[go: up one dir, main page]

EP3320122B1 - Messinglegierung - Google Patents

Messinglegierung Download PDF

Info

Publication number
EP3320122B1
EP3320122B1 EP16736855.4A EP16736855A EP3320122B1 EP 3320122 B1 EP3320122 B1 EP 3320122B1 EP 16736855 A EP16736855 A EP 16736855A EP 3320122 B1 EP3320122 B1 EP 3320122B1
Authority
EP
European Patent Office
Prior art keywords
proportion
brass alloy
alloy
weight
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16736855.4A
Other languages
English (en)
French (fr)
Other versions
EP3320122A1 (de
Inventor
Karl Zeiger
Benjamin Cappi
Helge Lehmann
Daniel Lulinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aurubis Stolberg GmbH and Co KG
Original Assignee
Aurubis Stolberg GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aurubis Stolberg GmbH and Co KG filed Critical Aurubis Stolberg GmbH and Co KG
Priority to RS20201316A priority Critical patent/RS61025B1/sr
Publication of EP3320122A1 publication Critical patent/EP3320122A1/de
Application granted granted Critical
Publication of EP3320122B1 publication Critical patent/EP3320122B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Definitions

  • the invention relates to a brass alloy with the features of the preamble of claim 1.
  • Corresponding brass alloys are often manufactured as semi-finished products in strips, wire form, rods, sheets or plates and then further processed into end products. Further processing is often carried out by using machining processes.
  • lead When cutting brass, it has proven advantageous in the past to add up to four percent by weight of lead to the alloy.
  • the lead has a positive effect as a chip breaker, extends tool life and reduces cutting forces.
  • Important material parameters, such as strength and corrosion resistance, are not negatively influenced by the addition of lead.
  • the object of the present invention is therefore to create an alternative brass alloy which has good machinability, adequate mechanical properties and causes the lowest possible wear on the cutting tools used.
  • the brass alloy have an indium content of 0.005 to 1.0 percent by weight and an addition of at least one of the components FE, Sn, Ni or Mn of 0.01 totaling 3.0 percent by weight and no addition of bismuth .
  • indium improves the chip-breaking properties of the brass alloy can be influenced, so that the workability of the brass alloy can be improved.
  • the indium practically replaces the lead previously used while achieving the same advantages, so that the lead content in the brass alloy can be reduced to zero in extreme cases, and the brass alloy can still be machined very well.
  • the indium content is preferably 0.005 to 1.0 percent by weight, whereby the advantages to be achieved can already be achieved.
  • the indium content can be less than 0.25 percent by weight, so that favorable structural properties can already be achieved.
  • the indium content should be chosen to be rather lower, since indium is a comparatively expensive element. In this way, the indium content should be selected as low as possible and the favorable structural properties should nevertheless be achieved, for which an indium content of at least 0.05 and a maximum of 0.25 percent by weight has proven to be useful.
  • the brass alloy also contains a proportion of zinc of 36.0 to 46 percent by weight and the proportion of copper is between 54 and 64 percent by weight.
  • the alloy preferably has a mixed crystal with portions of an alpha structure or an alpha / beta structure.
  • a brass alloy with a 100% alpha structure is also used conceivable if the zinc content is close to or equal to 36 percent by weight.
  • a mixed structure of alpha- and beta-structure is preferred, as a result of which in particular good machinability can be achieved.
  • the copper content can preferably be at most 60 percent by weight, and the zinc content can preferably be between 36 and 40 percent by weight, as a result of which a structure which is particularly favorable in terms of machinability can be achieved.
  • a mixed structure with particularly good properties can be achieved in that the proportion by weight of the beta structure is 20 to 80 percent by weight, preferably 50 percent by weight.
  • At least one additional alloy component with a proportion of at most 3.0 percent by weight can be provided, the sum of the proportions of all additional alloy components preferably being at least 0.2 percent by weight.
  • the amount of copper is preferably 54 to 64.0 percent by weight, and the amount of zinc is preferably about 42 percent by weight.
  • the idea is based on the approaches essential to the invention mentioned below in order to achieve the desired material properties: a) The addition of indium has a positive effect on the chip-breaking properties. b) The microstructure is influenced by the proposed copper / zinc ratio in such a way that an alpha / beta crystal mixture is present in which the proportion of beta phase is around 20 to 80%. Since the beta phase shows brittle behavior under normal machining conditions, its increased proportion leads to a more favorable machining behavior, c) Further alloying elements serve to stabilize the alpha and beta phase, especially during the manufacturing process of the semi-finished product. d) In addition, the machining behavior and the mechanical properties are positively influenced by the targeted addition of further elements that form precipitates.
  • a fourth advantage can be achieved by influencing the arrangement or orientation of the two phases alpha and beta and / or the precipitates in order to adjust the processing properties in a targeted manner (e.g. by a combination of forming and heat treatment).
  • the chip-breaking properties are consciously achieved by the alloy additives and in particular by the indium, so that the addition of bismuth is deliberately not provided. However, it cannot be ruled out that small amounts of bismuth get into the alloy due to contaminated scrap, but this should not be understood as a deliberate addition of bismuth. Nevertheless, the solution according to the invention offers the advantage that the chip-breaking properties are now achieved with alloy additives instead of the constituents lead and bismuth which are to be avoided, which are far less harmful in terms of possible health damage.
  • the precipitates contained in the structure support the machining behavior positively.
  • the alpha structure of the mixed crystal forms a surface-centered cubic structure.
  • the beta mixed crystal structure forms a body-centered cubic structure. It proves to be particularly advantageous if the proportion of the beta structure is at least 50%. This is particularly supported by the fact that there is a zinc content of about 42 percent by weight.
  • the elements iron and nickel have a regulative influence on the grain growth of the alpha and beta phase, with nickel additionally promoting the stabilization of the alpha structure. Excessive proportions lead to the alloy becoming brittle.
  • the elements tin, silicon, manganese and iron stabilize and increase the proportion of the beta phase.
  • Phosphorus can be added to improve corrosion resistance.
  • a maximum proportion of phosphorus in the range of 0.1 percent by weight is intended.
  • the proportion of copper is 54 to 64.0 percent by weight.
  • a first additional alloy component is defined in that the proportion of iron is 0.05 to 0.5 percent by weight, preferably 0.2 to 0.3 percent by weight. Iron is used to control the grain size of the alpha and beta phases. Contents less than 0.01% do not have a sufficient effect. Shares greater than 0.5% would lead to very large iron precipitates, which have a negative effect on the mechanical properties of the alloy.
  • a second additional alloy component is defined by the fact that the proportion of nickel is 0.05 to 0.5 percent by weight, preferably 0.2 to 0.3 percent by weight, which advantageously stabilizes the alpha phase.
  • a third additional alloy component is defined in that the proportion of silicon is 0.01 to 0.20 percent by weight, preferably 0.03 to 0.08 percent by weight. Silicon stabilizes the beta phase and, together with other elements, forms fine precipitates, which have a positive effect on the machining behavior and are responsible for grain refinement.
  • a fourth additional alloy component is defined in that the proportion of manganese is 0.01 to 0.20 percent by weight, preferably 0.03 to 0.08 percent by weight. Manganese stabilizes the beta phase and, together with other elements, forms fine precipitates, which have a positive effect on the machining behavior and are responsible for grain refinement, similar to the proposed additional alloy component silicon.
  • a fifth additional alloy component is defined in that the proportion of tin is 0.05 to 0.5 percent by weight, preferably 0.2 to 0.3 percent by weight.
  • a sixth additional alloy component is defined in that the proportion of Cr is 0.01 to 0.2 percent by weight.
  • calcium and / or magnesium can also be provided in a proportion of 0.05 to 1.0 percent by weight.
  • Phosphorus leads to an improved corrosion resistance of the alloy, in particular P also counteracts dezincification.
  • the proportion of elements that are not copper, zinc, indium, iron, nickel, silicon, manganese, antimony, calcium, cadmium, selenium, magnesium, lead or tin is less than 0, 2 percent by weight.
  • a preferred embodiment of the alloy preferably has the following percentages by weight with regard to its composition. Copper in the range from 54% to 64%, zinc in the range from 36% to 40.5%, iron in the range from 0.1% to 0.5%, nickel in the range from 0.1% to 0.5%, Silicon in the range from 0.01% to 0.2%, manganese in the range from 0.01% to 0.2%, antimony, calcium, cadmium, magnesium and selenium in the range up to 0.1%, and tin in the range from 0.1% to 0.5% and lead with a proportion of 0.1% or less. The proportion of indium is preferably 0.005 to 0.5%. The lead content of the alloy is, also due to the use of scrap in the production of such alloys, max. 0.1%.
  • proportions of copper and / or zinc are optionally reduced.
  • the proportion of copper is 57.0% to 57.5%
  • the proportion of zinc is 41.9% to 42.5%
  • the proportion of nickel is 0.2% to 0.3%
  • the proportion of iron 0.2% to 0.3% is 0.2% to 0.3%
  • the proportion of silicon 0.03% to 0.08% is 0.2% to 0.3%
  • the proportion of manganese 0.03% to 0.08% is 0.mony, calcium, cadmium, magnesium and selenium in the Range up to 0.1%
  • the proportion of tin 0.2% to 0.3% and the proportion of Lead and indium each less than 0.1%.
  • the sum of the weight proportions of all further possible constituents is at most 0.2%.
  • the proportion of copper is 54 to 58%, zinc 41 to 45%, nickel 0.2 to 0.3%, iron 0.2 to 0.3%, silicon 0.03 to 0.06% , Manganese 0.03 to 0.08%, calcium 0.3 to 0.5%, magnesium 0.6 to 0.9%, antimony ⁇ 0.1%, cadmium ⁇ 0.1%, selenium ⁇ 0.1 %, the sum of lead and indium ⁇ 0.1%, other components ⁇ 0.2%.
  • composition it is basically possible to add only some of the listed elements to the alloy. According to a particularly preferred embodiment, however, it is contemplated to add all of the elements listed above to the alloy in combination with one another in a proportion by weight within the respectively defined intervals.
  • the lead content is in an interval from 0.005% to 0.1%.
  • the indium content should also be between 0.005% and 0.5%. Due to the relationship according to the invention between the alpha mixed crystal and the beta mixed crystal, the desired material properties can be achieved even with reduced lead or indium contents.
  • the alpha mixed crystal leads to a relatively good deformability of the alloy and gives it tough properties.
  • the beta mixed crystal is relatively difficult to deform and is brittle. These properties are desirable for good machinability. Due to the relation according to the invention of the alpha and beta components thus imparting sufficient toughness to the alloy to aid ductility and sufficient brittleness to aid machinability.
  • a preferred production process can be carried out in such a way that hot forming (for example hot rolling or extrusion) is carried out in a temperature range from 600 to 750 ° C. first.
  • hot forming for example hot rolling or extrusion
  • an intermediate annealing is carried out after a first forming step.
  • an intermediate annealing at a temperature of about 400 to 600 ° C. is carried out.
  • the intermediate annealing leads to recrystallization and thus to a new grain formation. This supports a fine-grain microstructure.
  • the brass alloy from copper and zinc, with a lead content of 0.005 to 0.1%, an indium content of 0.005 to 0.5% and at least one further alloy component.
  • This additional alloy component influences the microstructure of the mixed crystal in order to achieve the required material properties depending on the application.
  • the following alloy is produced in terms of weight percentages.
  • Another preferred embodiment is provided in terms of weight percent by the following alloy.
  • the brass alloy according to the invention is used to manufacture so-called semi-finished products that are subjected to at least one further processing step.
  • the semi-finished products are typically produced by a casting process. Typical embodiments of such semi-finished products are strips, wires, profiles and / or rods.
  • the further processing step comprises at least one machining process.
  • the further processing step can also comprise a combination of shaping and machining.
  • the shaping can be carried out both at room temperature and at an elevated temperature. At the elevated temperatures, a warm temperature of up to about 450 ° C and a hot forming temperature in a range of 600 ° C to 850 ° C can be distinguished.
  • the chip breaking can be favorably influenced, in particular, by a specific ratio of the alloy components iron and tin to one another, since the ratio of these two alloy components to one another particularly favors the formation of the precipitates.
  • a favorable ratio of iron to tin would be e.g. 1.0 to 1.2.
  • the formation of the precipitates or the grain refinement and thus the chip breaking can be favorably influenced if the brass alloy contains chromium in an amount of 0.01 to 0.2 percent by weight and / or calcium and / or magnesium in an amount of 0.05 each up to 1.0 weight percent is added.
  • the proportion of bismuth is 0.0 percent, ie the brass alloy is free of bismuth.
  • the properties that favor chip breaking are achieved solely through the indium content and the other alloy components such as iron, tin, nickel, manganese, magnesium, calcium or chromium.
  • bismuth should also be avoided as far as possible due to properties that are disadvantageous to health, or at least should only be used in the smallest possible amount.
  • the proportion of bismuth in the brass alloy according to the invention is already limited to a maximum value of 0.1 percent by weight, whereby it is desirable to keep the proportion of bismuth as low as possible.
  • bismuth is not actively added to the brass alloy according to the invention, but instead it is only accepted if it cannot be avoided for technical reasons. However, since it can have positive effects on the material properties of the brass alloy despite its health-damaging properties, very small quantities can also be accepted.
  • the structural properties in particular the formation of the needle-like beta phase, by pressing or drawing, or at least to reinforce the formation of the beta phase or to shape it in a desired direction.
  • the development of a more globular morphology of the beta phase in the mixed crystal can be supported by a combination of the processing steps pressing, annealing and drawing in this order or pressing, drawing, annealing, drawing, whereby the size of the grains and the structural components of the beta phase are determined by the selected Process temperature can be set during annealing, pressing or drawing. The higher the process temperature, the larger the grains and the coarser the structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Contacts (AREA)

Description

  • Die Erfindung betrifft eine Messinglegierung mit den Merkmalen des Oberbegriffs von Anspruch 1.
  • Entsprechende Messinglegierungen werden als Halbfertigprodukte häufig in Bändern, Drahtform, Stangen, Blechen oder Platten hergestellt und anschließend zu Endprodukten weiterverarbeitet. Die Weiterverarbeitung erfolgt vielfach durch Anwendung von Zerspanungsvorgängen.
  • Bei der Zerspanung von Messing hat es sich in der Vergangenheit als vorteilhaft erwiesen, der Legierung Blei in einem Umfang von bis zu vier Gewichtsprozent zuzusetzen. Das Blei hat eine positive Wirkung als Spanbrecher, verlängert die Werkzeugstandzeiten und vermindert die Zerspanungskräfte. Wichtige Materialparameter, wie Festigkeit und Korrosionsbeständigkeit, werden durch einen Bleizusatz nicht negativ beeinflusst.
  • Trotz der positiven Eigenschaften des Bleis gibt es Bestrebungen, unter anderem gestützt durch die EG-Richtlinie 2011/65/EU (RoHS II) und deren Vorläufer 2002/95/EG (RoHS I), Richtlinie 2000/53/EG über Altfahrzeuge und Richtlinie 2002/96/EG über Elektro- und Elektronik-Altgeräte, das Blei als Zerspanungselement in Messing zu ersetzen.
  • Die bislang durchgeführten Untersuchungen mit alternativen Legierungsvarianten haben jedoch nicht zu Werkstoffen geführt, die die gestellten Anforderungen erfüllen. Diese sind entweder deutlich teurer als bleihaltige Messinglegierungen, führen zu einem übermäßig hohen Werkzeugverschleiß oder beinhalten ebenfalls umweltbedenkliche Legierungselemente. Eine Messinglegierung mit guter Zerspanbarkeit wird beispielsweise in WO2011/020468 offenbart.
  • Bei der Herstellung von Messinglegierungen wird angestrebt, sowohl eine gute Zerspanbarkeit als auch eine gute Verformbarkeit zu erreichen. Eine gleichzeitige optimale Erfüllung beider Anforderungen erweist sich als schwierig, da in der Regel alle Maßnahmen, die eine gewünschte Eigenschaft positiv unterstützen, zu einer Verschlechterung der zweiten Eigenschaft führen. Ein Kompromiss wird typischerweise derart gewählt, dass eine hohe Festigkeit bei gleichzeitig ausreichendem Form-änderungsvermögen vorgegeben wird.
  • Aufgabe der vorliegenden Erfindung ist es daher, eine alternative Messinglegierung zu schaffen, welche eine gute Zerspanbarkeit, hinreichende mechanische Eigenschaften aufweist und einen möglichst geringen Verschleiß an den eingesetzten Zerspanungswerkzeugen bewirkt.
  • Erfindungsgemäß wird zur Lösung der Aufgabe eine Messinglegierung mit den Merkmalen des Anspruchs 1 vorgeschlagen. Weitere bevorzugte Ausführungsformen der Erfindung sind den Unteransprüchen, den Figuren und der zugehörigen Beschreibung zu entnehmen.
  • Gemäß dem Grundgedanken der Erfindung wird vorgeschlagen, dass die Messinglegierung einen Indiumgehalt von 0,005 bis 1,0 Gewichtsprozent und eine Zugabe mindestens einer der Komponenten FE, Sn, Ni oder Mn von 0,01 von zusammen 3,0 Gewichtsprozent und keine Zugabe von Wismut aufweist.
  • Es hat sich herausgestellt, dass durch die Zugabe von Indium die spanbrechenden Eigenschaften der Messinglegierung positiv beeinflusst werden können, so dass die Verarbeitbarkeit der Messinglegierung verbessert werden kann. Das Indium ersetzt praktisch das bisher verwendete Blei unter Erzielung derselben Vorteile, so dass der Bleigehalt in der Messinglegierung im Extremfall auf Null reduziert werden kann, und die Messinglegierung dennoch sehr gut spanend bearbeitet werden kann.
  • Die durch die Zugabe von Indium erzielbaren Eigenschaften sind insbesondere:
    • eine gute Zerspanbarkeit,
    • eine hohe Festigkeit aber noch gute Duktilität,
    • eine sehr gute Warm- und ausreichende Kaltumformbarkeit
    • eine ausreichende Korrosionsbeständigkeit.
  • Dabei beträgt der Indiumgehalt bevorzugt 0,005 bis 1,0 Gewichtsprozent, wodurch die zu erzielenden Vorteile bereits erreicht werden können. Insbesondere kann der Indiumgehalt kleiner als 0,25 Gewichtsprozent sein, wodurch bereits günstige Gefügeeigenschaften erzielt werden können. Im Allgemeinen sollte der Indiumgehalt eher geringer gewählt werden, da Indium ein vergleichsweise teures Element ist. Damit sollte der Indiumgehalt so gering wie möglich gewählt werden, und die günstigen Gefügeeigenschaften dennoch erreicht werden, wozu sich ein Indiumgehalt von wenigstens 0,05 und maximal 0,25 Gewichtsprozent als sinnvoll herausgestellt hat.
  • Weiter enthält die Messinglegierung einen Anteil an Zink von 36,0 bis 46 Gewichtsprozent und der Anteil von Kupfer beträgt zwischen 54 und 64 Gewichtsprozent.
  • Ferner weist die Legierung bevorzugt einen Mischkristall mit Anteilen eines alpha-Gefüges oder alpha/beta-Gefüges auf. Im Extremfall ist dabei auch eine Messinglegierung mit 100 % alpha-Gefüge denkbar, wenn der Zinkanteil nahe oder gleich 36 Gewichtsprozent ist. Bevorzugt ist jedoch ein Mischgefüge aus alpha- und beta-Gefüge, wodurch insbesondere eine gute Zerspanbarkeit erreicht werden kann. Insbesondere kann der Kupferanteil bevorzugt höchstens 60 Gewichtsprozent betragen, und der Zinkanteil kann bevorzugt zwischen 36 und 40 Gewichtsprozent betragen, wodurch ein hinsichtlich der Zerspanbarkeit besonders günstiges Gefüge erzielt werden kann.
  • Dabei kann ein Mischgefüge mit besonders guten Eigenschaften verwirklicht werden, indem der Gewichtsanteil des beta-Gefüges 20 bis 80 Gewichtsprozent, vorzugsweise 50 Gewichtsprozent, beträgt.
  • Außerdem kann mindestens eine zusätzliche Legierungskomponente mit einem Anteil von höchstens 3,0 Gewichtsprozent vorgesehen sein, wobei die Summe der Anteile aller zusätzlichen Legierungskomponenten bevorzugt mindestens 0,2 Gewichtsprozent beträgt.
  • Der Anteil an Kupfer beträgt vorzugsweise 54 bis 64,0 Gewichtsprozent, und der Anteil an Zink beträgt bevorzugt etwa 42 Gewichtsprozent.
  • Der Idee liegen die im Folgenden genannten erfindungswesentlichen Ansätze zugrunde, um die gewünschten Werkstoffeigenschaften zu erzielen: a) Durch die Zugabe von Indium werden die spanbrechenden Eigenschaften positiv beeinflusst. b) Die Gefügestruktur wird durch das vorgeschlagene Kupfer/Zink-Verhältnis derart beeinflusst, dass ein alpha/beta-Kristallgemisch vorliegt, in dem der Anteil an beta-Phase etwa 20 bis 80 % beträgt. Da die beta-Phase unter normalen Zerspanungsbedingungen ein sprödes Verhalten zeigt, führt ihr erhöhter Anteil zu einem günstigeren Zerspanungsverhalten, c) Weitere Legierungselemente dienen zur Stabilisierung der alpha- und der beta-Phase, insbesondere während des Fertigungsprozesses des Halbzeuges. d) Darüber hinaus werden das Zerspanungsverhalten sowie die mechanischen Eigenschaften durch die gezielte Zugabe weiterer Ausscheidungen bildender Elemente positiv beeinflusst. Zum einen wird durch Ausscheidungen ein kurz brechender Span begünstigt, zum anderen wird eine Kornfeinung bewirkt, wodurch eine verbesserte Duktilität bei hohen Festigkeiten erzielt wird. e) Ein vierter Vorteil kann erreicht werden durch die Beeinflussung der Anordnung bzw. Orientierung der beiden Phasen alpha und beta und/oder der Ausscheidungen, um so gezielt die Verarbeitungseigenschaften einzustellen (z.B. durch eine Kombination aus Umformung und Wärmebehandlung). Dabei werden die spanbrechenden Eigenschaften bewusst durch die Legierungszusätze und insbesondere durch das Indium erreicht, so dass eine Zugabe von Wismut bewusst nicht vorgesehen ist. Es ist jedoch nicht auszuschließen, dass aufgrund von verunreinigtem Schrott Kleinstmengen von Wismut in die Legierung gelangen, was aber nicht unter einer bewussten Zugabe von Wismut verstanden werden soll. Trotzdem bietet die erfindungsgemäße Lösung den Vorteil, dass die spanbrechenden Eigenschaften statt mit den zu vermeidenden Bestandteilen Blei und Wismut nunmehr mit Legierungszusätzen erreicht werden, welche hinsichtlich möglicher Gesundheitsschäden weitaus unbedenklicher sind.
  • Die im Gefüge enthaltenen Ausscheidungen unterstützen das Zerspanungsverhalten positiv.
  • Das alpha-Gefüge des Mischkristalls bildet eine kubischflächenzentrierte Raumstruktur aus. Das beta-Mischkristallgefüge bildet hingegen eine kubisch-raumzentrierte Struktur aus. Als besonders vorteilhaft erweist es sich, wenn der Anteil des beta-Gefüges mindestens 50 % beträgt. Dies wird insbesondere dadurch unterstützt, dass ein Zinkanteil von etwa 42 Gewichtsprozent vorliegt.
  • Die Elemente Eisen und Nickel haben einen regulativen Einfluss auf das Kornwachstum der alpha- und beta-Phase, wobei Nickel zusätzlich die Stabilisierung der alpha-Struktur fördert. Zu hohe Anteile führen zu einer Versprödung der Legierung.
  • Die Elemente Zinn, Silizium, Mangan und Eisen stabilisieren und erhöhen den Anteil der beta-Phase.
  • Zur Verbesserung der Korrosionsbeständigkeit kann die Zugabe von Phosphor vorgesehen werden. Insbesondere ist an einen maximalen Anteil von Phosphor im Bereich von 0,1 Gewichtsprozent gedacht. Gemäß einer typischen Legierungszusammensetzung ist vorgesehen, dass der Anteil an Kupfer 54 bis 64,0 Gewichtsprozent beträgt.
  • Eine erste zusätzliche Legierungskomponente wird dadurch definiert, dass der Anteil an Eisen 0,05 bis 0,5 Gewichtsprozent, vorzugsweise 0,2 bis 0,3 Gewichtsprozent, beträgt. Eisen dient zur Steuerung der Korngröße der alpha- und beta-Phasen. Gehalte kleiner 0,01 % haben keine ausreichende Wirkung. Anteile größer 0,5 % würden zu sehr großen Eisenausscheidungen führen, die negativ auf die mechanischen Eigenschaften der Legierung wirken.
  • Eine zweite zusätzliche Legierungskomponente ist dadurch definiert, dass der Anteil an Nickel 0,05 bis 0,5 Gewichtsprozent, vorzugsweise 0,2 bis 0,3 Gewichtsprozent, beträgt, welcher die alpha-Phase vorteilhaft stabilisiert.
  • Eine dritte zusätzliche Legierungskomponente ist dadurch definiert, dass der Anteil an Silizium 0,01 bis 0,20 Gewichtsprozent, vorzugsweise 0,03 bis 0,08 Gewichtsprozent, beträgt. Silizium stabilisiert die beta-Phase und bildet gemeinsam mit anderen Elementen feine Ausscheidungen, welche sich positiv auf das Zerspanungsverhalten auswirken und für eine Kornfeinung verantwortlich sind.
  • Eine vierte zusätzliche Legierungskomponente ist dadurch definiert, dass der Anteil an Mangan 0,01 bis 0,20 Gewichtsprozent, vorzugsweise 0,03 bis 0,08 Gewichtsprozent, beträgt. Mangan stabilisiert die beta-Phase und bildet gemeinsam mit anderen Elementen feine Ausscheidungen, welche sich positiv auf das Zerspanungsverhalten auswirken und für eine Kornfeinung verantwortlich sind, ähnlich wie die vorgeschlagene zusätzliche Legierungskomponente Silizium.
  • Eine fünfte zusätzliche Legierungskomponente ist dadurch definiert, dass der Anteil an Zinn 0,05 bis 0,5 Gewichtsprozent, vorzugsweise 0,2 bis 0,3 Gewichtsprozent, beträgt.
  • Eine sechste zusätzliche Legierungskomponente ist dadurch definiert, dass der Anteil an Cr 0,01 bis 0,2 Gewichtsprozent beträgt.
  • Ferner können zusätzlich Kalzium und/oder Magnesium in jeweils einem Anteil von 0,05 bis 1,0 Gewichtsprozent vorgesehen sein. Phosphor führt zu einer verbesserten Korrosionsbeständigkeit der Legierung, insbesondere wirkt P auch einer Entzinkung entgegen.
  • Zu einer optimalen Zusammensetzung der Legierung trägt es bei, dass der Anteil an Elementen, die nicht Kupfer, Zink, Indium, Eisen, Nickel, Silizium, Mangan, Antimon, Kalzium, Kadmium, Selen, Magnesium Blei oder Zinn sind, weniger als 0,2 Gewichtsprozent beträgt.
  • Eine bevorzugte Ausführungsform der Legierung weist hinsichtlich ihrer Zusammensetzung vorzugsweise die folgenden Gewichtsprozente auf. Kupfer im Bereich von 54 % bis 64 %, Zink im Bereich von 36 % bis 40,5 %, Eisen im Bereich von 0,1 % bis 0,5 %, Nickel im Bereich von 0,1 % bis 0,5 %, Silizium im Bereich von 0,01 % bis 0,2 %, Mangan im Bereich von 0,01 % bis 0,2 %, Antimon, Kalzium, Kadmium, Magnesium sowie Selen im Bereich bis 0,1 %, und Zinn im Bereich von 0,1 % bis 0,5 % und Blei mit einem Anteil von höchstens 0,1 %. Der Anteil an Indium weist vorzugsweise 0,005 bis 0,5 % auf. Der Bleigehalt der Legierung beträgt, auch bedingt durch den Einsatz von Schrotten bei der Herstellung derartiger Legierungen, max. 0,1 %.
  • Entsprechend des Anteils der obigen Zusatzstoffe werden Anteile von Kupfer und/oder Zink gegebenenfalls vermindert.
  • Gemäß einer besonders bevorzugten Ausführungsform beträgt der Anteil an Kupfer 57,0 % bis 57,5 %, der Anteil von Zink 41,9 % bis 42,5 %, der Anteil von Nickel 0,2 % bis 0,3 %, der Anteil von Eisen 0,2 % bis 0,3 %, der Anteil an Silizium 0,03 % bis 0,08 %, der Anteil von Mangan 0,03 % bis 0,08 %, Antimon, Kalzium, Kadmium, Magnesium sowie Selen im Bereich bis 0,1 % sowie der Anteil von Zinn 0,2 % bis 0,3 % und der Anteil von Blei und Indium jeweils weniger als 0,1 %. Darüber hinaus ist insbesondere daran gedacht, dass die Summe der Gewichtsanteile aller weiteren eventuellen Bestandteile höchstens 0,2 % beträgt.
  • Gemäß einer weiteren bevorzugten Ausführungsform beträgt der Anteil an Kupfer 54 bis 58 %, Zink 41 bis 45 %, Nickel 0,2 bis 0,3 %, Eisen 0,2 bis 0,3 %, Silizium 0,03 bis 0,06 %, Mangan 0,03 bis 0,08 %, Kalzium 0,3 bis 0,5 %, Magnesium 0,6 bis 0,9 %, Antimon < 0,1 %, Kadmium < 0,1 %, Selen < 0,1 %, die Summe aus Blei und Indium < 0,1 %, andere Bestandteile < 0,2 %.
  • Hinsichtlich der obigen Zusammensetzung ist es grundsätzlich möglich, lediglich einige der aufgeführten Elemente der Legierung zuzusetzen. Gemäß einer ganz besonders bevorzugten Ausführungsform ist aber daran gedacht, sämtliche oben aufgeführten Elemente mit einem Gewichtsanteil innerhalb der jeweils definierten Intervalle in Kombination miteinander der Legierung zuzugeben.
  • Gemäß einer typischen Ausführungsform ist vorgesehen, dass der Bleigehalt in einem Intervall von 0,005 % bis 0,1 % liegt. Der Indium-Anteil sollte ebenfalls bei 0,005 % bis 0,5 % liegen. Durch die erfindungsgemäße Relation zwischen dem alpha-Mischkristall und dem beta-Mischkristall können auch bei verminderten Blei- oder Indiumgehalten die gewünschten Materialeigenschaften erreicht werden. Der alpha-Mischkristall führt hierbei zu einer relativ guten Verformbarkeit der Legierung und verleiht dieser zähe Eigenschaften. Der beta-Mischkristall ist hingegen relativ schlecht verformbar und spröde. Diese Eigenschaften sind für gute Spanbarkeit erwünscht. Durch die erfindungsgemäße Relation der alpha- und der beta-Anteile werden der Legierung somit eine ausreichende Zähigkeit für die Unterstützung einer Verformbarkeit und eine ausreichende Sprödigkeit für die Unterstützung einer Spanbarkeit verliehen.
  • Neben der reinen Relation zwischen den alpha- und den beta-Anteilen erweist es sich ebenfalls als zweckmäßig, die Korngröße der Mischkristalle zu beeinflussen. Als positiv hat es sich erwiesen, vergleichsweise geringe und gleichmäßige Korngrößen zu unterstützen. Durch Zugabe von Eisen und Silizium bilden sich Eisensilizide, die das Kornwachstum behindern und sich hierdurch positiv auf die Gefügestruktur auswirken. Die Zugabe von Zinn und/oder Eisen begünstigt die Bildung von beta-Mischkristallen.
  • Ebenfalls erweist es sich, dass die Zugabe von Mangan in Kombination mit Sauerstoff oder Phosphor die Ausscheidung von Oxiden oder Phosphiden begünstigt und hierdurch zu einer feineren Kornstruktur führt. Diese wiederum unterstützt eine gute Zerspanbarkeit. In geringen Mengen erweisen sich auch Anteile von Phosphor als positiv hinsichtlich der Ausbildung der Gefügestruktur.
  • Hinsichtlich der Fertigung der Legierung kann ein bevorzugter Produktionsprozess derart durchgeführt werden, dass zunächst eine Warmumformung (z.B. Warmwalzen bzw. Strangpressen) in einem Temperaturbereich von 600 bis 750°C durchgeführt wird. Es wird hierdurch ein Gefüge erzeugt, das einen Anteil des beta-Mischkristalls von etwa 50 Gewichtsprozent aufweist. Zur Unterstützung sowohl einer guten Zerspanbarkeit als auch einer guten Verformbarkeit ist es möglich, eine Zwischenglühung durchzuführen. Es wird hierbei nach einem ersten Umformschritt ein Zwischenglühen mit einer Temperatur von etwa 400 bis 600°C durchgeführt. Das Zwischenglühen führt zu einer Rekristallisation und somit zu einer Kornneubildung. Hierdurch wird eine feinkörnige Gefügestruktur unterstützt.
  • Durch eine geeignete Durchführung des Zwischenglühens ist es möglich, einen Gewichtsanteil des beta-Mischkristalls von 30 bis 60 % zu realisieren. Es wird hierdurch eine gesteigerte Umformbarkeit des Halbzeugs erreicht.
  • Erfindungsgemäß ist insbesondere vorgesehen, die Messinglegierung aus Kupfer und Zink, mit einem Bleigehalt von 0,005 bis 0,1 %, einem Indium-Anteil von 0,005 bis 0,5 % und mit mindestens einer weiteren Legierungskomponente auszubilden. Diese weitere Legierungskomponente beeinflusst die Gefügestruktur des Mischkristalls, um anwendungsabhängig die jeweils gewünschten Materialeigenschaften zu erreichen.
  • Gemäß einer weiteren bevorzugten Ausführungsform ist vorgesehen, hinsichtlich der Gewichtsprozente die folgende Legierung zu realisieren.
  • Cu 55 bis 56 %, Fe 0,2 bis 0,3 %, Ni 0,1 bis 0,2 %, Si 0,01 bis 0,03 %, Mn 0,1 bis 0,2 %, Sn 0,3 bis 0,5 %, In 0,05 bis 0,2 %, Sb < 0,1 %, Ca < 0,1 %, Cd < 0,1 %, Se < 0,1 %, Pb < 0,1 %, Zn Rest. Diese Ausführungsform führt zu einem besonders hohen Anteil an beta-Mischkristallen zwischen 55 und 70 % beta-Anteil, was einen besonders kurz brechenden Span bewirkt.
  • Eine weitere bevorzugte Ausführungsform wird hinsichtlich der Gewichtsprozente durch die folgende Legierung bereitgestellt.
  • Cu 57 bis 57,5 %, Fe 0,2 bis 0,3 %, Ni 0,2 bis 0,3 %, Si 0 %, Mn 0 %, Sn 0,2 bis 0,3 %, In 0,05 bis 0,2 %, Sb < 0,1 %, Ca < 0,1 %, Cd < 0,1 %, Se < 0,1 %, Pb < 0,1 %, Zn Rest. Ziel dieser vorgeschlagenen Zusammensetzung ist es hierbei, einen leicht erhöhten alpha-Anteil und weniger harte Ausscheidungen zu erreichen.
  • Darüber hinaus ist hinsichtlich von bevorzugten Ausführungsformen auch daran gedacht, hinsichtlich der Gewichtsprozente die folgende Legierung zu realisieren.
  • Cu 56 bis 56,5 %, Fe 0,4 bis 0,5 %, Ni 0,2 bis 0,3 %, Si 0 %, Mn 0,1 bis 0,2 %, Sn 0,35 bis 0,5 %, In 0,05 bis 0,2 %, Sb < 0,1 %, Ca < 0,1 %, Cd < 0,1 %, Se < 0,1 %, Pb < 0,1 %, Zn Rest. Es werden hierdurch weniger harte Ausscheidungen gebildet und dafür eine Bildung der Ausscheidungen von primär ausgeschiedenem Eisen gefördert. Durch die vermehrte Zugabe von Mangan und Zinn bildet sich ein erhöhter beta-Anteil gegenüber der vorherigen Ausführungsform.
  • Die erfindungsgemäße Messinglegierung dient zur Herstellung von sogenannten Halbzeugen, die mindestens einem weiteren Verarbeitungsschritt unterzogen werden. Die Halbzeuge werden typischerweise durch einen Gießvorgang hergestellt. Typische Ausführungsformen derartiger Halbzeuge sind Bänder, Drähte, Profile und/oder Stangen. Der weitere Verarbeitungsschritt umfasst mindestens eine zerspanende Bearbeitung. Ebenfalls kann der weitere Verarbeitungsschritt eine Kombination aus einer formgebenden und einer spanenden Bearbeitung umfassen. Die Formgebung kann hierbei sowohl bei einer Raumtemperatur als auch bei einer erhöhten Temperatur durchgeführt werden. Bei den erhöhten Temperaturen kann eine Halbwarmtemperatur bis zu etwa 450°C und eine Warmumformtemperatur in einem Bereich von 600°C bis 850°C unterschieden werden.
  • Durch die Zugabe der Legierungselemente Eisen, Nickel, Magnesium, Kalzium oder Chrom können in dem Mischkristall Ausscheidungen erzeugt werden, welche wiederum den Spanbruch bei einer anschließenden mechanischen Bearbeitung begünstigen, so dass auch diese Legierungsbestandteile eine ähnliche günstige Wirkung wie das bisher verwendete und nach Möglichkeit zu vermeidende Blei haben. Dabei kann der Spanbruch insbesondere durch ein spezifisches Verhältnis der Legierungsbestandteile Eisen und Zinn zueinander günstig beeinflusst werden, da das Verhältnis dieser beiden Legierungsbestandteile zueinander die Bildung der Ausscheidungen besonders begünstigt. Ein solches günstiges Verhältnis von Eisen zu Zinn wäre z.B. 1,0 bis 1,2.
  • Weiter kann die Bildung der Ausscheidungen bzw. die Kornfeinung und damit der Spanbruch günstig beeinflusst werden, wenn der Messinglegierung Chrom in einer Menge von 0,01 bis 0,2 Gewichtsprozent und/oder Kalzium und/oder Magnesium in einer Menge von jeweils 0,05 bis 1,0 Gewichtsprozent zugefügt wird.
  • Im Idealfall ist der Anteil an Wismut gleich 0,0 Prozent, d.h. die Messinglegierung ist frei von Wismut. Die den Spanbruch begünstigenden Eigenschaften werden allein durch den Indiumgehalt und die weiteren Legierungsbestandteile, wie Eisen, Zinn, Nickel, Mangan, Magnesium, Calcium oder Chrom erzielt. Dies ist auch deshalb erstrebenswert, da auch Wismut aufgrund von gesundheitsnachteiligen Eigenschaften nach Möglichkeit zu vermeiden oder zumindest nur in einer geringstmöglichen Menge verwendet werden sollte. Aus diesem Grunde ist auch der Anteil an Wismut in der erfindungsgemäßen Messinglegierung bereits auf einen Maximalwert von 0,1 Gewichtsprozent begrenzt, wobei es erstrebenswert ist, den Anteil an Wismut so gering wie möglich zu halten. So ist es z.B. möglich, dass ein geringer Anteil an Wismut durch die Verwendung von verunreinigtem Schrott in die Messinglegierung gelangt. Dieser Anteil an eigentlich unerwünschtem Wismut wird durch die erfindungsgemäße Lösung gleich zur Bildung der Ausscheidungen und der Kornfeinung und damit zur positiven Beeinflussung des Zerspanungsverhaltens verwendet, und es kann wenigstens auf das bisher verwendete ebenfalls gesundheitsschädliche Blei in der Legierung verzichtet werden. Sofern der Anteil von Wismut z.B. aufgrund von Verunreinigungen von zugegebenem Schrott nicht vollständig auf 0,0 reduziert werden kann, sollte der Anteil einen Maximalwert von < 0,003 Gewichtsprozent möglichst nicht überschreiten. Alternativ kann in diesem Fall aber auch ein Bleigehalt von maximal 0,1 Gewichtsprozent vorgesehen sein, um den gewünschten Spanbruch einzustellen. Jedenfalls wird der erfindungsgemäßen Messinglegierung kein Wismut aktiv zugegeben, sondern es wird stattdessen ausschließlich akzeptiert, wenn es aus technischen Gründen nicht zu vermeiden ist. Da es jedoch trotz seiner gesundheitsschädlichen Eigenschaften durchaus auch positive Auswirkungen auf die Materialeigenschaften der Messinglegierung haben kann, können Kleinstmengen auch akzeptiert werden.
  • Ferner ist es möglich, die Gefügeeigenschaften insbesondere die Ausbildung der nadeligen Betaphase durch Pressen oder Ziehen zu erzeugen oder zumindest die Bildung der Betaphase zu verstärken oder in eine gewünschte Richtung auszuprägen. Alternativ kann durch eine Kombination der Bearbeitungsschritte Pressen, Glühen und Ziehen in dieser Reihenfolge oder Pressen, Ziehen, Glühen, Ziehen die Ausprägung einer eher globulitischen Morphologie der Betaphase in dem Mischkristall unterstützt werden, wobei die Größe der Körner und der Gefügebestandteile der Betaphase durch die gewählte Prozesstemperatur während des Glühens, Pressens oder Ziehens eingestellt werden kann. Dabei gilt je höher die Prozesstemperatur desto größer sind die Körner und desto gröber ist das Gefüge.

Claims (14)

  1. Messinglegierung aus 54 bis 64 Gewichtsprozent Cu und 36 bis 46 Gewichtsprozent Zn, wobei die Legierung einen Indiumgehalt von 0,005 bis 1,0 Gewichtsprozent, eine Zugabe mindestens einer der Komponenten Fe, Sn, Ni oder Mn von zusammen 0,01 bis 3,0 Gewichtsprozent und keine Zugabe von Bi ,
    - wahlweise einen Anteil an Si von 0,01 bis 0,2 Gewichtsprozent,
    - wahlweise einen Anteil an Sb bis zu 0,5 Gewichtsprozent,
    - wahlweise einen Anteil an Kadmium von bis zu 0,5 Gewichtsprozent,
    - wahlweise einen Anteil an Ca von bis zu 1,0 Gewichtsprozent,
    - wahlweise einen Anteil an Mg von bis zu 1,0 Gewichtsprozent,
    - wahlweise einen Anteil an Se von bis zu 0,5 Gewichtsprozent,
    - wahlweise einen Phosphorgehalt von maximal 0,1 Gewichtsprozent,
    - wahlweise einen Anteil an Cr von 0,01 bis 0,2 Gewichtsprozent
    nebst Verunreinigungen aufweist.
  2. Messinglegierung nach Anspruch 1, dadurch gekennzeichnet, dass
    - die Legierung einen Mischkristall mit Anteilen eines alpha-Gefüges oder eines alpha/beta-Gefüges mit Ausscheidungen aufweist.
  3. Messinglegierung nach Anspruch 2, dadurch gekennzeichnet, dass
    - der Gewichtsanteil des beta-Gefüges 20 bis 80 Gewichtsprozent beträgt.
  4. Messinglegierung nach einem der vorangegangenen Ansprüchen, dadurch gekennzeichnet, dass
    - die Summe der Anteile aller zusätzlich zu Cu und Zn vorgesehenen Legierungskomponenten mindestens 0,2 Gewichtsprozent beträgt.
  5. Messinglegierung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Anteil an Zn 42 Gewichtsprozent beträgt.
  6. Messinglegierung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Anteil an Fe 0,05 bis 0,5 Gewichtsprozent beträgt.
  7. Messinglegierung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Anteil an Ni 0,05 bis 0,5 Gewichtsprozent beträgt.
  8. Messinglegierung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Anteil an Mn 0,01 bis 0,20 Gewichtsprozent beträgt.
  9. Messinglegierung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Anteil an Sn 0,05 bis 0,5 Gewichtsprozent beträgt.
  10. Messinglegierung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Anteil an Substanzen, die nicht Cu, Zn, Fe, In, Ni, Si, Mn, Sb, Ca, Cd, Se, Pb oder Sn sind, weniger als 0,2 Gewichtsprozent beträgt.
  11. Messinglegierung nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass die Messinglegierung folgende Gewichtsprozente aufweist: Cu 55 bis 56 %, Fe 0,2 bis·0,3 %, In 0,005 bis 0,5 %, Ni 0,1 bis 0,2 %, Si 0,01 bis 0,03 %, Mn 0,1 bis 0,2 %, Sn 0,3 bis 0,5 %, Sb < 0,1 %, Ca < 0,1 %, Cd < 0,1 %, Se < 0,1 %, Pb < 0,1 %, Zn Rest.
  12. Messinglegierung nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass die Messinglegierung folgende Gewichtsprozente aufweist: Cu 57 bis 57,5 %, Fe 0,2 bis 0,3 %, In 0,005 bis 0,5 %, Ni 0,2 bis 0,3 %, Sn 0,2 bis 0,3 %, Sb < 0,1 %, Ca < 0,1 %, Cd < 0,1 %, Se < 0,1 %, Pb < 0,1 %, Zn Rest.
  13. Messinglegierung nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass folgende Gewichtsprozente realisiert sind: Cu 56 bis 56,5 %, Fe 0,4 bis 0,5 %, In 0,005 bis 0,5 %, Ni 0,2 bis 0,3 %, Si 0 %, Mn 0,1 bis 0,2 %, Sn 0,35 bis 0,5 %, Sb < 0,1 %, Ca < 0,1 %, Cd < 0,1 %, Se < 0,1 %, Pb < 0,1 %, Zn Rest.
  14. Messinglegierung nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass folgende Gewichtsprozente realisiert sind: Cu 54 bis 58 %, Zn 41 bis 45 %, Ni 0,2 bis 0,3 %, Fe 0,2 bis 0,3 %, Si, 0,03 bis 0,06 %, Mn 0,03 bis 0,08 %, Ca 0,3 bis 0,5 %, Mg 0,6 bis 0,9 %, Sb < 0,1 %, Cd < 0,1 %, Se < 0,1 %, die Summe aus Pb und In < 0,1 %, andere Bestandteile < 0,2 %.
EP16736855.4A 2015-07-10 2016-07-07 Messinglegierung Active EP3320122B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RS20201316A RS61025B1 (sr) 2015-07-10 2016-07-07 Legura mesinga

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015212937.3A DE102015212937A1 (de) 2015-07-10 2015-07-10 Messinglegierung
PCT/EP2016/066143 WO2017009176A1 (de) 2015-07-10 2016-07-07 Messinglegierung

Publications (2)

Publication Number Publication Date
EP3320122A1 EP3320122A1 (de) 2018-05-16
EP3320122B1 true EP3320122B1 (de) 2020-08-12

Family

ID=56404110

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16736855.4A Active EP3320122B1 (de) 2015-07-10 2016-07-07 Messinglegierung

Country Status (6)

Country Link
EP (1) EP3320122B1 (de)
DE (1) DE102015212937A1 (de)
ES (1) ES2828578T3 (de)
PT (1) PT3320122T (de)
RS (1) RS61025B1 (de)
WO (1) WO2017009176A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021103686A1 (de) 2021-02-17 2022-08-18 Diehl Metall Stiftung & Co. Kg Messinglegierung
EP4124667A1 (de) 2021-07-27 2023-02-01 Diehl Brass Solutions Stiftung & Co. KG Blei- und antimonfreie messinglegierung

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018104958U1 (de) 2018-08-30 2018-09-12 Harting Electric Gmbh & Co. Kg Steckverbinder mit Komponenten aus verbessertem Material
EP3971312A1 (de) 2020-09-17 2022-03-23 Société BIC Messinglegierung für schreibinstrumentenspitzen
DE102020128955A1 (de) 2020-11-03 2022-05-05 Aurubis Stolberg Gmbh & Co. Kg Messinglegierung
DE102021102120A1 (de) * 2021-01-29 2022-08-04 HME Brass Germany GmbH Messinglegierung und Verfahren zum Herstellen eines Halbzeugs aus dieser Messinglegierung
CN113981269B (zh) * 2021-10-29 2022-10-04 宁波金田铜业(集团)股份有限公司 一种黄铜合金及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110132A (en) * 1976-09-29 1978-08-29 Olin Corporation Improved copper base alloys
JPS62274036A (ja) * 1986-05-23 1987-11-28 Nippon Mining Co Ltd 耐磨耗性及び耐食性に優れた銅合金
JPH0368733A (ja) * 1989-08-08 1991-03-25 Nippon Mining Co Ltd ラジエータープレート用銅合金および銅合金材の製造法
JPH04120229A (ja) * 1990-09-10 1992-04-21 Sumitomo Metal Mining Co Ltd Inが添加された耐腐食性に優れる黄銅
JPH04120231A (ja) * 1990-09-10 1992-04-21 Sumitomo Metal Mining Co Ltd InとSbとPが添加された耐腐食性に優れる黄銅
JPH04120230A (ja) * 1990-09-10 1992-04-21 Sumitomo Metal Mining Co Ltd InとSbが添加された耐腐食性に優れる黄銅
JPH04236735A (ja) * 1991-01-14 1992-08-25 Sumitomo Metal Mining Co Ltd In、Mg及びPが添加された耐腐食性に優れる黄銅
US5137685B1 (en) * 1991-03-01 1995-09-26 Olin Corp Machinable copper alloys having reduced lead content
US5360591A (en) * 1993-05-17 1994-11-01 Kohler Co. Reduced lead bismuth yellow brass
DE102009038657A1 (de) * 2009-08-18 2011-02-24 Aurubis Stolberg Gmbh & Co. Kg Messinglegierung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021103686A1 (de) 2021-02-17 2022-08-18 Diehl Metall Stiftung & Co. Kg Messinglegierung
WO2022175238A1 (de) 2021-02-17 2022-08-25 Diehl Metall Stiftung & Co. Kg Messinglegierung
EP4124667A1 (de) 2021-07-27 2023-02-01 Diehl Brass Solutions Stiftung & Co. KG Blei- und antimonfreie messinglegierung
DE102021119474A1 (de) 2021-07-27 2023-02-02 Diehl Brass Solutions Stiftung & Co. Kg Blei- und Antimonfreie Messinglegierung

Also Published As

Publication number Publication date
EP3320122A1 (de) 2018-05-16
DE102015212937A1 (de) 2017-01-12
PT3320122T (pt) 2020-11-03
ES2828578T3 (es) 2021-05-26
WO2017009176A1 (de) 2017-01-19
RS61025B1 (sr) 2020-12-31

Similar Documents

Publication Publication Date Title
EP3320122B1 (de) Messinglegierung
EP2467507B1 (de) Messinglegierung
EP2742160B1 (de) Verwendung einer kupferlegierung zur aufzucht von meerestieren
DE102006010760B4 (de) Kupferlegierung und Verfahren zur Herstellung derselben
EP0175872B1 (de) Messinglegierung, Herstellungsverfahren und Verwendung
DE112004002639T5 (de) Bleifreie freischneidende Kupfer-Antimon-Legierungen
EP2964797B1 (de) Kupfer-zink-legierung für eine sanitärarmatur sowie verfahren zu deren herstellung
DE2720460C2 (de) Verfahren zur Herstellung von Kupfer-Nickel-Zinn-Legierungen mit optimaler Kombination von Festigkeit und Duktilität
DE102005002763A1 (de) Kupferlegierung mit hoher Festigkeit und hoher Leitfähigkeit
WO2016045770A1 (de) Elektrisches verbindungselement
EP3272888B1 (de) Werkstoff aus einer kupfer-zink-legierung, verfahren zur herstellung eines solchen werkstoffs und gleitelement aus einem solchen werkstoff
EP3196324B1 (de) Aushärtbare aluminiumlegierung auf al-mg-si-basis
WO2013023717A2 (de) Kupferlegierung
DE102013007274A1 (de) Kupfergusslegierung für Asynchronmaschinen
DE69814657T2 (de) Legierung auf kupferbasis, gekennzeichnet durch ausscheidungshärtung und durch härtung im festen zustand
DE102013014502A1 (de) Kupferlegierung
DE102013005158A1 (de) Kupferlegierung
EP3992319A1 (de) Legierungsprodukt hergestellt aus einer bleifreien kupfer-zink-legierung und verfahren für dessen herstellung
EP3992320A1 (de) Bleifreie cu-zn-legierung
EP3366793B1 (de) Gleitelement aus einer kupferlegierung
EP3075870B1 (de) Kupfer-zink-legierung, bandförmiger werkstoff aus dieser legierung, verfahren zur herstellung eines halbzeugs aus dieser legierung und gleitelement aus dieser legierung
DE102021102120A1 (de) Messinglegierung und Verfahren zum Herstellen eines Halbzeugs aus dieser Messinglegierung
EP3041966B1 (de) Kupferlegierung, die eisen und phosphor enthält
DE102022002927B4 (de) Knetwerkstoff aus einer Kupfer-Zink- Legierung, Halbzeug aus einemKnetwerkstoff und Verfahren zur Herstellung von solchem Halbzeug
WO2022096276A1 (de) Messinglegierung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190405

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200310

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010841

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1301618

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3320122

Country of ref document: PT

Date of ref document: 20201103

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20201026

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREIGUTPARTNERS GMBH, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20200403050

Country of ref document: GR

Effective date: 20201215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010841

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2828578

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

26N No opposition filed

Effective date: 20210514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210707

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RS

Payment date: 20240625

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240621

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20240620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240626

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20240717

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240604

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240718

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240724

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240801

Year of fee payment: 9

Ref country code: ES

Payment date: 20240816

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240718

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240701

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240731

Year of fee payment: 9

Ref country code: SE

Payment date: 20240722

Year of fee payment: 9