
- 238000003825 pressing Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 238000005192 partition Methods 0.000 description 30
- 230000003287 optical effect Effects 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000005224 forefinger Anatomy 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B27/00—Other grinding machines or devices
- B24B27/0038—Other grinding machines or devices with the grinding tool mounted at the end of a set of bars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D9/00—Wheels or drums supporting in exchangeable arrangement a layer of flexible abrasive material, e.g. sandpaper
- B24D9/08—Circular back-plates for carrying flexible material
- B24D9/085—Devices for mounting sheets on a backing plate
Definitions
- the present invention relates to a changing station which enables a robot-assisted grinding device to automatically change grinding media (e.g. grinding wheels).
- grinding media e.g. grinding wheels
- Orbital grinding machines are grinding machines in which an oscillating movement (vibration) is superimposed on a rotary movement about an axis of rotation. They are often used for finishing surfaces with high surface quality requirements. So that these requirements can be met, irregularities should be avoided as much as possible during the grinding process. In practice, this usually happens because these tasks are carried out by experienced skilled workers, especially in the production of small quantities.
- a grinding tool for example an orbital grinding machine
- the grinding tool can be coupled to the so-called TCP ( Tool Center Point ) of the manipulator in different ways, so that the manipulator can set the position and orientation of the tool practically as desired.
- Industrial robots are usually position-controlled, which enables precise movement of the TCP along a desired trajectory.
- process force grinding force
- a linear actuator which is smaller than that of an industrial robot and which couples the TCP of the manipulator to the grinding tool, can be arranged between the TCP of the manipulator and the grinding tool.
- the linear actuator only regulates the process force (i.e. the contact force between the tool and the workpiece) while the manipulator moves the grinding tool together with the linear actuator in a position-controlled manner along a predeterminable trajectory.
- Grinding machines such as orbital grinding machines work with thin, flexible and removable grinding disks which are attached to a carrier disk.
- the grinding wheel consists, for example, of paper (or another fiber composite material) coated with abrasive grains and can be attached to the carrier disk, for example, by means of a hook and loop fastener (hook and loop fastener, Velcro fastener).
- hook and loop fastener hook and loop fastener, Velcro fastener
- the publication WO 2015/125068 A1 discloses a circular cylindrical container for attaching a grinding wheel to a grinding machine.
- the container contains a stack of grinding wheels and has an upper opening and an actuator which pushes the grinding wheels towards the upper opening.
- the inventor has recognized some shortcomings of these and other known devices and methods in some applications (for example in orbital grinders).
- An object on which the present invention is based can therefore be seen in providing improved devices and corresponding methods for removing grinding wheels from a grinding machine and mounting grinding wheels on a grinding machine.
- a device for automatically loading a grinding machine, a robot-assisted grinding device, with a grinding wheel.
- the device has a support for receiving a stack of grinding wheels and a frame.
- the frame is arranged essentially parallel to the support so that the stack of grinding wheels is located between the support and the frame, the frame ends only partially overlapping the outer edge of the uppermost grinding wheel of the stack.
- the device further comprises a mechanical pretensioning unit which is coupled to the frame in such a way that a defined force is exerted by the frame on the stack of grinding wheels
- the method comprises aligning a carrier disk of a grinding machine by means of a manipulator, so that an underside of the carrier disk is essentially parallel to an upper side of a stack of grinding wheels.
- the method further comprises pressing the carrier disk against the stack of grinding wheels by means of an actuator which is coupled between the manipulator and the grinding machine, so that the uppermost grinding wheel of the stack of grinding wheels adheres to the carrier disk.
- the grinding machine together with the grinding wheel is raised by means of the manipulator and / or the actuator.
- the system has a magazine for receiving a stack of grinding wheels, a manipulator which is designed to position and move the grinding machine relative to the magazine, and an actuator (20) which is arranged between the grinding machine and manipulator and is designed for this purpose, the grinding machine against the top grinding wheel of the Press stack of grinding wheels.
- the relative movement between the grinding machine and the magazine is brought about exclusively by the manipulator or by the manipulator and the actuator (20).
- a robot-assisted grinding device This includes a manipulator 1, for example an industrial robot and a grinding machine 10 with a rotating grinding tool (eg an orbital grinding machine), this being coupled to the so-called tool center point (TCP) of the manipulator 1 via a linear actuator 20.
- the manipulator can be constructed from four segments 2a, 2b, 2c and 2d, which are each connected via joints 3a, 3b and 3c.
- the first segment is usually rigidly connected to a foundation 41 (but this does not necessarily have to be the case).
- the joint 3c connects the segments 2d and 2d.
- the joint 3c can be 2-axis and enable a rotation of the segment 2c about a horizontal axis of rotation (elevation angle) and a vertical axis of rotation (azimuth angle).
- the joint 3b connects the segments 2b and 2c and enables a pivoting movement of the segment 2b relative to the position of the segment 2c.
- the joint 3a connects the segments 2a and 2b.
- the joint 3a can be 2-axis and therefore (similar to the joint 3c) enable a pivoting movement in two directions.
- the TCP has a fixed position relative to the segment 2a, this usually also comprising a swivel joint (not shown) that enables a rotary movement about a longitudinal axis of the segment 2a (in Fig.
- Each axis of a joint is assigned an actuator that can cause a rotary movement about the respective joint axis.
- the actuators in the joints are controlled by a robot controller 4 in accordance with a robot program.
- the manipulator 1 is usually position-controlled, ie the robot controller can determine the pose (location and orientation) of the TCP and move it along a predefined trajectory.
- Fig. 1 is the longitudinal axis of segment 2a, on which the TCP lies, denoted by A.
- the pose of the TCP also defines the pose of the grinding tool.
- the actuator 20 serves to set the contact force (process force) between the tool (grinding machine 10) and workpiece 40 to a desired value during the grinding process.
- a direct force control by the manipulator 1 is usually too imprecise for grinding applications, since due to the high inertia of the segments 2a-c of the manipulator 1, rapid compensation of force peaks (e.g. when the grinding tool is placed on the workpiece 40) with conventional manipulators is practically impossible is possible.
- the robot controller is designed to regulate the pose of the TCP of the manipulator, while the force regulation is carried out exclusively by the actuator 20.
- the contact force F K between the tool (grinding machine 10) and the workpiece 40 can be set with the aid of the (linear) actuator 20 and a force control (which can be implemented in the controller 4, for example) so that the contact force (in the direction of the longitudinal axis A) between the grinding tool and workpiece 40 corresponds to a predeterminable setpoint value.
- the contact force is a reaction to the actuator force with which the linear actuator 20 presses on the workpiece surface. If there is no contact between the workpiece 40 and the tool, the actuator 20 moves against an end stop due to the lack of contact force on the workpiece 40.
- the position control of the manipulator 1 (which can also be implemented in the controller 4) can work completely independently of the force control of the actuator 20.
- the actuator 20 is not responsible for the positioning of the grinding machine 10, but only for setting and maintaining the desired contact force during the grinding process and for detecting contact between the tool and the workpiece.
- the actuator can be a pneumatic actuator, for example a double-acting pneumatic cylinder.
- other pneumatic actuators can also be used, such as bellows cylinders and air muscles.
- electrical direct drives can also be considered. It should be noted that the effective direction of the actuator 20 does not necessarily have to coincide with the longitudinal axis A of the segment 2a of the manipulator.
- the force control can be implemented in a manner known per se with the aid of a control valve, a regulator (implemented in the controller 4) and a compressed air reservoir.
- a control valve e.g., a spool valve
- a regulator e.g., a spool valve
- a compressed air reservoir e.g., a compressed air reservoir
- the grinding machine 10 has a grinding disk 11 which is mounted on a carrier disk 12 ( backing pad ).
- the surface of the carrier disk 12 or the rear surface of the grinding wheel 11 or both surfaces are designed in such a way that the grinding wheel 11 readily adheres to the carrier disk 12 upon contact.
- a Velcro fastener hook and loop fastener
- Fig. 2a shows the grinding machine 10 with the grinding wheel 11 mounted.
- the grinding machine 10 is an orbital grinding machine in which the carrier disk 12 together with the grinding wheel 11 is driven via an eccentric bearing so that the axis of rotation A has an eccentricity e that corresponds to the distance between the axes A and A 'corresponds to.
- the carrier disk is driven by an electric motor of the grinding machine 10 and the grinding wheel 11 rotates with the carrier disk 12.
- the carrier disk 12 performs a more complex movement, namely a rotation around two parallel axes of rotation with a defined offset.
- the grinding wheel 11 consists, for example, of paper (or another fiber composite material) coated with abrasive grains, is flexible (bendable) and can be pulled off the carrier disk.
- FIG 2b shows the grinding machine 10 with the grinding wheel 11 removed.
- the grinding wheel 11 (and also the carrier disk 12) can have holes H through which grinding dust can be sucked off.
- An example of a perforated grinding wheel is in Figure 2c shown.
- Both the holes H and the eccentricity e of the grinding wheel can cause problems when installing new grinding wheels, since both the angular position of the carrier disk 12 (and thus also the position of the holes H) in relation to the axis of rotation A 'and the angular position of the Axis of rotation A 'with respect to the longitudinal axis A (axis of symmetry) are a priori undefined. Furthermore, it can also happen that the assembly of a new grinding wheel fails without the robot controller noticing the error, with the result that the robot tries to grind the workpiece without the grinding wheel 11 and thereby destroys the carrier disk 12.
- a further example of a grinding machine 10 mounted on an actuator 20 is shown.
- the actuator 20 has a first flange 21 which is rigidly connected to the manipulator 1 (for example segment 2a in FIG Fig. 1 ) can be connected.
- the TCP of the manipulator can be in the middle of the flange 21, for example.
- at the end of the actuator 20 opposite the flange 21 is a second flange (in Fig. 3 covered) on which the grinding machine 10 is mounted.
- the connection 15 for a hose through which the grinding dust is extracted is also shown. In the other pictures.
- the grinding wheel is often still changed manually, in that an operator grips the grinding wheel 11 at the edge with his thumb and forefinger and then pulls it off the carrier disk.
- Existing automatic solutions for automatically changing grinding wheels are relatively complicated, the complexity arising, for example, from the fact that the grinding wheel 11 has to be gripped by a mechanical device before it is removed.
- Fig. 4 , 5 and 6th various exemplary embodiments of devices are shown with the aid of which grinding wheels can be automatically pulled off a grinding machine.
- Fig. 7 a device is shown with the help of which grinding wheels can be automatically connected to the carrier disk of a grinding machine of a robot-assisted grinding device.
- the device for removing a grinding wheel from a grinding machine with a rotating grinding wheel comprises a frame 31, a separating plate 32 connected to the frame 31 and a support surface connected to the frame 31. Partition plate 32 and the support surface are coupled to frame 31 in such a way that a relative movement between partition plate 32 and support surface 33 along a first direction (see FIG Figure 4A , Direction x) is made possible.
- the support surface is a roller conveyor 33. Pins 39 can be attached to the frame, the purpose of which will be given later with reference to FIG Fig. 8 is explained.
- the roller conveyor 33 consists of several parallel axes 35, on each of which one or more rollers 34 are mounted in such a way that they revolve around the respective Can rotate axes (see Figures 4B and 4C ).
- the length of the axes 35 corresponds approximately to the width of the roller conveyor 33.
- the two ends of each axis are mechanically connected to the frame, in the present example the axes 35 are clamped to the frame 31 via a clamping component (clamping piece 36) (e.g. by means of screws).
- the individual rollers 34 can be mounted on the axles via a roller bearing or a plain bearing.
- the frame 31 and thus also the roller conveyor 33 are so wide that one with a manipulator 1 (see Fig.
- the grinding machine 10 can be pressed against the support surface (defined by the roller conveyor 33) that the grinding wheel 11 mounted on the grinding machine rests against the support surface.
- the flat grinding wheel 11 lies approximately parallel to the axes 35.
- the pressing of the grinding machine against the contact surface defined by the roller conveyor 33 is carried out, for example, by the actuator 20, which also enables the contact force between the roller conveyor 30 and the grinding wheel 11 to be regulated. Unlike during the grinding process, however, precise control of the contact force is not absolutely necessary.
- the rollers 34 of the roller conveyor 33 enable the grinding machine 10 and thus the grinding wheel 11 to be displaced along the direction x (towards the separating plate 32).
- the displacement movement of the grinding wheel along the roller conveyor 33 is specified by the manipulator 1.
- the rollers 34 or the partition plate 32 do not require a separate drive.
- the rollers 34 While the grinding wheel 11 is moved in the x-direction towards the separating plate 32, the rollers 34 rotate due to the rolling friction between rollers 34 and grinding wheel 11.
- the rolling movement of the rollers 34 largely prevents material abrasion from the roller conveyor 33.
- Figure 4B shows the beginning of the grinding wheel removal process.
- the manipulator 1 moves the grinding machine along the roller conveyor 33 towards the separating plate 32.
- the separating plate 32 is arranged relative to the roller conveyor 33 in such a way that - when the grinding machine 10 with the grinding wheel 11 is pressed against the roller conveyor 33 - an edge of the separating plate 32 penetrates between the grinding wheel 11 and the carrier disk 12 and the adhesion between the two parts (grinding wheel 11 and carrier disk 12) releases.
- a Velcro fastener between the grinding wheel 11 and the carrier disk 12
- this is successively released by the separating plate 32, while the separating plate 32 is pushed between the grinding wheel 11 and the carrier disk 12.
- the grinding machine 10 can be lifted off the separating plate 32 (along the direction y, see FIG Figure 4D ), whereby the grinding wheel 11 is completely withdrawn from the carrier disk 12 and falls off the carrier disk 12 (due to gravity). The process of removing the grinding wheel is thus ended and the grinding machine 10 is ready to accept a new grinding wheel 11.
- the lifting movement of the grinding machine 10 in the y direction can be brought about either by the actuator 20 or by the manipulator 1 (or both).
- Figure 4E shows, in a simplified sectional view, a situation similar to that in FIG Figure 4B , in which the separating plate 32 has just penetrated a short distance into the area between the carrier disk 12 and the grinding disk 11.
- a color sensor 62 is shown, which is arranged such that it is directed towards the underside of the partition plate 32. That is, the sensor 62 "sees” either the underside of the separating plate 32 or the grinding wheel 11 pushed through between the sensor 62 and the separating plate 32.
- the color sensor 62 can be designed to detect a specific adjustable color (color detector).
- the color sensor 62 can be calibrated to the color of the partition plate 32 (target color is the color of the partition plate 32).
- a binary sensor signal indicates whether there is an object with the target color in front of the sensor (ie in the detection area / field of view of the sensor).
- the color sensor 62 first "sees” the (e.g. metallic) color of the separating plate 32 and then (if the separating plate 32 has penetrated far enough) the color of the grinding wheel (and no longer the color of the partition plate 32).
- the color sensor 62 signals the controller (for example robot controller or upstream Control unit) that the separating plate 32 is no longer visible, which indicates that the detachment process has been properly initiated. If the color of the separating plate 32 remains visible, this indicates that the separating plate 32 has not threaded properly between the carrier disk 12 and the grinding wheel 11, as is shown in detail X.
- the robot controller can recognize this (undesired) situation with the aid of the color sensor 62 and, for example, start a second attempt to detach the grinding wheel 11 from the carrier wheel 12. Alternatively (or if the second attempt also fails), the robot controller can automatically move the manipulator together with the grinding machine to a maintenance position.
- sensors based on color detection can also be used.
- a proximity sensor / proximity switch can also be used instead of a color sensor.
- optical proximity sensors, ultrasonic proximity sensors and inductive or capacitive proximity sensors or proximity switches come into consideration.
- Figures 5A-C show the same example Fig. 4 , the process of detaching the grinding wheel 11 from the carrier disk 12 of the grinding machine 10 is shown in more detail.
- the left figures in Figures 5A-C are isometric representations and the images on the right show the appropriate top view. For clarity are in Fig. 5 only the device for removing the grinding wheel 10 and the grinding wheel 11 are shown. The grinding machine 10 and the actuator 20 have been omitted for the sake of clarity.
- the Figures 5A, 5B and 5C show the process of detachment of the grinding wheel 11 in three chronologically successive points in time.
- the edge sequence of the separating plate 32 facing the grinding wheel comprises the three edges K0, K1 and K2 (see Figure 5A ), the edge K0 being essentially parallel to the axes 35 of the roller conveyor 33 (that is, normal to the feed direction x of the grinding wheel).
- the length d 0 of the edge K 0 (see Figure 5A , left drawing) is significantly smaller than the diameter d 1 of the grinding wheel 11 (for example 2 ⁇ d 0 ⁇ d 1 ).
- the width b (x) defines the distance between the lateral edges K1 and K2 of the partition plate 32, which are shown in FIG Figure 5A (right drawing) are marked with dashed lines.
- the edges K0, K1 and K2 can be straight (in this case the right part of the partition plate would be trapezoidal). In the example shown, only the front edge K0 is straight (slightly rounded at the corners) and the edges K1 and K2 are curved.
- the situation in Figure 5A essentially corresponds to the situation in Figure 4B . That is, the separating plate 32 (specifically the foremost edge K0 of the separating plate) is located immediately in front of the penetration into the space between the grinding wheel 11 and the carrier disk 12, while the grinding machine 10 is moved towards the separating plate 32 via the roller conveyor 33.
- the edges K1 and K2 can be shaped in such a way that with a constant feed speed of the grinding wheel 11 in the x-direction, the grinding wheel is loosened on a constant surface per unit of time, which can keep the load on the Velcro fastener constantly low.
- the partition plate 32 (and its edges K0, K1, K2) is shaped in this way. that - when the edge K0 has completely passed through the space between the grinding wheel 11 and the backing wheel 12 - the grinding wheel 11 still adheres to comparatively small areas A1 and A2 on the edge of the grinding wheel 11 on the backing wheel 12. This situation is in Figure 5B shown.
- the support surface for the grinding wheel 11 to be removed is formed by the roller conveyor 33.
- a slide that can be displaced along a linear guide can alternatively be used.
- An example of this variant is in Fig. 6 shown.
- the figures in Figures 6A to 6E show the device Fig. 3 (Grinding machine 10 including actuator 20) and a device for Pulling off the grinding wheel 11 from the grinding machine 10 in different situations during the removal of the grinding wheel 11.
- the example shown comprises the device for removing a grinding wheel from a grinding machine with a rotating grinding wheel - similar to the previous example Fig.
- the linear guide is formed, for example, by a disk 33a mounted on the frame 31, on which the slide 33b runs along one direction (see FIG Figures 6A and 6B , x-direction) can slide.
- the frame 31 and the carriage 33b are so wide that one with a manipulator 1 (see Fig. 1 ) connected grinding machine 10 can be pressed against the support surface (defined by the carriage 33b) that the grinding wheel 11 mounted on the grinding machine rests on the support surface.
- the flat grinding wheel 11 lies approximately parallel to the direction of movement (x-direction) of the slide 33b.
- the grinding machine is pressed against the slide 33b, for example, by the actuator 20, which also enables the contact force between the roller conveyor 30 and the grinding wheel 11 to be regulated.
- an exact regulation of the contact force is not absolutely necessary (in contrast to grinding).
- the contact pressure between grinding wheel 11 and carriage 33b should, however, be so great that the resulting static friction prevents a relative movement between grinding wheel 11 and carriage 33b.
- the slide 33b mounted on the rail 33a enables the grinding machine 10 and thus the grinding wheel 11 to be displaced along the direction x (towards the separating plate 32) without a relative movement being carried out between the slide 33b and the grinding wheel 11. This largely prevents material abrasion from the slide.
- the displacement movement of the grinding wheel 11 (and of the carriage 33b) along the rail 33a is predetermined by the manipulator 1.
- the carriage 33b or the partition plate 32 do not require a separate drive.
- FIG. 6B shows the beginning of the grinding wheel removal process.
- the manipulator 1 moves the grinding machine, pressed against the slide 33b, towards the separating plate 32.
- the separating plate 32 is arranged relative to the slide 33b in such a way that - when the grinding machine 10 with the grinding wheel 11 is pressed against the support surface (on the slide 33b) - an edge of the separating plate 32 between the grinding wheel 11 and support disk 12 penetrates, the adhesion between the two parts (grinding disk 11 and support disk 12) is released and the grinding disk 11 is trapped between separating plate 32 and slide 33b.
- This situation is in Figure 6C shown.
- a Velcro fastener between the grinding wheel 11 and the carrier disk 12 this is successively released by the separating plate 32, while the separating plate 32 is pushed between the grinding wheel 11 and the carrier disk 12 (see FIG Figure 6C ).
- the grinding machine 10 (including the carrier disk 12) can be lifted from the slide (in the y-direction, normal to the support surface), whereby the clamped grinding wheel is completely pulled off the carrier disk 12 .
- This situation is in Figure 6D shown.
- the process of removing the grinding wheel is thus ended and the grinding machine 10 is ready to accept a new grinding wheel 11.
- the movement of the lifting off of the grinding machine 10 in the y-direction can (as in the example from Fig. 4 ) be effected either by the actuator 20 or by the manipulator 1 (or both).
- the slide 33b In order to release the clamping of the grinding wheel 11 between the separating plate 32 and the slide 33b again, the slide 33b must be pushed back into the starting position (away from the separating plate 32). This can either be done automatically if, for example, the carriage 33b is coupled to the frame 31 via a spring, which is tensioned when the carriage is moved in the x direction and pushes the carriage 33b back into the starting position after the grinding machine 10 has been lifted off the support surface.
- the manipulator 1 can also be programmed in such a way that it presses against the slide 33b with the grinding machine 10 or an arm segment in such a way that it generates a force F (see FIG Figure 6E ) exerts on the carriage 33b against the x-direction. A short push can be enough to bring the slide 33b to its starting position (in Figure 6A shown) and to release the grinding wheel 11 from the clamp. The grinding wheel then falls off the device due to gravity. This situation is in Figure 6E shown.
- the devices for removing grinding wheels according to the Fig. 4 , 5 and 6th no drive of its own.
- the necessary relative movement between the grinding machine 10 and the separating plate 32 is essentially predetermined by the manipulator 1, which carries the grinding machine 10.
- the contact force between The support surface and the grinding machine 10 are primarily effected by the actuator 20.
- the Fig. 7 The variant shown functions essentially in the same way as the exemplary embodiment Fig. 6 In this case, the grinding machine 10 with the grinding wheel 11 is pressed onto a stationary support surface while the separating plate 32 moves towards the grinding wheel 11.
- the partition plate 32 is mounted displaceably relative to a support frame 31 by means of a linear guide, the displacement movement being effected by a separate linear drive 34 which is mechanically coupled between the (displaceably mounted) partition plate 32 and the support frame 31.
- the partition plate 32 is mounted on the support frame 31, for example, via rails 31a which are arranged on the left and right of the partition plate 32.
- Figure 7A shows the device after the grinding machine 10 with its grinding wheel has been placed on the support surface 33 '.
- the partition plate 32 is in an initial position remote from the grinding machine.
- the drive 34 of the separating plate 32 is activated and the separating plate 32 moves towards the grinding wheel 11.
- Figure 7B shows a situation in which the separating plate 32 is just about to penetrate into the space between the grinding wheel 11 and the carrier wheel 12 of the grinding machine and to clamp the grinding wheel 11 between the separating plate 12 and the support surface 33 ', while the connection between the grinding wheel 11 and the carrier wheel 12 is released.
- Figure 7C shows a situation in which the separating plate 32 clamps the grinding wheel 11 against the support surface 33 '.
- the grinding machine 10 (including the carrier disk 12) can be lifted off the support surface 33 '(in the y-direction, normal to the support surface), whereby the clamped grinding wheel 11 is completely pulled off the carrier disk 12.
- This situation is in Figure 7D shown.
- the process of removing the grinding wheel is thus ended and the grinding machine 10 is ready to accept a new grinding wheel 11.
- the movement of the lifting off of the grinding machine 10 in the y-direction can (as in the example from Fig. 4 ) be effected either by the actuator 20 or by the manipulator 1 (or both).
- the separating plate 32 can be moved back into its starting position with the aid of the linear drive.
- the grinding wheel 11 does not rotate about a central axis of rotation, but executes a more complex movement that can be described by two axes of rotation D1, D2 (see FIG Figure 8A ).
- the axis of rotation D2 corresponds to the longitudinal axis A (see Figs. 1 and 2 ), on which the TCP also lies (which does not necessarily have to be the case), and the axis of rotation D1 of the in Fig. 2a illustrated eccentric axis of rotation A '.
- the grinding wheel 11 rotates about an axis of rotation D1, which moves along a path about a second axis of rotation D2.
- the distance between the axes of rotation D1 and D2 is called the eccentricity.
- the support disk of a grinding machine are pressed by the manipulator 1 (in the z-direction) against a stop with two spaced apart, for example cylindrical, pins 39, which can be attached to the support frame 31, for example (see also Figure 4A ).
- the axes of rotation D1 and D2 are aligned along an axis of symmetry S between the pins 39 and brought into a defined reference position.
- This situation is in Figure 8B shown.
- the grinding machine 10 has a motor in which the angular position of the motor shaft is adjustable (for example a synchronous motor with rotary encoder ), the desired reference position can also be set by a corresponding control of the (electric) motor of the grinding machine.
- the pens non-cylindrical objects can also be used.
- the stop essentially has two pins (or abstractly edges which run parallel to the axis of rotation D1), and the carrier disk 12 is pressed against the edges on the circumferential side.
- a camera-based alignment can also be provided, which is shown in Fig. 9 is sketched. Even if the axes of rotation D1 and D2 are as shown in Figure 8B shown are aligned along a defined straight line, the angular position of the carrier disk 12 with respect to the axis of rotation D1 is not necessarily known. This can then be determined, for example, by means of a camera.
- a camera-based alignment of the grinding machine 10 (and thus of the carrier disk 12) can also be considered in the case of more complex grinding wheel geometries (for example triangular).
- the grinding machine 10 is aligned in such a way that the carrier disk 12 (that is, the plane in which the grinding disk is arranged) is perpendicular to the optical axis O of the camera 6. Since the position of the optical axis is known a priori is, then the manipulator 1 can easily position the grinding machine. If the carrier disk 12 has a hole pattern, this can be detected by means of simple image processing algorithms.
- the image processing algorithm can detect the angular position of the carrier disk, for example, based on a geometry of the hole pattern recognizable on a camera image, or based on the color (and / or the brightness) of the holes (one hole H will have a different color on the camera image than the rest Carrier disk 12).
- a correction angle ⁇ can then easily be calculated from the detected hole pattern, by which the manipulator 1 must rotate the grinding machine 10 (axis of rotation is the optical axis O) in order to achieve a desired, defined angular position of the carrier disk.
- the image processing unit 9 can be in the robot controller 8 (see Fig. 1 ) integrated or designed as a separate hardware unit.
- the calculated correction angle ⁇ is transferred from the image processing unit 9 to the robot controller 8.
- a new grinding disk can be attached to the support disk.
- a suitable device for this is in Figures 11 and 12 shown.
- Fig. 10 shows the arrangement of the grinding machine 10 (including the carrier disk 12) on a proximity sensor 61 (proximity sensor). Is shown - as in Fig. 9 - For simplicity, only the carrier disk 12, which, however, is mounted on the grinding machine 10. With the help of the manipulator (cf. Fig. 1 ) the grinding machine 10 together with the carrier disk 12 can be positioned relative to a proximity sensor 61 in such a way that the proximity switch is aimed precisely at a point on the carrier disk 12 at which a hole H should be located. If there is actually a hole H at the desired position, this desired state (desired angular position of the carrier disk 12) is detected by the proximity sensor.
- a proximity sensor 61 proximity sensor
- the carrier disk 12 can be rotated until the proximity sensor 61 detects a hole H.
- the carrier disk 12 can be rotated, for example, in that the manipulator rotates the entire grinding machine 10 including the carrier disk 12 about the axis A (for example by an angle ⁇ as in FIG Fig. 10 shown).
- the proximity sensor 61 can be, for example, an optical sensor which is suitable for determining the distance from the carrier disk 12. If the “proximity sensor 61” “sees” a hole H, the measured distance is greater than in a situation in which there is no hole in the detection range of the sensor.
- the proximity sensor 61 can also have a digital output that outputs a logic signal. This logic signal indicates whether a hole is detected or not.
- Such a proximity sensor is also referred to as a proximity switch .
- the proximity switch 61 is not sensitive to the distance to the carrier disk 12, but to the color. That is, the sensor 61 is sensitive to a (specific and adjustable color).
- the sensor As soon as a hole H is in the detection area (field of view) of the sensor 61, the sensor “sees” a different color and can signal the detection of the hole H (for example via a logic signal).
- the proximity sensor 61 can also use other than optical detection principles. For example, ultrasonic proximity sensors can also be used. If the carrier plate contains iron or other metals, inductive or capacitive proximity sensors can also be used.
- FIG. 11 two devices 5 and 5 'are shown next to one another for automatically equipping a grinding machine 10 with a grinding wheel 11, the grinding machine 10 (including actuator 20, see FIG Fig. 1 and 3rd ) is moved with the aid of a manipulator 1.
- the devices 5 and 5 ' are practically identical, the device 5 (left) having a full magazine with grinding wheels 11 and the device 5' (right) an almost empty magazine with grinding wheels 11.
- the device 5 or 5 ' comprises a support 53, on which a stack of grinding wheels 11 can be arranged.
- the support 53 is attached, for example, to a carrier 60 and can be rigidly connected to it.
- several guide rods 51 are arranged around the stack (in the circumferential direction of the grinding wheels 11).
- the guide rods 51 run essentially normal to the surface of the support 53 (on which the grinding wheels lie) and are connected to the top of the stack via a ring 50 (for example by means of screws 53).
- the guide rods 51 are, for example, cylindrical and mounted on the support 53 so as to be displaceable along their longitudinal axis. Regardless of the height of the stack of grinding wheels, the ring 53 rests (at least partially) on the topmost grinding wheel of the stack and the guide rods 51 stand - depending on the height of the stack of grinding wheels - below the support 53 from the latter. At the lower end of the guide rods 51, these are connected via a disk 56 in order to stabilize the position of the guide rods 51 relative to one another. A weight 55 can also be attached to the disk 56 in order to move the guide rods 51 with a defined force F B (ie the weight of the weight 55). to pretension.
- F B ie the weight of the weight 55
- the force F B could, however, alternatively also be brought about by a spring or a linear actuator which acts between the disk 56 and the support 53.
- the force is transmitted to the upper ring 50 via the guide rods 51, so that the latter presses on the grinding wheel stack with essentially the same force F B and holds the grinding wheels 11 in place.
- the weight 56 can also be omitted if the weight of the guide rods 51 and the disk 56 is large enough.
- Fig. 12 shows a grinding wheel magazine 5 from above, so that the ring 50 and the grinding wheel stack can be seen in plan view.
- the grinding wheels 11 have an outer diameter of 2 ⁇ R 2 and the ring 50 has a slightly larger inner diameter of 2 ⁇ R 1 (R 1 ⁇ R 2 ).
- the ring 50 has one or more (in the present example four) projections 50a whose distance from the center of the grinding wheels is slightly smaller than R 2 , which is why the projections protrude slightly beyond the outer edge of the grinding wheels 11 and the grinding wheels (with the force F B ) press against the support 53 and hold the grinding wheels 11.
- the screws with which the guide rods 51 can be fixed to the ring 50 are also shown.
- the grinding wheels 11 are arranged in the stack with the back side up. As already mentioned, the back has an adhesive layer (for example part of a Velcro fastener).
- the almost empty grinding wheel magazine 5 ' is shown in a situation in which a new grinding wheel 11 is being "picked up" by the robot-assisted grinding device (manipulator 1, actuator 20 and grinding machine 10).
- the manipulator positions the grinding machine 10 above the device 5 or 5 ′ in such a way that the (unequipped) carrier disk 12 of the grinding machine 10 is approximately parallel to the ring 50.
- the manipulator 1 can approach the device 5, 5 ′ from above until the grinding machine 10 makes contact with the ring 50 and thus also with the uppermost grinding wheel 11.
- a contact can be recognized, for example, by the fact that the actuator 20 moves from its end stop (maximum deflection of the actuator) to smaller deflections.
- the actuator 20 can have, for example, a displacement sensor which is designed to measure the deflection of the actuator 20.
- the measured values can, for example, be sent to the robot controller 4 (see Fig. 1 ) are supplied.
- the manipulator 1 can stop and the actuator 20 press with a defined force against the ring 50 and the back of the uppermost grinding wheel of the magazine, so that the grinding wheel 11 adheres to the carrier disk remains. The manipulator can then lift off the grinding machine 10 again.
- the grinding wheel 11 can be lifted off the stack with the grinding machine 10 and the subsequent grinding process can be carried out with a new grinding wheel 11 start. As soon as the grinding wheel is worn out, a new change process can be started and the grinding wheel, for example, with the device according to FIG Fig. 4 can be withdrawn again.
- a frame for example the ring 50
- a frame is pressed from above with a defined force F B onto a stack of grinding wheels 11 in order to hold it in place.
- the inner contour of the frame (see Fig. 12 , Radius R 1 ) is slightly larger than the outer contour of the grinding wheels 11 (see Fig. 12 , Radius R 2 ), with protrusions from the inner contour of the frame (see Fig. 12 , Projections 50a) protrude inwardly beyond the outer contour of the grinding wheels 11.
- the projections 50a and the grinding wheels thus overlap on a comparatively small area (compared to the total area of the grinding wheel 11) and the grinding wheel 11 adhering to the carrier wheel 12 can easily be lifted off the stack.
- a further color sensor 63 (or alternatively also the camera 6, cf. Fig. 9 ) can be used to automatically check (e.g. after equipping the grinding machine with a grinding wheel or before starting a grinding process) whether the grinding machine has been correctly equipped with a grinding wheel.
- This test procedure is in the right part of the Fig. 12 shown.
- the carrier disk 12 usually has a different color than unused grinding disks. Consequently, the color sensor 63 (or a camera operated as a color sensor) can be used to distinguish a carrier plate 12 equipped with a grinding wheel 11 from an unequipped carrier plate 12 on the basis of the color.
- the manipulator moves the grinding machine 10 from a receiving position on the magazine (cf.
- Figure 11A or 11B to a test position in the vicinity of the color sensor 63, so that it can "see” the front side of the grinding wheel 11 or (if the grinding wheel 11 is missing) the carrier disk.
- the color sensor 63 color detector
- the color sensor 63 can be set, for example, in such a way that it detects the color of the carrier plate 12.
- an error signal (“Error: machine not equipped) can be sent to the robot controller 8.
- the robot controller can then start a new assembly process in order to equip the grinding machine 10 with a grinding wheel 11.
- the color sensor 63 can also be calibrated to the color of the (new) grinding wheels.
- Fig. 13 uses a flow chart to illustrate an example of the above with reference to FIG Fig. 4-12 explained procedure for the automatic changing of grinding wheels. Not all of the steps shown are absolutely necessary in all implementations of the method.
- the manipulator 1 moves the grinding machine to the detachment device 2 and presses (with the help of the actuator 20) the grinding wheel against the support surface (e.g., see e.g. Figures 4A-D , Roller conveyor 33, Figures 6A-D , Carriage 33b, and Figures 7A-D , Support surface 33 ').
- step S2 the separating plate 32 and grinding machine 10 are moved towards one another (step S2) until the separating plate 32 threads between the carrier disk 12 of the grinding machine 10 and the grinding wheel 11 (see e.g. Figure 5A , 6B , 7B ).
- This movement can be brought about by the manipulator 1 (cf. Fig. 4 ) or from a separate drive of the detachment device (cf. Fig. 7 ).
- a color sensor can be used to check (step S3) whether the separating plate 32 has threaded correctly between the carrier disk 12 and the grinding disk 11 (see e.g. Figure 4E ).
- Other sensors e.g. proximity sensors
- the process can start from the beginning (for example at step S1) or it can be canceled. If the test is positive, the grinding wheel 11 is detached from the carrier plate as described above.
- Orbital grinding machines and similar grinding machines have an eccentric axis of rotation.
- the grinding wheels can have holes H (see Fig. 2 , 9 and 10 ), which are used to extract grinding dust. These holes continue in the carrier disk 12, which is why the angular position of the carrier disk 12 (relative to the grinding wheel) should be well defined when a new grinding wheel is attached.
- the eccentric axis of rotation (see e.g. Fig. 8 , eccentric axis of rotation D1) is moved into a reference position (step S4). This can either - as in Fig. 8 shown - by pressing the carrier plate 12 against a stop (pins 39), or by appropriately controlling the motor of the grinding machine, provided that it has an angle encoder.
- the grinding machine 10 (as a whole) can still be rotated by the manipulator 1 around the longitudinal axis (see e.g. Fig. 2 , Longitudinal axis A, Fig. 8 , Axis of rotation D2) are rotated until the holes H come to lie in the desired angular position (target position) (step S5).
- Reaching the target position can be detected, for example, with a proximity sensor (e.g. proximity switch or color sensor) or by means of a camera (see e.g. Figures 9 and 10 ). This step is of course optional for grinding wheels without holes.
- the grinding machine 10 With the eccentric axis of rotation in the reference position and possibly the holes in a target position, the grinding machine 10 is moved towards the magazine with the new grinding wheels and (step S6) the carrier plate 12, e.g. with the help of manipulator 1 and actuator 20, against the top of the magazine pressed (see Fig. 11 ). Due to the contact pressure between the carrier disk 12 and the grinding wheel 11, the Velcro fastener gets caught between the carrier disk 12 and the grinding wheel 11 and the grinding wheel 11 adheres to the grinding machine 10. Since the projections 50a only overlap the grinding wheel on a comparatively small area, the Grinding wheel 11 can be pulled out of the magazine with only slight deformation.
- the manipulator 1 can move the grinding machine 10 in a test position in which with the aid of a sensor (for example a color sensor, see FIG Fig. 12 ) it can be tested whether a new grinding wheel has actually been attached to the grinding machine (step S7). If not, the manipulator can move the grinding machine back to the magazine (back to step S6) or cancel the process. If the grinding wheel is properly mounted, the manipulator can start a new grinding process or continue a grinding process that was previously interrupted (step S8).
- a sensor for example a color sensor, see FIG Fig. 12
- One embodiment of the invention relates to a device for automatically removing a grinding wheel from a robot-assisted grinding device with a grinding machine (cf. Fig. 3 , 4th , 5 , 6th and 7th ).
- the device (detachment device 2 for detaching a grinding wheel from the carrier disk) has a frame 31, a partition plate 32 connected to the frame 31 (also referred to as "partition plate” in the figures) and a support surface connected to the frame 31.
- the partition plate 32 and the support surface are coupled to the frame 31 in such a way that a relative movement between the partition plate 32 and the support surface along a first direction (in or against the x-direction) is made possible.
- the separating plate 32 and the support surface are arranged in such a way that - when the grinding wheel rests against the supporting surface and when the separating plate 32 and the grinding wheel 11 move towards each other - a first edge K0 of the separating plate 32 is pushed over the grinding wheel (see e.g. Figure 5A , 6B or 7B ).
- the partition plate 32 can be rigidly connected to the frame 31 (cf. Fig. 4 , 5 , and 6th ).
- the support surface can be formed by a roller conveyor 33 (see Fig. 4 and 5 ).
- the roller conveyor 33 can have several rollers 34 which are mounted on the frame 31. In this case, the movement of the support surface (which is defined by the rollers, so to speak) takes place in that the rollers 34 of the roller conveyor 33 rotate about their respective axes 35, which are mounted on the frame 31.
- the separating plate 32 and the roller conveyor 33 are designed in such a way that - when the separating plate 32 and the grinding wheel 33 move towards each other - the separating plate 32 does not yet completely cover the grinding wheel 33 when the grinding wheel 11 has left the roller conveyor 33 ( please refer Figures 5B and 5C ).
- the mentioned first edge K0 of the separating plate 32 is shorter than the maximum outer dimension (in the case of round grinding wheels, their diameter d 1 ) of the grinding wheel 11 (cf. Figure 5A ).
- the width b (x) of the partition plate 32 transverse to the x direction can vary (see Figure 5B , arcuate contour of the partition plate 32 along the edges K1 and K2, or Figure 6B , straight contour of the partition plate 32 along the approximately tapering edges).
- the support surface is formed by a slide 33b, which is mounted displaceably along the x-direction relative to the frame (31) (cf. Figure 6A , Rail 33a, slide 33b).
- the displaceable carriage 33b takes over the function of the above-mentioned roller conveyor 33.
- the partition plate 32 can be rigidly connected to the frame 31.
- the device does not need its own drive.
- the necessary movement is brought about by the manipulator 1 that guides the grinding machine (see also Fig. 1 ).
- the support surface can be rigidly connected to the frame 31 (cf. Fig. 7 , Support surface 33 ').
- the device requires a separate drive 34 between the partition plate 32 and frame 31.
- the drive 34 is designed to move the partition plate 32 relative to the support surface 33 '.
- the device has a support 53 for receiving a stack of grinding wheels 11 and a frame (for example ring 50).
- the frame 50 is arranged essentially parallel to the support 53, so that the stack of grinding wheels 11 is located between the support 53 and the frame 50, the frame 50 only partially overlapping the outer edge of the top grinding wheel of the stack (e.g. with the projections 50a , please refer Fig. 12 ).
- the device further comprises a mechanical pretensioning unit which is coupled to the frame 50 in such a way that a defined force F B is exerted by the frame on the stack of grinding wheels 11.
- the mechanical pretensioning unit can have one or more guide rods 51 which are coupled to the frame 50 and run laterally next to the stack of grinding wheels and / or run through the stack of grinding wheels. For example, if the grinding wheels have holes (see e.g. Figure 2c ) the guide rods 51 can be guided through these holes.
- the pretensioning unit can have a weight 55 which is coupled to the frame 50 in such a way that the weight F B of the weight 55 acts on the frame 50.
- the guide rods 51 can be passed through openings in the support 53.
- the weight 55 can be connected to the guide rods 51 (and thus indirectly to the frame 50) below the support surface 53.
- the stack of grinding wheels is approximately cylindrical
- the frame 50 has approximately the shape of a circular ring, the inner diameter of which is larger than the outer diameter of a grinding wheel (see Fig. 12 ).
- the Circular ring can have one or more projections 50a on its inner circumference, which at least partially overlap the stack of grinding wheels 11.
- the device can have a camera 6 and an image processing unit 9, which is designed to determine an angular deviation of the grinding machine 10 from a target angular position. Any angular deviation that may be present can be compensated for by the manipulator.
- the system has the following: a device with a frame 31 and a separating plate 32 for removing a grinding wheel 11 from a grinding machine (see Fig. 4 , 5 and 6th ), a manipulator 1 which is designed to position and move the grinding machine 10 relative to the separating plate 32 (see FIG Fig. 1 ).
- the relative movement of the grinding machine 10 and separating plate 32 during the removal of the grinding wheel is brought about exclusively by the manipulator 1 (see e.g. Fig. 4 ).
- the device with frame 31 and separating plate 32 for removing a grinding wheel therefore does not need its own drive.
- the system additionally or alternatively has a magazine for receiving a stack of grinding wheels, a manipulator 1, which is designed to position and move the grinding machine 10 relative to the magazine, and an actuator 20, which is positioned between the grinding machine 10 and manipulator 1 is arranged and is designed to press the grinding machine 10 against the top grinding wheel of the stack of grinding wheels 11 (see FIG Fig. 11 , right figure).
- the relative movement between the grinding machine and the magazine is brought about exclusively by the manipulator 1 (alone) or by the manipulator 1 and the actuator 20.
- the devices and systems described here enable the automatic changing of grinding wheels of a robot-assisted grinding device.
- One embodiment of a method relates to the automatic removal (pulling off or detachment) of a grinding wheel 11 from a robot-assisted grinding device. Accordingly, the method comprises pressing the grinding wheel against a support surface (see e.g.
- FIG 4A , 6A and 7A which is arranged essentially parallel to a separating plate 32, and executing a relative movement between the separating plate 32 and the support surface (33, 33 ', 33b), so that the separating plate 32 and grinding wheel 11 move towards each other until the separating plate 32 is in the space between Grinding wheel 11 and a carrier wheel 12 on which the grinding wheel is mounted penetrates (see Figures 4B-C , 6B-C as 7B-C ). Finally, the carrier disk 21 is lifted off the support surface, as a result of which the grinding wheel 11 is pulled off the carrier disk 32.
- Another method relates to the automatic mounting of a grinding wheel 11 on a robot-assisted grinding device.
- the method comprises aligning a carrier disk 12 of a grinding machine 10 by means of a manipulator 1, so that an underside of the carrier disk 12 is essentially parallel to an upper side of a stack of grinding wheels 11 (cf. Fig. 1 and 11 ).
- the method further comprises pressing the carrier disk 12 against the stack of grinding wheels by means of an actuator 20, which is coupled between manipulator 1 and grinding machine 10, so that the top grinding wheel of the stack of grinding wheels adheres to the carrier disk 12.
- the grinding machine 10 together with the grinding wheel 11 is raised by means of the manipulator 1 and / or the actuator 20 (see FIG Fig. 11 , right figure).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
Description
Die vorliegende Erfindung betrifft eine Wechselstation, welche einer robotergestützten Schleifvorrichtung das automatisierte Wechseln von Schleifmittel (z.B. Schleifscheiben) ermöglicht.The present invention relates to a changing station which enables a robot-assisted grinding device to automatically change grinding media (e.g. grinding wheels).
Schleifmaschinen wie z.B. Orbitalschleifmaschinen werden vielfach in Industrie und Handwerk eingesetzt. Orbitalschleifmaschinen sind Schleifmaschinen, bei denen einer Oszillationsbewegung (Vibration) eine Drehbewegung um eine Rotationsachse überlagert ist. Sie dienen häufig zur Endbearbeitung von Oberflächen mit hohen Anforderungen an die Oberflächenqualität. Damit diese Anforderungen realisiert werden können, sollten Unregelmäßigkeiten während des Schleifvorganges möglichst vermieden werden. Dies geschieht in der Praxis meist dadurch, dass diese Aufgaben speziell bei der Herstellung von geringen Stückzahlen durch erfahrene Facharbeiter ausgeführt werden.Grinding machines such as orbital grinding machines are widely used in industry and craft. Orbital grinding machines are grinding machines in which an oscillating movement (vibration) is superimposed on a rotary movement about an axis of rotation. They are often used for finishing surfaces with high surface quality requirements. So that these requirements can be met, irregularities should be avoided as much as possible during the grinding process. In practice, this usually happens because these tasks are carried out by experienced skilled workers, especially in the production of small quantities.
Bei robotergestützten Schleifvorrichtungen wird ein Schleifwerkzeug (z.B. eine Orbitalschleifmaschine) von einem Manipulator, beispielsweise einem Industrieroboter, geführt. Dabei kann das Schleifwerkzeug auf unterschiedliche Weise mit dem sogenannten TCP (Tool Center Point) des Manipulators gekoppelt sein, sodass der Manipulator Position und Orientierung des Werkzeugs praktisch beliebig einstellen kann. Industrieroboter sind üblicherweise positionsgeregelt, was eine präzise Bewegung des TCP entlang einer gewünschten Trajektorie ermöglicht. Um beim robotergestützten Schleifen ein gutes Ergebnis zu erzielen ist in vielen Anwendungen eine Regelung der Prozesskraft (Schleifkraft) nötig, was mit herkömmlichen Industrierobotern oft nur schwer mit hinreichender Genauigkeit zu realisieren ist. Die großen und schweren Armsegmente eines Industrieroboters besitzen eine zu große Massenträgheit, als das ein Regler (closed-loop controller) rasch genug auf Schwankungen der Prozesskraft reagieren zu könnte. Um dieses Problem zu lösen, kann zwischen TCP des Manipulators und dem Schleifwerkzeug ein im Vergleich zum Industrieroboter kleiner Linearaktor angeordnet sein, der den TCP des Manipulators mit dem Schleifwerkzeug koppelt. Der Linearaktor regelt lediglich die Prozesskraft (also die Anpresskraft zwischen Werkzeug und Werkstück) während der Manipulator das Schleifwerkzeug samt Linearaktor positionsgeregelt entlang einer vorgebbaren Trajektorie bewegt.In the case of robot-supported grinding devices, a grinding tool (for example an orbital grinding machine) is guided by a manipulator, for example an industrial robot. The grinding tool can be coupled to the so-called TCP ( Tool Center Point ) of the manipulator in different ways, so that the manipulator can set the position and orientation of the tool practically as desired. Industrial robots are usually position-controlled, which enables precise movement of the TCP along a desired trajectory. In order to achieve a good result with robot-assisted grinding, in many applications it is necessary to regulate the process force (grinding force), which is often difficult to achieve with sufficient accuracy with conventional industrial robots. Own the large and heavy arm segments of an industrial robot Too great a mass inertia for a closed-loop controller to be able to react quickly enough to fluctuations in the process force. To solve this problem, a linear actuator, which is smaller than that of an industrial robot and which couples the TCP of the manipulator to the grinding tool, can be arranged between the TCP of the manipulator and the grinding tool. The linear actuator only regulates the process force (i.e. the contact force between the tool and the workpiece) while the manipulator moves the grinding tool together with the linear actuator in a position-controlled manner along a predeterminable trajectory.
Schleifmaschinen wie z.B. Orbitalschleifmaschinen arbeiten mit dünnen, flexiblen und abnehmbaren Schleifscheiben, welche auf einer Trägerscheibe befestigt sind. Die Schleifscheibe besteht beispielsweise aus mit Schleifkörnern beschichtetem Papier (oder einem anderen Faserverbundwerkstoff) und kann z.B. mittels Klettverschluss (Hook and Loop Fastener, Velcro Fastener) an der Trägerscheibe befestigt werden. Auch bei robotergestützten Schleifvorrichtungen werden verschlissene Schleifscheiben häufig manuell gewechselt. Obwohl einige Konzepte für robotergestützte Wechselstationen zum Wechseln von Schleifscheiben existieren, sind bekannte Lösungen vergleichsweise komplex, aufwändig zu realisieren und daher teuer. Beispielsweise beschreibt die Publikation
Eine der vorliegenden Erfindung zugrunde liegende Aufgabe kann also darin gesehen werden, verbesserte Vorrichtungen und entsprechende Verfahren zum Abziehen von Schleifscheiben von einer Schleifmaschine und Montieren von Schleifscheiben auf einer Schleifmaschine zur Verfügung zu stellen.An object on which the present invention is based can therefore be seen in providing improved devices and corresponding methods for removing grinding wheels from a grinding machine and mounting grinding wheels on a grinding machine.
Die oben genannte Aufgabe wird durch die Vorrichtung zum automatischen Befestigen einer Schleifscheibe gemäß Anspruch 1, durch das Verfahren gemäß Anspruch 11 sowie durch das System zum Wechseln von Schleifscheiben einer robotergestützten Schleifvorrichtung gemäß Anspruch 16 gelöst. Unterschiedliche Ausführungsformen und Weiterentwicklungen sind Gegenstand der abhängigen Ansprüche.The above-mentioned object is achieved by the device for automatically fastening a grinding wheel according to
Es wird eine Vorrichtung zum automatischen Bestücken einer Schleifmaschineeiner robotergestützten Schleifvorrichtung mit einer Schleifscheibe beschrieben. Gemäß einem Ausführungsbeispiel weist die Vorrichtung eine Auflage zur Aufnahme eines Stapels von Schleifscheiben und einen Rahmen auf. Der Rahmen ist im Wesentlichen parallel zur Auflage angeordnet, sodass der Stapel von Schleifscheiben sich zwischen der Auflage und dem Rahmen befindet, wobei der Rahmenden äußeren Rand der obersten Schleifscheibe des Stapels nur teilweise überlappt. Die Vorrichtung umfasst des Weiteren eine mechanische Vorspanneinheit, die so mit dem Rahmen gekoppelt ist, dass eine definierte Kraft vom Rahmen auf den Stapel von Schleifscheiben ausgeübt wirdA device is described for automatically loading a grinding machine, a robot-assisted grinding device, with a grinding wheel. According to one embodiment, the device has a support for receiving a stack of grinding wheels and a frame. The frame is arranged essentially parallel to the support so that the stack of grinding wheels is located between the support and the frame, the frame ends only partially overlapping the outer edge of the uppermost grinding wheel of the stack. The device further comprises a mechanical pretensioning unit which is coupled to the frame in such a way that a defined force is exerted by the frame on the stack of grinding wheels
Darüber hinaus wird ein Verfahren zum automatischen Montieren einer Schleifscheibe an einer robotergestützten Schleifvorrichtung beschrieben. Gemäß einem Ausführungsbeispiel umfasst das Verfahren das Ausrichten einer Trägerscheibe einer Schleifmaschine mittels eines Manipulators, sodass eine Unterseite der Trägerscheibe im Wesentlichen parallel zu einer Oberseite eines Stapels von Schleifscheiben liegt. Das Verfahren umfasst weiter das Andrücken der Trägerscheibe an den Stapel von Schleifscheiben mittels eines Aktors, der zwischen Manipulator und Schleifmaschine gekoppelt ist, sodass die oberste Schleifscheibe des Stapels von Schleifscheiben an der Trägerscheibe haftet. Schließlich wird die Schleifmaschine samt Schleifscheibe mittels des Manipulators und/oder dem Aktor angehoben.In addition, a method for automatically mounting a grinding wheel on a robot-assisted grinding device is described. According to one exemplary embodiment, the method comprises aligning a carrier disk of a grinding machine by means of a manipulator, so that an underside of the carrier disk is essentially parallel to an upper side of a stack of grinding wheels. The method further comprises pressing the carrier disk against the stack of grinding wheels by means of an actuator which is coupled between the manipulator and the grinding machine, so that the uppermost grinding wheel of the stack of grinding wheels adheres to the carrier disk. Finally, the grinding machine together with the grinding wheel is raised by means of the manipulator and / or the actuator.
Schließlich wird ein System zum Wechseln von Schleifscheiben einer robotergestützten Schleifvorrichtung beschrieben. Gemäß einem Ausführungsbeispiel weist das System ein Magazin zur Aufnahme eines Stapels von Schleifscheiben, einen Manipulator, der dazu ausgebildet ist, die Schleifmaschine relativ zum Magazin zu positionieren und zu bewegen, und einen Aktor (20) auf, der zwischen Schleifmaschine und Manipulator angeordnet ist und dazu ausgebildet ist, die Schleifmaschine gegen die oberste Schleifscheibe des Stapels von Schleifscheiben zu drücken. Die Relativbewegung zwischen der Schleifmaschine und Magazin wird dabei ausschließlich von dem Manipulator oder von dem Manipulator und dem Aktor (20) bewirkt.Finally, a system for changing grinding wheels of a robot-assisted grinding device is described. According to one embodiment, the system has a magazine for receiving a stack of grinding wheels, a manipulator which is designed to position and move the grinding machine relative to the magazine, and an actuator (20) which is arranged between the grinding machine and manipulator and is designed for this purpose, the grinding machine against the top grinding wheel of the Press stack of grinding wheels. The relative movement between the grinding machine and the magazine is brought about exclusively by the manipulator or by the manipulator and the actuator (20).
Die Erfindung wird nachfolgend anhand von den in den Abbildungen dargestellten Beispielen näher erläutert. Die Darstellungen sind nicht zwangsläufig maßstabsgetreu und die Erfindung beschränkt sich nicht nur auf die dargestellten Aspekte. Vielmehr wird Wert darauf gelegt, die der Erfindung zugrunde liegenden Prinzipien darzustellen. In den Abbildungen zeigt:
-
zeigt schematisch ein Beispiel einer robotergestützten Schleifvorrichtung.Figur 1 -
zeigt schematisch das Schleifwerkzeug und die Schleifscheibe sowie die Befestigung der Schleifscheibe auf dem Schleifwerkzeug.Figur 2 -
zeigt eine isometrische Darstellung einer Schleifmaschine mit einem Linearaktor zur Regelung der Prozesskraft.Figur 3 -
Figuren 4A-C zeigen ein erstes Beispiel einer Vorrichtung zum automatischen Abziehen einer Schleifscheibe von dem Schleifwerkzeug ausFig. 3 sowie die Verwendung der Vorrichtung, welche keinen eigenen Antrieb benötigt. -
Figuren 5A-C zeigen das gleiche Beispiel ausFig. 4 , wobei der Abziehvorgang der Schleifscheibe genauer dargestellt ist. -
Figuren 6A-D zeigen ein zweites Beispiel einer Vorrichtung zum automatischen Abziehen einer Schleifscheibe von dem Schleifwerkzeug ausFig. 3 sowie die Verwendung der Vorrichtung, welche ebenfalls keinen eigenen Antrieb benötigt. -
Figuren 7A-D zeigen ein drittes Beispiel einer Vorrichtung zum automatischen Abziehen einer Schleifscheibe von dem Schleifwerkzeug ausFig. 3 sowie die Verwendung der Vorrichtung, wobei diese einen separaten Antrieb aufweist. -
Figur 8A-B zeigen die Ausrichtung der Winkelstellung der Schleifscheibe im Falle einer Orbitalschleifmaschine. -
zeigt ein Beispiel einer kamerabasierten Ausrichtung der Winkelstellung der Schleifscheibe.Figur 9 -
zeigt ein Beispiel der Ausrichtung der Winkelstellung der Schleifscheibe mittels Abstandssensoren.Figur 10 -
zeigt ein Beispiel einer Vorrichtung zum automatischen Befestigen einer (unverschlissenen) Schleifscheibe an dem Schleifwerkzeug ausFigur 11Fig. 3 sowie die Verwendung der Vorrichtung, welche ebenfalls keinen eigenen Antrieb benötigt. -
zeigt eine Draufsicht auf ein Schleifpapiermagazin, wie es in der Vorrichtung gemäßFigur 12Fig. 8 verwendet wird. -
Figur 13 ist ein Flow-Chart zur Darstellung eines Beispiels des hier beschriebenen Verfahrens zum automatischen Wechseln von Schleifscheiben.
-
Figure 1 shows schematically an example of a robotic grinding device. -
Figure 2 shows schematically the grinding tool and the grinding wheel as well as the fastening of the grinding wheel on the grinding tool. -
Figure 3 shows an isometric view of a grinding machine with a linear actuator for controlling the process force. -
Figures 4A-C show a first example of a device for automatically removing a grinding wheel from the grinding toolFig. 3 and the use of the device, which does not require its own drive. -
Figures 5A-C show the same exampleFig. 4 , the process of honing the grinding wheel is shown in more detail. -
Figures 6A-D show a second example of a device for automatically removing a grinding wheel from the grinding toolFig. 3 and the use of the device, which also does not require its own drive. -
Figures 7A-D show a third example of a device for automatically removing a grinding wheel from the grinding toolFig. 3 and the use of the device, which has a separate drive. -
Figure 8A-B show the orientation of the angular position of the grinding wheel in the case of an orbital grinder. -
Figure 9 shows an example of a camera-based alignment of the angular position of the grinding wheel. -
Figure 10 shows an example of the alignment of the angular position of the grinding wheel by means of distance sensors. -
Figure 11 shows an example of a device for automatically attaching a (unworn) grinding wheel to the grinding tool fromFig. 3 and the use of the device, which also does not require its own drive. -
Figure 12 shows a plan view of a sandpaper magazine as it is in the device according to FIGFig. 8 is used. -
Figure 13 Figure 3 is a flow chart showing an example of the method described herein for automatically changing grinding wheels.
Bevor verschiedene Ausführungsbeispiele der vorliegenden Erfindung im Detail erläutert werden, wird zunächst ein Beispiel einer robotergestützten Schleifvorrichtung beschrieben. Diese umfasst einen Manipulator 1, beispielsweise einen Industrieroboter und eine Schleifmaschine 10 mit rotierendem Schleifwerkzeug (z.B. eine Orbitalschleifmaschine), wobei dieses mit dem sogenannten Tool-Center-Point (TCP) des Manipulators 1 über einen Linearaktor 20 gekoppelt ist. Im Falle eines Industrieroboters mit sechs Freiheitsgraden kann der Manipulator aus vier Segmenten 2a, 2b, 2c und 2d aufgebaut sein, die jeweils über Gelenke 3a, 3b und 3c verbunden sind. Das erste Segment ist dabei meist starr mit einem Fundament 41 verbunden (was jedoch nicht zwangsläufig der Fall sein muss). Das Gelenk 3c verbindet die Segmente 2d und 2d. Das Gelenk 3c kann 2-achsig sein und eine Drehung des Segments 2c um eine horizontale Drehachse (Elevationswinkel) und eine vertikale Drehachse (Azimutwinkel) ermöglichen. Das Gelenk 3b verbindet die Segmente 2b und 2c und ermöglicht eine Schwenkbewegung des Segments 2b relativ zur Lage des Segments 2c. Das Gelenk 3a verbindet die Segmente 2a und 2b. Das Gelenk 3a kann 2-achsig sein und daher (ähnlich wie das Gelenk 3c) eine Schwenkbewegung in zwei Richtungen ermöglichen. Der TCP hat eine feste Relativposition zum Segment 2a, wobei dieses üblicherweise noch ein Drehgelenk (nicht dargestellt) umfasst, dass eine Drehbewegung um eine Längsachse des Segments 2a ermöglicht (in
Der Manipulator 1 ist üblicherweise positionsgeregelt, d.h. die Robotersteuerung kann die Pose (Ort und Orientierung) des TCP festlegen und diesen entlang einer vordefinierten Trajektorie bewegen. In
Wie bereits erwähnt kann während des Schleifprozesses die Kontaktkraft FK zwischen Werkzeug (Schleifmaschine 10) und Werkstück 40 mit Hilfe des (Linear-) Aktors 20 und einer Kraftregelung (die beispielsweise in der Steuerung 4 implementiert sein kann) so eingestellt werden, dass die Kontaktkraft (in Richtung der Längsachse A) zwischen Schleifwerkzeug und Werkstück 40 einem vorgebbaren Sollwert entspricht. Die Kontaktkraft ist dabei eine Reaktion auf die Aktorkraft, mit der der Linearaktor 20 auf die Werkstückoberfläche drückt. Bei fehlendem Kontakt zwischen Werkstück 40 und Werkzeug fährt der Aktor 20 aufgrund der fehlenden Kontaktkraft am Werkstück 40 gegen einen Endanschlag. Die Positionsregelung des Manipulators 1 (die ebenfalls in der Steuerung 4 implementiert sein kann) kann vollkommen unabhängig von der Kraftregelung des Aktors 20 arbeiten. Der Aktor 20 ist nicht verantwortlich für die Positionierung der Schleifmaschine 10, sondern lediglich für das Einstellen und Aufrechterhalten der erwünschten Kontaktkraft während des Schleifprozesses und zur Erkennung von Kontakt zwischen Werkzeug und Werkstück. Der Aktor kann ein pneumatischer Aktor sein, z.B. ein doppeltwirkender Pneumatikzylinder. Jedoch sind auch andere pneumatische Aktoren anwendbar wie z.B. Balgzylinder und Luftmuskel. Als Alternative kommen auch elektrische Direktantriebe (getriebelos) in Betracht. Es sei angemerkt, dass die Wirkrichtung des Aktors 20 nicht notwendigerweise mit der Längsachse A des Segments 2a des Manipulators zusammenfallen muss.As already mentioned, during the grinding process, the contact force F K between the tool (grinding machine 10) and the workpiece 40 can be set with the aid of the (linear)
Im Falle eines pneumatischen Aktors kann die Kraftregelung in an sich bekannter Weise mit Hilfe eines Regelventils, eines Reglers (implementiert in der Steuerung 4) und eines Druckluftspeichers realisiert werden. Die konkrete Implementierung ist jedoch für die weitere Erläuterung nicht wichtig und wird daher auch nicht detaillierter beschrieben.In the case of a pneumatic actuator, the force control can be implemented in a manner known per se with the aid of a control valve, a regulator (implemented in the controller 4) and a compressed air reservoir. However, the specific implementation is not important for the further explanation and is therefore not described in more detail.
Die Schleifmaschine 10 weist eine Schleifscheibe 11 auf, die auf einer Trägerscheibe 12 (backing pad) montiert ist. Die Oberfläche der Trägerscheibe 12 oder die rückseitige Oberfläche der Schleifscheibe 11 oder beide Oberflächen sind derart beschaffen, dass die Schleifscheibe 11 auf der Trägerscheibe 12 bei Kontakt ohne weiteres haftet. Beispielsweise wird ein Klettverschluss (hook and loop fastener) verwendet, sodass die Schleifscheibe 11 auf der Trägerscheibe haften bleibt. Eine lösbare Rastverbindung oder ähnliches wäre ebenso denkbar.
In
Die Abbildungen in
Die Rollenbahn 33 besteht aus mehreren parallel angeordneten Achsen 35, an denen jeweils eine oder mehrere Rollen 34 so gelagert sind, dass sie sich um die jeweiligen Achsen drehen können (siehe
Die Rollen 34 der Rollenbahn 33 ermöglichen ein Verschieben der Schleifmaschine 10 und damit der Schleifscheibe 11 entlang der Richtung x (hin zur Trennplatte 32). Die Verschiebebewegung der Schleifscheibe entlang der Rollenbahn 33 wird durch den Manipulator 1 vorgegeben. die Rollen 34 oder die Trennplatte 32 benötigen keinen separaten Antrieb. Während die Schleifscheibe 11 in x-Richtung auf die Trennplatte 32 zubewegt wird, drehen sich die Rollen 34 aufgrund der Rollreibung zwischen Rollen 34 und Schleifscheibe 11. Durch die Rollbewegung der Rollen 34 wird ein Materialabrieb von der Rollenbahn 33 weitgehend vermieden.The
Wenn die Trennplatte 32 soweit in den Zwischenraum zwischen Schleifscheibe 11 und Trägerscheibe 12 eingedrungen ist, dass ein Großteil der Haftverbindung zwischen Schleifscheibe 11 und Trägerscheibe 12 gelöst wurde, kann die Schleifmaschine 10 von Trennplatte 32 abgehoben werden (entlang der Richtung y, siehe
Wenn nun die Trennplatte 32 beim Ablösevorgang wie gewünscht zwischen Trägerscheibe 12 und Schleifscheibe 11 eindringt, dann "sieht" der Farbsensor 62 zuerst die (z.B. metallische) Farbe der Trennplatte 32 und dann (wenn die Trennplatte 32 weit genug eingedrungen ist) die Farbe der Schleifscheibe (und nicht mehr die Farbe der Trennplatte 32). Der Farbsensor 62 signalisiert der Steuerung (z.B. Robotersteuerung oder vorgelagerte Steuereinheit) dass die Trennplatte 32 nicht mehr sichtbar ist, was darauf hindeutet, dass der Ablösevorgang ordnungsgemäß eingeleitet wurde. Bleibt die Farbe der Trennplatte 32 sichtbar, deutet das daraufhin, dass die Trennplatte 32 nicht ordnungsgemäß zwischen Trägerscheibe 12 und Schleifscheibe 11 eingefädelt hat, wie es in dem Detail X dargestellt ist. Die Robotersteuerung kann diese (unerwünschte) Situation mit Hilfe des Farbsensors 62 erkennen und beispielsweise einen zweiten Versuch starten, die Schleifscheibe 11 von der Trägerscheibe 12 zu lösen. Alternativ (oder wenn auch der zweite Versuch fehlschlägt) kann die Robotersteuerung den Manipulator samt Schleifmaschine automatisch in einer Wartungsposition bewegen. Statt des Farbsensors 62 können auch Sensoren verwendet werden, die auf einer Farbdetektion basieren. Beispielsweise kann statt eines Farbsensors auch ein Näherungssensor/Näherungsschalter eingesetzt werden. Dabei kommen z.B. optische Näherungssensoren, Ultraschall-Näherungssensoren sowie induktive oder kapazitive Näherungssensoren bzw. Näherungsschalter in Betracht.If the separating
Die Situation in
In dem Beispiel aus
Der Rahmen 31 und der Schlitten 33b sind so breit, dass eine mit einem Manipulator 1 (siehe
Der an der Schiene 33a gelagerte Schlitten 33b ermöglicht ein Verschieben der Schleifmaschine 10 und damit der Schleifscheibe 11 entlang der Richtung x (hin zur Trennplatte 32), ohne dass eine Relativbewegung zwischen Schlitten 33b und Schleifscheibe 11 ausgeführt wird. Ein Materialabrieb vom Schlitten wird dadurch weitgehend verhindert. Die Verschiebebewegung der Schleifscheibe 11 (und des Schlittens 33b) entlang der Schiene 33a wird durch den Manipulator 1 vorgegeben. Der Schlitten 33b oder die Trennplatte 32 benötigen keinen separaten Antrieb.The
Sobald die Schleifscheibe 11 zwischen Trennplatte 32 und Schlitten 33b eingeklemmt ist, kann die Schleifmaschine 10 (inkl. der Trägerscheibe 12) vom Schlitten abgehoben werden (in y-Richtung, normal zur Auflagefläche), wodurch die eingeklemmte Schleifscheibe vollständig von der Trägerscheibe 12 abgezogen wird. Diese Situation ist in
Um die Klemmung der Schleifscheibe 11 zwischen Trennplatte 32 und Schlitten 33b wieder zu lösen, muss der Schlitten 33b wieder zurück in die Ausgangsposition (von der Trennplatte 32 weg) geschoben werden. Dies kann entweder automatisch erfolgen, wenn z.B. der Schlitten 33b über eine Feder mit dem Rahmen 31 gekoppelt ist, die beim Verschieben des Schlittens in x-Richtung gespannt wird und nach dem Abheben der Schleifmaschine 10 von der Auflagefläche den Schlitten 33b in die Ausgangsposition zurückdrängt. Alternativ kann der Manipulator 1 auch so programmiert werden, dass er mit der Schleifmaschine 10 oder einem Armsegment gegen den Schlitten 33b so drückt, dass er eine Kraft F (siehe
Wie bereits erwähnt, benötigen die Vorrichtungen zum Abziehen von Schleifscheiben gemäß den
Im Falle einer Orbitalschleifmaschine dreht sich die Schleifscheibe 11 nicht um eine zentrale Drehachse, sondern führt eine komplexere Bewegung aus, die durch zwei Drehachsen Dl, D2 beschrieben werden kann (siehe
Zusätzlich oder alternativ zu der mechanischen Ausrichtung der Drehachsen gemäß
Der Näherungssensor 61 kann beispielsweise ein optischer Sensor sein, der dazu geeignet ist, den Abstand zu der Trägerscheibe 12 zu bestimmen. Wenn der "Näherungssensor 61" eine Loch H "sieht" ist der gemessene Abstand größer als in einer Situation, in der sich kein Loch im Detektionsbereich des Sensors befindet. Der Näherungssensor 61 kann auch einen Digitalausgang aufweisen, der ein Logiksignal ausgibt. Dieses Logiksignal zeigt an, ob ein Loch detektiert wird oder nicht. Ein derartiger Näherungssensor wird auch als Näherungsschalter (proximity switch) bezeichnet. In einem Beispiel ist der Näherungsschalter 61 nicht empfindlich auf den Abstand zur Trägerscheibe 12, sondern auf die Farbe. Das heißt, der Sensor 61 ist empfindlich auf eine (bestimmte und einstellbare Farbe). Sobald ein Loch H im Detektionsbereich (Sichtfeld) des Sensors 61 ist, "sieht" der Sensor eine andere Farbe und kann die Detektion des Lochs H signalisieren (z.B. über ein Logiksignal). Der Näherungssensor 61 kann auch andere als optische Detektionsprinzipien verwenden. Beispielsweise können auch Ultraschall-Näherungssensoren verwendet werden. Wenn die Trägerplatte Eisen oder andere Metalle enthält können auch induktive oder kapazitive Näherungssensoren verwendet werden.The proximity sensor 61 can be, for example, an optical sensor which is suitable for determining the distance from the
In
Die Führungsstangen 51 sind z.B. zylindrisch und an der Auflage 53 entlang ihrer Längsachse verschiebbar gelagert. Unabhängig von der Höhe des Schleifscheibenstapels liegt der Ring 53 (zumindest teilweise) auf der obersten Schleifscheibe des Stapels auf und die Führungsstangen 51 stehen - anhängig von der Höhe des Schleifscheibenstapels - unterhalb der Auflage 53 von dieser ab. Am unteren Ende der Führungsstangen 51 sind diese über eine Scheibe 56 verbunden, um die Lage der Führungsstangen 51 relativ zueinander zu stabilisieren. An der Scheibe 56 kann auch ein Gewicht 55 befestigt sein, um die Führungsstangen 51 mit einer definierten Kraft FB (d.h. der Gewichtskraft des Gewichts 55) vorzuspannen. Die Kraft FB könnte alternativ jedoch auch von einer Feder oder einem Linearaktor bewirkt werden, die/der zwischen der Scheibe 56 und der Auflage 53 wirkt. Über die Führungsstangen 51 wird die Kraft auf den oberen Ring 50 übertragen, sodass dieser mit im Wesentlichen gleicher Kraft FB auf den Schleifscheibenstapel drückt und die Schleifscheiben 11 festhält. Je nach der konkreten Ausgestaltung der Vorrichtung 5 bzw. 5' kann das Gewicht 56 auch weggelassen werden, wenn das Eigengewicht der Führungsstangen 51 und der Scheibe 56 groß genug ist.The guide rods 51 are, for example, cylindrical and mounted on the
Im rechten Teil der
Bei nicht-kreisrunden Schleifscheibengeometrien kann statt dem Ring 50 auch ein Rahmen mit einer anderen Geometrie verwendet werden, die an die Geometrie der Schleifscheiben angepasst ist. Gemäß einem allgemeinen Ausführungsbeispiel wird ein Rahmen (z.B. der Ring 50) von oben mit einer definierten Kraft FB auf einen Stapel von Schleifscheiben 11 gedrückt, um diesen festzuhalten. Die innere Kontur des Rahmens (siehe
Nach dem Bestücken der Schleifmaschine 10 mit einer neuen Schleifscheibe kann ein weiterer Farbsensor 63 (oder alternativ auch die Kamera 6, vgl.
Orbitalschleifmaschinen und ähnliche Schleifmaschinen haben eine exzentrische Drehachse. Des Weiteren können die Schleifscheiben Löcher H aufweisen (siehe
Mit der exzentrischen Drehachse in der Referenzposition und ggf. den Löchern in einer Sollposition, wird die Schleifmaschine 10 hin zum Magazin mit den neuen Schleifscheiben bewegt und (Schritt S6) die Trägerplatte 12 z.B. mit Hilfe von Manipulator 1 und Aktor 20 gegen die Oberseite des Magazins gedrückt (siehe
In der Folge werden unterschiedliche Aspekte der hier beschriebenen Ausführungsbeispiele zusammengefasst. Es sei angemerkt, dass dies keine vollständige Aufzählung ist. Ein Ausführungsbeispiel der Erfindung betrifft eine Vorrichtung zum automatischen Abziehen einer Schleifscheibe von einer robotergestützten Schleifvorrichtung mit einer Schleifmaschine (vgl.
Die Trennplatte 32 kann starr mit dem Rahmen 31 verbunden sein (vgl.
In einem Ausführungsbeispiel sind die Trennplatte 32 und die Rollenbahn 33 so gestaltet sind, dass - wenn Trennplatte 32 und die Schleifscheibe 33 sich aufeinander zu bewegen - die Trennplatte 32 die Schleifscheibe 33 noch nicht vollständig überdeckt, wenn die Schleifscheibe 11 die Rollenbahn 33 verlassen hat (siehe
In einem Ausführungsbeispiel wird die Auflagefläche durch einen Schlitten 33b gebildet, der entlang der x-Richtung relativ zum Rahmen (31) verschiebbar gelagert ist (vgl.
In den Ausführungsbeispielen gemäß
Ein weiteres Ausführungsbeispiel bezieht sich auf eine Vorrichtung zum automatischen Bestücken einer Schleifmaschine 10 einer robotergestützten Schleifvorrichtung mit einer Schleifscheibe 11 (vgl.
Die mechanische Vorspanneinheit kann eine oder mehrere Führungsstangen 51 aufweisen, die mit dem Rahmen 50 gekoppelt sind und seitlich neben dem Stapel von Schleifscheiben verlaufen und/oder durch den Stapel von Schleifscheiben hindurch verlaufen. Beispielsweise wenn die Schleifscheiben Löcher aufweisen (siehe z.B.
Die Vorspanneinheit kann ein Gewicht 55 aufweisen, welches so mit dem Rahmen 50 gekoppelt ist, dass die Gewichtskraft FB des Gewichts 55 auf den Rahmen 50 wirkt. Die Führungsstangen 51 können durch Öffnungen in der Auflage 53 hindurchgeführt sein. In diesem Fall kann das Gewicht 55 unterhalb der Auflagefläche 53 mit den Führungsstangen 51 (und damit indirekt mit dem Rahmen 50) verbunden sein.The pretensioning unit can have a
In einem Ausführungsbeispiel ist der Stapels von Schleifscheiben annähernd zylinderförmig, und der Rahmen 50 hat annähernd die Form eines Kreisrings, dessen Innendurchmesser größer ist als der Außendurchmesser einer Schleifscheibe (siehe
Falls die Winkelposition der Schleifmaschine eine Rolle spielt (z.B. falls die Schleifscheiben im Magazin an bestimmten Stellen Löcher aufweisen) muss die Schleifmaschine 10 in korrekter Winkelposition auf das Magazin von Schleifscheiben gedrückt werden. In diesem Fall kann die Vorrichtung eine Kamera 6 und eine Bildverarbeitungseinheit 9 aufweisen, welche dazu ausgebildet ist, eine Winkelabweichung der Schleifmaschine 10 von einer Soll-Winkelstellung zu ermitteln. Eine eventuell vorhandene Winkelabweichung kann von dem Manipulator kompensiert werden.If the angular position of the grinding machine plays a role (e.g. if the grinding wheels in the magazine have holes in certain places), the grinding
Schließlich wird ein System zum Wechseln von Schleifscheiben einer robotergestützten Schleifvorrichtung beschrieben. Gemäß einem Ausführungsbeispiel weist das System folgendes auf: eine Vorrichtung mit einem Rahmen 31 und einer Trennplatte 32 zum Abziehen einer Schleifscheibe 11 von einer Schleifmaschine (siehe
Die hier beschriebenen Vorrichtungen und Systeme ermöglichen das automatische Wechseln von Schleifscheiben einer robotergestützten Schleifvorrichtung. Ein Ausführungsbeispiel eines Verfahrens betrifft das automatische Entfernen (Abziehen bzw. Ablösen) einer Schleifscheibe 11 von einer robotergestützten Schleifvorrichtung. Demnach umfasst das Verfahren das Andrücken der Schleifscheibe gegen eine Auflagefläche (siehe z.B.
Claims (16)
- A device for automatically fastening a grinding wheel on a carrier wheel of a grinding machine (10); the device includes:a support (53) for receiving a stack of grinding wheels;a frame (50), which is arranged essentially parallel to the support (53), so that the stack of grinding wheels is located between the support (53) and the frame (50), wherein the frame (50) only partially overlaps the outer edge of the uppermost grinding wheel of the stack, characterized bya mechanical pre-tensioning unit (51, 56, 55), which is coupled to the frame (50) so that a defined force (FP) is exerted by the frame (50) on the stack of grinding wheels.
- The device as claimed in claim 1, wherein the mechanical pre-tensioning unit includes a linear guide (51), which is coupled to the frame (50) in such a way that the distance between support (53) and frame (50) is variable.
- The device as claimed in claim 1 or 2, wherein the mechanical pre-tensioning unit includes one or more guide rods (51), which are coupled to the frame (50) and extend laterally adjacent to the stack of grinding wheels and/or extend through the stack of grinding wheels, wherein the guide rods (51) are guided through openings in the support (53).
- The device as claimed in any one of claims 1 to 3, in which the pre-tensioning unit includes a weight (55), which is coupled to the frame (50) in such a way that the weight force FB) of the weight (55) acts on the frame (50).
- The device as claimed in any one of claims 1 to 4,
wherein the stack of grinding wheels is approximately cylindrical, and the frame (50) approximately has the shape of a circular ring, the internal diameter of which is larger than the external diameter of a grinding wheel (11), and
wherein the circular ring includes one or more projections (50a) on its inner circumference, which at least partially overlap the stack of grinding wheels. - The device as claimed in any one of claims 1 to 5,
wherein the frame (50) includes at least one projection (50a) which rests on the uppermost grinding wheel of the stack. - The device as claimed in any one of claims 1 to 6, which furthermore includes:a stop (39), which is designed to move an eccentric rotational axis (D1, A') of the carrier wheel into a defined reference position relative to a longitudinal axis (D2, A) of the grinding machine (10) when the carrier wheel (12) is pressed against the stop (39),wherein the stop (39) includes two pins or edges spaced apart from one another, against which the circumference of the carrier wheel (12) is pressed.
- The device as claimed in any one of claims 1 to 7, which furthermore includes:at least one sensor (61), which is designed to detect whether the angle position of the carrier wheel (12) of the grinding machine (10) corresponds to a setpoint angle position,wherein the sensor (61) is a proximity sensor, a color sensor, or a camera, andwherein the sensor (61) is designed to detect whether a hole (H) in the carrier wheel (12) is located at a reference position.
- The device as claimed in any one of claims 1 to 8, which furthermore includes:
a camera and an image processing unit (9), which is designed to ascertain an angle deviation of the grinding machine (10) from a setpoint angle position. - The device as claimed in any one of claims 1 to 9, which furthermore includes:
a color sensor, which is designed to detect, on the basis of a detected color, whether a grinding wheel (13) adheres to the carrier wheel (12). - A method for automatically installing a grinding wheel on a robot-assisted grinding device using a device as claimed in any one of claims 1 to 10, which is used as a magazine for receiving a stack of grinding wheels; the method includes:aligning a carrier wheel (12) of a grinding machine (10) by means of a manipulator (1) on the magazine having a stack of grinding wheels (11), so that a lower side of the carrier wheel (12) is essentially parallel to an upper side of the stack of grinding wheels (11), wherein the stack of grinding wheels is arranged between a support surface (53) and a frame (50) in the magazine, and the frame (50) only partially overlaps the outer edge of the uppermost grinding wheel of the stack;pressing the carrier wheel (12) against the stack of grinding wheels by means of an actuator (20), which is coupled between manipulator (1) and grinding machine (10), so that the uppermost grinding wheel of the stack of grinding wheels adheres to the carrier wheel (12);lifting the grinding machine (10) including grinding wheel (11) off of the stack of grinding wheels by means of the manipulator (1) and/or the actuator (20), wherein the uppermost grinding wheel of the stack is pulled out of the magazine by the frame (50).
- The method as claimed in claim 11, which furthermore includes:
rotating an eccentric rotational axis (D1, A') of the grinding machine into a defined reference position relative to a longitudinal axis (D2, A) of the grinding machine (10), wherein the rotation of the eccentric rotational axis (D1, A') of the grinding machine into a defined reference position is achieved in that the carrier wheel (12) is pressed on the circumference against a stop (39) by means of the manipulator (1). - The method as claimed in either one of claims 11 or 12, which furthermore includes:
detecting whether the angle position of the carrier wheel corresponds to a setpoint angle position, wherein the detection comprises the following:positioning the grinding machine (10) by means of the manipulator (1) in such a way that a sensor (61, 6) is oriented on the carrier wheel (12) of the grinding machine (10),rotating the grinding machine (10) by means of the manipulator (1) until the sensor (61, 6) detects the setpoint angle position, wherein the sensor (61) is a proximity sensor or a color sensor. - The method as claimed in any one of claims 11 to 13, which furthermore includes:ascertaining an angle deviation of the grinding machine (10) from a setpoint angle position by means of image processing;correcting the angle deviation with the aid of the manipulator (1) .
- The method as claimed in any one of claims 11 to 14, which includes the following after the lifting of the grinding machine (10) :
checking by means of a sensor (63) whether a grinding wheel (11) actually adheres to the carrier wheel (12), wherein the sensor (63) is a color sensor which detects the color of the carrier wheel (12) or the grinding wheel (11). - A system for changing grinding wheels of a robot-assisted grinding device, which includes:a device for automatically fastening a grinding wheel on a carrier wheel of a grinding machine (10) as claimed in any one of claims 1 to 10;a manipulator (1), which is designed to position and move the grinding machine (10) relative to the stack of grinding wheels;wherein the relative movement between the grinding machine (10) and the stack of grinding wheels is effectuated exclusively by the manipulator (1) or by the manipulator (1) and the actuator (20).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21173201.1A EP3928924A1 (en) | 2016-04-04 | 2017-04-03 | Changing station for automatically changing abrasives |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016106141.7A DE102016106141A1 (en) | 2016-04-04 | 2016-04-04 | Change station for automatic change of abrasive |
PCT/EP2017/057862 WO2017174512A1 (en) | 2016-04-04 | 2017-04-03 | Changing station for the automatic changing of abrasives |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21173201.1A Division EP3928924A1 (en) | 2016-04-04 | 2017-04-03 | Changing station for automatically changing abrasives |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3439825A1 EP3439825A1 (en) | 2019-02-13 |
EP3439825B1 true EP3439825B1 (en) | 2021-06-02 |
Family
ID=58464574
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21173201.1A Withdrawn EP3928924A1 (en) | 2016-04-04 | 2017-04-03 | Changing station for automatically changing abrasives |
EP17715148.7A Active EP3439825B1 (en) | 2016-04-04 | 2017-04-03 | Changing station and method for the automatic changing of abrasives |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21173201.1A Withdrawn EP3928924A1 (en) | 2016-04-04 | 2017-04-03 | Changing station for automatically changing abrasives |
Country Status (5)
Country | Link |
---|---|
US (2) | US11203093B2 (en) |
EP (2) | EP3928924A1 (en) |
CN (1) | CN109311136B (en) |
DE (2) | DE102016106141A1 (en) |
WO (1) | WO2017174512A1 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107214620B (en) * | 2017-06-07 | 2023-07-18 | 禹奕智能科技(上海)有限公司 | A intelligent abrasive paper device that takes off for robot polishing |
DE102017210576A1 (en) * | 2017-06-23 | 2018-12-27 | Bayerische Motoren Werke Aktiengesellschaft | Method for automatically applying a polishing agent to a polishing pad |
US11565370B2 (en) | 2017-12-20 | 2023-01-31 | Fabrica Machinale S.R.L. | Method and apparatus for carrying out the replacement of an abrasive element in a machine for working surfaces |
DE102017130805A1 (en) * | 2017-12-20 | 2019-06-27 | Rud. Starcke Gmbh & Co. Kg | Apparatus for replacing a polishing pad |
DE202018102045U1 (en) | 2018-04-16 | 2018-04-23 | Thorsten Klotz | Grinding wheel assembly |
DE202018104811U1 (en) * | 2018-08-21 | 2019-11-26 | Ferrobotics Compliant Robot Technology Gmbh | Device for removing grinding wheels |
WO2020084517A1 (en) | 2018-10-25 | 2020-04-30 | 3M Innovative Properties Company | Multiple degree of freedom compliant actuator force control systems and methods used in robotic paint repair |
EP3870395A2 (en) * | 2018-10-25 | 2021-09-01 | 3M Innovative Properties Company | Robotic paint repair systems and methods |
US20220143837A1 (en) * | 2019-01-23 | 2022-05-12 | Ferrobotics Compliant Robot Technology Gmbh | Robot-Assisted Grinding Device having an Integrated Maintenance Unit |
DE102019101579A1 (en) | 2019-01-23 | 2020-08-06 | Ferrobotics Compliant Robot Technology Gmbh | ROBOT-BASED GRINDING DEVICE WITH INTEGRATED MAINTENANCE UNIT |
FI20195131A1 (en) * | 2019-02-20 | 2020-08-21 | Mirka Ltd | A device for changing abrading products |
CN109968147A (en) * | 2019-04-15 | 2019-07-05 | 天津中屹铭科技有限公司 | High-rigidity controllable touch processing robot |
DE102019112556A1 (en) * | 2019-05-14 | 2020-11-19 | Ferrobotics Compliant Robot Technology Gmbh | ORBITAL GRINDING MACHINE WITH BRAKE DEVICE |
DE102019119152B4 (en) * | 2019-07-15 | 2021-03-11 | Ferrobotics Compliant Robot Technology Gmbh | DEVICE AND METHOD FOR AUTOMATICALLY STRENGTHENING GRINDING WHEELS |
CN110549188B (en) * | 2019-08-28 | 2021-07-30 | 上海交通大学 | Integrated method and system for synchronous grinding and deburring of spool based on overlap detection |
CN110497314B (en) * | 2019-09-30 | 2020-06-23 | 福建三钢闽光股份有限公司 | Method for realizing automatic grinding wheel replacement |
CN110605662B (en) * | 2019-10-24 | 2024-12-06 | 成都飞匠智能科技有限公司 | Automatic grinding wheel replacement device and industrial robot thereof |
WO2021105876A1 (en) * | 2019-11-27 | 2021-06-03 | 3M Innovative Properties Company | Robotic paint repair |
CN111113263B (en) * | 2019-12-30 | 2021-05-04 | 重庆运城制版有限公司 | Grinding wheel gluing and cutting integrated machine |
CN111571409B (en) * | 2020-05-28 | 2024-09-17 | 湖南宇环智能装备有限公司 | Polishing machine with automatic feeding and discharging functions |
CN111546159B (en) * | 2020-06-08 | 2021-06-25 | 上海高仙自动化科技发展有限公司 | Polishing head assembly and stone polishing robot |
US20250058432A1 (en) * | 2020-07-31 | 2025-02-20 | GrayMatter Robotics Inc. | System for autonomously changing a sanding pad of a sanding head |
DK180696B1 (en) * | 2020-09-02 | 2021-12-02 | Onrobot As | Procedure for replacing sandpaper |
WO2022107206A1 (en) * | 2020-11-17 | 2022-05-27 | 株式会社大気社 | Automatic polishing member replacement device and automatic polishing member replacement system provided with same |
CN112571183B (en) * | 2020-12-09 | 2022-02-15 | 安徽中富磁电有限公司 | Molding machining device based on inverter magnetic core |
WO2023052918A1 (en) * | 2021-09-29 | 2023-04-06 | Fabrica Machinale S.R.L. | Apparatus for removing an abrasive element in a machine for working surfaces and related removal method |
CN114248179A (en) * | 2021-12-16 | 2022-03-29 | 昂华(上海)自动化工程股份有限公司 | Paint surface reciprocating grinding and polishing sand paper system |
CN114211416B (en) * | 2021-12-23 | 2022-12-16 | 临沂市大鹏五金磨具有限公司 | Grinding wheel disassembling and assembling machine with Teflon heat-insulating cloth and disassembling and assembling method thereof |
CN114536112B (en) * | 2022-03-21 | 2023-05-26 | 南通新蓝机器人科技有限公司 | Automobile appearance detection and repair workstation |
DE102022120157A1 (en) * | 2022-08-10 | 2024-02-15 | Bayerische Motoren Werke Aktiengesellschaft | Processing device for surface processing of a workpiece |
EP4410480A1 (en) * | 2023-01-31 | 2024-08-07 | Mirka Ltd | Abrasive system for polystyrene applications |
CN118846409B (en) * | 2024-05-20 | 2025-02-25 | 迈胜医疗设备有限公司 | Radiation therapy equipment, range adjusters and linear actuators |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01264767A (en) * | 1988-11-17 | 1989-10-23 | G N Tool Kk | Grindstone automatic exchanging cnc tool grinding machine |
US5231803A (en) * | 1992-04-13 | 1993-08-03 | Minnesota Mining And Manufacturing Company | Automated random orbital abrading method |
US6193337B1 (en) * | 1998-06-15 | 2001-02-27 | 3M Innovative Properties Company | Abrasive sheet dispenser |
JP3298620B2 (en) * | 1998-07-31 | 2002-07-02 | セイコーインスツルメンツ株式会社 | Edge polishing machine |
US6264534B1 (en) * | 1999-03-25 | 2001-07-24 | Ford Global Technologies, Inc. | Method and tooling for automated wet or dry sanding of a vehicle surface |
TW493228B (en) * | 1999-09-07 | 2002-07-01 | Nikon Corp | Polishing pad component exchange device and polishing pad component exchange method |
US20040048549A1 (en) * | 2002-09-09 | 2004-03-11 | Midwest Thermal Spray, Inc. | Device for removing an abrasive disk from a sanding pad |
US7144313B1 (en) | 2003-12-19 | 2006-12-05 | Greenwood Tim R | Abrasive sheet alignment dispenser |
TWM296103U (en) * | 2006-04-03 | 2006-08-21 | Sunmatch Ind Co Ltd | Porous sandpaper positioning base |
FR2942735A1 (en) * | 2009-03-03 | 2010-09-10 | Abb France | Abrasive disc mounting assembly for rotary spindle of sandpapering device, has sets of magnetic attraction units permitting mapping of aspiration openings with holes of disc by mutual attraction when units are brought closer to each other |
GB0914669D0 (en) * | 2009-08-24 | 2009-09-30 | Bourne Kevin | Sanding disk applicator |
US8517799B2 (en) * | 2010-12-07 | 2013-08-27 | The Boeing Company | Robotic surface preparation by a random orbital device |
CN201998046U (en) * | 2010-12-21 | 2011-10-05 | 中芯国际集成电路制造(上海)有限公司 | Chemical mechanical polishing device |
US10035237B2 (en) * | 2011-11-02 | 2018-07-31 | The Boeing Company | Robotic end effector including multiple abrasion tools |
FR2999107B1 (en) * | 2012-12-10 | 2015-01-09 | Univ Nantes | SANDING DEVICE COMPRISING ABRASIVE DISC CHANGE MEANS |
CN203077099U (en) * | 2013-03-11 | 2013-07-24 | 宁波普利达智能科技应用有限公司 | Automatic abrasive paper replacing mechanism |
DE202013101858U1 (en) * | 2013-04-29 | 2013-05-17 | Sps Holding Gmbh | Plant for grinding surfaces |
US9555554B2 (en) * | 2013-05-06 | 2017-01-31 | Milwaukee Electric Tool Corporation | Oscillating multi-tool system |
JP5845212B2 (en) * | 2013-06-28 | 2016-01-20 | ファナック株式会社 | Deburring device with visual sensor and force sensor |
US9656364B2 (en) * | 2013-07-16 | 2017-05-23 | Honda Motor Co., Ltd. | Method and fixture for attaching a sanding disc to a hand sander |
EP2842689B1 (en) * | 2013-09-03 | 2015-07-08 | Asis Gmbh | Device and method for replacing a grinding wheel |
DE102013221319A1 (en) * | 2013-10-21 | 2015-04-23 | Volkswagen Aktiengesellschaft | Automatic change of grinding / polishing wheels for the treatment of body components |
US10532444B2 (en) * | 2014-02-20 | 2020-01-14 | Fabrica Machinale S.R.L. | Apparartus for changing an abrasive sheet in an abrading machine |
CN204772077U (en) * | 2015-05-29 | 2015-11-18 | 钟双晃 | The structure of automatic sandpaper changing machine |
CH712094A1 (en) * | 2016-02-04 | 2017-08-15 | Suhner Otto Ag | Device for automatic change of grinding wheels. |
-
2016
- 2016-04-04 DE DE102016106141.7A patent/DE102016106141A1/en not_active Withdrawn
-
2017
- 2017-04-03 US US16/091,324 patent/US11203093B2/en active Active
- 2017-04-03 EP EP21173201.1A patent/EP3928924A1/en not_active Withdrawn
- 2017-04-03 WO PCT/EP2017/057862 patent/WO2017174512A1/en active Application Filing
- 2017-04-03 EP EP17715148.7A patent/EP3439825B1/en active Active
- 2017-04-03 CN CN201780034590.1A patent/CN109311136B/en active Active
- 2017-04-03 DE DE112017001836.6T patent/DE112017001836A5/en active Pending
-
2021
- 2021-11-09 US US17/522,474 patent/US20220063048A1/en active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
DE112017001836A5 (en) | 2018-12-20 |
DE102016106141A1 (en) | 2017-10-05 |
EP3439825A1 (en) | 2019-02-13 |
CN109311136A (en) | 2019-02-05 |
US20220063048A1 (en) | 2022-03-03 |
EP3928924A1 (en) | 2021-12-29 |
CN109311136B (en) | 2022-02-01 |
WO2017174512A1 (en) | 2017-10-12 |
US20190152015A1 (en) | 2019-05-23 |
US11203093B2 (en) | 2021-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3439825B1 (en) | Changing station and method for the automatic changing of abrasives | |
EP3439836B1 (en) | Robot-aided grinding apparatus | |
DE102014119532B4 (en) | Robotic grinding method and apparatus for robotic grinding | |
EP3765239B1 (en) | Rotational speed control in robot-assisted grinding | |
DE102013020581A1 (en) | Robot gripper, robotic gripper system and method of operating a robotic gripper | |
WO2007082323A1 (en) | Bending press having a loading device and method for operating it | |
DE102015104164B4 (en) | Method and device for robot-assisted surface treatment | |
EP1738937B1 (en) | Method and device for the assembly of a pneumatic tyre | |
EP3288873A1 (en) | Method and device for feeding, providing, and exchanging rolls having packaging material in a packaging machine | |
EP3533572B1 (en) | Plate separating installation and method for operating same | |
WO2016173851A1 (en) | Method and device for feeding, providing and exchanging rolls with packaging material in a packaging machine | |
EP3411183A1 (en) | Device for automatically changing grinding discs | |
DE102015208118A1 (en) | Method and device for conveying, providing and exchanging rolls of packaging material in a packaging machine | |
EP3703906A1 (en) | Robot-assisted grinding device having an integrated maintenance unit | |
WO2022200329A1 (en) | Force-controlled handling apparatus for robot-assisted surface machining | |
EP3999277B1 (en) | Device and method for automatically removing grinding wheels | |
EP3288712B1 (en) | Device for machining surfaces | |
WO2020243762A2 (en) | Compensation of positional tolerances in the robot-assisted surface machining | |
EP3117280A2 (en) | Method for operating a robot, and an associated robot comprising a mechanical feeler device | |
EP3697567B1 (en) | Extraction system for grinding tool with radial disc brush | |
DE102022127707B3 (en) | CHANGE STATION FOR AUTOMATICALLY CHANGING ABRASIVES | |
DE102023125949A1 (en) | Gripping system for gripping a label roll | |
WO2006128393A1 (en) | Blank feeder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181016 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191022 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201207 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1397989 Country of ref document: AT Kind code of ref document: T Effective date: 20210615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017010538 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210902 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210903 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210902 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211004 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017010538 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
26N | No opposition filed |
Effective date: 20220303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220403 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220403 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1397989 Country of ref document: AT Kind code of ref document: T Effective date: 20220403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240423 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240527 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240419 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210602 |