EP3387706A1 - Antenna and radiating element for antenna - Google Patents
Antenna and radiating element for antennaInfo
- Publication number
- EP3387706A1 EP3387706A1 EP16715555.5A EP16715555A EP3387706A1 EP 3387706 A1 EP3387706 A1 EP 3387706A1 EP 16715555 A EP16715555 A EP 16715555A EP 3387706 A1 EP3387706 A1 EP 3387706A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiating element
- lower plane
- plane
- radiating
- reflector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 150000003071 polychlorinated biphenyls Chemical class 0.000 claims 4
- ZMHWQAHZKUPENF-UHFFFAOYSA-N 1,2-dichloro-3-(4-chlorophenyl)benzene Chemical compound C1=CC(Cl)=CC=C1C1=CC=CC(Cl)=C1Cl ZMHWQAHZKUPENF-UHFFFAOYSA-N 0.000 description 10
- MTLMVEWEYZFYTH-UHFFFAOYSA-N 1,3,5-trichloro-2-phenylbenzene Chemical compound ClC1=CC(Cl)=CC(Cl)=C1C1=CC=CC=C1 MTLMVEWEYZFYTH-UHFFFAOYSA-N 0.000 description 7
- 239000004020 conductor Substances 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 229940000425 combination drug Drugs 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940020445 flector Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/064—Two dimensional planar arrays using horn or slot aerials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/08—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/40—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
- H01Q5/45—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
Definitions
- the present invention relates to a radiating element and an antenna including a plurality of such radiating elements.
- the antenna may be an antenna of a base station.
- AAS Active Antenna Systems
- the antenna-radio integration leads to highly complex systems and strongly influences the antenna form factor which is fundamental for commercial field deployment.
- one of the dominant limiting technological factors is the height of the antenna. Reducing the antenna height means to strongly simplify the overall deploying process of AAS and traditional passive antenna systems.
- the new radiating elements should be suitable to work in a multiband environment which means that the geometry must be transparent for the rest of the bands.
- the lower frequency band from 690 to 960 MHz
- the radiating elements of different frequency bands are combined in single antenna systems, the structure, in particular for feeding the radiating elements become complex and the overall height remains a problem.
- the objective of the present invention is to provide a radiating element and an antenna wherein the radiating element and the antenna overcome one or more of the above-mentioned problems of the prior art.
- a first aspect of the invention provides a radiating element comprising:
- a conductive element comprising:
- the radiating element is configured to be arranged on a reflector of an antenna by a support structure holding the lower plane in a predefined distance to the reflector.
- the conductive element having the lower plane and the sidewalls provide a cup-shaped form which allows to include further radiating elements for a higher frequency band inside the conductive element.
- the radiating element is usable for a multiple frequency band antenna.
- the capacity to ground is lowered which provides broadband characteristics of the radiating element. A relative bandwidth of more than 30% can be achieved.
- the radiating element further comprises the support structure configured to support the radiating element on the reflector with the predefined distance between the lower plane and the reflector.
- the support structure provides for the predetermined distance to the reflector.
- the support structure may include two or more distance holders, e.g. arranged at the corners of the radiating element.
- the distance holders can be made from a dielectric material or any other isolating material.
- the support structure may also include the one single piece preferably arranged in the center, and may also be comprise conductive material.
- the support structure may include one or more printed circuit boards which may, according to further preferred implementations, also include microstrip lines of a feeding system of the radiating element.
- the support structure is configured such that the predefined distance is at least 1 25 wherein Xc is the wavelength at the center frequency of the operating band of the conductive element. Simulation results show that the predefined distance of 25 to the ground plate (e.g. the reflector board), more preferably ⁇ /15, is suitable to maintain the broadband characteristics of the radiating element.
- the ground plate e.g. the reflector board
- the lower plane has a minimum area of 25% or preferably more than 40% of the total area of an upper plane of the radiating element at the upper edges of the sidewalls.
- a minimum for the lower plane of 25% of the area of the upper plane provides a suitable impedance along the slot in the lower plane.
- the feeding points for the slots can be arranged in a flat layer close to the lower plane.
- the slots further extend along the upper plane. With the slots extending in the upper plane, a shortcircuit of the slots is avoided.
- the radiating element has at least two electrical feeding points crossing the slots in the area of the lower plane, preferably in an area closer to the edges of the lower plane than to the center of the lower plane.
- Arranging the feeding points crossing the slots in the lower plane has the advantage that the feeding system can be provided in a flat plane which simplifies the construction of the feeding system.
- the feeding lines can be arranged on a flat PCB mounted e.g. on a bottom side of the lower plane of the conductive element.
- the feeding points are arranged closer to the edges of the lower plane than the center of the lower plan as the impedance along the slot increases when moving away from the center of the lower plane.
- the radiating element further comprises a first transmission line crossing the first slot to form a first electrical feeding point of the at least two electrical feeding points; and a second transmission line crossing the second slot to form a second electrical feeding point of the at least two electrical feeding points.
- the construction is easy to manufacture because the feeding points are provided by separated transmission lines which cross the slots and it is not necessary to make any soldering on the conductive element for building the feeding points.
- cable feeding can be used. The inner conductors of the cable are soldered to a small tab connected to one side of the slot and the outer conductor of the cable is soldered to the opposite side of the slot.
- the cable solution is more expensive because the soldering is difficult to be automated.
- the conductive element would need to be made of solderable material or plated to be solderable which increases the costs.
- the radiating element further comprises a printed circuit board, PCB, arranged at the lower plane, wherein the PCB includes a first microstrip line forming the first transmission line and a second microstrip line forming the second transmission line.
- the feeding system is arranged on a PCB which is mechanically connected to the lower plane.
- the PCB includes a ground plane on the opposing side of the microstrip lines, the ground plane being capacitively coupled to the lower plane.
- the radiating element is acting as a subreflector for a higher frequency radiating element inside the (cup-shaped) conductive element of the radiating element.
- the ground plane on the PCB can be used.
- the conductive element further comprises flaps extending from edges of the upper plane in a direction to the level of the lower plane, wherein the slots extend into the flaps. The flaps in the corners of the radiating element make the radiating element very compact, thereby reducing the shadow and interference of other bands when the radiating element is used in a multiband antenna configuration.
- the conductive element is made from a single piece, preferably a bended aluminum sheet.
- the radiating element can easily be manufactured as it includes only a single bent metal sheet.
- Aluminum is preferred due to low weight, cost efficiency, easy manufacturability, and good electrical properties.
- the lower plane has a central opening. The central opening of this implementation can be used for including the support structure of the feeding system inside the (cup-shaped) conductive element to support a further inner radiating element. Moreover, the opening may also be used for the support structure for the conductive element in order to keep the predetermined distance to the reflector.
- the radiating element further comprises an inner second radiating element inside the conductive element, wherein the conductive element is constructed to operate in a first frequency band while the inner radiating element inside the conductive element is constructed to operate in a second frequency band higher than the first frequency band.
- the higher frequency radiating element inside the lower frequency radiating element the total arrangement is optimally space saving.
- the low -band radiating element outside may also act as a reflector for the inner radiating element at the higher frequency.
- the inner radiating element includes a support structure that extends through the opening in the lower plane.
- the opening in the lower plane provides the advantage that the inner radiating element is mechan- ically supported and at the same time, the opening may also be used to pass through the feeding lines for the inner radiating element.
- the support structure of the inner radiating element includes at least one, preferably two crossed PCBs wherein the one or two PCBs includes feeding lines for the conductive element and/or for the inner radiating element.
- the two crossed PCBs have the advantage that they may provide at the same time feeding system for the outer lowband radiating element and for the inner high frequency radiating element.
- the inner radiating element comprises a further PCB arranged in a further predefined distance (in an opposite direction than the first predefine distance) from the lower plane and preferably parallel to the lower plan.
- the lower plane is typically arranged between the reflector and the further PCB of the inner radiator.
- the reflector, lower plan and further PCB are arranged parallel to each other.
- the inner radiating element has a dipole structure substantially in the same level of the upper plane or below the upper plane. Arranging the dipole structure of the inner radiating element in the same level as the upper plane or below the upper plane of the outer lowband radiating element provides the advantage of a minimum height over the reflector.
- the term "substantially” may be used to indicate that the respective layers do deviate no more than ⁇ 10 mm.
- a second aspect of the invention refers to an antenna for a base station including a reflector and multiple of the radiating elements of any of the previous implementations of the first aspect wherein the radiating elements are arranged on the reflector such that the lower planes of the conductive elements of the multiple radiating elements are supported in the predefined distance to the reflector.
- the advantage of the antenna is that it can be used in a multiple frequency band configuration with an ultra-broadband characteristic (relative bandwidth >30%) of a low frequency band and an ultra-low profile characteristic.
- the shape of the radiating element is suitable to fit a higher frequency radiating element inside while the feeding system is simplified.
- FIG. 1 shows a perspective view of a radiating element of a first embodiment of the invention.
- FIG. 2 shows a side elevation view of a radiating element of a second embodiment located on a reflector.
- FIG. 3 shows a side elevation view of a conductive element of a radiating element of
- FIG. 4 shows a perspective view of the conductive element of FIG. 3 indicating the evolution of the impedance along the slots.
- FIG. 5 shows a perspective view of an embodiment of a radiating element from the bottom side including a feeding system in form of PCBs.
- FIG. 6 shows a perspective view of a further embodiment of the invention forming a dual band radiating element.
- FIG. 7 shows a top view of an antenna of a further embodiment of the invention including radiating elements of FIG. 6.
- FIG. 1 shows a first embodiment of a radiating element according to the invention.
- the radiating element includes a conductive element 2 made from a bent metal sheet, in particular an aluminium sheet.
- the conductive element includes four slots 4 that are arranged every 90° in the conductive element.
- the slots are preferably fed 2 x 2 with the same phase and amplitude which in combination achieve dual linear polarization radiation as described below.
- a combination of only two inputs in two opposing slots would create one polarization and the com- bination with the other two opposing slots create the orthogonal polarization.
- other embodiments of the invention may also include only one polarization, i.e. only two slots.
- the conductive element is supported by a support structure, which, in this embodiment, includes four dielectric distance holders 6 configured to support the conductive element 2 on a surface of a reflector (not shown in FIG. 1) of an antenna configuration.
- the support structure is configured to hold the conductive element 2 in a certain distance from a reflector plate.
- FIG. 2 shows a second embodiment of a radiating element included in a reflector 10 to create an antenna wherein the conductive element 2 is similar to the conductive element 2 of the first embodiment. In this case, a single support is used to hold the radiating element on top of the reflector 10.
- the support structure can be formed by any isolating material which is configured to hold the radiating element in a certain distance to the reflector surface.
- the support structure ion Fig. 2 could also be used to feed the radiating element.
- the support structure could be a PCB or MID.
- a higher stability dielectric distance holders 6 as shown in Fig. 1 could be added to the embodiment shown in Fig. 2.
- the total height of the radiating element in this example from the reflector plate is only around 0.125 x ⁇ wherein ⁇ is the wavelength at the lowest operating frequency of the radiating element.
- a voltage standing wave ratio (VSWR) below 1.35 in a relative bandwidth of 32% can be achieved.
- FIG. 3 shows the conductive element 2 of the first and second embodiments in FIGs 1 and 2 as a single part.
- the conductive element 2 takes the form of a cup which allows to arrange a further radiating element inside the structure as described below in con- nection with FIG. 6.
- the radiating element will be fed across the slots 4.
- the impedance of the radiating element changes when shifting the feeding points along the slots 4. Moving the feeding points to the center of the radiating element, the impedance decreases reaching a short circuit value in the very beginning of the slot at the center. On the other hand, when moving the feeding points to the outer part of the radiating element closes to the edges of the lower plane 12, the impedance increases progressively.
- the radiating element is fed at a certain distance from the beginning of each slot 4 (and therefore also at a certain distance from the center of the lower plan 12).
- the four feeding points located in a common flat surface, i.e. in a plane parallel to the lower plane 12.
- the embodiments of the radiating element have a minimum area in the lower plane 12 with respect to the total area of the upper plane 14.
- the minimum value of 25% or preferably more than 40% is used for the area of lower plane 12 with respect to area of upper plane 14.
- the lower plane 12 of the radiating element In order to be able to feed the radiating elements in the lower plane 12 and to achieve ultra broadband characteristics, there is a certain distance provided between the lower plane 12 of the radiating element from the reflector 10. As the minimum area in the lower plane is 25% of the upper plane 14, there is a big conductive area close to the reflector 10 and therefore a strong capacity to ground. However, to achieve a broadband characteristic of the radiating element, this capacity should be lowered. Since the minimum area of the lower plane 12 is limited by 25%o, the capacity to ground is reduced by lifting up the radiating element over the reflector using a suitable support structure.
- a minimum distance between the lower plan 12 and the reflector 10 of ⁇ ⁇ /25 or preferably J15 is used in the embodiments of the invention wherein ⁇ is a wavelength at the center frequency of the operating frequency band of the ra- diating element.
- the feeding system includes three printed circuit boards (PCBs) arranged together.
- PCBs printed circuit boards
- Two crossed PCBs 20 act as grounding, mechanical support and contain the feeding lines for the radiating element.
- a third PCB 22 is arranged orthogonal to crossed PCBs 20 and attached to but DC isolated from the lower plane 12 of the conductive element.
- the third PCB 22 has four microstrip lines 24.
- Each of the microstrip lines 24 crosses and feeds one of the slots 4 above.
- each the microstrip line 24 crosses its slot 4 in an outer region of the slots 4 in the lower plane 12.
- the microstrip lines cross the slots 4 in the second outer half of the slots in the lower layer 12.
- the cross sections between the microstrip lines 24 and the slots 4 define the feeding points as mentioned above in the context of FIG. 4.
- the microstrip lines 24 on the third PCB 22 are connected to microstrip lines 26 on the two crossed PCBs 20.
- the microstrip lines 26 of two opposing slots 4 are connected together and provide an electrical terminal.
- two opposing slots 4 can be fed by an electrical signal with the same amplitude and the same phase.
- the same arrangement is provided on the second of the two crossed PCBs 20 in a symmetrical manner.
- the crossed PCBs 20 extend through a central opening 18 in the lower plane 12 of the conductive element 2. As shown in FIG.
- the two crossed PCBs 20 can carry another PCB 30 which is arranged orthogonally to the crossed PCBs 20.
- the PCB 30 forms a further inner radiating element which is arranged inside the cup-shaped conductive element 2.
- the PCB 30 is arranged in substantially the same layer as the upper plane 14 of the conductive element.
- the PCB 30 includes conductive portions composing a higher frequency radiating element which is fed through the microstrip lines 32 which are also provided on the two crossed PCBs 20.
- the PCB 30 acts as a radiating element in a frequency band which, due to the dimension of the conductive elements on the PCB 30, is higher than the frequency band of the conductive element 2.
- the conductive element 2 may be operated in a low band from 690 to 960 MHz, while the inner radiating element 30 may be operated in an intermediate band from 1427 to 2400 MHz. Further details of the inner radiating element are described in the parallel pending European patent application of the same applicant with the title "Ultra Broad Band Dual Polarized Radiating Element for a Base Station Antenna”.
- the higher frequency radiating element can be of any kind: dipole, patch, lock periodic antenna, etc.
- the lower frequency radiating element i.e. the conductive element 2
- the PCB 22 is used to ground the higher fre- quency radiating element to its subreflector.
- the PCB 22 includes a conductive ground layer which is grounded and which is arranged opposing the layer of the microstrip lines 24. Furthermore the ground layer of the PCB 22 is capacitive coupled to the lower plane 12.
- the protective cover on the ground layer of PCB 22 can serves as a dielectric between the lower plane 12 and the ground layer to avoid galvanic contact between the ground layer of PCB 22 and the lower plane 12. Nevertheless an isolating sheet can be provided between PCB 22 and the lower plane 12 of the conductive element 2. The reason why the PCB 22 is DC isolated/capacitively coupled to the lower plane 12 is to avoid intermodulation products that are generated when having a non-stable metal junction.
- FIG. 7 shows an embodiment of an antenna including a multi-band arrangement of radiating elements.
- the multi-band arrangement of the antenna includes conductive elements 2 having an inner radiating elements 30 (in from of PCB radiator) inside the (cup-shaped) conductive element 2 as described in FIG. 6. Multiple of these radiating elements are arranged on a common reflector 10. Moreover, between the conductive elements 2, the antenna includes further radiating ele- ments 30' which are constructed similar to the inner radiating elements 30 as described before. Moreover, further radiating elements 40 operating in a high frequency band from 1710 to 2690 MHz are arranged also on the reflector 10 preferably along and parallel to one or two sides of the low band and intermediate band radiating elements. It is obvious that in the multiband architecture as described in FIG. 7, the available space is very limited.
- the size of the radiating elements is minimized.
- the conductive elements 2 further include added flaps 19 as shown in FIGs 1 to 6. By adding the flaps 19, the electrical length of the radiating element is increased while keeping small physical dimensions and minimizing the shadow that is created in the rest of the bands.
- the flaps 19 are arranged on the edges of the upper plane 14 of the conductive element 2 and bent downwardly in a direction perpendicular to the upper plane 14. As shown in FIGs 1 to 4, the slots 4 extent through the flaps 19.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Aerials With Secondary Devices (AREA)
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
Claims
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2016/057963 WO2017178037A1 (en) | 2016-04-12 | 2016-04-12 | Antenna and radiating element for antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3387706A1 true EP3387706A1 (en) | 2018-10-17 |
EP3387706B1 EP3387706B1 (en) | 2024-01-24 |
Family
ID=55701992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16715555.5A Active EP3387706B1 (en) | 2016-04-12 | 2016-04-12 | Antenna and radiating element for antenna |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3387706B1 (en) |
CN (1) | CN109690871B (en) |
BR (1) | BR112018067753B1 (en) |
ES (1) | ES2973634T3 (en) |
WO (1) | WO2017178037A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019072390A1 (en) * | 2017-10-12 | 2019-04-18 | Huawei Technologies Co., Ltd. | Sub-reflector and feeding device for a dipole |
WO2019072391A1 (en) | 2017-10-12 | 2019-04-18 | Huawei Technologies Co., Ltd. | Ultra compact radiating element |
CN107834183B (en) * | 2017-10-30 | 2023-12-05 | 华南理工大学 | A miniaturized dual-band dual-polarized filter antenna with high isolation |
EP3794674A1 (en) * | 2018-06-29 | 2021-03-24 | Nokia Shanghai Bell Co., Ltd. | Multiband antenna structure |
EP3794675B1 (en) * | 2018-06-29 | 2024-01-24 | Nokia Shanghai Bell Co., Ltd. | Multiband antenna structure |
CN113140893A (en) | 2020-01-20 | 2021-07-20 | 康普技术有限责任公司 | Compact broadband dual polarized radiating element for base station antenna applications |
EP3852193A1 (en) * | 2020-01-20 | 2021-07-21 | CommScope Technologies LLC | Compact wideband dual-polarized radiating elements for base station antenna applications |
CN116438716A (en) * | 2020-11-06 | 2023-07-14 | 华为技术有限公司 | Antenna element and antenna array comprising such an antenna element |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6608600B2 (en) * | 2001-05-03 | 2003-08-19 | Radiovector U.S.A., Llc | Single piece element for a dual polarized antenna |
EP2073309B1 (en) * | 2007-12-21 | 2015-02-25 | Alcatel Lucent | Dual polarised radiating element for cellular base station antennas |
CN101662068A (en) * | 2008-08-29 | 2010-03-03 | 华为技术有限公司 | Decoupling assembly, antenna module and antenna array |
KR101094510B1 (en) * | 2009-10-16 | 2011-12-19 | 주식회사 에이스테크놀로지 | An antenna in which the choke member surrounding the radiation element is arranged spaced apart from the reflector |
CN102104203B (en) * | 2009-12-21 | 2014-06-11 | 摩比天线技术(深圳)有限公司 | Multi-band dual-polarized antenna oscillator and antenna system thereof |
CN102723577B (en) * | 2012-05-18 | 2014-08-13 | 京信通信系统(中国)有限公司 | Wide-band annular dual polarized radiating element and array antenna |
US9083086B2 (en) * | 2012-09-12 | 2015-07-14 | City University Of Hong Kong | High gain and wideband complementary antenna |
US20150229026A1 (en) * | 2012-10-15 | 2015-08-13 | P-Wave Holdings, Llc | Antenna element and devices thereof |
WO2015157622A1 (en) * | 2014-04-11 | 2015-10-15 | CommScope Technologies, LLC | Method of eliminating resonances in multiband radiating arrays |
-
2016
- 2016-04-12 ES ES16715555T patent/ES2973634T3/en active Active
- 2016-04-12 BR BR112018067753-1A patent/BR112018067753B1/en active IP Right Grant
- 2016-04-12 CN CN201680084533.XA patent/CN109690871B/en active Active
- 2016-04-12 EP EP16715555.5A patent/EP3387706B1/en active Active
- 2016-04-12 WO PCT/EP2016/057963 patent/WO2017178037A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN109690871A (en) | 2019-04-26 |
EP3387706B1 (en) | 2024-01-24 |
WO2017178037A1 (en) | 2017-10-19 |
ES2973634T3 (en) | 2024-06-21 |
BR112018067753A2 (en) | 2019-01-15 |
CN109690871B (en) | 2021-02-12 |
BR112018067753B1 (en) | 2022-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3387706B1 (en) | Antenna and radiating element for antenna | |
CA3063197C (en) | Dual-polarized radiating element and antenna | |
US10892559B2 (en) | Dipole antenna | |
EP1096602B1 (en) | Planar antenna | |
TWI489690B (en) | Multi-band planar inverted-f (pifa) antennas and systems with improved isolation | |
CN109149131B (en) | Dipole antenna and associated multiband antenna | |
KR100771775B1 (en) | Vertical Array Internal Antenna | |
EP3232504B1 (en) | Ultra broad band dual polarized radiating element for a base station antenna | |
US20180034165A1 (en) | Miniaturized dual-polarized base station antenna | |
US10965018B2 (en) | Antenna device | |
CN109478712B (en) | Radiating element, system comprising a radiating element and method for operating a radiating element or system | |
US8654013B2 (en) | Multi-band antenna | |
CN1886863A (en) | Internal multiband antenna | |
US9142884B2 (en) | Antenna device | |
WO2005109567A1 (en) | Low profile antenna | |
US12199345B2 (en) | Base station antennas having compact dual-polarized box dipole radiating elements therein that support high band cloaking | |
US7542002B1 (en) | Wideband monopole antenna | |
US11050151B2 (en) | Multi-band antenna | |
EP3280006A1 (en) | A dual polarized antenna | |
US20190044233A1 (en) | Antenna | |
EP3918671B1 (en) | Dual-band antenna with notched cross-polarization suppression | |
CN117673705A (en) | Antenna unit and communication device | |
KR20070071816A (en) | Patch antenna | |
US20250055189A1 (en) | Compact dual polarity radiator for a dense array | |
US20240421494A1 (en) | Base station antennas having compact dual-polarized box dipole radiating elements therein that support high band cloaking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180712 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210520 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230302 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20230809 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016085460 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240229 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240326 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2973634 Country of ref document: ES Kind code of ref document: T3 Effective date: 20240621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240306 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240425 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1652912 Country of ref document: AT Kind code of ref document: T Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240508 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240524 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240425 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240524 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016085460 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240412 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20240430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240412 |
|
26N | No opposition filed |
Effective date: 20241025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240430 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240430 |