EP3306746A1 - Cavity radiating element and radiating network comprising at least two radiating elements - Google Patents
Cavity radiating element and radiating network comprising at least two radiating elements Download PDFInfo
- Publication number
- EP3306746A1 EP3306746A1 EP17194500.9A EP17194500A EP3306746A1 EP 3306746 A1 EP3306746 A1 EP 3306746A1 EP 17194500 A EP17194500 A EP 17194500A EP 3306746 A1 EP3306746 A1 EP 3306746A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- elements
- elliptical
- cavity
- planar
- radiating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0414—Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/12—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
- H01Q19/17—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
Definitions
- the present invention relates to a novel cavity radiating element architecture and a radiating network having at least two radiating elements. It applies in particular to the space domain and for single-beam or multi-beam applications.
- the mass and bulk of the RF radio frequency chains is a critical point in the field of space antennas intended to be installed on satellites and in particular in the lower frequency domain such as the C-band.
- the frequency domains high for example Ka-band or Ku-band
- the object of the invention is to overcome the drawbacks of the known radiating elements and to produce a new compact radiating element having a bandwidth sufficiently wide to allow operation in two separate transmission and reception frequency bands in transmission bands. low frequencies including the band C and also allowing operation in two orthogonal circular polarizations, respectively right and left.
- the invention relates to a radiating element comprising a rotationally symmetrical cavity around a Z axis and a power source, the cavity being delimited by lateral metal walls and a lower metal wall.
- the radiating element further comprises a central metal core extending axially in the center of the cavity and N different successive metallic elliptical planar elements, stacked one above the other, parallel to the lower wall of the cavity, the core center comprising a lower end fixed to the lower metal wall of the cavity and a free upper end, each elliptical metallic planar element being centered in the cavity and integral with the central core, the N elliptical planar elements being regularly spaced and having dimensions monotonically decreasing between the lower end and the upper end of the central core, where N is an integer greater than 2.
- the N planar elliptical elements have exponentially decreasing dimensions.
- the N planar elliptical elements have decreasing dimensions according to a polynomial function.
- the power source may consist of a coaxial line connected to the first elliptical planar element located closest to the lower end of the central core and the N successive elliptical planar elements may be progressively staggered in rotation. compared to others, around the central soul.
- the power source may consist of two coaxial lines connected, at two different connection points, to the first elliptical planar element located closest to the lower end of the central core, the two connection points being respectively placed in two directions of the first planar element elliptical, perpendicular to each other, and the N elliptical planar elements may all be aligned in a common direction.
- the invention also relates to a radiating network comprising at least two radiating elements.
- the radiating elements of the radiating network can be arranged next to each other on a common support plate.
- the adjacent radiating elements of the radiating network may be arranged spatially so that their respective elliptical planar elements are respectively oriented in two directions orthogonal to each other.
- the radiating network may further comprise absorbing dielectric elements disposed between two adjacent radiating elements.
- the radiating element 10 represented on the Figures 1a, 1b , 1 C comprises a cavity 11 with symmetry of revolution about an axis Z, a central core 12 extending axially in the center of the cavity 11 and N different metallic planar elements 131, 132,..., 13N, stacked at each above the others, parallel to each other and parallel to a lower metal wall 14 of the cavity 11, also called the bottom of the cavity, N being an integer greater than 2, the N planar metal elements being centered in the cavity and integral with the central core 12.
- the central core 12 has a lower end 15 fixed to the lower metal wall 14 of the cavity and an upper end 16 free.
- Each planar metallic element 131, 132, ..., 13N has an elliptical contour whose orientation and dimensions are defined by the orientation and the dimensions of the major axis and the minor axis of the ellipse. corresponding.
- the dimensions of the major axis and the minor axis of the same elliptical contour are different, the ratio between the length of the minor axis and the length of the major axis being preferably less than 0.99, and preferably less than 0.9.
- the N planar elliptical elements 131, 132, ..., 13N are regularly spaced along the central core 12 and have monotonically decreasing dimensions between the lower end 15 and the upper end 16 of the central core. .
- the monotony of the decay is strict.
- the dimensions of some elliptical planar elements may be equal, the elliptical planar elements can not all have the same dimensions.
- the dimensions of the N planar elliptical elements are exponentially decreasing, namely decreasing according to the exponential function.
- the dimensions of the N planar elliptic elements are decreasing according to a polynomial function.
- the cavity 11 is delimited by the lower metal wall 14 and by lateral metal walls 17 and is filled with air.
- the radiating element 10 further comprises at least one power supply constituted by a coaxial line 18 connected to the first elliptical planar element 131 located closest to the lower end 15 of the central core 12.
- the first elliptical planar element 131 radiates a radiofrequency wave which propagates in the cavity and generates currents on the surface of the other elliptical planar elements 132, ..., 13N which are then coupled step by step by induced electromagnetic coupling.
- the first elliptical planar element 131 is therefore a planar exciter element.
- the major axes of the elliptical shapes corresponding to the different elliptical planar elements can all be oriented in a single common direction or in different directions.
- the N elliptical planar elements can all be housed inside the cavity as illustrated on the Figures 1a, 1b , 1 C , but this is not mandatory and alternatively, some elliptical planar elements corresponding to the smallest dimensions and the highest frequencies, may protrude from the cavity as shown in FIG. figure 1 d.
- the various elliptical planar elements 131, 132,..., 13N can be progressively shifted in rotation relative to one another, around the central core 15, as represented for example on the figure 1b .
- the major axes of the elliptical shapes corresponding to different planar elliptical elements are then oriented in different directions.
- the offset of the different elliptical planar elements in rotation makes it possible to obtain a radiation of the radiating element in circular polarization.
- the radiating axis of the radiating element corresponds to the Z axis.
- the graph of the figure 2 shows the two curves 21, 22 of the radiation of a radiating element according to the invention, as a function of the frequency, the radiating element being fed by a single coaxial line and having elliptical planar elements progressively offset in rotation, some by compared to others as to Figures 1a, 1b , 1c, 1d .
- the shift in rotation between the first and N-th elliptic planar members is about 90 °.
- the first curve 21 corresponds to the radiation of the radiating element according to a first direct direction circular polarization and the second curve 22 corresponds to the radiation of the radiating element according to a second circular polarization of opposite direction.
- the radiating element operates in two very wide different bandwidths between 3.7GHz and 6.4GHZ and in each bandwidth, the polarizations are different and reversed. In each bandwidth, the cross-polarization gain levels are less than -15 dB relative to the gain levels of the corresponding operating bias.
- This radiating element therefore allows operation in two different distinct frequency bands, for example transmission and reception, with different polarizations and a good gain level.
- the electric field corresponding to the highest frequencies is reflected by the lower wall 14 of the cavity and is reemitted to the top of the cavity after inversion of the direction of polarization.
- the electric field corresponding to the low frequencies is directly transmitted towards the top of the cavity without reflection and without inversion of the direction of the polarization.
- FIGS. Figures 3a and 3b On which four radiating elements of the network are represented.
- the different radiating elements are arranged next to one another and their respective cavities are interconnected by a common metal support plate 30 forming a metal ground plane.
- the radiating network is not limited to four radiating elements, but may have any number of radiating elements greater than two.
- the radiating elements since the radiating elements have an opening reduced to half a central wavelength of operation, at the bottom of the emission frequency band, the radiating elements couple with each other with large field levels which have the effect of alter the purity of polarization.
- absorbent elements 31 made in a dielectric material have been added between the adjacent radiating elements, and fixed on the metal support plate 30.
- the absorbent elements are dielectric volumes that can have any shape, and can be positioned at junction points between four adjacent radiating elements as shown on Figures 3a and 3b .
- the height of the absorbent elements may vary according to their position in the network and the frequency of parasitic coupling to be eliminated.
- the dielectric material may for example consist of a material such as silicon carbide SiC.
- the adjacent radiating elements are arranged spatially so that their respective elliptical planar elements are respectively oriented parallel to two orthogonal directions X, Y between each other. That is, the directions of the major axes of their respective elliptical planar elements are orthogonal to each other, as illustrated in FIG. figure 3b . Thanks to the superposition of several orthogonal field ellipses with one another, this sequential spatial arrangement of the successive radiating elements makes it possible to improve the purity of the two circular polarizations generated by the different radiating elements of the grating and to significantly reduce the levels of cross polarization in the the radiation axis of the network.
- the different elliptical planar elements of each radiating element are not offset in rotation with respect to each other, but the major axes of their respective elliptical shapes are all aligned in a common direction.
- each radiating element 10 comprises two coaxial supply lines 18, 28 connected to the first elliptical planar element 131 located closest to the lower end of FIG. the central soul.
- the two coaxial supply lines 18, 28 are respectively connected at two different connection points of the first elliptical planar element 131, the two connection points being placed in two different directions of the first elliptical planar element 131, perpendicular to each other, the two directions that correspond for example to the directions of the major axis and the minor axis of the elliptical shape of the first elliptical planar element 131.
- the radiating element 10 can only operate in a single frequency band and bi-polarization because it is not possible in this case to select both a frequency band and a single polarization.
- the Figures 4a and 4b illustrate an example of a network comprising radiating elements according to this second embodiment of the invention.
- the adjacent radiating elements are arranged spatially so that their respective elliptical planar elements are respectively oriented in two directions X, Y orthogonal to one another, that is to say that the directions of the major axes of their respective elliptic planar elements are orthogonal between them.
- the networks of radiating elements are not limited to four radiating elements but may have a number of radiating elements greater than two.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
L'élément rayonnant (10) comporte une cavité (11) à symétrie de révolution autour d'un axe Z, une âme centrale (12) métallique s'étendant axialement au centre de la cavité et N éléments planaires elliptiques (131, 132, ..., 13N) métalliques successifs différents, empilés les uns au-dessus des autres, parallèlement à la paroi inférieure (15) de la cavité, l'âme centrale comportant une extrémité inférieure fixée à la paroi métallique inférieure de la cavité et une extrémité supérieure (16) libre, chaque élément planaire métallique elliptique étant centré dans la cavité et solidaire de l'âme centrale, les N éléments planaires elliptiques étant régulièrement espacés et ayant des dimensions décroissantes de manière monotone entre l'extrémité inférieure et l'extrémité supérieure de l'âme centrale, où N est un nombre entier supérieur à 2.The radiating element (10) comprises a cavity (11) with a symmetry of revolution about a Z axis, a central core (12) extending axially in the center of the cavity and N elliptical planar elements (131, 132, Successive successive metallic ones, stacked one above the other, parallel to the lower wall (15) of the cavity, the central core having a lower end attached to the lower metal wall of the cavity and a upper end (16) free, each elliptical metallic planar element being centered in the cavity and integral with the central core, the N elliptical planar elements being regularly spaced and having monotonically decreasing dimensions between the lower end and the end superior of the central soul, where N is an integer greater than 2.
Description
La présente invention concerne une nouvelle architecture d'élément rayonnant en cavité et un réseau rayonnant comportant au moins deux éléments rayonnants. Elle s'applique en particulier au domaine spatial et pour des applications mono-faisceau ou multifaisceaux.The present invention relates to a novel cavity radiating element architecture and a radiating network having at least two radiating elements. It applies in particular to the space domain and for single-beam or multi-beam applications.
Une source radiofréquence utilisée dans une antenne est constituée d'un élément rayonnant couplé à une chaîne radiofréquence RF. Dans les bandes de fréquence basse, par exemple en bande C, l'élément rayonnant est souvent constitué d'un cornet et la chaîne RF comporte des composants RF destinés à réaliser les fonctions d'émission et de réception en mono-polarisation ou en bi-polarisation pour couvrir les besoins des utilisateurs. La liaison avec des stations au sol est généralement en bi-polarisation.A radiofrequency source used in an antenna consists of a radiating element coupled to an RF radio frequency chain. In the low frequency bands, for example in the C band, the radiating element is often constituted by a horn and the RF chain comprises RF components intended to perform the transmission and reception functions in mono-polarization or bi-direction. -polarization to cover the needs of users. The link with ground stations is usually bi-polarization.
La masse et l'encombrement des chaînes radiofréquences RF constituent un point critique dans le domaine des antennes spatiales destinées à être implantées à bord de satellites et en particulier dans le domaine de fréquences les plus basses telles que la bande C. Dans les domaines de fréquences hautes, par exemple en bande Ka ou en bande Ku, il existe des éléments rayonnants très compacts dont la technologie peut être transposée en bande C, mais les sources radiofréquences obtenues restent encombrantes et massives et posent un problème d'implantation lorsqu'elles doivent être intégrées dans un réseau focal comportant un grand nombre de sources.The mass and bulk of the RF radio frequency chains is a critical point in the field of space antennas intended to be installed on satellites and in particular in the lower frequency domain such as the C-band. In the frequency domains high, for example Ka-band or Ku-band, there are very compact radiating elements whose technology can be transposed into C-band, but the radiofrequency sources obtained remain cumbersome and massive and pose a problem of implantation when they have to be integrated in a focal network with a large number of sources.
Il existe des éléments rayonnants à cavité qui présentent l'avantage d'être compacts mais ces éléments rayonnants sont limités en terme de bande passante et ne peuvent être utilisés qu'en mono-polarisation et sur une seule bande de fréquence de fonctionnement ou sur deux bandes de fréquence très étroites.There are cavity radiating elements which have the advantage of being compact but these radiating elements are limited in terms of bandwidth and can only be used in single-polarization and on a single operating frequency band or in two very narrow frequency bands.
Le but de l'invention est de remédier aux inconvénients des éléments rayonnants connus et de réaliser un nouvel élément rayonnant compact ayant une bande passante suffisamment large pour permettre un fonctionnement dans deux bandes de fréquences disjointes respectivement d'émission et de réception dans des bandes de fréquences basses incluant la bande C et permettant également un fonctionnement selon deux polarisations circulaires orthogonales, respectivement droite et gauche.The object of the invention is to overcome the drawbacks of the known radiating elements and to produce a new compact radiating element having a bandwidth sufficiently wide to allow operation in two separate transmission and reception frequency bands in transmission bands. low frequencies including the band C and also allowing operation in two orthogonal circular polarizations, respectively right and left.
Pour cela, l'invention concerne un élément rayonnant comportant une cavité à symétrie de révolution autour d'un axe Z et une source d'alimentation, la cavité étant délimitée par des parois métalliques latérales et par une paroi métallique inférieure. L'élément rayonnant comporte en outre une âme centrale métallique s'étendant axialement au centre de la cavité et N éléments planaires elliptiques métalliques successifs différents, empilés les uns au-dessus des autres, parallèlement à la paroi inférieure de la cavité, l'âme centrale comportant une extrémité inférieure fixée à la paroi métallique inférieure de la cavité et une extrémité supérieure libre, chaque élément planaire métallique elliptique étant centré dans la cavité et solidaire de l'âme centrale, les N éléments planaires elliptiques étant régulièrement espacés et ayant des dimensions décroissantes de manière monotone entre l'extrémité inférieure et l'extrémité supérieure de l'âme centrale, où N est un nombre entier supérieur à 2.For this, the invention relates to a radiating element comprising a rotationally symmetrical cavity around a Z axis and a power source, the cavity being delimited by lateral metal walls and a lower metal wall. The radiating element further comprises a central metal core extending axially in the center of the cavity and N different successive metallic elliptical planar elements, stacked one above the other, parallel to the lower wall of the cavity, the core center comprising a lower end fixed to the lower metal wall of the cavity and a free upper end, each elliptical metallic planar element being centered in the cavity and integral with the central core, the N elliptical planar elements being regularly spaced and having dimensions monotonically decreasing between the lower end and the upper end of the central core, where N is an integer greater than 2.
Avantageusement, les N éléments planaires elliptiques ont des dimensions exponentiellement décroissantes.Advantageously, the N planar elliptical elements have exponentially decreasing dimensions.
Selon une variante, les N éléments planaires elliptiques ont des dimensions décroissantes selon une fonction polynômiale.According to a variant, the N planar elliptical elements have decreasing dimensions according to a polynomial function.
Avantageusement, la source d'alimentation peut être constituée d'une ligne coaxiale connectée au premier élément planaire elliptique situé le plus proche de l'extrémité inférieure de l'âme centrale et les N éléments planaires elliptiques successifs peuvent être progressivement décalés en rotation les uns par rapport aux autres, autour de l'âme centrale.Advantageously, the power source may consist of a coaxial line connected to the first elliptical planar element located closest to the lower end of the central core and the N successive elliptical planar elements may be progressively staggered in rotation. compared to others, around the central soul.
Alternativement, la source d'alimentation peut être constituée de deux lignes coaxiales connectées, en deux points de connexion différents, au premier élément planaire elliptique situé le plus proche de l'extrémité inférieure de l'âme centrale, les deux points de connexion étant respectivement placés selon deux directions du premier élément planaire elliptique, perpendiculaires entre elles, et les N éléments planaires elliptiques peuvent être tous alignés dans une direction commune.Alternatively, the power source may consist of two coaxial lines connected, at two different connection points, to the first elliptical planar element located closest to the lower end of the central core, the two connection points being respectively placed in two directions of the first planar element elliptical, perpendicular to each other, and the N elliptical planar elements may all be aligned in a common direction.
L'invention concerne aussi un réseau rayonnant comportant au moins deux éléments rayonnants.The invention also relates to a radiating network comprising at least two radiating elements.
Avantageusement, les éléments rayonnants du réseau rayonnant peuvent être aménagés les uns à côté des autres sur une plaque de support commune.Advantageously, the radiating elements of the radiating network can be arranged next to each other on a common support plate.
Avantageusement, les éléments rayonnants adjacents du réseau rayonnant peuvent être agencés spatialement de façon que leurs éléments planaires elliptiques respectifs soient respectivement orientés dans deux directions orthogonales entre elles.Advantageously, the adjacent radiating elements of the radiating network may be arranged spatially so that their respective elliptical planar elements are respectively oriented in two directions orthogonal to each other.
Avantageusement, le réseau rayonnant peut comporter en outre des éléments diélectriques absorbants disposés entre deux éléments rayonnants adjacents.Advantageously, the radiating network may further comprise absorbing dielectric elements disposed between two adjacent radiating elements.
D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :
-
figures 1a, 1b ,1c : trois schémas, respectivement en coupe axiale, en perspective, et en vue de dessus, d'un exemple d'élément rayonnant bi-polarisation, selon l'invention ; -
figure 1d : un schéma en coupe axiale d'une variante de réalisation de l'élément rayonnant, selon l'invention ; -
figure 2 : un graphique illustrant deux courbes du rayonnement de l'élément rayonnant de lafigure 1 , en fonction de la fréquence, correspondant respectivement à une première polarisation circulaire et à une deuxième polarisation circulaire, selon l'invention; -
figures 3a et 3b : deux schémas, respectivement en perspective et en vue de dessus, d'un premier exemple de réseau rayonnant comportant quatre éléments rayonnants, selon l'invention ; -
figures 4a et 4b : deux schémas, respectivement en perspective et en vue de dessus d'un deuxième exemple de réseau rayonnant comportant quatre éléments rayonnants, selon l'invention.
-
Figures 1a, 1b ,1 C three diagrams, respectively in axial section, in perspective, and in plan view, of an example of a bi-polarization radiating element, according to the invention; -
figure 1d : an axial sectional diagram of an alternative embodiment of the radiating element, according to the invention; -
figure 2 : a graph illustrating two curves of the radiation of the radiating element of thefigure 1 as a function of frequency, respectively corresponding to a first circular polarization and a second circular polarization according to the invention; -
Figures 3a and 3b : two diagrams, respectively in perspective and in top view, of a first example of radiating network comprising four radiating elements, according to the invention; -
Figures 4a and 4b two diagrams, respectively in perspective and in plan view of a second example of a radiating network comprising four radiating elements, according to the invention.
L'élément rayonnant 10 représenté sur les
La cavité 11 est délimitée par la paroi métallique inférieure 14 et par des parois métalliques latérales 17 et est remplie d'air. L'élément rayonnant 10 comporte en outre au moins une source d'alimentation constituée par une ligne coaxiale 18 reliée au premier élément planaire elliptique 131 situé le plus proche de l'extrémité inférieure 15 de l'âme centrale 12. Ainsi, seul le premier élément planaire elliptique 131 est alimenté directement par la ligne coaxiale 18. Le premier élément planaire elliptique 131 rayonne une onde radiofréquence qui se propage dans la cavité et engendre des courants à la surface des autres éléments planaires elliptiques 132,..., 13N qui sont alors couplés de proche en proche par couplage électromagnétique induit. Le premier élément planaire elliptique 131 est donc un élément planaire excitateur.The
Les grands axes des formes elliptiques correspondant aux différents éléments planaires elliptiques peuvent être tous orientés dans une direction unique commune ou dans des directions différentes. Les N éléments planaires elliptiques peuvent être tous logés à l'intérieur de la cavité comme illustré sur les
Lorsque l'élément rayonnant comporte une seule ligne coaxiale 18 d'alimentation, les différents éléments planaires elliptiques 131, 132,..., 13N peuvent être progressivement décalés en rotation les uns par rapport aux autres, autour de l'âme centrale 15, comme représenté par exemple, sur la
Le graphique de la
La première courbe 21 correspond au rayonnement de l'élément rayonnant selon une première polarisation circulaire de sens direct et la deuxième courbe 22 correspond au rayonnement de l'élément rayonnant selon une deuxième polarisation circulaire de sens inverse.The
Comme le montrent ces deux courbes, avec une unique ligne d'alimentation, l'élément rayonnant fonctionne dans deux bandes passantes différentes très larges comprises entre 3.7GHz et 6.4GHZ et dans chaque bande passante, les polarisations sont différentes et inversées. Dans chaque bande passante, les niveaux de gain en polarisation croisée (en anglais : cross-polarisation) sont inférieurs à -15dB par rapport aux niveaux de gain de la polarisation de fonctionnement correspondante.As shown by these two curves, with a single power line, the radiating element operates in two very wide different bandwidths between 3.7GHz and 6.4GHZ and in each bandwidth, the polarizations are different and reversed. In each bandwidth, the cross-polarization gain levels are less than -15 dB relative to the gain levels of the corresponding operating bias.
Cet élément rayonnant permet donc un fonctionnement dans deux bandes de fréquences différentes distinctes, par exemple d'émission et de réception, avec des polarisations différentes et un bon niveau de gain.This radiating element therefore allows operation in two different distinct frequency bands, for example transmission and reception, with different polarizations and a good gain level.
Ces deux courbes 21, 22 montrent que l'association de la cavité avec une pluralité d'éléments planaires elliptiques de dimensions différentes permet un rayonnement de l'élément rayonnant dans une bande passante beaucoup plus large que les éléments rayonnants classiques. Ceci est dû au fait que les éléments planaires elliptiques ayant les plus grandes dimensions participent au rayonnement de l'élément rayonnant dans des fréquences basses alors que les éléments planaires elliptiques de dimensions plus faibles participent au rayonnement de l'élément rayonnant dans des fréquences plus hautes. La progressivité de la décroissance des dimensions des éléments planaires elliptiques le long de l'âme centrale 12 permet d'obtenir un rayonnement continu dans une large bande de fréquences. En outre, le fonctionnement en double polarisation circulaire est dû à un effet naturel particulièrement remarquable correspondant à une inversion naturelle du sens de la polarisation dans les bandes de fréquence les plus hautes.These two
Cette inversion naturelle du sens de la polarisation, dans la bande correspondant aux fréquences de fonctionnement les plus hautes, par exemple la bande de réception, est un effet nouveau qui n'a jamais été rencontré dans les éléments rayonnants classiques et est due à un couplage entre le élément planaire elliptique excitateur 131 et le fond de la cavité 14 constitué par la paroi inférieure de la cavité. La réflexion, sur le fond de la cavité 14, des ondes radiofréquences, émises par le élément planaire elliptique excitateur 131 et correspondant aux fréquences de fonctionnement les plus hautes, a pour effet d'inverser le sens de la polarisation.This natural inversion of the direction of polarization, in the band corresponding to the highest operating frequencies, for example the reception band, is a new effect which has never been encountered in conventional radiating elements and is due to a coupling between the elliptical excitatory
Le champ électrique correspondant aux fréquences les plus hautes est réfléchi par la paroi inférieure 14 de la cavité et est réémis vers le haut de la cavité après inversion du sens de la polarisation. Au contraire, le champ électrique correspondant aux fréquences basses est directement émis vers le haut de la cavité sans réflexion et sans inversion du sens de la polarisation.The electric field corresponding to the highest frequencies is reflected by the
Il est possible d'assembler plusieurs éléments rayonnants 10 identiques pour former un réseau rayonnant planaire bi-dimensionnel de grandes dimensions comme illustré par exemple sur les
En outre, comme la mise en réseau peut engendrer une augmentation des niveaux de polarisation croisée, les éléments rayonnants adjacents sont agencés spatialement de façon que leurs éléments planaires elliptiques respectifs soient respectivement orientés parallèlement à deux directions X, Y orthogonales entre elles, c'est-à-dire que les directions des grands axes de leurs éléments planaires elliptiques respectifs sont orthogonales entre elles, comme illustré sur la
Selon un deuxième mode de réalisation de l'invention, les différents éléments planaires elliptiques de chaque élément rayonnant ne sont pas décalés en rotation les uns par rapport aux autres, mais les grands axes de leurs formes elliptiques respectives sont tous alignés dans une direction commune.According to a second embodiment of the invention, the different elliptical planar elements of each radiating element are not offset in rotation with respect to each other, but the major axes of their respective elliptical shapes are all aligned in a common direction.
Dans ce cas, pour un fonctionnement de l'élément rayonnant dans deux polarisations orthogonales entre elles, chaque élément rayonnant 10 comporte deux lignes coaxiales d'alimentation 18, 28 reliées au premier élément planaire elliptique 131 situé le plus proche de l'extrémité inférieure de l'âme centrale. Les deux lignes coaxiales d'alimentation 18, 28 sont respectivement connectées en deux points de connexion différents du premier élément planaire elliptique 131, les deux points de connexion étant placés selon deux directions différentes du premier élément planaire elliptique 131, perpendiculaires entre elles, les deux directions pouvant correspondre par exemple, aux directions du grand axe et du petit axe de la forme elliptique du premier élément planaire elliptique 131. Ainsi, seul le premier élément planaire elliptique est alimenté directement par les deux lignes coaxiales selon deux polarisations orthogonales. Dans ce cas, l'élément rayonnant 10 ne peut fonctionner que dans une seule bande de fréquence et en bi-polarisation car il n'est dans ce cas, pas possible de sélectionner à la fois une bande de fréquence et une seule polarisation. Selon ce deuxième mode de réalisation, pour un fonctionnement à l'émission et à la réception, il est alors nécessaire de réaliser des éléments rayonnants de dimensions différentes adaptées respectivement soit à une bande de fréquence de fonctionnement dédiée à l'émission, soit à une bande de fréquence de fonctionnement dédiée à la réception. Les
Bien que l'invention ait été décrite en liaison avec des modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention. En particulier, les réseaux d'éléments rayonnants ne sont pas limités à quatre éléments rayonnants mais peuvent comporter un nombre d'éléments rayonnants supérieur à deux.Although the invention has been described in connection with particular embodiments, it is obvious that it is not limited thereto and that it includes all the technical equivalents of the means described and their combinations if they are within the scope of the invention. In particular, the networks of radiating elements are not limited to four radiating elements but may have a number of radiating elements greater than two.
Claims (9)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1601432A FR3057109B1 (en) | 2016-10-04 | 2016-10-04 | RADIATION ELEMENT IN A CAVITY AND RADIANT ARRAY COMPRISING AT LEAST TWO RADIANT ELEMENTS |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3306746A1 true EP3306746A1 (en) | 2018-04-11 |
EP3306746B1 EP3306746B1 (en) | 2023-04-05 |
Family
ID=57860918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17194500.9A Active EP3306746B1 (en) | 2016-10-04 | 2017-10-03 | Cavity radiating element and radiating network comprising at least two radiating elements |
Country Status (5)
Country | Link |
---|---|
US (1) | US10573973B2 (en) |
EP (1) | EP3306746B1 (en) |
CA (1) | CA2981333A1 (en) |
ES (1) | ES2943121T3 (en) |
FR (1) | FR3057109B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5010348A (en) * | 1987-11-05 | 1991-04-23 | Alcatel Espace | Device for exciting a waveguide with circular polarization from a plane antenna |
US20120062440A1 (en) * | 2010-09-14 | 2012-03-15 | Hitachi Cable, Ltd. | Mobile communication base station antenna |
US20120112977A1 (en) * | 2010-11-09 | 2012-05-10 | Electronics And Telecommunications Research Institute | Antenna simply manufactured according to frequency characteristic |
WO2017100126A1 (en) * | 2015-12-09 | 2017-06-15 | Viasat, Inc. | Stacked self-diplexed multi-band patch antenna |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6856300B2 (en) * | 2002-11-08 | 2005-02-15 | Kvh Industries, Inc. | Feed network and method for an offset stacked patch antenna array |
-
2016
- 2016-10-04 FR FR1601432A patent/FR3057109B1/en active Active
-
2017
- 2017-10-02 US US15/722,962 patent/US10573973B2/en active Active
- 2017-10-03 ES ES17194500T patent/ES2943121T3/en active Active
- 2017-10-03 CA CA2981333A patent/CA2981333A1/en active Pending
- 2017-10-03 EP EP17194500.9A patent/EP3306746B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5010348A (en) * | 1987-11-05 | 1991-04-23 | Alcatel Espace | Device for exciting a waveguide with circular polarization from a plane antenna |
US20120062440A1 (en) * | 2010-09-14 | 2012-03-15 | Hitachi Cable, Ltd. | Mobile communication base station antenna |
US20120112977A1 (en) * | 2010-11-09 | 2012-05-10 | Electronics And Telecommunications Research Institute | Antenna simply manufactured according to frequency characteristic |
WO2017100126A1 (en) * | 2015-12-09 | 2017-06-15 | Viasat, Inc. | Stacked self-diplexed multi-band patch antenna |
Non-Patent Citations (4)
Title |
---|
KOUTSOUPIDOU MARIA ET AL: "A microwave breast imaging system using elliptical uniplanar antennas in a circular-array setup", 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), IEEE, 16 September 2015 (2015-09-16), pages 1 - 4, XP032791411, DOI: 10.1109/IST.2015.7294522 * |
RAWAT SANYOG ET AL: "Stacked elliptical patches for circularly polarized broadband performance", 2014 INTERNATIONAL CONFERENCE ON SIGNAL PROPAGATION AND COMPUTER TECHNOLOGY (ICSPCT 2014), IEEE, 12 July 2014 (2014-07-12), pages 232 - 235, XP032631327, DOI: 10.1109/ICSPCT.2014.6884942 * |
WEILY A R ET AL: "Circularly Polarized Ellipse-Loaded Circular Slot Array for Millimeter-Wave WPAN Applications", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 57, no. 10, 1 October 2009 (2009-10-01), pages 2862 - 2870, XP011271562, ISSN: 0018-926X, DOI: 10.1109/TAP.2009.2029305 * |
XIN ZHANG ET AL: "Design of circularly polarized stacked microstrip antennas", ANTENNAS, PROPAGATION AND EM THEORY, 2008. ISAPE 2008. 8TH INTERNATIONAL SYMPOSIUM ON, IEEE, PISCATAWAY, NJ, USA, 2 November 2008 (2008-11-02), pages 11 - 14, XP031398978, ISBN: 978-1-4244-2192-3 * |
Also Published As
Publication number | Publication date |
---|---|
US20180097292A1 (en) | 2018-04-05 |
FR3057109A1 (en) | 2018-04-06 |
US10573973B2 (en) | 2020-02-25 |
EP3306746B1 (en) | 2023-04-05 |
ES2943121T3 (en) | 2023-06-09 |
CA2981333A1 (en) | 2018-04-04 |
FR3057109B1 (en) | 2018-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2564466B1 (en) | COMPACT RADIANT ELEMENT WITH RESONANT CAVITES | |
EP2047564B1 (en) | Compact orthomode transduction device optimized in the mesh plane, for an antenna | |
EP2202839B1 (en) | Compact feed system for the generation of circular polarisation in an antenna and method of producing such system | |
EP2869400B1 (en) | Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor | |
EP3179551B1 (en) | Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies | |
FR2810164A1 (en) | IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS FOR SATELLITE TELECOMMUNICATIONS SYSTEMS | |
EP3843202B1 (en) | Horn for ka dual-band satellite antenna with circular polarisation | |
FR2640431A1 (en) | RADIANT MULTI-FREQUENCY DEVICE | |
CA2682273A1 (en) | Antenna with resonator having a filtering coating and system including such antenna | |
EP3664214B1 (en) | Multiple access radiant elements | |
EP0117803B1 (en) | Wideband primary microwave horn radiator and antenna using such a primary radiator | |
EP3113286B1 (en) | Quasi-optical lens beam former and planar antenna comprising such a beam former | |
EP0098192B1 (en) | Multiplexing device for combining two frequency bands | |
FR3069713B1 (en) | ANTENNA INTEGRATING DELAY LENSES WITHIN A DISTRIBUTOR BASED ON PARALLEL PLATE WAVEGUIDE DIVIDERS | |
EP1191630A1 (en) | High frequency diverging dome shaped lens and antenna incorporating such lens | |
EP3306746A1 (en) | Cavity radiating element and radiating network comprising at least two radiating elements | |
CA2029329A1 (en) | Radiating element excitation non-inclinated radiating slot guide | |
EP0550320B1 (en) | Waveguide with non-inclined slots activated by metallic inserts | |
EP3249823B1 (en) | Compact bi-polarity, multi-frequency radiofrequency exciter for a primary source of an antenna and primary source of an antenna provided with such a radiofrequency exciter | |
EP0407258B1 (en) | Ultrahigh frequency energy distributor radiating directly | |
FR2478381A1 (en) | Antenna exciter with cylindrical and horn shaped portions - has horn section with flat sides and curved edges, and internal grooves | |
EP3075031B1 (en) | Arrangement of antenna structures for satellite telecommunications | |
FR2690787A1 (en) | Channel guide antenna for radar antenna array - has radiating upper section with horn, fed by TEM wave in central rectangular channel having inserts with alternating projections | |
EP4396901A1 (en) | Multiband antenna | |
WO2015079038A2 (en) | Compact antenna structure for satellite telecommunications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180730 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190905 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220706 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20221215 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1558955 Country of ref document: AT Kind code of ref document: T Effective date: 20230415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017067390 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2943121 Country of ref document: ES Kind code of ref document: T3 Effective date: 20230609 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230405 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1558955 Country of ref document: AT Kind code of ref document: T Effective date: 20230405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230807 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230805 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230706 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017067390 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231003 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240919 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240923 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231003 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240926 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230405 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240925 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20241107 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20241101 Year of fee payment: 8 |