EP3411357A1 - Verfahren zur herstellung von c4-c15-lactamen - Google Patents
Verfahren zur herstellung von c4-c15-lactamenInfo
- Publication number
- EP3411357A1 EP3411357A1 EP17702599.6A EP17702599A EP3411357A1 EP 3411357 A1 EP3411357 A1 EP 3411357A1 EP 17702599 A EP17702599 A EP 17702599A EP 3411357 A1 EP3411357 A1 EP 3411357A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mixture
- reaction
- alcohol
- range
- lactam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 150000003951 lactams Chemical class 0.000 title abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 62
- 239000000203 mixture Substances 0.000 claims description 166
- 238000000034 method Methods 0.000 claims description 61
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 49
- 150000002923 oximes Chemical class 0.000 claims description 45
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 31
- 239000003054 catalyst Substances 0.000 claims description 29
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 24
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 24
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 claims description 12
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 claims description 8
- 238000004064 recycling Methods 0.000 claims description 8
- 239000010457 zeolite Substances 0.000 claims description 8
- DDTBPAQBQHZRDW-UHFFFAOYSA-N cyclododecane Chemical compound C1CCCCCCCCCCC1 DDTBPAQBQHZRDW-UHFFFAOYSA-N 0.000 claims description 7
- 239000000539 dimer Substances 0.000 claims description 6
- 150000007522 mineralic acids Chemical class 0.000 claims description 6
- KPSSIOMAKSHJJG-UHFFFAOYSA-N neopentyl alcohol Chemical compound CC(C)(C)CO KPSSIOMAKSHJJG-UHFFFAOYSA-N 0.000 claims description 6
- VEZUQRBDRNJBJY-UHFFFAOYSA-N cyclohexanone oxime Chemical compound ON=C1CCCCC1 VEZUQRBDRNJBJY-UHFFFAOYSA-N 0.000 abstract description 46
- -1 C1-C10 alkyl nitrite Chemical compound 0.000 abstract description 17
- 150000001924 cycloalkanes Chemical class 0.000 abstract description 9
- 239000000047 product Substances 0.000 description 62
- IOGXOCVLYRDXLW-UHFFFAOYSA-N tert-butyl nitrite Chemical compound CC(C)(C)ON=O IOGXOCVLYRDXLW-UHFFFAOYSA-N 0.000 description 28
- 239000012414 tert-butyl nitrite Substances 0.000 description 28
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 19
- AFLQDEOAJRGCOW-UHFFFAOYSA-N nitrosocyclohexane Chemical compound O=NC1CCCCC1 AFLQDEOAJRGCOW-UHFFFAOYSA-N 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 12
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical class CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 11
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 11
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical class CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 9
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 8
- 238000005160 1H NMR spectroscopy Methods 0.000 description 7
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 7
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical class CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- QPRQEDXDYOZYLA-UHFFFAOYSA-N 2-methylbutan-1-ol Chemical compound CCC(C)CO QPRQEDXDYOZYLA-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 6
- ZWWCURLKEXEFQT-UHFFFAOYSA-N dinitrogen pentaoxide Chemical compound [O-][N+](=O)O[N+]([O-])=O ZWWCURLKEXEFQT-UHFFFAOYSA-N 0.000 description 6
- LZDSILRDTDCIQT-UHFFFAOYSA-N dinitrogen trioxide Chemical compound [O-][N+](=O)N=O LZDSILRDTDCIQT-UHFFFAOYSA-N 0.000 description 6
- 239000004809 Teflon Substances 0.000 description 5
- 229920006362 Teflon® Polymers 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- XUWHAWMETYGRKB-UHFFFAOYSA-N delta-valerolactam Natural products O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 5
- 238000004821 distillation Methods 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- MXLMTQWGSQIYOW-UHFFFAOYSA-N 3-methyl-2-butanol Chemical compound CC(C)C(C)O MXLMTQWGSQIYOW-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 239000004157 Nitrosyl chloride Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical class CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- YGNXYFLJZILPEK-UHFFFAOYSA-N n-cyclopentylidenehydroxylamine Chemical compound ON=C1CCCC1 YGNXYFLJZILPEK-UHFFFAOYSA-N 0.000 description 4
- 229960003753 nitric oxide Drugs 0.000 description 4
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 4
- VPCDQGACGWYTMC-UHFFFAOYSA-N nitrosyl chloride Chemical compound ClN=O VPCDQGACGWYTMC-UHFFFAOYSA-N 0.000 description 4
- 235000019392 nitrosyl chloride Nutrition 0.000 description 4
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 4
- AQIXEPGDORPWBJ-UHFFFAOYSA-N pentan-3-ol Chemical compound CCC(O)CC AQIXEPGDORPWBJ-UHFFFAOYSA-N 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical class CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 3
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 3
- 238000006237 Beckmann rearrangement reaction Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000009935 nitrosation Effects 0.000 description 3
- 238000007034 nitrosation reaction Methods 0.000 description 3
- RGSLPQBXVOKMLZ-UHFFFAOYSA-N nitrosocyclododecane Chemical compound O=NC1CCCCCCCCCCC1 RGSLPQBXVOKMLZ-UHFFFAOYSA-N 0.000 description 3
- VGUWNAQRECZTED-UHFFFAOYSA-N nitrosocyclopentane Chemical compound O=NC1CCCC1 VGUWNAQRECZTED-UHFFFAOYSA-N 0.000 description 3
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical class CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 3
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 3
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- YDLSUFFXJYEVHW-UHFFFAOYSA-N azonan-2-one Chemical compound O=C1CCCCCCCN1 YDLSUFFXJYEVHW-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 2
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- SCRFXJBEIINMIC-UHFFFAOYSA-N n-cyclododecylidenehydroxylamine Chemical compound ON=C1CCCCCCCCCCC1 SCRFXJBEIINMIC-UHFFFAOYSA-N 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M nitrite group Chemical group N(=O)[O-] IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000011269 tar Substances 0.000 description 2
- JAWSTIJAWZBKOU-UHFFFAOYSA-N 7-methylazepan-2-one Chemical compound CC1CCCCC(=O)N1 JAWSTIJAWZBKOU-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- GYCHRIGBJJWMHC-UHFFFAOYSA-N N-cyclohexylidenehydroxylamine nitrosocyclohexane Chemical compound ON=C1CCCCC1.O=NC1CCCCC1 GYCHRIGBJJWMHC-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 150000007960 acetonitrile Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- CJYXCQLOZNIMFP-UHFFFAOYSA-N azocan-2-one Chemical compound O=C1CCCCCCN1 CJYXCQLOZNIMFP-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- LFHISGNCFUNFFM-UHFFFAOYSA-N chloropicrin Chemical compound [O-][N+](=O)C(Cl)(Cl)Cl LFHISGNCFUNFFM-UHFFFAOYSA-N 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 150000003950 cyclic amides Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- JJMDCOVWQOJGCB-UHFFFAOYSA-N delta-aminovaleric acid Natural products [NH3+]CCCCC([O-])=O JJMDCOVWQOJGCB-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutanoic acid Natural products NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- BLLFVUPNHCTMSV-UHFFFAOYSA-N methyl nitrite Chemical group CON=O BLLFVUPNHCTMSV-UHFFFAOYSA-N 0.000 description 1
- LVLYGNPQBXEXGU-UHFFFAOYSA-N n-dodecan-2-ylidenehydroxylamine Chemical compound CCCCCCCCCCC(C)=NO LVLYGNPQBXEXGU-UHFFFAOYSA-N 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- WGQSPSMCVCWUDO-UHFFFAOYSA-N nitrocyclododecane Chemical compound [O-][N+](=O)C1CCCCCCCCCCC1 WGQSPSMCVCWUDO-UHFFFAOYSA-N 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 150000003953 γ-lactams Chemical class 0.000 description 1
- 150000003954 δ-lactams Chemical class 0.000 description 1
- 150000003955 ε-lactams Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D201/00—Preparation, separation, purification or stabilisation of unsubstituted lactams
- C07D201/02—Preparation of lactams
- C07D201/10—Preparation of lactams from cycloaliphatic compounds by simultaneous nitrosylation and rearrangement
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B43/00—Formation or introduction of functional groups containing nitrogen
- C07B43/02—Formation or introduction of functional groups containing nitrogen of nitro or nitroso groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B43/00—Formation or introduction of functional groups containing nitrogen
- C07B43/06—Formation or introduction of functional groups containing nitrogen of amide groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D201/00—Preparation, separation, purification or stabilisation of unsubstituted lactams
- C07D201/02—Preparation of lactams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
Definitions
- the present invention relates to a process for the preparation of C 4 -C 15 lactams in which a C 1 -C 10 -alkyl nitrite is reacted with a C 4 -C 15 -cycloalkane and is during the reaction is illuminated with a light emitting diode the thereby forming C 4 -C 15 -.
- cyclohexanone oxime is then further reacted lactam 15 to a C 4 -C, the formed CiC-io-alcohol is used in the preparation of the CIC io-alkylnitrite recycled.
- Lactams, in particular caprolactam are industrially of particular importance for the preparation of polyamides, in particular of polyamide 6.
- Various processes for the preparation of lactams, in particular of caprolactam, are described in the prior art.
- cyclohexane can be oxidized to cyclohexanone, followed by the production of a cyclohexanone oxime from the cyclohexanone and finally caprolactam is prepared by a Beckmann rearrangement of Cyclohexanonoxims. This method is described, for example, in J. Ritz et al., "Caprolactam,” Ullmann's Encyclopedia of Industrial Chemistry, 2012, Wiley-VCH.
- US 3,505,191 describes the preparation of cycloaliphatic ketoximes starting from an alkyl nitrite and a cycloaliphatic hydrocarbon.
- the alkyl nitrite is reacted with the cycloaliphatic hydrocarbon to form the cycloaliphatic ketoxime.
- the mixture of the alkyl nitrite and the cycloaliphatic hydrocarbon is irradiated with ⁇ -radiation having a wavelength of less than 10 ⁇ m.
- ⁇ -rays is safety concerns, also the generation of ⁇ -radiation is very energy-consuming, which makes the method described in US 3,505,191 extremely expensive.
- US 2015/0175531 describes the preparation of cycloalkanone oximes starting from a cycloalkane and a nitrosating agent, wherein the reaction initiated by an LED.
- nitrosating agents nitrosyl chloride and trichloronitromethane are described.
- the resulting cycloalkanone oxime can then be converted to a lactam by Beckmann rearrangement.
- a disadvantage of the processes described in US 201 1/0137027 and US 2015/0175531 is that relatively many chlorinated by-products are obtained, which have to be separated from the desired product in a complicated manner.
- hydrochloric acid forms in the reaction, this attacks the materials of conventional reactors, so that reactors must be used, which are stable to hydrochloric acid and therefore expensive.
- nitrosyl chloride is corrosive and therefore also requires special reactor materials. This makes the methods described in US 201 1/0137027 and US 2015/0175531 extremely expensive.
- the US 3,544,438 also describes the photonitrogenation of hydrocarbons, in particular cycloalkanes by means of nitrite esters, such as tert-butyl nitrite.
- the nitrosation is initiated by a light source having a wavelength in the range of below 400 nm.
- many by-products are formed, in particular much tars. This also requires a costly purification of the products obtained, in addition, the by-products are partly deposited on the lamp used, so that their Lichtintensitiffer is reduced and the photonitrogenation can only be initiated by them poorly. A frequent replacement of the lamp is necessary. This too makes the process very costly.
- Reacting a second mixture (M2) obtained in step a) C1-C1 0 - alkyl nitrite and a C 4 -C 15 cycloalkane contains (to obtain a first product mixture P1) having a C 4 -C 15 -Nitrosocycloalkan , a dimeric C 4 -C 15 nitrosocycloalkane, a C 4 -C 15 cycloalkanone oxime and a C 1 -C 10 -alcohol, the second mixture (M2) being reacted with a catalyst during the reaction
- a light emitting diode emitting light having a wavelength in the range of 300 to 500 nm is exposed
- light-emitting diodes are used in the method according to the invention, which are particularly energy-efficient and economical.
- the energy consumption of the inventive method is significantly reduced, in particular over the methods described in the prior art, in which mercury vapor lamps are used.
- the light emitting diodes do not require cooling and, because of the simple design, can therefore be used flexibly and enable a simple reactor design.
- Step a) a first mixture (M1) is reacted to give a CiC-io-alkylnitrite.
- the first mixture (M1) contains a C 1 -C 10 -alcohol, nitrogen oxides and oxygen.
- a d-Cio-alcohol in the context of the present invention means both exactly one CiC-io-alcohol and a mixture of two or more C "
- the first mixture (M1) according to the invention includes a C "
- C 1 -C 10 -alcohol is understood as meaning monoalcohols which contain from 1 to 10 carbon atoms, monoalcohols are alcohols which have exactly one hydroxyl group.
- the C 1 -C 10 alcohols may moreover have further substituents which do not participate in the reaction in step a), step b) or step c).
- the CiC-io alcohols are unsubstituted.
- Corresponding statements apply to C-
- Preferred C 1 -C 10 alcohols are selected from the group consisting of methanol, ethanol, propanols, butanols, pentanols, hexanols, heptanols, octanols, nonanols and decanols.
- Preferred C 1 -C 8 -alcohols are selected from the group consisting of methanol, ethanol, propanols, butanols, pentanols, hexanols, heptanols and octanols.
- Preferred C 1 -C 5 -alcohols are selected from the group consisting of methanol, ethanol, propanols, butanols and pentanols.
- propanols therefore includes, for example, both n-propanol and isopropanol
- butanols therefore includes, for example in the context of the present invention, n-butanol, isobutanol, sec-butanol and tert-butanol.
- pentanols in the context of the present invention comprises, for example, n-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, tert-pentanol, isopentanol, 3-methyl-2-butanol and neo-pentanol. pentanol.
- the C 1 -C 10 -alcohol is particularly preferably selected from the group consisting of methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butanol, n-pentanol, 2-pentanol, 3 Pentanol, 2-methyl-1-butanol, tert-pentanol, iso-pentanol, 3-methyl-2-butanol and neo-pentanol.
- the C 1 -C 10 -alcohol in step a) is selected from the group consisting of methanol, tert-butanol and neopentanol.
- the subject matter of the present invention is therefore also a process in which the C 1 -C 10 -alcohol used in step a) in the first mixture (M1) contained C "iC 10 alcohol is selected from the group consisting of methanol, tert-butanol and neo-pentanol.
- the first mixture (M1) other than the C “contains
- Nitrogen oxides according to the invention are at least one compound selected from among nitrogen monoxide (NO), nitrogen dioxide (NO 2 ), dinitrogen trioxide (N 2 O 3 ) and dinitrogen pentoxide (N 2 0 5 ).
- Nitrogen dioxide, dinitrogen trioxide and dinitrogen pentoxide are usually obtained by contacting nitrogen monoxide with oxygen.
- the nitrogen monoxide reacts at least partially with oxygen to give nitrogen dioxide, dinitrogen trioxide and / or dinitrogen pentoxide.
- the molar ratio of nitrogen oxides to oxygen in the first mixture (M1) is for example in the range from 1 to 10, preferably in the range from 2 to 10 and particularly preferably in the range from 4 to 10. It is furthermore preferred that the molar ratio of nitrogen oxides to oxygen in the first mixture (M1) is> 4.
- the molar ratio of the C 1 -C 10 -alcohol to the oxygen in the first mixture (M1) is, for example, in the range from 1 to 10, preferably in the range from 2 to 8 and particularly preferably in the range from 3 to 7.
- the first mixture (M 1) may contain, for example, inert gases.
- Inert gases which may be present in the first mixture (M 1) are gases that are inert in the conditions in which the first mixture (M1) is reacted.
- Such inert gases are known in the art.
- Suitable inert gases are, for example, nitrogen or carbon dioxide.
- the first mixture (M1) contains in the range of 1 to 99 vol.% Inert gases, preferably in the range of 10 to 95 vol.% And particularly preferably in the range of 30 to 90 vol.%, In each case based on the total volume the first mixture (M1).
- the reaction of the first mixture (M1) is known to the person skilled in the art as such and described for example in EP 0 057 143 and in EP 0 076 217.
- the reaction of the first mixture (M1) can take place at any temperature at which the in the first mixture (M1) contained C "
- the reaction of the first mixture (M1. ) in step a) at a temperature in the range from 10 to 300 ° C., preferably in the range from 20 to 130 ° C. and particularly preferably in the range from 50 to 110 ° C.
- the subject of the present invention is therefore also a process in which the reaction of the first mixture (M1) in step a) is carried out at a temperature in the range from 10 to 300 ° C.
- the pressure during the reaction of the first mixture (M1) in step a) is, for example, in the range from 1 to 50 bar, preferably in the range from 1 to 10 bar and particularly preferably in the range from 1 to 5 bar.
- the present invention therefore also provides a process in which the reaction of the first mixture (M1) in step a) is carried out at a pressure in the range from 1 to 50 bar.
- the reaction of the first mixture (M1) in step a) is usually carried out in a first reactor.
- Suitable reactors are all reactors known to those skilled in the art which are suitable for use at the temperatures and pressures used in step a). Such reactors are known to the person skilled in the art and, for example, flow tube reactors.
- the first mixture (M1) can be fed to the first reactor by all methods known to those skilled in the art.
- the C “iC 10 alcohol is supplied to the first reactor separately from the nitrogen oxides and the oxygen.
- the C "iC 10 alcohol is supplied to the first reactor separately from the nitrogen oxides and the oxygen, wherein in a first step nitrogen monoxide with oxygen is fed to the reactor and at least partially reacts to obtain the nitrogen oxides and the oxygen and then brought into contact with the CiC-io alcohol.
- the nitrogen oxides and the oxygen are usually supplied to the first reactor in gaseous form, the Ci-Ci 0 -alcohol usually liquid.
- a CiC-io-alkyl nitrite is obtained. It is clear to the person skilled in the art that a CiC-io-alkyl nitrite is obtained which is different from that in the first mixture (M1). contained C "iC derived 10 alcohol. If, for example than C” used iC 10 alcohol methanol, as is obtained as CiC-io-alkyl nitrite is methyl nitrite.
- 10 alcohol neo-pentanol is used C then as CiC-io- Alkyl nitrite 2,2-dimethyl-1-propyl nitrite obtained.
- the CiC-io-Alkylnitrit obtained is preferably before the further reaction in step b) separated from the water formed and optionally unreacted C 1 -C 10 - alcohol. Processes for this are known to the person skilled in the art. For example, the separation can be carried out by distillation. The unreacted CiC- 10 -alcohol can be recycled to the first mixture (M1) in step a), if appropriate after prior purification.
- a second mixture (M2) is reacted to give a first product mixture (P1), the second mixture (M2) during the reaction with a light emitting diode, the light having a wavelength in the range of 300 to 500 nm, preferably in Range of 340 to 390 nm, and particularly preferably in the range of 350 to 370 nm, emitted, is exposed.
- the second mixture (M2) contains the CiC-io-alkyl nitrite obtained in step a) and a C 4 -C 15 cycloalkane.
- a C 4 -C 15 cycloalkane in the context of the present invention means both exactly one C 4 -C 5 -cycloalkane and one mixture of two or more C 4 -C 5 -cycloalkanes.
- the second mixture (M2) contains a C 4 -C 15 cycloalkane, preferably a C 5 -C 2 cycloalkane and most preferably a C 6 -C 2 cycloalkane.
- C 4 -C 5 -cycloalkane is understood as meaning cyclic saturated hydrocarbons having 4 to 15 carbon atoms, which may also be substituted, preferably unsubstituted, corresponding statements apply to C 5 -C 12 -cycloalkane and C 6 -C 12 cycloalkane.
- the C 4 -C 15 cycloalkane is selected from the group consisting of cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane and cyclododecane.
- the C 4 -C 15 -cycloalkane is particularly preferably selected from the group consisting of cyclopentane, cyclohexane and cyclododecane, particularly preferably the C 4 -C 15 -cycloalkane in step b), selected from the group consisting of cyclohexane and cyclododecane.
- the present invention thus also provides a process in which the C 4 -C 15 -cycloalkane in step b) is selected from the group consisting of cyclopentane, cyclohexane and cyclododecane.
- the second mixture (M2) may contain the CiC-io-alkyl nitrite contained in step a) and the C 4 -C 15 cycloalkane in any molar ratio.
- the molar ratio of CiC-io-alkyl nitrite to C 4 -C 15 cycloalkane in the second mixture (M2) in the range of 1: 1 to 1: 100, preferably in the range of 1: 2 to 1: 50 and most preferably in the range of 1: 5 to 1:30.
- the present invention therefore also provides a process in which the second mixture (M2) comprises the CiCi o-alkyl nitrite obtained in step a) and the C 4 -C 15 cycloalkane in a molar ratio of CiCi o-alkyl nitrite to C 4 - C 15 cycloalkane in the range of 1: 1 to 1: 100 contains.
- the reaction of the second mixture (M2) in step b) is usually carried out at a temperature in the range from -30 to 150 ° C, preferably in the range from 0 to 120 ° C and particularly preferably in the range from 0 to 80 ° C.
- the present invention thus also provides a process in which the reaction of the second mixture (M2) in step b) is carried out at a temperature in the range from -30 to 150 ° C.
- the pressure in the reaction of the second mixture (M2) in step b) is usually in the range of 1 to 10 bar, preferably in the range of 1 to 6 bar and particularly preferably in the range of 1 to 3 bar.
- the present invention thus also provides a process in which the reaction of the second mixture (M2) in step b) is carried out at a pressure in the range from 1 to 10 bar.
- the second mixture (M2) is provided with a light emitting diode having light with a wavelength in the range of 300 to 500 nm, preferably with a wavelength in the range of 340 to 390 nm, and more preferably in the range of 350 to 370 nm emitted, exposed.
- the subject matter of the present invention is therefore also a method in which the light-emitting diode in step b) emits light having a wavelength in the range from 340 to 390 nm.
- Light-emitting diodes LEDs are known to those skilled in the art.
- a light emitting diode usually has an emission spectrum that has an emission band with an emission maximum. If the light emitting diode emits light having a wavelength in the range of 300 to 500 nm, preferably in the range of 340 to 390 nm and particularly preferably in the range of 350 to 370 nm, this means in the context of the present invention that the maximum of the emission band in the range from 300 to 500 nm, preferably in the range of 340 to 390 nm and particularly preferably in the range of 350 to 370 nm. It is also preferred that the light emitting diode has an emission maximum which is in the range of the absorption band of the n-TT * transition of the CiC-io-alkylnitrite.
- the n-TT * transition of the CiC-io-alkylnitrite is known to the person skilled in the art.
- the n-TT * transition is understood to mean the electronic transition of an electron from a non-bonding orbital of the nitrite group of the CiC-io-alkylnitrite into an anti-bonding TT * orbital.
- the absorption range of the n-TT * transition is usually in the range from 300 to 500 nm, preferably in the range from 340 to 390 nm and particularly preferably in the range from 350 to 370 nm.
- the CiC-io-alkyl nitrite contained in the second mixture (M2) is photochemically cleaved to give a nitrosyl radical and a Ci-Ci 0 -Alkoxyradikals.
- the Ci-Cio-alkoxy radical abstracts a hydrogen radical from the C 4 -C 15 cycloalkane to obtain a C "
- the C 4 -C 15 nitrosocycloalkane obtained then isomerizes and then dimerizes, at least in part, under the conditions in step b), forming a dimeric one C 4 -C 15 nitrosocycloalkane and a C 4 -C 15 cycloalkanone oxime.
- the first product mixture (P1) therefore contains the C 4 -C 5 -nitrosocycloalkane, the dimeric C 4 -C 15 -nitrosocycloalkane, the C 4 -C 15 -cycloalkanone oxime and the C 1 -C 10 -alcohol.
- Apply -C 10 alcohol therefore, the previously described embodiments and preferences for the C 1 -C 10 alcohol contained in the first mixture (M1) in step a).
- the C 4 -C 15 -nitrosocycloalkane contained in the first product mixture (P1) is described by C 4 -C 15 cycloalkane derived.
- the first product mixture (P1) contains a C 6 -C 12 nitrosocycloalkane.
- C 4 -C 15 cycloalkane such as cyclopentane
- C 4 -C 15 cycloalkane is cyclohexane
- the C 4 -C 15 -nitrosocycloalkane formed is nitrosocyclohexane.
- cyclododecane is used as C 4 -C 15 -cycloalkane, then nitrosocyclododecane is the forming C 4 -C 15 -nitrosocycloalkane.
- the resulting C 4 -C 15 nitrosocylcoalkane can then dimerize to a dimeric C 4 -C 15 nitrosocylcoalkane.
- nitrosocyclopentane when nitrosocyclopentane is obtained as C 4 -C 15 -nitrosocylcoalkane, it isomerizes to cyclopentanone oxime. If nitrosocyclohexane is obtained as C 4 -C 15 -nitrosocylcoalkane, then this isomerizes to cyclohexanone oxime and if nitrosocyclododecane is obtained as C 4 -C 15 -nitrosocylcoalkane, it isomerized to cyclododecanone oxime.
- the first product mixture (P1) may also contain unreacted C 4 -C 15 cycloalkane.
- the unreacted C 4 -C 15 -cycloalkane optionally contained in the first product mixture (P1) is preferably separated off from the first product mixture (P1) before step c) and recycled to step b). Methods for the separation of the C 4 -C 15 cycloalkane are known to those skilled in the art.
- the reaction of the second mixture (M2) in step b) can take place in all reactors known to the person skilled in the art. Preferably, a second reactor is used, which is different from the first reactor in step a).
- the second mixture (M2) can be stirred during the reaction in step b).
- the present invention therefore also provides a process in which the second mixture (M2) is stirred during the reaction in step b).
- the reaction of the second mixture (M2) in step b) takes place in the presence of a solvent.
- Suitable solvents are, for example, selected from the group consisting of benzene and alcohols.
- the components contained in the second mixture (M2), the C 1 -C 10 -alkyl nitrite and the C 4 -C 15 -cycloalkane can be fed to the second reactor by all methods known to the person skilled in the art.
- the C 1 -C 10 -alkyl nitrite and the C 4 -C 15 cycloalkane may be fed to the second reactor separately.
- step c) the C 4 -C 15 lactam is prepared by reaction of C obtained in step b) 4 -C 15 -Cycloalkanonoxims in the presence of a catalyst.
- This reaction is known to the person skilled in the art and described, for example, in EP 0 544 530 and in J. Ritz et al., "Caprolactam”, Ullmann's Encyclopedia of Industrial Chemistry, 2012, Wiley-VCH.
- a catalyst in the context of the present invention means both exactly one catalyst and two or more catalysts.
- Suitable catalysts in step c) are all catalysts known to those skilled in the art which catalyze the reaction of the C 4 -C 15 -cycloalkanone oxime with the C 4 -C 15 -lactam.
- Such catalysts are, for example, selected from the group consisting of zeolites and inorganic acids.
- the present invention therefore also provides a process in which the catalyst in step c) is selected from the group consisting of zeolites and inorganic acids.
- Suitable zeolites as catalyst in step c) are known to the person skilled in the art and, for example, metal silicates, as described in EP 0 544 530.
- Suitable inorganic acids as catalyst in step c) are also known to the person skilled in the art and, for example, sulfuric acid and / or phosphoric acid.
- the temperature during the reaction of the C 4 -C 5 -cycloalkanone oxime in step c) is, for example, in the range from 50 to 500 ° C., preferably in the range from 70 to 450 ° C. and particularly preferably in the range from 90 to 400 ° C.
- the present invention therefore also provides a process in which the reaction of the C 4 -C 15 -cycloalkanone oxime in step c) is carried out at a temperature in the range from 50 to 500 ° C.
- the temperature during the reaction of the C 4 -C 15 -cycloalkanone oxime in step c), when carried out in the presence of a zeolite as catalyst, is usually in the range from 250 to 500 ° C, preferably in the range from 275 to 450 ° C and in particular preferably in the range of 300 to 400 ° C. If the reaction of the C 4 -C 15 -cycloalkanone oxime in step c) in the presence of an inorganic acid as a catalyst, the temperature during the reaction is usually in the range of 50 to 200 ° C, preferably in the range of 70 to 160 ° C and particularly preferably in the range of 90 to 120 ° C.
- reaction of the C 4 -C 15 -cycloalkanone oxime in the presence of zeolites as catalyst it is also preferred that the reaction takes place with the addition of water.
- water for example, 0.06 to 2.5 mol, preferably 0.18 to 1, 9 mol and more preferably 0.18 to 0.65 mol of water per mole of C 4 -C 15 - cycloalkanone oxime, which is reacted, are used.
- the pressure during the reaction of the C 4 -C 15 -cycloalkanone oxime in step c) is for example in the range of 0.05 to 10 bar, preferably in the range of 0.5 to 7 bar and particularly preferably in the range of 1 to 5 bar.
- the present invention therefore also provides a process in which the reaction of the C 4 -C 15 -cycloalkanone oxime in step c) is carried out at a pressure in the range from 0.05 to 10 bar.
- the C 4 -C 15 -cycloalkanone oxime may be gaseous or liquid during the reaction in step c).
- the C 4 -C 15 -cycloalkanone oxime is liquid during the reaction in step c) when the catalyst is selected from the group consisting of inorganic acids.
- the C 4 -C 15 -cycloalkanone oxime is present in gaseous form during the reaction, for example, if the catalyst in step c) is selected from the group consisting of zeolites. This embodiment is preferred.
- the present invention therefore also provides a process in which the C 4 -C 15 -cycloalkanone oxime is present in gaseous form during the reaction of the C 4 -C 5 -cycloalkanone oxime in step c).
- the present invention further provides a process, wherein the catalyst in step c) is selected from the group consisting of zeolites and wherein the C 4 -C 15 -Cycloalkanonoxim during the reaction of C 4 -C 15 - Cycloalkanonoxims in step c ) is present in gaseous form.
- C 4 -C 15 -lactams are known to the person skilled in the art.
- C 4 -C 15 lactams are cyclic amides having 4 to 15 carbon atoms in the ring.
- the C 4 -C 15 -lactams obtained are, for example, selected from the group consisting of 4-aminobutanoic acid lactam ( ⁇ -lactam; ⁇ -butyrolactam; pyrrolidone), 5-aminopentanoic acid lactam ( ⁇ -lactam, ⁇ -valerolactam, piperidone), 6 -Aminohexanoic acid lactam ( ⁇ -lactam; ⁇ -caprolactam), 7-aminoheptanoic acid lactam ( ⁇ -lactam, ⁇ -heptanolactam, enanthlactam), 8-aminooctanoic acid lactam ( ⁇ -lactam, ⁇ -octanolactam, cap
- the C 4 -C 15 -Cycloalkanonoxims obtained in the reaction of the C 4 -C 15 lactam is derived from C 15 from the -Cycloalkanonoxim C. 4
- cyclopentanone oxime is used as C 4 -C 15 -cycloalkanone oxime
- piperidone is obtained as C 4 -C 15 -lactam.
- C 4 -C 15 cycloalkanone oxime is cyclohexanone oxime
- caprolactam is obtained as C 4 -C 15 lactam.
- cyclododecanone oxime is used as C 4 -C 15 cycloalkanone oxime
- laurolactam is obtained as C 4 -C 15 lactam.
- the C 4 -C 5 -nitrosocycloalkane present in the first product mixture (P1) and the dimeric C 4 -C 15 -nitrosocycloalkane present in the first product mixture (P1) are also usually present.
- the C 4 -C 5 -nitrosocycloalkane and the dimeric C 4 -C 5 -nitrosocycloalkane also typically isomerize during the reaction of the C 4 -C 15 -cycloalkanone oxime to the C 4 -C 5 -cycloalkanone oxime and can then likewise be converted to the C 4 - C-
- the preparation of the C 4 -C 15 lactam in step c) is carried out either by step c1) or by step c2). Steps! )
- step c1) first of all the C 1 -C 10 -alcohol is separated from the first product mixture (P1) obtained in step b), a second product mixture (P2) which contains the C 4 -C 15 -cycloalkanone oxime being obtained.
- the separated C "iC 10 alcohol is then recycled to the first mixture (M1) in step a) and the C 4 -C 15 cycloalkanone oxime contained in the second product mixture (P2) is reacted in the presence of the catalyst to give the C 4 -C 15 lactams.
- the CiC-io-alcohol can be separated from the first product mixture (P1) obtained in step b) by all methods known to the person skilled in the art, for example by distillation.
- the second product mixture (P2) is obtained, which contains the C 4 -C 15 - Cycloalkanonoxim.
- the second product mixture (P2) may moreover contain residues of the C 10 -C 10 -alcohol.
- the in the first product mixture (P1) also contained C 4 -C 15 -Nitrosocycloalkan, and also in the first product mixture (P1) dimer C 4 -C 15 - nitrosocycloalkane are usually not separated with the CiC-io-alcohol and therefore remain in the second product mixture (P2).
- the present invention therefore also provides a process in which the second product mixture (P2) contains the C 4 -C 15 -cycloalkanone oxime, the C 4 -C 15 -nitrosocycloalkane and the dimeric C 4 -C 15 -nitrosocycloalkane.
- the separated CiC-io-alcohol is recycled to the first mixture (M1) in step a).
- Processes for recycling the separated C 1 -C 10 -alcohol are known to those skilled in the art If appropriate, the separated C 1 -C 10 -cohol can be purified in step a) prior to recycling to the first mixture (M 1).
- Ci 0 alcohol are known in the art as such.
- the purification can be carried out, for example, by distillation.
- Step c2) the (in the first product mixture P1) is initially given by C 4 -C 15 - cycloalkanone in the presence of the catalyst reacted to obtain a third product mixture (P3) containing the C 4 -C 15 lactam and C "
- the C-i-C-io-alcohol can be separated from the resulting third product mixture (P3) by all methods known to those skilled in the art, for example by distillation.
- the C 4 -C 15 lactam is obtained.
- the C 4 -C 15 lactam may also contain residues of the CiC-io-alcohol.
- the C 4 -C 15 lactam does not contain any radicals of the CiC-io-alcohol.
- the separated C-i-C-io-alcohol is recycled to the first mixture (M1) in step a).
- Methods for recycling the separated C-i-C-io-alcohol are known in the art as such.
- the separated C i -C 10 alcohol may be purified prior to recycling to the first mixture (M1) in step a). 25 Methods for the purification of the C-i-C-io-alcohol are known in the art as such.
- the purification can be carried out by distillation.
- The% data refer to the crude yield of nitrosocyclohexane and cyclohexanone oxime with respect to tert-butyl nitrite
- nitrosocyclohexane and cyclohexanone oxime in the first product mixture formed, 0.08 ml of the first product mixture was dissolved in 0.8 ml of Bezol-d 6 and 0.01 ml of mesitylene was added as an internal standard. Subsequently, the content of nitrosocyclohexane and cyclohexanone oxime was determined by means of 1 H-NMR spectroscopy. Crude yields of 19% nitrosocyclohexane and 38% cyclohexanone oxime were obtained with respect to tert-butyl nitrite in the first product mixture.
- a second mixture consisting of tert-butyl nitrite (90% by weight in tert-butanol, Sigma-Aldrich, 0.5 mmol) and cyclohexane (Sigma-Aldrich, 10 mmol) was dissolved in a borosilicate tube sealed with a Teflon screw cap. with stirring at 25 ° C (Table 2) and at 50 ° C (Table 3) for the times shown in Tables 2 and 3 exposed (reaction time).
- a light emitting diode (Nichia SMD LED UV NVSU233a) emitting light with a wavelength of 365 nm and having 1 W light intensity at 3.7 V and 1 A was applied, which was mounted on an aluminum heat sink. This formed the first product mixture.
- the determination of nitrosocyclohexane and cyclohexanone oxime in the first product mixture formed was carried out as described in Examples B1 to B6 by means of 1 H-NMR spectroscopy.
- The% data refer to the crude yield of nitrosocyclohexane or cyclohexanone oxime with respect to tert-butyl nitrite, Table 3
- The% data refer to the crude yield of nitrosocyclohexane and cyclohexanone oxime with respect to tert-butyl nitrite
- a light emitting diode (Nichia SMD LED UV NVSU233a) emitting light with a wavelength of 365 nm and having 1 W light intensity at 3.7 V and 1 A was applied, which was mounted on an aluminum heat sink. This formed the first product mixture.
- Nitrosocyclododecane and dodecanonoxime were determined in the resulting first product mixture as described for nitrosocyclohexane and cyclohexanone oxime in Examples B1 to B6 by 1 H NMR spectroscopy. There was a 46% crude yield of nitrocyclododecane with respect to tert-butylnitrite.
- Example B29
- a light emitting diode (Nichia SMD LED UV NVSU233a) emitting light with a wavelength of 365 nm and having 1 W light intensity at 3.7 V and 1 A was applied, which was mounted on an aluminum heat sink.
- nitrosocyclopentane and cyclopentanone oxime in the first product mixture formed was carried out by means of 1 H-NMR spectroscopy as described in Examples B1 to B6 for nitrosocyclohexane and cyclohexanone oxime.
- a crude yield of cyclopentanone oxime of 61% with respect to tert-butyl nitrite was achieved.
- a second mixture consisting of tert-butyl nitrite (90% by weight in tert-butanol, Sigma-Aldrich) and cyclohexane (Sigma-Aldrich) in the molar ratios indicated in Table 4 was used in a quartz tube (for Examples V30 to V33 a tube with a diameter of 10 mm is used, for examples V34 to V37 a tube with a diameter of 6 mm) with stirring at room temperature (20 ° C) with a mercury vapor lamp (Normac UV lamps TQ150 Z2, 200 nm) exposed.
- the determination of nitrosocyclohexane and cyclohexanone oxime in the first product mixture formed was carried out after one and four hours of exposure by means of 1 H-NMR spectroscopy, as described in Examples B1 to B6.
- The% data refer to the crude yield of nitrosocyclohexane or to the cyclohexanone oxime with respect to tert-butyl nitrite Comparative Example C38
- a second mixture consisting of 188.4 g (2.239 mol) of cyclohexane and 11.1 g (1 12.5 mmol) of tert-butylnitrite was pumped through a Teflon tube with a length of 3.8 m and an inner diameter of 2 mm, which was wound around a cooling quartz tube of a mercury vapor lamp (150 W, TQ150, undoped). Meanwhile, the second mixture was exposed to the mercury vapor lamp.
- an Agilent Series 1 100 was used.
- the column used was a Zorbax Eclipse XDB-C18 1, 8 ⁇ 50 * 4.6 mm from Agilent.
- Water was with 0 as the eluent, vol% H 3 PO4 and acetonitrile with 0,% by volume of H 3 P0 4 used 1.
- a second mixture consisting of 376.8 g (4.477 mol) of cyclohexane and 23.2 g (225 mmol) of tert-butylnitrite was passed through a Teflon tube (length 3.8 m, inner diameter 2 mm, residence time 5.95 min), which was pumped around a cooling borosilicate tube of a mercury vapor lamp (150 W, TQ150, undoped). Meanwhile, the second mixture was exposed to the mercury vapor lamp. After exposure, cyclohexane and residual tert-butylnitrite were evaporated and 24 g of n-hexane added. The suspension was cooled to 0 ° C, filtered and washed with 10 ml of n-hexane at 0 ° C. There were obtained 1.95 g (8.6 mmol) of the dimer.
- Example B40 A partial sample of a second mixture consisting of 188.4 g (2.24 mol) of cyclohexane and 1 1, 6 g (1 1, 2 mmol) of tert-butyl nitrite were placed in a cuvette (38 x 138 x 5 mm) and 10 Diodes that emit light with a wavelength of 365 nm illuminated. Table 6 indicates the composition of the first product mixture obtained as a function of the reaction time (exposure time), the composition of the first product mixture being determined by quantitative HPLC as described above in Example B38.
- a second mixture consisting of 568 g (6.75 mol) of cyclohexane and 34.8 g (337.5 mmol) of tert-butylnitrite was pumped through a cuvette (38 ⁇ 138 ⁇ 5 mm), the residence time of the second mixture in the cuvette at 5.95 min., while the second mixture was exposed with 10 diodes emitting light with a wavelength of 365 nm.
- cyclohexane and tert-butylnitrite were evaporated at a maximum of 40 ° C and added twice 20 g of n-hexane and evaporated again.
- the residue was suspended in 30 g of hexane.
- the suspension was cooled to 0 ° C, filtered and washed with 10 ml of n-hexane. There were obtained 10.2 g (45 mmol, 13%) of dimer.
- a second mixture consisting of the components given in Table 7 in the molar ratios given in Table 7 was placed in a cuvette (38 x 138 x 5 mm) and exposed to 10 diodes emitting 365 nm wavelength light the time indicated in Table 7.
- the composition of the forming first product mixture was determined by quantitative HPLC as described above in Example B38. Table 7 shows the results.
- Examples B44 and B45 A second mixture of cyclohexane and tert-butyl nitrite in a molar ratio of 20: 1 was placed in a cuvette (38 x 138 x 5 mm) and exposed to the number of diodes shown in Table 8 and the exposure time given in Table 8 , The composition of the first product mixture formed was determined by quantitative HPLC as described in Example B38. The results are shown in Table 8.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16153603 | 2016-02-01 | ||
PCT/EP2017/051887 WO2017133995A1 (de) | 2016-02-01 | 2017-01-30 | Verfahren zur herstellung von c4-c15-lactamen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3411357A1 true EP3411357A1 (de) | 2018-12-12 |
Family
ID=55272396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17702599.6A Withdrawn EP3411357A1 (de) | 2016-02-01 | 2017-01-30 | Verfahren zur herstellung von c4-c15-lactamen |
Country Status (3)
Country | Link |
---|---|
US (1) | US10618873B2 (de) |
EP (1) | EP3411357A1 (de) |
WO (1) | WO2017133995A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2018016297A (es) | 2016-06-29 | 2019-09-16 | Basf Se | Proceso para la preparacion de aldehidos alfa, beta insaturados mediante oxidacion de alcoholes en presencia de una fase liquida. |
FR3107612B1 (fr) * | 2020-02-20 | 2022-03-04 | Arkema France | Lampe pour réacteur photochimique à base de diodes électroluminescentes |
CN115709061B (zh) * | 2022-11-26 | 2024-02-06 | 神马实业股份有限公司 | 一种多孔硼钼掺杂硅基材料的制备方法及应用 |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3505191A (en) | 1966-04-15 | 1970-04-07 | Mobil Oil Corp | Production of cycloaliphatic ketoximes |
US3544438A (en) | 1968-02-23 | 1970-12-01 | Continental Oil Co | Nitrosation of hydrocarbons using nitrite esters with actinic light in the absence of halides |
US4353843A (en) | 1981-01-23 | 1982-10-12 | Union Carbide Corporation | Preparation of nitrite esters |
CA1189528A (en) | 1981-09-30 | 1985-06-25 | Arthur R. Doumaux, Jr. | Preparation of nitrite esters |
KR100224333B1 (ko) | 1991-11-27 | 1999-10-15 | 고오사이 아끼오 | ε-카프로락탐의 제조방법 |
FR2931478B1 (fr) | 2008-05-26 | 2012-08-03 | Arkema France | Prodece de preparation de lactames comprenant une etape de photonitrosation suivie d'une etape de transposition de beckmann |
EP2868655B1 (de) | 2012-06-27 | 2020-04-15 | Toray Industries, Inc. | Verfahren zur herstellung von cycloalkanonoxim |
JP2017517501A (ja) | 2014-05-05 | 2017-06-29 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 2,6−ジメチル−5−ヘプテン−1−アールを製造するための方法 |
WO2015173243A1 (de) | 2014-05-16 | 2015-11-19 | Basf Se | Verfahren zur herstellung von carbonfasern aus cellulosefasern |
JP2017515878A (ja) | 2014-05-20 | 2017-06-15 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 活性化オレフィンの二量化の方法 |
KR102481159B1 (ko) | 2014-05-30 | 2022-12-23 | 바스프 에스이 | 2,6- 및 2,7-이중 치환된 안트라퀴논 유도체의 제조 |
CN106660918B (zh) | 2014-05-30 | 2019-10-11 | 巴斯夫欧洲公司 | 2,6-和2,7-二取代的蒽醌衍生物的制备 |
WO2015197699A1 (en) | 2014-06-25 | 2015-12-30 | Basf Se | Process for preparing furan-2,5-dicarboxylic acid |
US10344381B2 (en) | 2014-07-24 | 2019-07-09 | Basf Se | Process for the generation of thin inorganic films |
US9991058B2 (en) | 2014-07-30 | 2018-06-05 | Sekisui Chemical Co., Ltd. | Method for manufacturing solar cell |
JP6734841B2 (ja) | 2014-08-04 | 2020-08-05 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 無機薄膜の生成方法 |
EP3191439A1 (de) | 2014-09-09 | 2017-07-19 | Basf Se | Verfahren zur herstellung von 2-alkoxycyclohexanol |
BR112017004074B1 (pt) | 2014-09-09 | 2022-03-03 | Basf Se | Processo para a preparação de um material zeolítico, material zeolítico, moldagem e usos de um material zeolítico |
EP3002003A1 (de) | 2014-09-30 | 2016-04-06 | Basf Se | Verwendung neuartiger cyclischer Carbaldehyde als Aromastoff |
WO2016055452A1 (de) | 2014-10-07 | 2016-04-14 | Basf Se | Reaktor zur durchführung von gasphasenreaktionen unter verwendung eines heterogenen katalysators |
WO2016055453A1 (de) | 2014-10-07 | 2016-04-14 | Basf Se | Reaktor zur durchführung von gasphasenreaktionen unter verwendung eines heterogenen katalysators |
MX2017004896A (es) | 2014-10-14 | 2017-07-19 | Basf Se | Uso de hexadeca-8, 15-dienal como producto quimico aromatico. |
BR112017008176B1 (pt) | 2014-10-23 | 2021-11-03 | Construction Research & Technology Gmbh | Método para produzir carbonato de ácido glicérico, um método que compreende a oxidação de heyns e uma mistura de reação útil para realizar o referido método para produzir carbonato de ácido glicérico |
WO2016066629A1 (en) | 2014-10-27 | 2016-05-06 | Basf Se | Part-stream distillation |
WO2016078960A1 (de) | 2014-11-20 | 2016-05-26 | Basf Se | Verfahren zur herstellung von carbonfasern aus phosphor enthaltenden cellulosefasern |
DE102014019081A1 (de) | 2014-12-18 | 2016-02-25 | Basf Se | Verfahren zur Herstellung von Acrylsäure aus Formaldehyd und Essigsäure |
MX2017008171A (es) | 2014-12-19 | 2017-09-18 | Basf Se | Proceso para preparar 1-[(1r,4r/s,8s)-10,10-dimetil-7-metilen-4-bi ciclo [6.2.0] decanilo] etanona. |
WO2016128538A1 (en) | 2015-02-13 | 2016-08-18 | Basf Se | Process for the regeneration of a titanium zeolite catalyst for propylene epoxidation |
EP3292099B1 (de) | 2015-05-04 | 2020-07-22 | Basf Se | Verfahren zur herstellung von melonal |
EP3294701B1 (de) | 2015-05-13 | 2020-08-12 | Basf Se | Verfahren zur herstellung eines ungesättigten carbonsäuresalzes |
RU2723326C2 (ru) | 2015-05-19 | 2020-06-09 | Басф Се | Газоплотная, теплопроницаемая, керамическая, многослойная композитная труба |
WO2016189129A1 (de) | 2015-05-28 | 2016-12-01 | Basf Se | Verfahren zur homogen katalysierten reduktiven aminierung von carbonyl-verbindungen |
JP2018528171A (ja) | 2015-07-22 | 2018-09-27 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | フラン−2,5−ジカルボン酸を調製するための方法 |
KR20180034399A (ko) | 2015-07-22 | 2018-04-04 | 바스프 에스이 | N-(1,3-벤조티아졸-2-일술파닐)-2-메틸시클로헥산아민과 n-(1,3-벤조티아졸-2-일술파닐)-4-메틸시클로헥산아민의 혼합물 |
EP3153493A1 (de) | 2015-10-08 | 2017-04-12 | Basf Se | Verfahren zur reinigung von cyclohexadec-8-en-1-on |
MX2018004300A (es) | 2015-10-08 | 2018-05-16 | Basf Se | Uso de nuevas mezclas de isomero de (e/z) ciclopentadecenona, produccion y su uso como sustancia aromatizante. |
CN108137451A (zh) | 2015-10-12 | 2018-06-08 | 巴斯夫欧洲公司 | 用于生产1,6-二取代己烷衍生物的氢甲酰化方法 |
WO2017076947A1 (en) | 2015-11-04 | 2017-05-11 | Basf Se | Process for preparing furan-2,5-dicarboxylic acid |
CN108473455A (zh) | 2015-11-04 | 2018-08-31 | 巴斯夫欧洲公司 | 用于制备包含5-(羟基甲基)糠醛和特定的hmf酯的混合物的方法 |
CA3003762A1 (en) | 2015-11-04 | 2017-05-11 | Basf Se | A process for preparing furan-2,5-dicarboxylic acid |
DE102015222196A1 (de) | 2015-11-11 | 2016-05-19 | Basf Se | Verfahren zur Herstellung von Acrylsäure |
DE102015222198A1 (de) | 2015-11-11 | 2017-05-11 | Basf Se | Oxidische Zusammensetzung |
DE102015222180A1 (de) | 2015-11-11 | 2016-05-19 | Basf Se | Verfahren zur Herstellung von Acrylsäure aus Formaldehyd und Essigsäure |
EP3170828A1 (de) | 2015-11-23 | 2017-05-24 | Basf Se | Verfahren zur herstellung von verbindungen mit 16-oxabicyclo[10.3.1]pentadecengerüst und deren folgeprodukten |
TWI742022B (zh) | 2015-11-30 | 2021-10-11 | 德商巴斯夫歐洲公司 | 生成金屬膜的方法 |
MX2018007068A (es) | 2015-12-08 | 2018-08-01 | Basf Se | Un material zeolitico con contenido de estaño que tiene una estructura de armazon de bea. |
EP3178788A1 (de) | 2015-12-08 | 2017-06-14 | Basf Se | Zinnhaltiges zeolithmaterial mit einer bea-rahmenstruktur |
-
2017
- 2017-01-30 WO PCT/EP2017/051887 patent/WO2017133995A1/de active Application Filing
- 2017-01-30 EP EP17702599.6A patent/EP3411357A1/de not_active Withdrawn
- 2017-01-30 US US16/073,941 patent/US10618873B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US10618873B2 (en) | 2020-04-14 |
US20190040005A1 (en) | 2019-02-07 |
WO2017133995A1 (de) | 2017-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006058190A1 (de) | Verfahren zur Herstellung von Amiden aus Ketoximen | |
EP2980068A1 (de) | Verfahren zur Herstellung von Cyclododecanon | |
WO2005063691A1 (de) | Coammoximierung von ketonen | |
EP2980069A1 (de) | Verfahren zur Herstellung von Cyclododecanon | |
EP3411357A1 (de) | Verfahren zur herstellung von c4-c15-lactamen | |
EP0912508A1 (de) | Verfahren zur herstellung von caprolactam aus 6-aminocapronitril | |
DE69909619T2 (de) | Verfahren zur herstellung eines aminonitrils und eines diamins | |
EP2038245B1 (de) | Verfahren zur reinigung von cyclischen ketonen | |
AT500421A1 (de) | Verbessertes verfahren zur reinigung von ketonen, erhalten aus den korrespondierenden terpenen durch ozonolyse und reduktion | |
DE1493898B (de) | Verfahren zur Herstellung von omega, omega'-Diaminoalkanen | |
WO2011069994A1 (de) | Verfahren zur herstellung von 2,2-difluorethylamin sowie seiner salze ausgehend von difluoracetonitril | |
DE69701297T2 (de) | Verfahren zur Herstellung des Oxims von Cyclododecanon durch Photonitrosation von Cyclododecan in Gegenwart von Trichlornitrosomethan | |
DE69800901T2 (de) | Verfahren zur Herstellung von Trans 1,4-Cyclohexan-bis-(methylamin) | |
DE69806005T2 (de) | Photonitrosierung von cyclododecan in chloroform in einem quasi-wasserfreien medium | |
DE69900383T2 (de) | Verfahren zur Herstellung von Lauryllactam | |
DE2361138A1 (de) | Verfahren zur umsetzung von disubstituierten dienophilen mit cyclopentadien | |
DE2249993A1 (de) | Verfahren zur spaltung von ketonen | |
WO2007042480A1 (de) | Verfahren zur farbzahlverbesserung | |
DE69430398T2 (de) | Verfahren zur Herstellung von 1,1-Dialkoxycycloalkanen | |
DE1643640C3 (de) | Verfahren zur Herstellung von omega-Carbamoylalkansäuren, omega-Cyanalkansäuren und Alkan-alpha, omegadicarbonlmjden | |
CH442285A (de) | Verfahren zur Herstellung von Nitrosocyclohexan-Dimer | |
US3891663A (en) | Peroxy compounds and processes for their preparation | |
CH455787A (de) | Verfahren zur Herstellung von e-Caprolactam | |
DE2001331A1 (de) | Verfahren zur Herstellung von Ketoximen | |
DE2201899A1 (de) | Verfahren zur Herstellung von 2,2,6-Trichlorcyclohexanon und -Masse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180903 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210408 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07D 201/10 20060101AFI20211206BHEP |
|
INTG | Intention to grant announced |
Effective date: 20211222 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20220503 |