EP3430864B1 - Plasma nozzle and method of using the plasma nozzle - Google Patents
Plasma nozzle and method of using the plasma nozzle Download PDFInfo
- Publication number
- EP3430864B1 EP3430864B1 EP17712057.3A EP17712057A EP3430864B1 EP 3430864 B1 EP3430864 B1 EP 3430864B1 EP 17712057 A EP17712057 A EP 17712057A EP 3430864 B1 EP3430864 B1 EP 3430864B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrode
- counter
- plasma
- nozzle
- jet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 60
- 239000007789 gas Substances 0.000 claims description 45
- 230000008569 process Effects 0.000 claims description 43
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 20
- 229910052786 argon Inorganic materials 0.000 claims description 10
- 239000001307 helium Substances 0.000 claims description 6
- 229910052734 helium Inorganic materials 0.000 claims description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 6
- 239000012080 ambient air Substances 0.000 claims description 4
- -1 polytetrafluoroethylene Polymers 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims 1
- 210000002381 plasma Anatomy 0.000 description 104
- 238000004381 surface treatment Methods 0.000 description 11
- 238000011282 treatment Methods 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 9
- 239000003570 air Substances 0.000 description 8
- 230000004913 activation Effects 0.000 description 6
- 238000001994 activation Methods 0.000 description 6
- 238000010891 electric arc Methods 0.000 description 6
- 239000003973 paint Substances 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- KEUKAQNPUBYCIC-UHFFFAOYSA-N ethaneperoxoic acid;hydrogen peroxide Chemical compound OO.CC(=O)OO KEUKAQNPUBYCIC-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000004800 polyvinyl chloride Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000007306 functionalization reaction Methods 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 238000004382 potting Methods 0.000 description 3
- TVTJUIAKQFIXCE-HUKYDQBMSA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynyl-1H-purine-6,8-dione Chemical compound NC=1NC(C=2N(C(N(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C)=O TVTJUIAKQFIXCE-HUKYDQBMSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229940125851 compound 27 Drugs 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000678 plasma activation Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/2406—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
- H05H1/2431—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes using cylindrical electrodes, e.g. rotary drums
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/2406—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
- H05H1/2439—Surface discharges, e.g. air flow control
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/2406—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
- H05H1/2443—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/2406—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
- H05H1/2443—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
- H05H1/2465—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated by inductive coupling, e.g. using coiled electrodes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3478—Geometrical details
Definitions
- the invention relates to a plasma nozzle for generating a plasma jet with at least one electrode, a casing concentrically surrounding the electrode, a discharge chamber being formed between the electrode and the casing, and the discharge chamber having an inlet opening for a process gas and a nozzle opening for the exit of the plasma jet and the sheathing contains or consists of a dielectric and a first counter-electrode ring-shaped surrounding the discharge chamber in a first longitudinal section.
- the invention also relates to a method for using the plasma nozzle for treating a surface of a workpiece or a workpiece with the plasma jet thus generated.
- the plasma jet In the case of such a treatment of a workpiece, surface activation and / or functionalization and ultra-fine cleaning of the treated surface by the plasma jet take place.
- the plasma can be operated with an inert gas or a reactive gas, so that physical and / or chemical processes take place on the surface of the workpiece to be treated. This improves the adhesion between materials, for example in the case of paintwork or adhesive bonds on plastic surfaces.
- plasmas to non-conductive workpieces of high material thickness or complicated geometries can be carried out, for example, with known plasma nozzles (jet systems) according to US 6,677,550 B2 or U.S. 5,961,772 be made.
- the sheathing itself forms the counter-electrode, so that thermal arc discharges form between the electrode and the counter-electrode after exposure to a high voltage.
- the resulting plasma is expelled from the nozzle by the gas flow.
- remote systems These jet systems are therefore referred to as remote systems, and the plasmas generated in the process are referred to as "remote plasma". Since the reactive species are not generated directly on the workpiece surface, but at some distance from it, these species can react on the way to the surface, for example with the ambient air or the electrode walls of the remote system. So only a small proportion of this species can react with the surface. This reduces the efficiency of the plasma treatment. Further devices for generating a plasma jet by means of a dielectric hindered discharge can be found in the patents KR 2014 0101235 A , JP 2007 207475 A and CN 201 528 464 U known.
- devices for generating sliding discharges on the surface of the workpiece to be cleaned or the formation of dielectrically impeded discharges on the surface of the workpiece to be cleaned are known from the prior art.
- high-voltage electrodes arranged parallel to the surface to be treated are at different electrical potentials and use the workpiece to be treated as a bridging medium for generating discharge filaments.
- only sliding discharges can be achieved with discharge distances of around 1 mm. These methods are therefore only suitable for flat surfaces with low shape tolerances, since the plasma cannot penetrate into undercuts or depressions and the distance between the high-voltage electrodes must be precisely regulated.
- dielectrically impeded or barrier discharges the workpiece held in the discharge gap must also be thin in order to generate and maintain the discharge with manageable electrical voltages.
- the object of the present invention is thus to provide a cleaning method and a cleaning device for activating or ultra-fine cleaning of a surface, which allows an improved, in particular more efficient treatment of the surface and can be used universally on flat or even uneven surfaces of workpieces.
- a plasma nozzle for generating a plasma jet contains at least one electrode.
- the electrode can be elongated or rod-shaped.
- the electrode can be hollow or contain a cavity.
- the at least one electrode is surrounded by a casing, so that a discharge chamber is formed between the electrode and the casing.
- the casing and the electrode can be arranged concentrically with one another. According to the invention it is proposed that the sheathing contain or consist of a dielectric.
- the discharge chamber further has at least one inlet opening for a process gas and a nozzle opening for the exit of the plasma jet.
- the device according to the invention has at least one first counter-electrode, which surrounds the discharge chamber in a ring-shaped manner in a first longitudinal section.
- the first counter electrode is electrically insulated from the electrode by the sheathing.
- there is a second counter-electrode which surrounds the discharge chamber in a second longitudinal section in an annular manner.
- the counter-electrodes can also be arranged concentrically to the electrode and the casing.
- a method according to the invention for using or operating a plasma nozzle according to the invention has the following method steps: Supplying a process gas having a flow through the inlet opening into the discharge chamber and generating an electrical potential difference between an electrode and / or a first counterelectrode and / or a second counterelectrode, so that a plasma is formed in the discharge chamber by igniting dielectrically impeded discharges in the process gas in the discharge chamber, and generating a plasma jet from the flow plasma expelled from the nozzle opening.
- a plasma jet is thus generated by means of a dielectrically impeded discharge (Dielectric Barrier Discharge or DBD) (DBD-Jet).
- the discharge filaments of the DBD are generated by applying a high electrical voltage between the electrode and the counter electrode or electrodes.
- DBD dielectric Barrier Discharge
- discharge filaments are generated in the process gas in which only low temperatures prevail relative to thermal arc discharges.
- the plasmas generated in this way are therefore non-thermal plasmas in which the reactive species generated are not in thermal equilibrium with their locally surrounding process gas. Due to the dielectric hindrance, the discharge process in the individual discharge filaments is so short in time that no thermal equilibrium can develop.
- Such plasmas, or a plasma jet generated from them can therefore be used as directly acting plasmas for surface treatment. The possibility of generating plasma close to the surface without damaging the surface enables efficient treatment.
- the plasma nozzle according to the invention thus combines the Advantages of well-known plasma jets such as high gap clearance with the efficiency of sliding discharges or barrier discharges on the surface of the workpiece.
- the plasma nozzle according to the invention therefore also enables workpieces to be treated on an industrial scale, since greater spacing tolerances between the plasma nozzle and workpiece are possible than with known sliding discharges and greater workpiece thicknesses than with known barrier discharges.
- High spacing and shape tolerances which occur especially with mass-produced goods such as semi-finished extrusions, require pretreatment systems in inline operation that implement efficient activation / functionalization in the highest possible tolerance ranges and, at the same time, perform ultra-fine cleaning of the surface.
- the plasma nozzle according to the invention can be used as such a pretreatment system. Environmentally harmful and costly wet chemical processes for surface treatment can thus be replaced.
- the use of the plasma nozzle according to the invention in a manner similar to a sliding discharge source enables two-dimensional applications.
- the second counter electrode is arranged on the nozzle opening in such a way that the nozzle opening runs centrally through the counter electrode.
- Discharge filaments of the DBD are not only created in the discharge chamber, but also directly in the area of the nozzle opening and can thus affect the surface of the workpiece to be treated. In this way, both chemical and physical influences can occur on the surface occur.
- the reactive species generated in this way can interact directly with the surface in the plasma jet without first coming into contact with the ambient air or other reaction partners.
- the second counter-electrode can have a ring surface that is widened in the shape of a plate. This has the advantage that discharge filaments can be generated directly on a surface to be treated. The normal to the plate surface should be roughly parallel to the direction of the plasma jet. With this embodiment of the invention, electrically insulating workpieces with material thicknesses of more than 10 mm can also be treated with a DBD, since the workpiece no longer has to be completely received in the discharge gap.
- the surface of the second counter electrode can be covered by the casing.
- the casing thus forms a continuous dielectric that shields the electrode surface from the discharge chamber and the workpiece. This allows simple design and manufacture and reliable operation of the plasma nozzle.
- the sheathing of a generic plasma nozzle is formed from a dielectric, the counterelectrodes being electrically insulated by the sheathing from the electrode for generating dielectrically impeded discharges in the process gas between the electrode and the counterelectrode.
- the dielectric can contain a glass, a ceramic, or a polymer.
- the polymer can be or contain polytetrafluoroethylene (PTFE).
- the electrode in the discharge space is coated with a dielectric.
- This additional coating causes an even more homogeneous discharge characteristic of the plasma generated by the DBD.
- the coating can contain or consist of a polymer or a ceramic.
- the coating can contain polytetrafluoroethylene or an oxide or an oxynitride.
- the inlet opening of at least one gas feed-through can be formed in the electrode.
- the gas feedthroughs can advantageously comprise a plurality of bores which are arranged radially symmetrically in the electrode, a uniform flow of the process gas through the discharge chamber is achieved. This also leads to a particularly homogeneous and stable plasma jet.
- a plasma nozzle housing can be present, the counter electrodes being fixed between the casing and the plasma nozzle housing by means of a potting compound. In this way, inexpensive production of the plasma nozzle is possible and parasitic discharges in the interior of the plasma nozzle are avoided.
- the first counter-electrode when the device is in operation, can be at a ground potential and the second counter-electrode can be at a floating potential.
- a plasma jet is expelled from the nozzle, which can have a range of more than 10 mm or more than 20 mm or more than 30 mm.
- the second counterelectrode when the device is in operation, can be at ground potential and the first counterelectrode can be at ground potential a floating potential.
- the plasma filaments slide over the underside of the plasma nozzle or over the partial surface of the casing that runs parallel to the plate surface of the second electrode. In this case, sliding discharges can be generated on the workpiece at a distance of about 1 mm to about 3 mm.
- the first counter-electrode and the second counter-electrode can be at a ground potential when the device is in operation. In this operating state, a discharge is generated between the first counter-electrode and the electrode in the interior of the discharge space, the plasma of which is expelled from the plasma nozzle.
- the second counter electrode forms a counter potential to the plasma emerging from the nozzle. In this way, sliding discharges are possible at a distance of about 3 mm to about 20 mm from the workpiece surface.
- the process gas can be selected from argon and / or helium and / or ambient air and / or synthetic air and / or gas mixtures of nitrogen and oxygen in a mixing ratio of 90/10 or 95/5 volume percent.
- Possible surface treatments with the plasma jet of a plasma nozzle according to the invention are all previous areas of application in which plasma is used, e.g. surface functionalization, surface activation, layer deposition, ultra-fine cleaning and / or disinfection.
- FIG. 1 a sectional representation of a plasma nozzle 1 according to the invention during its use in the surface treatment of a workpiece 3 with a plasma jet 5 is shown.
- the plasma nozzle 1 has a pin-shaped electrode 7 for applying a particularly pulsed high voltage.
- This pin electrode 7 is therefore also referred to below as the high-voltage electrode.
- the pin electrode 7 is concentrically surrounded by a casing 9 made of a dielectric material.
- the casing 9 has a cylindrical basic shape.
- a discharge chamber 11 is formed between the electrode 7 and the casing 9.
- the discharge chamber 11 has an inlet opening 12 for a process gas, for example argon, helium and / or air, and a nozzle opening 14 for the plasma jet 5 to exit.
- the plasma jet 5 is made up of plasma generated in the discharge chamber 11 and expelled from the nozzle opening 14 by a flow of the process gas generated.
- the flowing process gas is shown symbolically in the figure by a block arrow in the area of the inlet opening 12.
- a second metal counter-electrode 16 is provided which surrounds the discharge chamber 11 in a ring-shaped manner.
- the second counterelectrode 16 is electrically insulated from the electrode 7 by the dielectric sheathing 9 in order to generate dielectrically impeded discharges in the process gas between the pin-shaped electrode 7 and the counterelectrode 16.
- the second counter-electrode 16 can be connected to ground to generate the dielectrically impeded discharges, i. E. H. be electrically grounded, which is why it is also referred to below as a ground ring.
- the electrical contact is not shown in the figure.
- the second counter electrode 16 is arranged in the region of the nozzle opening 14 in such a way that the nozzle opening 14 runs centrally through the second counter electrode 16.
- the second counter electrode 16 also has an annular surface 18 that is widened in the shape of a plate.
- widened in the shape of a plate is understood to mean a ring with a shape whose radial ring width is greater than its axial ring height.
- the ring surface 18 of the plate-shaped widened counter-electrode 16 facing away from the plasma jet direction is covered by the casing 9 and thus also shielded from the high-voltage electrode 7 by means of the dielectric of the casing 9.
- the plasma nozzle 1 has a plate-shaped widening (underside of the plate) in its lower area, ie in the area of the nozzle opening 14.
- the casing 9 is therefore also referred to below as a plate bar and the entire plasma nozzle 1 is also referred to below as a ādisk jetā.
- the surface normals of the ring surface 18, which is widened in the shape of a plate, and the correspondingly shaped underside of the plate run approximately parallel to the exit direction of the generated plasma jet 5.
- the nozzle opening 14 extends radially centrally through the plate-shaped counter-electrode 16.
- the plasma nozzle 1 furthermore has a first counter-electrode 20 made of metal, which can also be connected electrically to ground for operating the plasma nozzle 1.
- This first counter-electrode 20 also surrounds the discharge chamber 11 in a ring shape and is insulated from the rod-shaped electrode 7 by the casing 9.
- the first counter electrode 20 is arranged at the level of the rod-shaped electrode 7 and is also referred to below as the upper ground ring, whereas the second counter electrode 16 arranged in the area of the nozzle opening 14 is referred to as the lower ground ring.
- the electrical ground potential of the ground can also be replaced by any other potential and / or both ground rings can be placed on different potentials, i.e. electrically connected to different voltage sources. For safety and application reasons, however, the earth potential is to be preferred.
- the plasma nozzle 1 can therefore be referred to as a "double-mass disk jet".
- a pre-discharge electrode is formed from the first counter-electrode 20 opposite the second counter-electrode 16 arranged in the region of the nozzle opening 14. That is, the plasma generated by discharges between the first counter-electrode 20 and the rod-shaped electrode 7 is transported by the flow of the process gas to the second counter-electrode 16 arranged in the area of the nozzle opening 14, which enables dielectrically impeded discharges to be ignited in the area of the last-mentioned second counter-electrode. ie a dielectrically impeded post-discharge is excited.
- the high-voltage electrode 7 has gas feedthroughs 25 and thereby functions at the same time as a process gas feed, i.e. inlet opening 12. It is made of a conductive material, e.g. stainless steel, aluminum and / or brass.
- the plate bar serves as a dielectric and is made of a dielectric material e.g. ceramic, glass, and / or polymer.
- the upper ground ring is attached in the upper area of the plate rod sleeve, i.e. the cylindrical part of the casing 9 which forms the discharge chamber. Outside the discharge chamber 11, the ground rings are shielded from the high-voltage electrode 7 with an optional high-voltage-resistant potting compound 27 so that no parasitic discharges occur inside the part of the plasma nozzle 1 that forms an electrode head.
- the potting compound 27 also serves to fix the compound rings between the casing 9 and the housing 29 of the plasma nozzle 1.
- a plasma jet 5 with plasma generation from a dielectrically impeded discharge can be ignited between the high-voltage electrode 7 and the upper ground ring 20.
- this DBD jet can be expelled from the nozzle opening 14 up to 50 mm.
- This DBD jet can, for example, also be ignited with compressed air as the process gas.
- the concentric lower mass ring 16 forces filaments of discharges expelled from the nozzle opening 14 to ignite on the underside of the plate, ie on the underside of the casing 9, which is widened in the manner of a plate and faces the workpiece.
- a discharge can thus ignite, which after acts on the principle of a repeater.
- the discharge between the upper ground ring 20 and the high-voltage electrode 7, or the plasma of this discharge generates a further discharge in the area of the lower ground ring 16 and is therefore repeated in the figurative sense.
- the filaments of the discharges in the area of the lower mass ring 16 can come into direct contact with the surface to be treated. Such surface discharges are more efficient than remote plasmas. The reactive species in the plasma react to a large extent on their way to the workpiece surface with remote plasmas, which results in great efficiency losses in the activation of the surface. The latter is not the case with surface discharges.
- the filaments come into contact with the surface in the event of surface discharges, which enables the surface to be finely cleaned.
- One embodiment of the method according to the invention uses a DBD remote plasma as an ignition source and projects its potential onto the non-conductive surface of the workpiece. Since the non-conductive workpiece thus indirectly becomes a counter potential, also called floating potential, for the lower ground ring 16, tangential filaments of a discharge develop between the underside of the plate and the non-conductive workpiece. Depending on the distance between the underside of the plate and the workpiece, a largely homogeneous plasma discharge is formed over the surface of the underside of the plate (plate surface), supported by the back pressure of the continuously flowing process gas.
- the pin-shaped electrode 7 of the plasma nozzle is off Figure 1 shown as a detailed representation.
- the illustrated pin electrode 7 is designed to be radially symmetrical.
- the pin electrode 7 On its electrode base 31 facing away from the tip 30 of the pin electrode 7, the pin electrode 7 has grooves 32, which serve to fix the pin electrode 7 in the casing 9 of the plasma nozzle.
- gas feedthroughs 25 are arranged radially symmetrically within the pin electrode 7 in the region of the electrode base 31. These form the inlet opening of the plasma nozzle for the process gas.
- the plasma nozzle according to the invention is off Figure 1 shown in different operating modes during operation. Due to the electrode configuration with a high voltage electrode and two counter electrodes, namely the upper and the lower ground ring, the "Disk-Jet" can be operated in three different modes. In the Figures 3a to c the three modes are shown. The electrical contact is shown in the form of a circuit diagram.
- This plasma jet 40 has a length of up to 50 mm for the process gases argon, helium or air.
- the "Disc-Jetā can be easily integrated into existing processes and, thanks to its effectiveness, can also be used under industrial conditions.
- a plasma can be optimally applied using the "Disc-Jetā both on flat plate / foil material and on complex workpiece geometries or undercuts.
- Figures 4a and b Quality parameters of work results in the surface treatment of workpieces as a function of operating parameters of the method according to the invention are shown in comparison in each case in a bar diagram.
- Figure 4a shows the peeling resistance of water-based paints on PVC in comparison with surface treatment in the "DBD-Jetā and "Disc-Jetā operating modes with argon process gas.
- the discharge of the "Disc-Jet" has the character of a sliding discharge and can be realized in free operation, ie without a workpiece under the source, with discharge distances of up to 20 mm between the nozzle opening and the workpiece surface.
- a high level of clearance, ie penetration depth in surface gaps, is thus achieved on the basis of direct discharges, which enables the efficient treatment of profiled or structured surfaces or also workpieces with greater shape or position tolerances.
- Figure 5a shows the two-dimensional formation of the sliding discharge of the "disc jet" on a workpiece surface.
- the discharge distance is in accordance with Figures 4 constant 3 mm for flat treatment. A flat discharge over the workpiece surface can be clearly seen.
- Figure 5b shows the discharge characteristics of the "Disk-Jet" in free operation (discharge without workpiece).
- the filaments emerge from the mouth of the nozzle opening and after a certain distance ignite again up to the plate surface of the "disk jet".
- the filaments slide over the surface of the workpiece and form a flat discharge that adapts to the size of the plate surface as the distance decreases.
- Figure 5c shows the use of the "Disc-Jet" on a plastic profile with a 10 mm deep longitudinal groove with an undercut.
- the plasma jet can be seen emerging from the nozzle mouth as a plasma bundle. This bundle forms a large base point on the bottom of the longitudinal groove, from which filaments ignite to the plate surface of the "disc jet".
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Fluid Mechanics (AREA)
- Geometry (AREA)
- Plasma Technology (AREA)
Description
Die Erfindung betrifft eine PlasmadĆ¼se zum Erzeugen eines Plasmastrahls mit zumindest einer Elektrode, einer die Elektrode konzentrisch umgebenden Ummantelung, wobei zwischen der Elektrode und der Ummantelung eine Entladungskammer ausgebildet ist, und wobei die Entladungskammer eine Einlassƶffnung fĆ¼r ein Prozessgas und eine DĆ¼senƶffnung zum Austreten des Plasmastrahls aufweist und die Ummantelung ein Dielektrikum enthƤlt oder daraus besteht und einer die Entladungskammer in einem ersten LƤngsabschnitt ringfƶrmig umgebende erste Gegenelektrode. Weiterhin betrifft die Erfindung ein Verfahren zur Verwendung der PlasmadĆ¼se zur Behandlung einer OberflƤche eines WerkstĆ¼ckes bzw. eines WerkstĆ¼ckes mit dem so erzeugten Plasmastrahl.The invention relates to a plasma nozzle for generating a plasma jet with at least one electrode, a casing concentrically surrounding the electrode, a discharge chamber being formed between the electrode and the casing, and the discharge chamber having an inlet opening for a process gas and a nozzle opening for the exit of the plasma jet and the sheathing contains or consists of a dielectric and a first counter-electrode ring-shaped surrounding the discharge chamber in a first longitudinal section. The invention also relates to a method for using the plasma nozzle for treating a surface of a workpiece or a workpiece with the plasma jet thus generated.
Bei einer derartigen Behandlung eines WerkstĆ¼ckes erfolgt eine OberflƤchenaktivierung und/oder -funktionalisierung und eine Feinstreinigung der behandelten OberflƤche durch den Plasmastrahl. Das Plasma kann mit einem Inertgas oder einem Reaktivgas betrieben werden, so dass physikalische und/oder chemische Prozesse an der OberflƤche des zu behandelnden WerkstĆ¼ckes ablaufen. Dadurch wird z.B. die Haftung zwischen Materialen verbessert, beispielsweise im Falle von Lackierungen oder Klebverbindungen von KunststoffoberflƤchen.In the case of such a treatment of a workpiece, surface activation and / or functionalization and ultra-fine cleaning of the treated surface by the plasma jet take place. The plasma can be operated with an inert gas or a reactive gas, so that physical and / or chemical processes take place on the surface of the workpiece to be treated. This improves the adhesion between materials, for example in the case of paintwork or adhesive bonds on plastic surfaces.
Die Applikation von Plasmen auf nichtleitenden WerkstĆ¼cken von hoher MaterialstƤrke oder komplizierten Geometrien kann z.B. mit bekannten PlasmadĆ¼sen (Jet-Systemen) gemƤĆ
Nachteile dieser Jet-Systeme sind ein beim Betrieb entstehender starker Elektrodenabbrand, hohe Temperaturen bedingt durch die als Plasmastrahl aus der DĆ¼senƶffnung ausgetriebenen thermischen Bogenentladungen und eine fehlende Reinigungswirkung bzw. eine niedrige Effizienz. Diese Nachteile treten insbesondere bei hohen Prozessgeschwindigkeiten auf, d.h. wenn das WerkstĆ¼ck vom Plasmastrahl mit hoher Geschwindigkeit Ć¼berfahren wird. Bei diesen Jet-Systemen werden nƤmlich die im Plasma vorhandenen, zur OberflƤchenbehandlung vorgesehenen reaktiven Spezies, d.h. z.B. angeregte MolekĆ¼le, Atome und/oder Ionen, nicht direkt auf der zu behandelnden OberflƤche erzeugt, da die hohen Temperaturen in thermischen Bogenentladungen die OberflƤche beschƤdigen wĆ¼rden. Um derartige physikalische Effekte der Plasmafilamente der Bogenentladungen auf der OberflƤche zu vermeiden, werden die Bogenentladungen in einiger Entfernung zur OberflƤche erzeugt. Diese Jet-Systeme werden deshalb als Remote-Systeme, die dabei erzeugten Plasmen als "Remote-Plasma" bezeichnet. Da die reaktiven Spezies nicht direkt auf der WerkstĆ¼ckoberflƤche generiert werden, sondern in einiger Entfernung dazu, kƶnnen diese Spezies jedoch auf dem Weg zur OberflƤche z.B. mit der Umgebungsluft oder den ElektrodenwƤnden des Remote-Systems abreagieren. Es kann also nur ein geringer Anteil dieser Spezies mit der OberflƤche reagieren. Dadurch sinkt die Effizienz der Plasmabehandlung. Weitere Vorrichtungen zum Erzeugen eines Plasmastrahls mittels einer dielektrischen behinderten Entladung sind aus den Patentschriften
Die Anwendung von bekannten Plasma-Jets ermƶglicht eine Aktivierung, jedoch keine Feinstreinigung der OberflƤche. Hoher Prozessgasverbrauch, eine notwendige KĆ¼hlung des Prozessgases und eine geringe effektive EntladungsflƤche machen dieses Verfahren zu einem nur begrenzt wirtschaftlichen Verfahren.The use of known plasma jets enables activation, but not ultra-fine cleaning of the surface. High process gas consumption, the necessary cooling of the process gas and a small effective discharge area make this process a process that is only economical to a limited extent.
Alternativ sind aus dem Stand der Technik Vorrichtungen zur Erzeugung von Gleitentladungen auf der OberflƤche des zu reinigenden WerkstĆ¼ckes oder die Ausbildung von dielektrisch behinderten Entladungen auf der OberflƤche des zu reinigenden WerkstĆ¼ckes bekannt. Bei Gleitentladungen liegen parallel zur zu behandelnden OberflƤche angeordnete Hochspannungselektroden auf unterschiedlichem elektrischen Potential und nutzen das zu behandelnde WerkstĆ¼ck als ĆberbrĆ¼ckungsmedium fĆ¼r das Erzeugen von Entladungsfilamenten. Dabei sind in AbhƤngigkeit vom eingesetzten Prozessgas lediglich Gleitentladungen bei EntladungsabstƤnden um 1 mm realisierbar. Diese Verfahren eignen sich damit nur fĆ¼r plane OberflƤchen mit geringen Formtoleranzen, da das Plasma nicht in Hinterschneidungen oder Vertiefungen eindringen kann und der Abstand der Hochspannungselektroden prƤzise geregelt werden muss. Im Falle von dielektrisch behinderten bzw. Barrierenentladungen muss das im Entladungsspalt aufgenommene WerkstĆ¼ck auch noch dĆ¼nn sein, um die Entladung mit handhabbaren elektrischen Spannungen zu erzeugen und aufrecht zu erhalten.Alternatively, devices for generating sliding discharges on the surface of the workpiece to be cleaned or the formation of dielectrically impeded discharges on the surface of the workpiece to be cleaned are known from the prior art. In the case of sliding discharges, high-voltage electrodes arranged parallel to the surface to be treated are at different electrical potentials and use the workpiece to be treated as a bridging medium for generating discharge filaments. Depending on the process gas used, only sliding discharges can be achieved with discharge distances of around 1 mm. These methods are therefore only suitable for flat surfaces with low shape tolerances, since the plasma cannot penetrate into undercuts or depressions and the distance between the high-voltage electrodes must be precisely regulated. In the case of dielectrically impeded or barrier discharges, the workpiece held in the discharge gap must also be thin in order to generate and maintain the discharge with manageable electrical voltages.
Die Aufgabe der vorliegenden Erfindung besteht somit darin, ein Reinigungsverfahren und eine Reinigungsvorrichtung zur Aktivierung bzw. Feinstreinigung einer OberflƤche bereitzustellen, welches eine verbesserte, insbesondere effizientere Behandlung der OberflƤche erlaubt und universell auf ebenen oder auch unebenen OberflƤchen von WerkstĆ¼cken eingesetzt werden kann.The object of the present invention is thus to provide a cleaning method and a cleaning device for activating or ultra-fine cleaning of a surface, which allows an improved, in particular more efficient treatment of the surface and can be used universally on flat or even uneven surfaces of workpieces.
Die Aufgabe wird erfindungsgemĆ¤Ć durch eine Vorrichtung gemĆ¤Ć Anspruch 1 und ein Verfahren nach Anspruch 10 gelƶst. Vorteilhafte Weiterbildungen der Erfindung finden sich in den UnteransprĆ¼chen.The object is achieved according to the invention by a device according to claim 1 and a method according to claim 10. Advantageous further developments of the invention can be found in the subclaims.
ErfindungsgemĆ¤Ć wird eine PlasmadĆ¼se zum Erzeugen eines Plasmastrahls vorgeschlagen. Diese enthƤlt zumindest eine Elektrode. Die Elektrode kann in einigen AusfĆ¼hrungsformen der Erfindung lƤnglich oder stabfƶrmig sein. Die Elektrode kann hohl sein bzw. einen Hohlraum enthalten.According to the invention, a plasma nozzle for generating a plasma jet is proposed. This contains at least one electrode. In some embodiments of the invention, the electrode can be elongated or rod-shaped. The electrode can be hollow or contain a cavity.
Die zumindest eine Elektrode ist mit einer Ummantelung umgeben, so dass sich zwischen der Elektrode und der Ummantelung eine Entladungskammer ausbildet. In einigen AusfĆ¼hrungsformen der Erfindung kƶnnen die Ummantelung und die Elektrode konzentrisch zueinander angeordnet sein. ErfindungsgemĆ¤Ć wird vorgeschlagen, dass die Ummantelung ein Dielektrikum enthƤlt oder daraus besteht.The at least one electrode is surrounded by a casing, so that a discharge chamber is formed between the electrode and the casing. In some embodiments of the invention, the casing and the electrode can be arranged concentrically with one another. According to the invention it is proposed that the sheathing contain or consist of a dielectric.
Die Entladungskammer weist weiter zumindest eine Einlassƶffnung fĆ¼r ein Prozessgas und eine DĆ¼senƶffnung zum Austreten des Plasmastrahls auf.The discharge chamber further has at least one inlet opening for a process gas and a nozzle opening for the exit of the plasma jet.
Weiterhin weist die ErfindungsgemƤĆe Vorrichtung zumindest eine erste Gegenelektrode auf, welche die Entladungskammer in einem ersten LƤngsabschnitt ringfƶrmig umgibt. Dabei ist die erste Gegenelektrode durch die Ummantelung von der Elektrode elektrisch isoliert. ZusƤtzlich ist weiterhin eine zweite Gegenelektrode vorhanden, welche die Entladungskammer in einem zweiten LƤngsabschnitt ringfƶrmig umgibt. Auch die Gegenelektroden kƶnnen konzentrisch zur Elektrode und der Ummantelung angeordnet sein.Furthermore, the device according to the invention has at least one first counter-electrode, which surrounds the discharge chamber in a ring-shaped manner in a first longitudinal section. The first counter electrode is electrically insulated from the electrode by the sheathing. In addition, there is a second counter-electrode which surrounds the discharge chamber in a second longitudinal section in an annular manner. The counter-electrodes can also be arranged concentrically to the electrode and the casing.
Ein erfindungsgemƤĆes Verfahren zur Verwendung bzw. zum Betrieb einer erfindungsgemƤĆen PlasmadĆ¼se weist folgende Verfahrensschritte auf:
ZufĆ¼hren eines eine Strƶmung aufweisenden Prozessgases durch die Einlassƶffnung in die Entladungskammer und Erzeugen einer elektrischen Potentialdifferenz zwischen einer Elektrode und/oder einer ersten Gegenelektrode und/oder einer zweiten Gegenelektrode, so dass sich in der Entladungskammer ein Plasma durch ZĆ¼nden von dielektrisch behinderten Entladungen in dem Prozessgas in der Entladungskammer ausbildet, und Erzeugen eines Plasmastrahls aus von der Strƶmung aus der DĆ¼senƶffnung ausgetriebenem Plasma.A method according to the invention for using or operating a plasma nozzle according to the invention has the following method steps:
Supplying a process gas having a flow through the inlet opening into the discharge chamber and generating an electrical potential difference between an electrode and / or a first counterelectrode and / or a second counterelectrode, so that a plasma is formed in the discharge chamber by igniting dielectrically impeded discharges in the process gas in the discharge chamber, and generating a plasma jet from the flow plasma expelled from the nozzle opening.
Es wird somit ein Plasmastrahl mittels einer dielektrisch behinderten Entladung (Dielectric Barrier Discharge oder DBD)erzeugt (DBD-Jet). Die Entladungsfilamente der DBD werden dabei durch Anlegen einer elektrischen Hochspannung zwischen der Elektrode und der oder den Gegenelektroden erzeugt. Bei einer DBD werden Entladungsfilamente im Prozessgas erzeugt, in denen relativ zu thermischen Bogenentladungen nur niedrige Temperaturen herrschen. Bei den so erzeugten Plasmen handelt es sich also um nicht thermische Plasmen, in denen die erzeugten reaktiven Spezies nicht im thermischen Gleichgewicht mit ihrem lokal umgebenden Prozessgas sind. Der Entladungsprozess in den einzelnen Entladungsfilamenten ist aufgrund der dielektrischen Behinderung derart zeitlich kurz, dass sich kein thermisches Gleichgewicht ausbilden kann. Derartige Plasmen, bzw. ein daraus erzeugter Plasmastrahl, kƶnnen deshalb als direkt wirkende Plasmen zur OberflƤchenbehandlung eingesetzt werden. Durch die Mƶglichkeit der Plasmaerzeugung in OberflƤchennƤhe ohne die OberflƤche zu beschƤdigen ist eine effiziente Behandlung mƶglich.A plasma jet is thus generated by means of a dielectrically impeded discharge (Dielectric Barrier Discharge or DBD) (DBD-Jet). The discharge filaments of the DBD are generated by applying a high electrical voltage between the electrode and the counter electrode or electrodes. In the case of a DBD, discharge filaments are generated in the process gas in which only low temperatures prevail relative to thermal arc discharges. The plasmas generated in this way are therefore non-thermal plasmas in which the reactive species generated are not in thermal equilibrium with their locally surrounding process gas. Due to the dielectric hindrance, the discharge process in the individual discharge filaments is so short in time that no thermal equilibrium can develop. Such plasmas, or a plasma jet generated from them, can therefore be used as directly acting plasmas for surface treatment. The possibility of generating plasma close to the surface without damaging the surface enables efficient treatment.
Anders als bekannte Systeme zur Plasmaaktivierung, welche oftmals das WerkstĆ¼ck als dielektrische Barriere nutzen, kƶnnen mit der erfindungsgemƤĆen Vorrichtung auch dickere WerkstĆ¼cke bearbeitet werden, da das nichtleitende WerkstĆ¼ck zu einem Gegenpotential fĆ¼r die zweite Gegenelektrode wird. Die erfindungsgemƤĆe PlasmadĆ¼se kombiniert somit die Vorteile bekannter Plasmajets wie hohe SpaltgƤngigkeit mit der Effizienz von Gleitentladungen oder Barrierenentladungen auf der OberflƤche des WerkstĆ¼ckes.In contrast to known systems for plasma activation, which often use the workpiece as a dielectric barrier, thicker workpieces can also be processed with the device according to the invention, since the non-conductive workpiece becomes a counter potential for the second counter electrode. The plasma nozzle according to the invention thus combines the Advantages of well-known plasma jets such as high gap clearance with the efficiency of sliding discharges or barrier discharges on the surface of the workpiece.
Mit der erfindungsgemƤĆen PlasmadĆ¼se ist daher auch eine Behandlung von WerkstĆ¼cken im industriellen MaĆstab mƶglich, da grƶĆere Abstandstoleranzen zwischen PlasmadĆ¼se und WerkstĆ¼ck mƶglich sind als bei bekannten Gleitentladungen und grƶĆere WerkstĆ¼ckdicken als bei bekannten Barrierenentladungen. Hohe Abstands- bzw. Formtoleranzen, die gerade bei Massenware wie Extrusionshalbzeugen auftreten, erfordern im Inline-Betrieb Vorbehandlungssysteme, die in mƶglichst hohen Toleranzbereichen eine effiziente Aktivierung/Funktionalisierung realisieren und im gleichen Zuge eine Feinstreinigung auf der OberflƤche durchfĆ¼hren. Als ein derartiges Vorbehandlungssystem ist die erfindungsgemƤĆe PlasmadĆ¼se einsetzbar. UmweltschƤdliche und aufwƤndige nasschemische Verfahren zur OberflƤchenbehandlung kƶnnen dadurch ersetzt werden. Der Einsatz der erfindungsgemƤĆen PlasmadĆ¼se Ƥhnlich einer Gleitentladungsquelle ermƶglicht flƤchige Anwendungen. Aufgrund der ausreichend hohen ermƶglichten EntladungsabstƤnde zwischen WerkstĆ¼ckoberflƤche und der MĆ¼ndung der DĆ¼senƶffnung kƶnnen WerkstĆ¼cke mit Formabweichungen bei hohen Geschwindigkeiten ohne BeschƤdigungen behandelt werden. Zudem ist eine gute SpaltgƤngigkeit fĆ¼r geometrisch komplizierte WerkstĆ¼cke, z.B. mit Hinterschneidungen, Nuten, etc. gegeben.The plasma nozzle according to the invention therefore also enables workpieces to be treated on an industrial scale, since greater spacing tolerances between the plasma nozzle and workpiece are possible than with known sliding discharges and greater workpiece thicknesses than with known barrier discharges. High spacing and shape tolerances, which occur especially with mass-produced goods such as semi-finished extrusions, require pretreatment systems in inline operation that implement efficient activation / functionalization in the highest possible tolerance ranges and, at the same time, perform ultra-fine cleaning of the surface. The plasma nozzle according to the invention can be used as such a pretreatment system. Environmentally harmful and costly wet chemical processes for surface treatment can thus be replaced. The use of the plasma nozzle according to the invention in a manner similar to a sliding discharge source enables two-dimensional applications. Due to the sufficiently high discharge distances that are made possible between the workpiece surface and the mouth of the nozzle opening, workpieces with shape deviations can be treated at high speeds without damage. In addition, there is good clearance for geometrically complex workpieces, e.g. with undercuts, grooves, etc.
In einigen AusfĆ¼hrungen der Erfindung ist die zweite Gegenelektrode so an der DĆ¼senƶffnung angeordnet, dass die DĆ¼senƶffnung zentral durch die Gegenelektrode verlƤuft. Entladungsfilamente der DBD entstehen so nicht nur in der Entladungskammer, sondern auch direkt im Bereich der DĆ¼senƶffnung und kƶnnen so die zu behandelnde OberflƤche des WerkstĆ¼cks tangieren. Derart kann auf der OberflƤche sowohl eine chemische als auch eine physikalische Beeinflussung stattfinden. Zudem kƶnnen die so erzeugten reaktiven Spezies im Plasmastrahl direkt mit der OberflƤche interagieren, ohne vorher mit der Umgebungsluft oder anderen Reaktionspartnern in Kontakt zu kommen.In some embodiments of the invention, the second counter electrode is arranged on the nozzle opening in such a way that the nozzle opening runs centrally through the counter electrode. Discharge filaments of the DBD are not only created in the discharge chamber, but also directly in the area of the nozzle opening and can thus affect the surface of the workpiece to be treated. In this way, both chemical and physical influences can occur on the surface occur. In addition, the reactive species generated in this way can interact directly with the surface in the plasma jet without first coming into contact with the ambient air or other reaction partners.
In einigen AusfĆ¼hrungsformen der Erfindung kann die zweite Gegenelektrode eine tellerfƶrmig verbreiterte RingoberflƤche aufweisen. Dies weist den Vorteil auf, dass direkt auf einer zu behandelnden OberflƤche Entladungsfilamente erzeugt werden kƶnnen. Die TellerflƤchennormale sollte dabei in etwa parallel zur Plasmastrahlrichtung stehen. Mit dieser AusfĆ¼hrungsform der Erfindung kƶnnen auch elektrisch isolierende WerkstĆ¼cke mit MaterialstƤrken von mehr als 10 mm mit einer DBD behandelt werden, da das WerkstĆ¼ck nicht mehr vollstƤndig im Entladungsspalt aufgenommen werden muss.In some embodiments of the invention, the second counter-electrode can have a ring surface that is widened in the shape of a plate. This has the advantage that discharge filaments can be generated directly on a surface to be treated. The normal to the plate surface should be roughly parallel to the direction of the plasma jet. With this embodiment of the invention, electrically insulating workpieces with material thicknesses of more than 10 mm can also be treated with a DBD, since the workpiece no longer has to be completely received in the discharge gap.
In einigen AusfĆ¼hrungen der Erfindung kann die OberflƤche der zweiten Gegenelektrode von der Ummantelung Ć¼berdeckt sein. Die Ummantelung bildet somit ein durchgƤngiges, die ElektrodenoberflƤche zur Entladungskammer und zum WerkstĆ¼ck hin abschirmendes Dielektrikum aus. Dies erlaubt eine einfache Konstruktion und Herstellung und einen zuverlƤssigen Betrieb der PlasmadĆ¼se.In some embodiments of the invention, the surface of the second counter electrode can be covered by the casing. The casing thus forms a continuous dielectric that shields the electrode surface from the discharge chamber and the workpiece. This allows simple design and manufacture and reliable operation of the plasma nozzle.
In einigen AusfĆ¼hrungen der Erfindung ist bei einer gattungsgemƤĆen PlasmadĆ¼se die Ummantelung aus einem Dielektrikum ausgebildet, wobei die Gegenelektroden durch die Ummantelung von der Elektrode zur Erzeugung von dielektrisch behinderten Entladungen in dem Prozessgas zwischen der Elektrode und der Gegenelektrode elektrisch isoliert ist. In einigen AusfĆ¼hrungsformen der Erfindung kann das Dielektrikum ein Glas, eine Keramik oder ein Polymer enthalten. In einigen AusfĆ¼hrungsformen der Erfindung kann das Polymer Polytetrafluorethylen (PTFE) sein oder enthalten.In some embodiments of the invention, the sheathing of a generic plasma nozzle is formed from a dielectric, the counterelectrodes being electrically insulated by the sheathing from the electrode for generating dielectrically impeded discharges in the process gas between the electrode and the counterelectrode. In some embodiments of the invention, the dielectric can contain a glass, a ceramic, or a polymer. In some embodiments of the invention, the polymer can be or contain polytetrafluoroethylene (PTFE).
In einigen AusfĆ¼hrungen der Erfindung ist die Elektrode im Entladungsraum mit einem Dielektrikum beschichtet. Diese zusƤtzliche Beschichtung bewirkt eine noch homogenere Entladungscharakteristik des von der DBD erzeugten Plasmas. Die Beschichtung kann ein Polymer oder eine Keramik enthalten oder daraus bestehen. Die Beschichtung kann Polytetrafluorethylen oder ein Oxid oder ein Oxinitrid enthalten.In some embodiments of the invention, the electrode in the discharge space is coated with a dielectric. This additional coating causes an even more homogeneous discharge characteristic of the plasma generated by the DBD. The coating can contain or consist of a polymer or a ceramic. The coating can contain polytetrafluoroethylene or an oxide or an oxynitride.
In einigen AusfĆ¼hrungen der Erfindung kann die Einlassƶffnung von mindestens einer GasdurchfĆ¼hrung in der Elektrode ausgebildet sein. Vorteilhaft kƶnnen die GasdurchfĆ¼hrungen eine Mehrzahl von Bohrungen umfassen, welche radialsymmetrisch in der Elektrode angeordnet sind, wird eine gleichmƤĆige Strƶmung des Prozessgases durch die Entladungskammer erreicht. Dies fĆ¼hrt auch zu einem besonders homogenen und stabilen Plasmastrahl.In some embodiments of the invention, the inlet opening of at least one gas feed-through can be formed in the electrode. The gas feedthroughs can advantageously comprise a plurality of bores which are arranged radially symmetrically in the electrode, a uniform flow of the process gas through the discharge chamber is achieved. This also leads to a particularly homogeneous and stable plasma jet.
In einigen AusfĆ¼hrungen der Erfindung kann ein PlasmadĆ¼sengehƤuse vorhanden sein, wobei die Gegenelektroden mittels einer Vergussmasse zwischen der Ummantelung und dem PlasmadĆ¼sengehƤuse fixiert sind. Derart ist eine kostengĆ¼nstige Herstellung der PlasmadĆ¼se mƶglich und es werden parasitƤre Entladungen im Inneren der PlasmadĆ¼se vermieden.In some embodiments of the invention, a plasma nozzle housing can be present, the counter electrodes being fixed between the casing and the plasma nozzle housing by means of a potting compound. In this way, inexpensive production of the plasma nozzle is possible and parasitic discharges in the interior of the plasma nozzle are avoided.
In einigen AusfĆ¼hrungsformen der Erfindung kann bei Betrieb der Vorrichtung die erste Gegenelektrode auf einem Massepotential liegen und sich die zweite Gegenelektrode auf einem Floating-Potential befinden. Hierdurch wird ein Plasmajet aus der DĆ¼se ausgetrieben, welcher eine Reichweite von mehr als 10 mm oder mehr als 20 mm oder mehr als 30 mm haben kann.In some embodiments of the invention, when the device is in operation, the first counter-electrode can be at a ground potential and the second counter-electrode can be at a floating potential. As a result, a plasma jet is expelled from the nozzle, which can have a range of more than 10 mm or more than 20 mm or more than 30 mm.
In einigen AusfĆ¼hrungsformen der Erfindung kann bei Betrieb der Vorrichtung die zweite Gegenelektrode auf einem Massepotential liegen und sich die erste Gegenelektrode auf einem Floating-Potential befinden. In diesem Betriebszustand gleiten die Plasmafilamente Ć¼ber die Unterseite der PlasmadĆ¼se bzw. Ć¼ber die parallel zur TellerflƤche der zweiten Elektrode verlaufende TeilflƤche der UmhĆ¼llung. In diesem Fall kƶnnen in einem Abstand von etwa 1 mm bis etwa 3 mm Gleitentladungen auf dem WerkstĆ¼ck erzeugt werden.In some embodiments of the invention, when the device is in operation, the second counterelectrode can be at ground potential and the first counterelectrode can be at ground potential a floating potential. In this operating state, the plasma filaments slide over the underside of the plasma nozzle or over the partial surface of the casing that runs parallel to the plate surface of the second electrode. In this case, sliding discharges can be generated on the workpiece at a distance of about 1 mm to about 3 mm.
In einigen AusfĆ¼hrungsformen der Erfindung kƶnnen sich bei Betrieb der Vorrichtung die erste Gegenelektrode und die zweite Gegenelektrode auf einem Massepotential befinden. In diesem Betriebszustand wird zwischen der ersten Gegenelektrode und der Elektrode im Inneren des Entladungsraumes eine Entladung erzeugt, deren Plasma aus der PlasmadĆ¼se ausgetrieben wird. Die zweite Gegenelektrode bildet ein Gegenpotential zu dem aus der DĆ¼se austretenden Plasma. Auf diese Weise sind Gleitentladungen in einem Abstand von etwa 3 mm bis etwa 20 mm zur WerkstĆ¼ckoberflƤche mƶglich.In some embodiments of the invention, the first counter-electrode and the second counter-electrode can be at a ground potential when the device is in operation. In this operating state, a discharge is generated between the first counter-electrode and the electrode in the interior of the discharge space, the plasma of which is expelled from the plasma nozzle. The second counter electrode forms a counter potential to the plasma emerging from the nozzle. In this way, sliding discharges are possible at a distance of about 3 mm to about 20 mm from the workpiece surface.
In einigen AusfĆ¼hrungsformen der Erfindung kann das Prozessgas ausgewƤhlt sein aus Argon und/oder Helium und/oder Umgebungsluft und/oder synthetischer Luft und/oder Gasgemischen aus Stickstoff und Sauerstoff im MischungsverhƤltnis 90/10 oder 95/5 Volumenprozent.In some embodiments of the invention, the process gas can be selected from argon and / or helium and / or ambient air and / or synthetic air and / or gas mixtures of nitrogen and oxygen in a mixing ratio of 90/10 or 95/5 volume percent.
Als mƶgliche OberflƤchenbehandlungen mit dem Plasmastrahl einer erfindungsgemƤĆen PlasmadĆ¼se sind alle bisherigen Einsatzgebiete, in denen Plasma eine Anwendung findet, mƶglich, z.B. OberflƤchenfunktionalisierung, QberflƤchenaktivierung, Schichtabscheidung, Feinstreinigung und/oder Desinfektion.Possible surface treatments with the plasma jet of a plasma nozzle according to the invention are all previous areas of application in which plasma is used, e.g. surface functionalization, surface activation, layer deposition, ultra-fine cleaning and / or disinfection.
Besondere AusfĆ¼hrungsformen der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen nƤher erlƤutert. Es zeigen:
- Fig. 1
- einen Schnitt durch eine AusfĆ¼hrungsform einer erfindungsgemƤĆen PlasmadĆ¼se wƤhrend deren Verwendung bei der OberflƤchenbehandlung eines WerkstĆ¼ckes.
- Fig. 2
- die stiftfƶrmige Elektrode der PlasmadĆ¼se aus
Figur 1 als Detaildarstellung. - Fig. 3a
- bis c erfindungsgemƤĆe PlasmadĆ¼se aus
Figur 1 in verschiedenen Betriebsmodi. - Fig. 4a
- und b QualitƤtsparameter von Arbeitsergebnissen bei der OberflƤchenbehandlung von WerkstĆ¼cken in AbhƤnggigkeit von Betriebsparametern des erfindungsgemƤĆen Verfahrens in jeweils einer Balkendiagrammdarstellung.
- Fig. 5a
- bis c photographische Aufnahmen des Plasmastrahls einer erfindungsgemƤĆen PlasmadĆ¼se.
- Fig. 1
- a section through an embodiment of a plasma nozzle according to the invention during its use in the surface treatment of a workpiece.
- Fig. 2
- the pen-shaped electrode of the plasma nozzle
Figure 1 as a detailed representation. - Fig. 3a
- to c plasma nozzle according to the invention
Figure 1 in different operating modes. - Figure 4a
- and b quality parameters of work results in the surface treatment of workpieces as a function of operating parameters of the method according to the invention, in each case in a bar diagram.
- Figure 5a
- to c photographic recordings of the plasma jet of a plasma nozzle according to the invention.
In
Zwischen der Elektrode 7 und der Ummantelung 9 ist eine Entladungskammer 11 ausgebildet. Die Entladungskammer 11 weist eine Einlassƶffnung 12 fĆ¼r ein Prozessgas, z.B. Argon, Helium und/oder Luft, und eine DĆ¼senƶffnung 14 zum Austreten des Plasmastrahls 5 auf. Der Plasmastrahl 5 wird aus in der Entladungskammer 11 erzeugtem und durch eine Strƶmung des Prozessgases aus der DĆ¼senƶffnung 14 ausgetriebenem Plasma erzeugt. Das strƶmende Prozessgas ist in der Figur durch einen Blockpfeil im Bereich der Einlassƶffnung 12 symbolisch dargestellt.A
Weiter ist eine die Entladungskammer 11 in einem Bereich ringfƶrmig umgebende zweite Gegenelektrode 16 aus Metall vorgesehen. Die zweite Gegenelektrode 16 ist durch die dielektrische Ummantelung 9 von der Elektrode 7, zur Erzeugung von dielektrisch behinderten Entladungen in dem Prozessgas zwischen der stiftfƶrmigen Elektrode 7 und der Gegenelektrode 16 elektrisch isoliert. Die zweite Gegenelektrode 16 kann zur Erzeugung der dielektrisch behinderten Entladungen auf Masse gelegt, d. h. elektrisch geerdet, sein, weshalb sie im Folgenden auch als Massering bezeichnet wird. Die elektrische Kontaktierung ist in der Figur nicht eingezeichnet.Furthermore, a
Die zweite Gegenelektrode 16 ist derart im Bereich der DĆ¼senƶffnung 14 angeordnet, dass die DĆ¼senƶffnung 14 zentral durch die zweite Gegenelektrode 16 verlƤuft. Weiter weist die zweite Gegenelektrode 16 eine tellerfƶrmig verbreiterte RingoberflƤche 18 auf. Unter tellerfƶrmig verbreitert wird dabei ein Ring mit einer Form verstanden, dessen radiale Ringbreite grƶĆer ist als seine axiale Ringhƶhe. Die der Plasmastrahlrichtung abgewandte RingoberflƤche 18 der tellerfƶrmig verbreiterten Gegenelektrode 16 ist von der Ummantelung 9 Ć¼berdeckt und damit ebenfalls von der Hochspannungselektrode 7 mittels des Dielektrikums der Ummantelung 9 abgeschirmt. Derart weist die PlasmadĆ¼se 1 in ihrem unteren Bereich, d.h. im Bereich der DĆ¼senƶffnung 14, eine tellerfƶrmige Verbreiterung (Tellerunterseite) auf. Die Ummantelung 9 wird daher im Folgenden auch als Tellerstab bezeichnet und die gesamte PlasmadĆ¼se 1 wird im Folgenden auch als "Disk-Jet" bezeichnet. Die FlƤchennormalen der tellerfƶrmig verbreiterten RingoberflƤche 18 und der entsprechend ausgeformten Tellerunterseite verlaufen in etwa parallel zur Austrittsrichtung des erzeugten Plasmastrahls 5. Die DĆ¼senƶffnung 14 verlƤuft radial mittig durch die tellerfƶrmige Gegenelektrode 16.The
Die PlasmadĆ¼se 1 weist weiterhin eine erste Gegenelektrode 20 aus Metall auf, die ebenfalls zum Betrieb der PlasmadĆ¼se 1 elektrisch auf Masse gelegt werden kann. Diese erste Gegenelektrode 20 umgibt die Entladungskammer 11 ebenfalls ringfƶrmig und ist durch die Ummantelung 9 von der stabfƶrmigen Elektrode 7 isoliert. Die erste Gegenelektrode 20 ist dabei auf Hƶhe der stabfƶrmigen Elektrode 7 angeordnet und wird im Folgenden auch als oberer Massering bezeichnet, wogegen die im Bereich der DĆ¼senƶffnung 14 angeordneten zweite Gegenelektrode 16 als unterer Massering bezeichnet wird. Das elektrische Erdpotential der Masse kann auch durch ein beliebig anderes Potential ersetzt werden und/oder es kƶnnen auch beide Masseringe auf unterschiedliche Potentiale gelegt werden, d.h. mit jeweils unterschiedlichen Spannungsquellen elektrisch verbunden werden. Aus sicherheits- und anwendungstechnischen GrĆ¼nden ist das Erdpotential jedoch zu bevorzugen.The plasma nozzle 1 furthermore has a first counter-electrode 20 made of metal, which can also be connected electrically to ground for operating the plasma nozzle 1. This first counter-electrode 20 also surrounds the
Die PlasmadĆ¼se 1 kann daher als "Disk-Jet mit doppelter Masse" bezeichnet werden. Von der ersten Gegenelektrode 20 gegenĆ¼ber der im Bereich der DĆ¼senƶffnung 14 angeordneten zweiten Gegenelektrode 16 wird eine Vorentladungselektrode ausgebildet. D.h. das durch Entladungen zwischen der ersten Gegenelektrode 20 und der stabfƶrmigen Elektrode 7 erzeugte Plasma wird von der Strƶmung des Prozessgases zur im Bereich der DĆ¼senƶffnung 14 angeordneten zweiten Gegenelektrode 16 transportiert, wodurch das ZĆ¼nden von dielektrisch behinderten Entladungen im Bereich der letztgenannten zweiten Gegenelektrode mƶglich wird, d.h. eine dielektrisch behinderte Nachentladung angeregt wird.The plasma nozzle 1 can therefore be referred to as a "double-mass disk jet". A pre-discharge electrode is formed from the first counter-electrode 20 opposite the second counter-electrode 16 arranged in the region of the
Die Hochspannungselektrode 7 weist GasdurchfĆ¼hrungen 25 auf und fungiert dadurch zugleich als ProzessgaszufĆ¼hrung, d.h. Einlassƶffnung 12. Sie ist aus einem leitenden Material z.B. Edelstahl, Aluminium, und/oder Messing gefertigt. Der Tellerstab dient als Dielektrikum und ist aus einem dielektrischen Material z.B. Keramik, Glas, und/oder Polymer gefertigt. Im oberen Bereich der TellerstabhĆ¼lse, d.h. dem zylindrischen, die Entladungskammer ausbildenden Teil der Ummantelung 9, ist der obere Massering angebracht. Die Masseringe sind auĆerhalb der Entladungskammer 11 mit einer optionalen hochspannungsfesten Vergussmasse 27 von der Hochspannungselektrode 7 abgeschirmt, damit keine parasitƤren Entladungen im Inneren des einen Elektrodenkopf ausbildenden Teils der PlasmadĆ¼se 1 auftreten. Die Vergussmasse 27 dient auch zur Fixierung der Masseringe zwischen der Ummantelung 9 und dem GehƤuse 29 der PlasmadĆ¼se 1.The high-
Auf Basis dieser Anordnung kann bei angelegter Spannung und eingeschalteter Prozessgaszufuhr bereits ein Plasmastrahl 5 mit Plasmaerzeugung aus dielektrisch behinderter Entladung (DBD-Jet) zwischen Hochspannungselektrode 7 und oberem Massering 20 gezĆ¼ndet werden. Je nach Prozessgas und angelegter elektrischer Leistung lƤsst sich dieser DBD-Jet bis zu 50 mm aus der DĆ¼senƶffnung 14 austreiben. Dieser DBD-Jet kann beispielsweise auch mit Druckluft als Prozessgas gezĆ¼ndet werden.On the basis of this arrangement, when the voltage is applied and the process gas supply is switched on, a plasma jet 5 with plasma generation from a dielectrically impeded discharge (DBD jet) can be ignited between the high-
Bei der beschriebenen Entladungsanordnung des "Disc-Jet" zwingt der konzentrische untere Massering 16 aus der DĆ¼senƶffnung 14 ausgetriebene Filamente von Entladungen dazu, an der Unterseite des Tellers, d.h. an der dem WerkstĆ¼ck zugewandten tellerartig verbreiterten Unterseite der Ummantelung 9 zu zĆ¼nden. So kann, im freien Betrieb, d.h. ohne dass sich ein WerkstĆ¼ck unter der Quelle, d.h. der DĆ¼senƶffnung 14, befindet, eine Entladung zĆ¼nden, die nach dem Prinzip eines Repeaters agiert. Bei letzterem Prinzip erzeugt die Entladung zwischen dem oberem Massering 20 und der Hochspannungselektrode 7, bzw. das Plasma dieser Entladung, eine weitere Entladung im Bereich des unteren Masserings 16 und wird deshalb im Ć¼bertragenen Sinne wiederholt. Die Filamente der Entladungen im Bereich des unteren Masserings 16 kƶnnen direkt mit der zu behandelnden OberflƤche in Kontakt kommen. Derartige OberflƤchenentladungen weisen eine bessere Effizienz als Remote-Plasmen auf. Die reaktiven Spezies im Plasma reagieren auf ihrem Weg zur WerkstĆ¼ckoberflƤche bei Remote-Plasmen zu einem groĆen Teil ab, was groĆe EffizienzeinbuĆen in der Aktivierung der OberflƤche hervorbringt. Letzteres ist bei OberflƤchenentladungen nicht der Fall. Zudem kommen die Filamente bei OberflƤchenentladungen mit der OberflƤche in Kontakt, was eine Feinstreinigung der OberflƤche ermƶglicht.In the described discharge arrangement of the "disc jet", the concentric
Eine AusfĆ¼hrungsform des erfindungsgemƤĆen Verfahrens nutzt ein DBD-Remote Plasma als ZĆ¼ndquelle und projiziert ihr Potential auf die nichtleitende OberflƤche des WerkstĆ¼cks. Da das nichtleitende WerkstĆ¼ck somit indirekt zu einem Gegenpotential, auch Floating Potential genannt, fĆ¼r den unteren Massering 16 wird, kommt es zwischen der Tellerunterseite und dem nichtleitenden WerkstĆ¼ck zur Ausbildung von tangierenden Filamenten einer Entladung. Je nach Abstand zwischen Tellerunterseite und WerkstĆ¼ck bildet sich somit, unterstĆ¼tzt vom Staudruck des kontinuierlich strƶmenden Prozessgases, eine Ć¼ber die OberflƤche der Tellerunterseite (TellerflƤche) weitgehend homogene Plasmaentladung aus.One embodiment of the method according to the invention uses a DBD remote plasma as an ignition source and projects its potential onto the non-conductive surface of the workpiece. Since the non-conductive workpiece thus indirectly becomes a counter potential, also called floating potential, for the
In
In den
Legt man bei einer an eine Hochspannungsquelle angeschlossener Hochspannungselektrode die Masse lediglich an den oberen Massering an, erhƤlt man eine reine DBD-Jet-Entladung deren Plasmastrahl 40 in
Wird hingegen, wie in
Der effektivste Modus ist in
Der "Disc-Jet" ist basierend auf seiner Bauform einfach in bestehende Prozesse integrierbar und aufgrund seiner EffektivitƤt auch unter Industriebedingungen einsetzbar. Sowohl auf flƤchigem Platten-/Folienmaterial, als auch auf komplizierten WerkstĆ¼ckgeometrien oder Hinterschneidungen ist ein Plasma unter Verwendung des "Disc-Jet" optimal zu applizieren.Based on its design, the "Disc-Jet" can be easily integrated into existing processes and, thanks to its effectiveness, can also be used under industrial conditions. A plasma can be optimally applied using the "Disc-Jet" both on flat plate / foil material and on complex workpiece geometries or undercuts.
In den
Vergleiche zwischen dem "Disc-Jet" Modus und einem baugleichen DBD-Jet Modus (d.h. der untere Massering wurde weggelassen bzw. nicht auf Masse gelegt, d.h. nicht elektrisch mit Erdpotential verbunden) haben gezeigt, dass der "Disc-Jet" beispielsweise bis zu 100% bessere Ergebnisse in der Haftfestigkeit von wasserbasierenden Lacken (der sogenannten adhesive pull strength [MPa]) auf Polyvinylchlorid (PVC) und Polypropylen (PP) erreicht. In
In
In
SelbstverstƤndlich ist die Erfindung nicht auf die dargestellten AusfĆ¼hrungsformen beschrƤnkt. Die vorstehende Beschreibung ist daher nicht als beschrƤnkend, sondern als erlƤuternd anzusehen. Die nachfolgenden AnsprĆ¼che sind so zu verstehen, dass ein genanntes Merkmal in zumindest einer AusfĆ¼hrungsform der Erfindung vorhanden ist. Dies schlieĆt die Anwesenheit weiterer Merkmale nicht aus. Sofern die AnsprĆ¼che und die vorstehende Beschreibung "erste" und "zweite" AusfĆ¼hrungsformen definieren, so dient diese Bezeichnung der Unterscheidung zweier gleichartiger AusfĆ¼hrungsformen, ohne eine Rangfolge festzulegen. Die Erfindung ist durch die AnsprĆ¼che definiert.Of course, the invention is not restricted to the embodiments shown. The above description is therefore not to be regarded as restrictive, but rather as explanatory. The following claims are to be understood in such a way that a named feature is present in at least one embodiment of the invention. This does not exclude the presence of further features. If the claims and the above description define "first" and "second" embodiments, this designation serves to distinguish between two similar embodiments without defining a priority. The invention is defined by the claims.
Claims (15)
- Plasma nozzle (1) for generating a plasma jet (5) comprising at least one electrode (7),a sheathing (9) concentrically surrounding the electrode (7), wherein a discharge chamber (11) is formed between the electrode (7) and the sheathing (9), and wherein the discharge chamber (11) has an inlet opening (12) for a process gas and a nozzle opening (14) for emergence of the plasma jet (5) and the sheathing (9) contains or consists of a dielectric,a first counter-electrode (20) surrounding the discharge chamber (11) in a ring-shaped fashion in a first longitudinal section,wherein the first counter-electrode (20) is electrically insulated from the electrode (7) by the sheathing (9), anda second counter-electrode (16) is furthermore present, which surrounds the discharge chamber (11) in a ring-shaped fashion in a second longitudinal section,characterized in that the second counter-electrode (16) has a ring surface (18) widened in a plate-shaped fashion.
- Plasma nozzle (1) according to claim 1, wherein the second counter-electrode (16) is arranged concentrically to the nozzle opening (14).
- Plasma nozzle (1) according to claim 1 or 2, wherein the surface normal of the ring surface (18), widened in a plate-shaped fashion, of the second counter-electrode (16) runs approximately parallel to the exit direction of the producible plasma jet.
- Plasma nozzle (1) according to any of claims 1 to 3, wherein the ring surface (18) is covered by the sheathing (9).
- Plasma nozzle (1) according to any of claims 1 to 4, wherein the electrode (7) is coated with a dielectric, in particular a dielectric containing or consisting of polytetrafluoroethylene.
- Plasma nozzle (1) according to any of claims 1 to 5, wherein the inlet opening (12) is formed by at least one gas passage (25) in the electrode (7).
- Plasma nozzle (1) according to claim 6, wherein the gas passages (25) are arranged in the electrode (7) in a radially symmetrical fashion.
- Plasma nozzle (1) according to any of claims 1 to 7, wherein the first counter-electrode (20) and the second counter-electrode (16) can be connected to different electric potentials.
- Plasma nozzle (1) according to any of claims 1 to 8, wherein a plasma nozzle housing (29) is provided, wherein the counter-electrodes (16, 20) are fixed between the sheathing (9) and the plasma nozzle housing (29) by means of a sealing compound (27).
- Method for using a plasma nozzle (1) according to any of claims 1 to 9, comprising the method steps ofsupplying a process gas having a flow through the inlet opening (12) into a discharge chamber (11), andgenerating an electric potential difference between an electrode (7) arranged in the discharge chamber (11) and a second counter-electrode (16) so that a plasma is formed in the discharge chamber (11) by igniting dielectrically hindered discharges in the process gas in the discharge chamber (11), andgenerating a plasma jet (5) from plasma expelled from the nozzle opening (14) by the flow,characterized in thatthe second counter-electrode (16) has a ring surface (18) which is widened in a plate-shaped fashion.
- Method according to claim 10, wherein the plasma jet (5) acts on a surface of a workpiece (3).
- Method according to any of claims 10 or 11, wherein furthermore a first counter-electrode is present, wherein the first counter-electrode (20) is at a ground potential and the second counter-electrode (16) is at a floating potential.
- Method according to any of claims 10 or 11, wherein furthermore a first counter-electrode is present, wherein the second counter-electrode (16) is at a ground potential and the first counter-electrode (20) is at a floating potential.
- Method according to any of claims 10 or 11, wherein furthermore a first counter electrode is present, wherein the first counter-electrode (20) and the second counter-electrode (16) are at a ground potential.
- Method according to any of claims 10 to 12, wherein the process gas is selected from argon and/or helium and/or ambient air.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16160623 | 2016-03-16 | ||
DE102016209097.6A DE102016209097A1 (en) | 2016-03-16 | 2016-05-25 | plasma nozzle |
PCT/EP2017/056052 WO2017157975A1 (en) | 2016-03-16 | 2017-03-15 | Plasma nozzle |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3430864A1 EP3430864A1 (en) | 2019-01-23 |
EP3430864B1 true EP3430864B1 (en) | 2021-11-17 |
Family
ID=59751555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17712057.3A Active EP3430864B1 (en) | 2016-03-16 | 2017-03-15 | Plasma nozzle and method of using the plasma nozzle |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3430864B1 (en) |
CN (1) | CN108781498B (en) |
DE (1) | DE102016209097A1 (en) |
DK (1) | DK3430864T3 (en) |
WO (1) | WO2017157975A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108566714A (en) * | 2018-06-09 | 2018-09-21 | 蓵å·ēµē½ęéč“£ä»»å ¬åø | A kind of plasma jet device |
WO2023034209A1 (en) * | 2021-09-01 | 2023-03-09 | Lam Research Corporation | Electrode-dielectric nozzle for plasma processing |
CN115501361A (en) * | 2022-10-14 | 2022-12-23 | åå “åē¦¹ååē§ęęéå ¬åø | Hydroxyl plasma generator and disinfection and purification equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007207475A (en) * | 2006-01-31 | 2007-08-16 | Ibaraki Univ | Portable atmospheric pressure plasma generator |
CN201528464U (en) * | 2009-09-18 | 2010-07-14 | äøå½ē§å¦é¢ēē¦»åä½ē©ēē ē©¶ę | A New Atmospheric Pressure Jet Cooling Plasma Generator |
KR20140101235A (en) * | 2013-02-08 | 2014-08-19 | ķźµźø°ź³ģ°źµ¬ģ | Jet type plasma generator |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5961772A (en) | 1997-01-23 | 1999-10-05 | The Regents Of The University Of California | Atmospheric-pressure plasma jet |
DE29911974U1 (en) * | 1999-07-09 | 2000-11-23 | Agrodyn Hochspannungstechnik GmbH, 33803 Steinhagen | Plasma nozzle |
DE29921694U1 (en) | 1999-12-09 | 2001-04-19 | Agrodyn Hochspannungstechnik GmbH, 33803 Steinhagen | Plasma nozzle |
KR20030091438A (en) * | 2002-05-28 | 2003-12-03 | (ģ£¼)ķė¼ģ | Plasma spray and its application method in surface treatment |
WO2004061929A1 (en) * | 2002-12-27 | 2004-07-22 | Hitachi Kokusai Electric Inc. | Plasma generator, ozone generator, substrate processing apparatus, and method for manufacturing semiconductor device |
EP1689216A1 (en) * | 2005-02-04 | 2006-08-09 | Vlaamse Instelling Voor Technologisch Onderzoek (Vito) | Atmospheric-pressure plasma jet |
DE102008028167A1 (en) * | 2008-06-12 | 2009-12-31 | Maschinenfabrik Reinhausen Gmbh | Plasma jet production device for treatment or activation of through holes of e.g. printed circuit boards, has auxiliary electrode spaced from receiver, where side of receiver is turned away from front side opening of tube |
DE102009028462A1 (en) * | 2009-08-11 | 2011-03-24 | Leibniz-Institut fĆ¼r Plasmaforschung und Technologie e.V. | Apparatus and method for the treatment of living cells by means of a plasma |
DE102010011132A1 (en) * | 2010-03-11 | 2011-09-15 | Reinhausen Plasma Gmbh | Method and arrangement for the plasma treatment of a gas stream |
CN201957326U (en) * | 2010-12-01 | 2011-08-31 | čŖ天ēÆå¢å·„ēØęéå ¬åø | Direct-current plasma generator capable of realizing automatic regulation of gas |
KR101453856B1 (en) * | 2013-03-04 | 2014-10-22 | ķźµźø°ź³ģ°źµ¬ģ | Jet type plasma generator with curved-shaped driving electrode |
CN103237404A (en) * | 2013-05-14 | 2013-08-07 | åå°ę»Øå·„äøå¤§å¦ | Air plasma generating device in coaxial discharging mode |
-
2016
- 2016-05-25 DE DE102016209097.6A patent/DE102016209097A1/en not_active Ceased
-
2017
- 2017-03-15 WO PCT/EP2017/056052 patent/WO2017157975A1/en active Application Filing
- 2017-03-15 DK DK17712057.3T patent/DK3430864T3/en active
- 2017-03-15 EP EP17712057.3A patent/EP3430864B1/en active Active
- 2017-03-15 CN CN201780017388.8A patent/CN108781498B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007207475A (en) * | 2006-01-31 | 2007-08-16 | Ibaraki Univ | Portable atmospheric pressure plasma generator |
CN201528464U (en) * | 2009-09-18 | 2010-07-14 | äøå½ē§å¦é¢ēē¦»åä½ē©ēē ē©¶ę | A New Atmospheric Pressure Jet Cooling Plasma Generator |
KR20140101235A (en) * | 2013-02-08 | 2014-08-19 | ķźµźø°ź³ģ°źµ¬ģ | Jet type plasma generator |
Also Published As
Publication number | Publication date |
---|---|
EP3430864A1 (en) | 2019-01-23 |
CN108781498A (en) | 2018-11-09 |
WO2017157975A1 (en) | 2017-09-21 |
DE102016209097A1 (en) | 2017-09-21 |
CN108781498B (en) | 2021-07-23 |
DK3430864T3 (en) | 2022-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1902156B1 (en) | Method for treating plasma and/or covering plasma of workpieces under continuous atmospheric pressure | |
EP1230414B1 (en) | Method and device for plasma coating surfaces | |
DE69227313T2 (en) | METHOD AND DEVICE FOR TREATING COMPONENTS IN A GAS DISCHARGE PLASMA | |
EP1858056A1 (en) | Plasma method for treating the surface of workpieces | |
EP1292176A2 (en) | Device for the production of an active gas beam | |
DE102007043291A1 (en) | Method and device for treating or coating surfaces | |
EP3430864B1 (en) | Plasma nozzle and method of using the plasma nozzle | |
DE112017001370T5 (en) | Plasma generating device | |
EP2130414B1 (en) | Device and method for generating a plasma beam | |
EP2054166B1 (en) | Method and device for producing a coating | |
EP3077122B1 (en) | Compressed air treatment chamber | |
DE102020132851B3 (en) | ION MOBILITY SPECTROMETER AND METHOD OF OPERATING AN ION MOBILITY SPECTROMETER | |
DE102013004514B3 (en) | Electrode device for a plasma discharge with a sliding arc | |
EP1371271B1 (en) | Plasma installation and method for producing a functional coating | |
WO2008061602A1 (en) | Method and device for producing a plasma, and applications of the plasma | |
DE10116502B4 (en) | Method and device for forming a plasma jet | |
DE10223865B4 (en) | Process for the plasma coating of workpieces | |
WO2000050667A1 (en) | Device and method for treating electroconductive endless material | |
DE69020553T2 (en) | Electric arc treatment of particles. | |
DE10322696B3 (en) | Plasma-assisted treatment of given substrate surface area, e.g. for structurizing or coating metal, alloy, semiconductor, insulator or dielectric, uses insulator with opening, to form discharge gap, between electrode and substrate | |
DE102008028166B4 (en) | Apparatus for generating a plasma jet | |
WO2005099320A2 (en) | Method and device for producing low-pressure plasma and the use thereof | |
DE19648999A1 (en) | High-pressure plasma surface treatment device e.g. for activating plastics surfaces | |
WO2011141184A1 (en) | Plasma generator and method for generating and using an ionised gas | |
DE10320805A1 (en) | Device for processing cylindrical substrates, such as wires and cables, comprises a process chamber, and a dielectric barrier arranged between an electrode and a lead functioning as the counter electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180925 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: OCHS, CHRISTIAN Inventor name: BELLMANN, MARTIN Inventor name: HARMS, MARCUS Inventor name: VIOEL, WOLFGANG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210705 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017012037 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1449103 Country of ref document: AT Kind code of ref document: T Effective date: 20211215 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20220215 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20211117 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V. |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220317 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220317 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220217 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220218 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017012037 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220315 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220315 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220315 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1449103 Country of ref document: AT Kind code of ref document: T Effective date: 20220315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240321 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240319 Year of fee payment: 8 Ref country code: DK Payment date: 20240321 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211117 |