EP3207178A1 - Composition de durcissement pour papier et carton - Google Patents
Composition de durcissement pour papier et cartonInfo
- Publication number
- EP3207178A1 EP3207178A1 EP15750736.9A EP15750736A EP3207178A1 EP 3207178 A1 EP3207178 A1 EP 3207178A1 EP 15750736 A EP15750736 A EP 15750736A EP 3207178 A1 EP3207178 A1 EP 3207178A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polymer
- groups
- mol
- aqueous composition
- amino groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 153
- 239000011087 paperboard Substances 0.000 title abstract description 8
- 239000011111 cardboard Substances 0.000 title abstract description 7
- 229920000642 polymer Polymers 0.000 claims abstract description 248
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims abstract description 92
- 125000000320 amidine group Chemical group 0.000 claims abstract description 72
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 claims abstract description 24
- DCZFGQYXRKMVFG-UHFFFAOYSA-N cyclohexane-1,4-dione Chemical compound O=C1CCC(=O)CC1 DCZFGQYXRKMVFG-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000178 monomer Substances 0.000 claims description 118
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 claims description 94
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 84
- 229920001577 copolymer Polymers 0.000 claims description 76
- 230000007062 hydrolysis Effects 0.000 claims description 73
- 238000006460 hydrolysis reaction Methods 0.000 claims description 73
- 238000000034 method Methods 0.000 claims description 39
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 36
- 125000002091 cationic group Chemical group 0.000 claims description 30
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 28
- 239000000945 filler Substances 0.000 claims description 28
- 125000003277 amino group Chemical group 0.000 claims description 25
- 229920001519 homopolymer Polymers 0.000 claims description 24
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 19
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 18
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 17
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical group C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 claims description 17
- 230000007935 neutral effect Effects 0.000 claims description 16
- NJSSICCENMLTKO-HRCBOCMUSA-N [(1r,2s,4r,5r)-3-hydroxy-4-(4-methylphenyl)sulfonyloxy-6,8-dioxabicyclo[3.2.1]octan-2-yl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)O[C@H]1C(O)[C@@H](OS(=O)(=O)C=2C=CC(C)=CC=2)[C@@H]2OC[C@H]1O2 NJSSICCENMLTKO-HRCBOCMUSA-N 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 14
- 125000000129 anionic group Chemical group 0.000 claims description 13
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 229940047670 sodium acrylate Drugs 0.000 claims description 10
- 150000002148 esters Chemical class 0.000 claims description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims description 8
- 150000001735 carboxylic acids Chemical class 0.000 claims description 8
- 239000010893 paper waste Substances 0.000 claims description 8
- GDFCSMCGLZFNFY-UHFFFAOYSA-N Dimethylaminopropyl Methacrylamide Chemical compound CN(C)CCCNC(=O)C(C)=C GDFCSMCGLZFNFY-UHFFFAOYSA-N 0.000 claims description 6
- 150000001340 alkali metals Chemical class 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 230000000379 polymerizing effect Effects 0.000 claims description 6
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 5
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 5
- 150000003863 ammonium salts Chemical class 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 239000007857 degradation product Substances 0.000 claims description 4
- ADTJPOBHAXXXFS-UHFFFAOYSA-N n-[3-(dimethylamino)propyl]prop-2-enamide Chemical compound CN(C)CCCNC(=O)C=C ADTJPOBHAXXXFS-UHFFFAOYSA-N 0.000 claims description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 150000003009 phosphonic acids Chemical class 0.000 claims description 3
- 150000003460 sulfonic acids Chemical class 0.000 claims description 3
- WCCVMVPVUAVUFI-UHFFFAOYSA-N 2-methylprop-2-enamide;hydrochloride Chemical compound Cl.CC(=C)C(N)=O WCCVMVPVUAVUFI-UHFFFAOYSA-N 0.000 claims description 2
- XQPHILGRTDDWIR-UHFFFAOYSA-N n-chloroprop-2-enamide Chemical compound ClNC(=O)C=C XQPHILGRTDDWIR-UHFFFAOYSA-N 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 177
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 129
- 239000000123 paper Substances 0.000 description 91
- 239000007787 solid Substances 0.000 description 60
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 44
- 235000011121 sodium hydroxide Nutrition 0.000 description 43
- 238000010992 reflux Methods 0.000 description 42
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 40
- 229940048053 acrylate Drugs 0.000 description 36
- -1 anionic radicals Chemical class 0.000 description 36
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 32
- 229920008712 Copo Polymers 0.000 description 32
- 239000000047 product Substances 0.000 description 32
- 238000006243 chemical reaction Methods 0.000 description 29
- 238000006116 polymerization reaction Methods 0.000 description 26
- 239000011541 reaction mixture Substances 0.000 description 26
- 229910052757 nitrogen Inorganic materials 0.000 description 23
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 22
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 22
- 229920002873 Polyethylenimine Polymers 0.000 description 19
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 19
- 239000002253 acid Substances 0.000 description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 239000000725 suspension Substances 0.000 description 16
- 150000001409 amidines Chemical class 0.000 description 15
- 239000011521 glass Substances 0.000 description 15
- 239000011734 sodium Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 229940117958 vinyl acetate Drugs 0.000 description 13
- 239000007795 chemical reaction product Substances 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- WTKXVQOMXURINP-UHFFFAOYSA-N 8-ethenylfluoranthene Chemical compound C1=CC(C2=CC=C(C=C22)C=C)=C3C2=CC=CC3=C1 WTKXVQOMXURINP-UHFFFAOYSA-N 0.000 description 11
- 229920002472 Starch Polymers 0.000 description 11
- 235000019698 starch Nutrition 0.000 description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 10
- 239000004971 Cross linker Substances 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 10
- 239000000835 fiber Substances 0.000 description 10
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 10
- 229910052700 potassium Inorganic materials 0.000 description 10
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical group NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 229920001131 Pulp (paper) Polymers 0.000 description 9
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 239000004289 sodium hydrogen sulphite Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 8
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 8
- 229920002401 polyacrylamide Polymers 0.000 description 8
- 239000008107 starch Substances 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 7
- 238000006731 degradation reaction Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 150000002763 monocarboxylic acids Chemical class 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 6
- 150000007513 acids Chemical class 0.000 description 6
- 150000003926 acrylamides Chemical class 0.000 description 6
- 239000002168 alkylating agent Substances 0.000 description 6
- 229940100198 alkylating agent Drugs 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 6
- 150000001991 dicarboxylic acids Chemical class 0.000 description 6
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical group NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 150000003839 salts Chemical group 0.000 description 6
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 5
- 150000001408 amides Chemical group 0.000 description 5
- 235000019253 formic acid Nutrition 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 150000002825 nitriles Chemical class 0.000 description 5
- JTTBZVHEXMQSMM-UHFFFAOYSA-M (3-chloro-2-hydroxypropyl)-dodecyl-dimethylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)CC(O)CCl JTTBZVHEXMQSMM-UHFFFAOYSA-M 0.000 description 4
- YAXXOCZAXKLLCV-UHFFFAOYSA-N 3-dodecyloxolane-2,5-dione Chemical class CCCCCCCCCCCCC1CC(=O)OC1=O YAXXOCZAXKLLCV-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 239000012736 aqueous medium Substances 0.000 description 4
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 4
- 229920000578 graft copolymer Polymers 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 4
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Inorganic materials Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 3
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 239000005708 Sodium hypochlorite Substances 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 150000001350 alkyl halides Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 3
- 229940073608 benzyl chloride Drugs 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- OILAIQUEIWYQPH-UHFFFAOYSA-N cyclohexane-1,2-dione Chemical compound O=C1CCCCC1=O OILAIQUEIWYQPH-UHFFFAOYSA-N 0.000 description 3
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- 125000001302 tertiary amino group Chemical group 0.000 description 3
- VPYJNCGUESNPMV-UHFFFAOYSA-N triallylamine Chemical compound C=CCN(CC=C)CC=C VPYJNCGUESNPMV-UHFFFAOYSA-N 0.000 description 3
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 3
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 2
- QENRKQYUEGJNNZ-UHFFFAOYSA-N 2-methyl-1-(prop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(C)C(S(O)(=O)=O)NC(=O)C=C QENRKQYUEGJNNZ-UHFFFAOYSA-N 0.000 description 2
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 description 2
- XJMMNTGIMDZPMU-UHFFFAOYSA-N 3-methylglutaric acid Chemical compound OC(=O)CC(C)CC(O)=O XJMMNTGIMDZPMU-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 2
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 2
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- 238000006845 Michael addition reaction Methods 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 150000001414 amino alcohols Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 2
- 229940106681 chloroacetic acid Drugs 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000006114 decarboxylation reaction Methods 0.000 description 2
- 125000004663 dialkyl amino group Chemical group 0.000 description 2
- IZZSMHVWMGGQGU-UHFFFAOYSA-L disodium;2-methylidenebutanedioate Chemical compound [Na+].[Na+].[O-]C(=O)CC(=C)C([O-])=O IZZSMHVWMGGQGU-UHFFFAOYSA-L 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 125000006575 electron-withdrawing group Chemical group 0.000 description 2
- WBJINCZRORDGAQ-UHFFFAOYSA-N ethyl formate Chemical class CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 2
- 229940050176 methyl chloride Drugs 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- RQAKESSLMFZVMC-UHFFFAOYSA-N n-ethenylacetamide Chemical compound CC(=O)NC=C RQAKESSLMFZVMC-UHFFFAOYSA-N 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 238000012673 precipitation polymerization Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 238000005956 quaternization reaction Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-N sodium;hydron;carbonate Chemical compound [Na+].OC(O)=O UIIMBOGNXHQVGW-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- 238000010557 suspension polymerization reaction Methods 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- SZYJELPVAFJOGJ-UHFFFAOYSA-N trimethylamine hydrochloride Chemical class Cl.CN(C)C SZYJELPVAFJOGJ-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 description 2
- RFOWDPMCXHVGET-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenyl) prop-2-enoate Chemical compound FC1=C(F)C(F)=C(OC(=O)C=C)C(F)=C1F RFOWDPMCXHVGET-UHFFFAOYSA-N 0.000 description 1
- ZODNDDPVCIAZIQ-UHFFFAOYSA-N (2-hydroxy-3-prop-2-enoyloxypropyl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)COC(=O)C=C ZODNDDPVCIAZIQ-UHFFFAOYSA-N 0.000 description 1
- QIKIJFUVHGOQOK-UHFFFAOYSA-M (3-chloro-2-hydroxypropyl)-dimethyl-octadecylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CC(O)CCl QIKIJFUVHGOQOK-UHFFFAOYSA-M 0.000 description 1
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 description 1
- WTXXSZUATXIAJO-OWBHPGMISA-N (Z)-14-methylpentadec-2-enoic acid Chemical compound CC(CCCCCCCCCC\C=C/C(=O)O)C WTXXSZUATXIAJO-OWBHPGMISA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- LQIAZOCLNBBZQK-UHFFFAOYSA-N 1-(1,2-Diphosphanylethyl)pyrrolidin-2-one Chemical compound PCC(P)N1CCCC1=O LQIAZOCLNBBZQK-UHFFFAOYSA-N 0.000 description 1
- BDHGFCVQWMDIQX-UHFFFAOYSA-N 1-ethenyl-2-methylimidazole Chemical compound CC1=NC=CN1C=C BDHGFCVQWMDIQX-UHFFFAOYSA-N 0.000 description 1
- NEWDOBPJIKOWPV-UHFFFAOYSA-N 1-ethenyl-3-oxidoimidazol-3-ium Chemical compound [O-][N+]=1C=CN(C=C)C=1 NEWDOBPJIKOWPV-UHFFFAOYSA-N 0.000 description 1
- DJABNVJZYFGAJE-UHFFFAOYSA-N 1-ethenyl-5-ethylpyrrolidin-2-one Chemical compound CCC1CCC(=O)N1C=C DJABNVJZYFGAJE-UHFFFAOYSA-N 0.000 description 1
- HQGPZXPTJWUDQR-UHFFFAOYSA-N 1-ethenyl-5-methylpyrrolidin-2-one Chemical compound CC1CCC(=O)N1C=C HQGPZXPTJWUDQR-UHFFFAOYSA-N 0.000 description 1
- GIQLJJKZKUIRIU-UHFFFAOYSA-N 1-ethenyl-6-ethylpiperidin-2-one Chemical compound CCC1CCCC(=O)N1C=C GIQLJJKZKUIRIU-UHFFFAOYSA-N 0.000 description 1
- FFDNCQYZAAVSSF-UHFFFAOYSA-N 1-ethenyl-6-methylpiperidin-2-one Chemical compound CC1CCCC(=O)N1C=C FFDNCQYZAAVSSF-UHFFFAOYSA-N 0.000 description 1
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- PBGPBHYPCGDFEZ-UHFFFAOYSA-N 1-ethenylpiperidin-2-one Chemical compound C=CN1CCCCC1=O PBGPBHYPCGDFEZ-UHFFFAOYSA-N 0.000 description 1
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 1
- BBBUAWSVILPJLL-UHFFFAOYSA-N 2-(2-ethylhexoxymethyl)oxirane Chemical compound CCCCC(CC)COCC1CO1 BBBUAWSVILPJLL-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- NMMXJQKTXREVGN-UHFFFAOYSA-N 2-(4-benzoyl-3-hydroxyphenoxy)ethyl prop-2-enoate Chemical compound OC1=CC(OCCOC(=O)C=C)=CC=C1C(=O)C1=CC=CC=C1 NMMXJQKTXREVGN-UHFFFAOYSA-N 0.000 description 1
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical compound CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- YZUMRMCHAJVDRT-UHFFFAOYSA-N 2-(hexadecoxymethyl)oxirane Chemical compound CCCCCCCCCCCCCCCCOCC1CO1 YZUMRMCHAJVDRT-UHFFFAOYSA-N 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 1
- MPNXSZJPSVBLHP-UHFFFAOYSA-N 2-chloro-n-phenylpyridine-3-carboxamide Chemical compound ClC1=NC=CC=C1C(=O)NC1=CC=CC=C1 MPNXSZJPSVBLHP-UHFFFAOYSA-N 0.000 description 1
- RAGSWDIQBBZLLL-UHFFFAOYSA-N 2-chloroethyl(diethyl)azanium;chloride Chemical class Cl.CCN(CC)CCCl RAGSWDIQBBZLLL-UHFFFAOYSA-N 0.000 description 1
- AEPWOCLBLLCOGZ-UHFFFAOYSA-N 2-cyanoethyl prop-2-enoate Chemical compound C=CC(=O)OCCC#N AEPWOCLBLLCOGZ-UHFFFAOYSA-N 0.000 description 1
- WQMAANNAZKNUDL-UHFFFAOYSA-N 2-dimethylaminoethyl chloride Chemical compound CN(C)CCCl WQMAANNAZKNUDL-UHFFFAOYSA-N 0.000 description 1
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 1
- OWHSTLLOZWTNTQ-UHFFFAOYSA-N 2-ethylhexyl 2-sulfanylacetate Chemical compound CCCCC(CC)COC(=O)CS OWHSTLLOZWTNTQ-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- AUZRCMMVHXRSGT-UHFFFAOYSA-N 2-methylpropane-1-sulfonic acid;prop-2-enamide Chemical compound NC(=O)C=C.CC(C)CS(O)(=O)=O AUZRCMMVHXRSGT-UHFFFAOYSA-N 0.000 description 1
- SMBRHGJEDJVDOB-UHFFFAOYSA-N 2-methylpropanimidamide;dihydrochloride Chemical compound Cl.Cl.CC(C)C(N)=N SMBRHGJEDJVDOB-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- RHOOUTWPJJQGSK-UHFFFAOYSA-N 2-phenylsulfanylethyl prop-2-enoate Chemical compound C=CC(=O)OCCSC1=CC=CC=C1 RHOOUTWPJJQGSK-UHFFFAOYSA-N 0.000 description 1
- BOZBBKZCBLPUSG-UHFFFAOYSA-N 2-prop-1-enyl-1h-imidazole Chemical class CC=CC1=NC=CN1 BOZBBKZCBLPUSG-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- ACJPFLIEHGFXGP-UHFFFAOYSA-N 3,3-dimethyloxolane-2,5-dione Chemical compound CC1(C)CC(=O)OC1=O ACJPFLIEHGFXGP-UHFFFAOYSA-N 0.000 description 1
- SSZWWUDQMAHNAQ-UHFFFAOYSA-N 3-chloropropane-1,2-diol Chemical compound OCC(O)CCl SSZWWUDQMAHNAQ-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- FYRWKWGEFZTOQI-UHFFFAOYSA-N 3-prop-2-enoxy-2,2-bis(prop-2-enoxymethyl)propan-1-ol Chemical compound C=CCOCC(CO)(COCC=C)COCC=C FYRWKWGEFZTOQI-UHFFFAOYSA-N 0.000 description 1
- NYUTUWAFOUJLKI-UHFFFAOYSA-N 3-prop-2-enoyloxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCOC(=O)C=C NYUTUWAFOUJLKI-UHFFFAOYSA-N 0.000 description 1
- CYUZOYPRAQASLN-UHFFFAOYSA-N 3-prop-2-enoyloxypropanoic acid Chemical compound OC(=O)CCOC(=O)C=C CYUZOYPRAQASLN-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- CILNWURBZNZCBD-UHFFFAOYSA-M 4-chlorobutyl(trimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCCCCl CILNWURBZNZCBD-UHFFFAOYSA-M 0.000 description 1
- KRFXUBMJBAXOOZ-UHFFFAOYSA-N 4-ethenyl-1-oxidopyridin-1-ium Chemical class [O-][N+]1=CC=C(C=C)C=C1 KRFXUBMJBAXOOZ-UHFFFAOYSA-N 0.000 description 1
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 1
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- GLTFTMAFURHFGQ-UHFFFAOYSA-M 6-chlorohexyl(trimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCCCCCCl GLTFTMAFURHFGQ-UHFFFAOYSA-M 0.000 description 1
- HKQSJKGSOBPEOX-UHFFFAOYSA-M 8-chlorooctyl(trimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCCCCCCCCl HKQSJKGSOBPEOX-UHFFFAOYSA-M 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- SJIXRGNQPBQWMK-UHFFFAOYSA-N DEAEMA Natural products CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical class C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- DCTLJGWMHPGCOS-UHFFFAOYSA-N Osajin Chemical compound C1=2C=CC(C)(C)OC=2C(CC=C(C)C)=C(O)C(C2=O)=C1OC=C2C1=CC=C(O)C=C1 DCTLJGWMHPGCOS-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- KNUSQTXJWATMLJ-UHFFFAOYSA-N [1-(dimethylamino)-2,2-dimethylpropyl] prop-2-enoate Chemical compound CN(C)C(C(C)(C)C)OC(=O)C=C KNUSQTXJWATMLJ-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000004075 acetic anhydrides Chemical class 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 150000001348 alkyl chlorides Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- PVEOYINWKBTPIZ-UHFFFAOYSA-N but-3-enoic acid Chemical compound OC(=O)CC=C PVEOYINWKBTPIZ-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- UTOVMEACOLCUCK-PLNGDYQASA-N butyl maleate Chemical compound CCCCOC(=O)\C=C/C(O)=O UTOVMEACOLCUCK-PLNGDYQASA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002761 deinking Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 125000004985 dialkyl amino alkyl group Chemical group 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- DENRZWYUOJLTMF-UHFFFAOYSA-N diethyl sulfate Chemical compound CCOS(=O)(=O)OCC DENRZWYUOJLTMF-UHFFFAOYSA-N 0.000 description 1
- 229940008406 diethyl sulfate Drugs 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- YIOJGTBNHQAVBO-UHFFFAOYSA-N dimethyl-bis(prop-2-enyl)azanium Chemical class C=CC[N+](C)(C)CC=C YIOJGTBNHQAVBO-UHFFFAOYSA-N 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- GFJVXXWOPWLRNU-UHFFFAOYSA-N ethenyl formate Chemical compound C=COC=O GFJVXXWOPWLRNU-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 238000003988 headspace gas chromatography Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 235000012245 magnesium oxide Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- GVBMMNAPRZDGEY-UHFFFAOYSA-N n-[2-(diethylamino)ethyl]-2-methylprop-2-enamide Chemical compound CCN(CC)CCNC(=O)C(C)=C GVBMMNAPRZDGEY-UHFFFAOYSA-N 0.000 description 1
- CXSANWNPQKKNJO-UHFFFAOYSA-N n-[2-(diethylamino)ethyl]prop-2-enamide Chemical compound CCN(CC)CCNC(=O)C=C CXSANWNPQKKNJO-UHFFFAOYSA-N 0.000 description 1
- WDQKICIMIPUDBL-UHFFFAOYSA-N n-[2-(dimethylamino)ethyl]prop-2-enamide Chemical compound CN(C)CCNC(=O)C=C WDQKICIMIPUDBL-UHFFFAOYSA-N 0.000 description 1
- QYMUDOWMRHNHHP-UHFFFAOYSA-N n-[4-(dimethylamino)butyl]prop-2-enamide Chemical compound CN(C)CCCCNC(=O)C=C QYMUDOWMRHNHHP-UHFFFAOYSA-N 0.000 description 1
- HAZULKRCTMKQAS-UHFFFAOYSA-N n-ethenylbutanamide Chemical compound CCCC(=O)NC=C HAZULKRCTMKQAS-UHFFFAOYSA-N 0.000 description 1
- IUWVWLRMZQHYHL-UHFFFAOYSA-N n-ethenylpropanamide Chemical compound CCC(=O)NC=C IUWVWLRMZQHYHL-UHFFFAOYSA-N 0.000 description 1
- SWPMNMYLORDLJE-UHFFFAOYSA-N n-ethylprop-2-enamide Chemical compound CCNC(=O)C=C SWPMNMYLORDLJE-UHFFFAOYSA-N 0.000 description 1
- WGESLFUSXZBFQF-UHFFFAOYSA-N n-methyl-n-prop-2-enylprop-2-en-1-amine Chemical compound C=CCN(C)CC=C WGESLFUSXZBFQF-UHFFFAOYSA-N 0.000 description 1
- DYUWTXWIYMHBQS-UHFFFAOYSA-N n-prop-2-enylprop-2-en-1-amine Chemical compound C=CCNCC=C DYUWTXWIYMHBQS-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 239000003791 organic solvent mixture Substances 0.000 description 1
- HVAMZGADVCBITI-UHFFFAOYSA-N pent-4-enoic acid Chemical compound OC(=O)CCC=C HVAMZGADVCBITI-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920000962 poly(amidoamine) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical group OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000006798 ring closing metathesis reaction Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical group [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000001370 static light scattering Methods 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- RRHXZLALVWBDKH-UHFFFAOYSA-M trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)OCC[N+](C)(C)C RRHXZLALVWBDKH-UHFFFAOYSA-M 0.000 description 1
- UZNHKBFIBYXPDV-UHFFFAOYSA-N trimethyl-[3-(2-methylprop-2-enoylamino)propyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)NCCC[N+](C)(C)C UZNHKBFIBYXPDV-UHFFFAOYSA-N 0.000 description 1
- OEIXGLMQZVLOQX-UHFFFAOYSA-N trimethyl-[3-(prop-2-enoylamino)propyl]azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCCNC(=O)C=C OEIXGLMQZVLOQX-UHFFFAOYSA-N 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- LTVDFSLWFKLJDQ-UHFFFAOYSA-N α-tocopherolquinone Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)(O)CCC1=C(C)C(=O)C(C)=C(C)C1=O LTVDFSLWFKLJDQ-UHFFFAOYSA-N 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27N—MANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
- B27N3/00—Manufacture of substantially flat articles, e.g. boards, from particles or fibres
- B27N3/007—Manufacture of substantially flat articles, e.g. boards, from particles or fibres and at least partly composed of recycled material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F18/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
- C08F18/02—Esters of monocarboxylic acids
- C08F18/04—Vinyl esters
- C08F18/08—Vinyl acetate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/52—Amides or imides
- C08F20/54—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
- C08F20/56—Acrylamide; Methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F26/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
- C08F26/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/07—Aldehydes; Ketones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L39/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
- C08L39/02—Homopolymers or copolymers of vinylamine
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/03—Non-macromolecular organic compounds
- D21H17/05—Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
- D21H17/09—Sulfur-containing compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/03—Non-macromolecular organic compounds
- D21H17/05—Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
- D21H17/10—Phosphorus-containing compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/37—Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/54—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
- D21H17/55—Polyamides; Polyaminoamides; Polyester-amides
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/54—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
- D21H17/56—Polyamines; Polyimines; Polyester-imides
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/18—Reinforcing agents
- D21H21/20—Wet strength agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H23/00—Processes or apparatus for adding material to the pulp or to the paper
- D21H23/02—Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
- D21H23/04—Addition to the pulp; After-treatment of added substances in the pulp
Definitions
- the invention relates to an aqueous composition containing
- the present invention further relates to its use as a solidifier. Furthermore, the application relates to a process for the production of paper and board, use of the aqueous composition and hereafter produced paper and cardboard.
- Suitable solidifying agents include polyvinylamine, polyethyleneimine and polyacrylamides.
- WO 2008/022905 teaches a process for the treatment of cellulose-containing fibers or fabrics containing them with a combination of polyvinylamines and polyether acetylacetates.
- EP 2059539 describes the modification of the polyacrylamide with glyoxal, which lead to solidification in the papermaking process in that the aldehyde groups bound by the polymer react with the hydroxy groups of the cellulose, which ultimately causes crosslinking.
- glyoxilated polyacrylamides have a low storage stability, which can only be counteracted by a high dilution.
- WO 03/066716 teaches the production of foams from water-absorbing basic polymers of polyvinylamine and a crosslinker.
- a crosslinker 1,4-cyclohexanedione is mentioned among others.
- an aqueous mixture containing Polyvi- nylamin, ethylene diglycidyl ether as a crosslinking agent and a surfactant is first foamed and then poured the foamed mixture on a flat surface and dried at 70 ° C.
- the basic foams thus obtained are used as hydrogels in hygiene articles such as diapers Accordingly, the above-mentioned aqueous composition, its use as a solidifier, especially for processes for producing paper and board have been found. Further, a process for producing paper and board using the aqueous composition of the present invention and the paper and paperboard prepared hereafter were found.
- the aqueous composition according to the invention when added to the papermaking process, leads to solidification of the paper.
- An explanation of how the fibers solidify is that the composition results in a crosslinking reaction of the primary amino groups and optionally present amidine groups of the polymers with the 1,4-cyclohexanedione.
- Such a crosslinking reaction would be a pH-dependent equilibrium which, when added to the pulp, which generally has a pH in the range of 7 to 8, is shifted towards the crosslinked structure.
- the balance would shift to the right side.
- the equilibrium of the aqueous composition is shifted to the side of the starting materials in the acid, so that the composition is particularly stable in acidic form.
- the total content of primary amino groups and / or amidine groups is to be understood as the sum of the molar fractions of these groups given in milliequivalent per gram of polymer (solid).
- polymer having primary amino groups and / or amidine groups (solid) is mentioned, this is understood to mean the amount of polymer without counterions, taking into account potentially charge-carrying structural units in the charged form, ie, for example, amino groups in the protonated form and acid groups in the deprotonated form, counterions of the charged structural units such as Na, chloride, phosphate, formate, acetate, etc.
- composition according to the invention has a pH ⁇ 6. It therefore has an acidic pH.
- the compositions have a pH in the range of 2 to 6.
- the determination of the pH is carried out on a sample of the aqueous composition at 25 ° C and atmospheric pressure by means of a pH electrode.
- the polymers having primary amino groups and / or amidine groups are polymers having primary amino groups and optionally amidine groups. They usually have average molecular weights M w (determined by means of static light scattering) in the range from 10,000 to 10,000,000 daltons, preferably in the range from 20,000 to 5,000,000 daltons, particularly preferably in the range from 40,000 to 3,000,000 daltons. Very particularly preferred is an upper limit of the average molecular weight of 2,000,000 Dalton.
- the average molecular weight M w is understood here and below as the weight-average molecular weight.
- Polymers having primary amino groups and / or amidine groups are known, cf. the DE 35 06 832 A1 and DE 10 2004 056 551 A1 referred to in the prior art. The following is both of homopolymers, so polymers of a monomer as well as copolymers mentioned.
- copolymers encompasses polymers of two monomers as well as of more than two monomers, for example terpolymers.
- the monomer composition comprises these monomers as the main constituent
- the monomer composition is at least 95% by weight , in particular to 100 wt .-%, of these monomers.
- the polymers are selected with primary amino groups and / or amidine groups of the group of polymer classes consisting of:
- R 1 signifies H or C 1 to C 6 alkyl, preferably R 1 signifies H, and if appropriate compounds (iii) which have at least two ethylenically unsaturated double bonds in the molecule, and subsequent partial or complete hydrolysis of the copolymerized into the polymer. th units of the monomers (I) to form amino groups.
- degree of hydrolysis is equivalent to the molar calculated total percentage of the primary amino groups and / or amidine groups of the polymers based on the N-vinylcarboxäureamidein receiver originally present.
- the degree of hydrolysis can be determined by analysis of the formic acid released in the hydrolysis. For example, the latter can be achieved enzymatically with the help of a test kit from Boehminger Mannheim.
- the total content of primary amino groups and / or amidine groups of the partially / fully hydrolyzed vinylformamide homopolymers is determined in a manner known per se from the degree of hydrolysis determined by means of analysis and the ratio of amidine / primary determined by 13 C-NMR spectroscopy. Calculated amino group.
- the molar composition of the structural units of the polymer present at the end of the reaction is determined on the basis of the amounts of monomers used, the particular degree of hydrolysis, the ratio of amidine to prim amino groups and optionally the proportion which has been reacted polymer-analogously , With the aid of the molar mass of the individual structural units, the molar fraction of primary amino groups and / or amidine units in meq, which is in 1 g of polymer, can be calculated therefrom.
- Amidine groups can form as is well known in partially hydrolyzed homo- and copolymers of vinylformamide. In the case of adjacent amino and formamide groups, ring closure and hence amidine formation can occur. This results in a six-membered ring with amide structure.
- amidine unit Since the amidine unit is in dynamic equilibrium with adjacent vinylamine and vinylformamide units and is also reactive with the 1,4-cyclohexanedione, they also contribute to the effectiveness in the inventive composition.
- the determination of the degree of hydrolysis recorded in the same way the formation of primary amino groups as well as amidine units, since in both cases exactly one molecule of formic acid is released.
- ester group is usually hydrolyzed to the alcohol under the hydrolysis conditions to form vinyl alcohol units. This also applies to the copolymers (C) and (D) described below.
- R 1 is H or C 1 to C 6 alkyl
- R 1 is H or C 1 to C 6 alkyl
- (iic) optionally one or more monomers selected from quaternized monoethylenically unsaturated monomers or protonatable secondary or tertiary amino groups-carrying monoethylenically unsaturated monomers
- Examples of monomers of the formula I are N-vinylformamide, N-vinylacetamide, N-vinylpropionamide and N-vinylbutyramide.
- the monomers of group (i) may be used alone or in admixture in the copolymerization with the monomers of the other groups.
- the preferred monomer of this group is N-vinylformamide.
- N-vinylcarboxamides (i) are copolymerized together with (ii) at least one other monoethylenically unsaturated monomer and the copolymers then hydrolyzed to form amino groups, the copolymers (B), (C) and (D) are obtained.
- Examples of neutral monomers of the group (iia) are monoesters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with C 1 -C 30 -alkanols, C 2 -C 3 -alkanediols, amides of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids and their N-alkyl- and ⁇ , ⁇ -dialkyl derivatives, nitriles of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids, esters of vinyl alcohol and allyl alcohol with C 1 -C 8 -monocarboxylic acids, N-vinyllactams, non-nitrogen-containing heterocycles having ⁇ , ⁇ -ethylenically unsaturated double bonds, Vinyl aromatics, vinyl halides, vinylidene halides, C 2 -C 8 monoolefins and mixtures thereof. Suitable representatives are,
- Suitable monomers of group (iia) are 2-hydroxyethyl (meth) acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate and mixtures thereof.
- Suitable monomers of group (iia) are acrylamide, methacrylamide, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-ethyl (meth ) acrylamide, n-propyl (meth) acrylamide, N- (n-butyl) (meth) acrylamide, tert-butyl (meth) acrylamide, n-octyl (meth) acrylamide, 1, 1, 3,3- Tetramethylbutyl (meth) acrylamide, ethylhexyl (meth) acrylamide and mixtures thereof.
- monomers of group (iia) are nitriles of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids such as, for example, acrylonitrile and methacrylonitrile.
- nitriles of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids such as, for example, acrylonitrile and methacrylonitrile.
- amidine units cf. e.g.
- EP-A 0 528 409 or DE-A 43 28 975 In the hydrolysis of N-vinylcarboxamide polymers, 5-ring amidine units are formed in a secondary reaction by reacting vinylamine units with an adjacent nitrile group in the polymer.
- 5-ring amidines also contribute to the reactivity with the 1,4-cyclohexanedione. Since exactly one molecule of formic acid also forms in the formation of a 5-ring amidam, these are also included in the determination of the degree of hydrolysis and thus also in the calculation of the total proportion of primary amino groups and / or amidine groups.
- Suitable monomers of the group (iia) are furthermore N-vinyllactams and derivatives thereof, which, for. B. one or more Ci-C6-alkyl substituents (as defined above) may have.
- N-vinylpyrrolidone N-vinylpiperidone, N-vinylcaprolactam
- N-vinyl-5-methyl-2-pyrrolidone N-vinyl-5-ethyl-2-pyrrolidone
- N-vinyl-6-methyl-2-piperidone N-vinyl-6-ethyl-2-piperidone
- N-vinyl-7-methyl-2-caprolactam N-vinyl-7-ethyl-2-caprolactam and mixtures thereof.
- Suitable monomers of group (iia) are ethylene, propylene, isobutylene, butadiene, styrene, ⁇ -methylstyrene, vinyl formate, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride and mixtures thereof.
- Particularly preferred monomers of group (iia) are acrylonitrile and vinyl acetate.
- the aforementioned monomers (iia) can be used individually or in the form of any desired mixtures. Typically, they are used in amounts of 1 to 90 mol%, preferably 10 to 80 mol% and particularly preferably 10 to 60 mol%, based on the total monomer composition.
- suitable monoethylenically unsaturated monomers of group (ii) are also anionic monomers, which are referred to above as monomers (Ub). They may optionally be copolymerized with the neutral monomers (iia) and / or cationic monomers (iic) described above.
- Anionic monomers are formed from monomers containing acidic groups by cleavage of protons.
- anionic monomers of the group (c) are ethylenically unsaturated C3 to Cs carboxylic acids such as acrylic acid, methacrylic acid, dimethacrylic acid, ethacrylic acid, maleic acid, fumaric acid, itaconic acid, mesaconic acid, citraconic acid, methyl enmalonic acid, allylacetic acid, vinylacetic acid and crotonic acid.
- monomers of this group are monomers containing sulfo groups, such as vinylsulfonic acid, acrylamido-2-methylpropanesulfonic acid, allyl- and methallylsulfonic acid and styrenesulfonic acid, phosphono-containing monomers, such as vinylphosphonic acid and monoalkylphosphate groups.
- the monomers of this group can be used alone or in admixture with each other, in partially or completely neutralized form in the copolymerization.
- neutralization for example, alkali metal or alkaline earth metal bases, ammonia, amines and / or alkanolamines are used.
- sodium hydroxide solution sodium hydroxide solution
- potassium hydroxide solution soda, potash
- sodium bicarbonate sodium bicarbonate
- magnesium oxide calcium hydroxide, calcium oxide, triethanolamine, ethanolamine, morpholine, diethylenetriamine or tetraethylenepentamine.
- Acrylic acid, methacrylic acid, vinylsulfonic acid, vinylphosphonic acid, and acrylamido-2-methylpropanesulfonic acid are particularly preferred as monomers of group (g).
- Cationic monomers contain basic groups and are cationizable either by quaternization cationic or by addition of protons.
- Suitable cationic monomers (iic) which are copolymerizable are the esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with aminoalcohols, preferably C2-C12-aminoalcohols. These may be C 1 -C 12 monoalkylated or dialkylated on the amine nitrogen.
- the acid component of these esters are z.
- Preference is given to using acrylic acid, methacrylic acid and mixtures thereof.
- Preferred monomers are dialkylaminoethyl (meth) acrylates, dialkylaminopropyl (meth) acrylates, dialkylaminoethyl (meth) acrylamides, dialkylaminopropyl (meth) acrylamides, diallyldimethylammonium chloride, vinylimidazole, alkylvinylimidazoles and the cationic monomers each neutralized and / or quaternized with mineral acids.
- esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with amino alcohols are N-methylaminomethyl (meth) acrylate, N-methylaminoethyl (meth) acrylate, N, N-dimethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate,, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-diethylaminopropyl meth) acrylate, N, N-dimethylaminocyclohexyl (meth) acrylate.
- Dialkylated amides of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic and dicarboxylic acids with diamines are, for example, dialkylaminoethyl (meth) acrylamides, dialkylaminopropyl (meth) acrylamides, N- [2- (dimethylamino) ethyl] acrylamide, N- [2- (2- Dimethylamino) ethyl] methacrylamide, N- [3- (dimethylamino) propyl] acrylamide, N- [3- (dimethylamino) propyl] methacrylamide, N- [4- (dimethylamino) butyl] acrylamide, N- [4- (2- Dimethylamino) butyl] methacrylamide, N- [2- (diethylamino) ethyl] acrylamide, N- [2- (diethylamino) ethyl] methacryl
- methylvinylimidazoles examples include 1-vinyl-2-methylimidazole, 3-vinylimidazole N-oxide, 2- and 4-vinylpyridine N-oxides and also betaine derivatives of these monomers.
- Particularly preferred monomers of group (iic) are diallyldimethylammonium chloride (DADMAC).
- the cationic monomers may be completely or even partially neutralized or quaternized, e.g. each to 1 to 99%.
- Preferably used quaternizing agent for the cationic monomers is methyl chloride.
- the quaternization of the monomers can also be carried out with dimethyl sulfate, diethyl sulfate or with other alkyl halides such as ethyl chloride or benzyl chloride.
- a further modification of the copolymers is possible by using in the copolymerization monomers of group (iii) which contain at least two double bonds in the molecule, eg. As triallylamine, methylenebisacrylamide, glycol diacrylate, glycol dimethacrylate, glycerol intracrylate, pentaerythritol triallyl ether, ⁇ , ⁇ -Divinylethylenharnstoff, tetraallylammonium chloride, at least two times with acrylic acid and / or methacrylic esterified polyalkylene glycols or polyols such as pentaerythritol, sorbitol and glucose. Monomers of group (iii) act as crosslinkers.
- monomers of group (iii) act as crosslinkers.
- the monomer DADMAC is not counted to this group but to the cationic monomers. If at least one monomer of the above group is used in the polymerization, the amounts used are up to 2 mol%, e.g. B. 0.001 to 1 mol%.
- regulators are typically used 0.001 to 5 mol% based on the total monomer composition. All the literature known regulators can be used, eg. As sulfur compounds such as mercaptoethanol, 2-ethylhexyl thioglycolate, thi-oglycolic acid and dodecyl mercaptan and sodium hypophosphite, formic acid or Tribromchlormethan.
- sulfur compounds such as mercaptoethanol, 2-ethylhexyl thioglycolate, thi-oglycolic acid and dodecyl mercaptan and sodium hypophosphite, formic acid or Tribromchlormethan.
- the preparation of the above-described polymers having primary amino groups and / or amine groups of the classes (A), (B), (C) and (D) can be carried out by solution, precipitation, suspension or emulsion polymerization. Preference is given to solution polymerization in aqueous media.
- Suitable aqueous media are water and mixtures of water and at least one water-miscible solvent, e.g. Example, an alcohol such as methanol, ethanol, n-propanol or isopropanol.
- the hydrolysis of the copolymers can be carried out in the presence of acids or bases or else enzymatically.
- the amino groups formed from the vinylcarboxylic acid amide units are present in salt form.
- the hydrolysis of vinylcarboxylic acid amide copolymers is described in detail in EP-A 0 438 744, page 8, line 20 to page 10, line 3.
- the remarks made there apply correspondingly to the preparation of the polymers to be used according to the invention having primary amino groups and / or amidine groups.
- the polymers having primary amino groups and / or amidine groups can also be used in the form of the free bases in the process according to the invention.
- Such polymers are useful, for example, in the hydrolysis of polymers containing vinylcarboxylic acid units with bases.
- R 1 is H or C 1 to C 6 alkyl, 0-70 mol% of one or more further neutral monoethylenically unsaturated monomers (iia),
- UB monomers selected from monoethylenically unsaturated sulfonic acids, monoethylenically unsaturated phosphonic acids, monounsaturated esters of phosphoric acid, monoethylenically unsaturated carboxylic acids having 3 to 8 carbon atoms in the molecule and / or their alkali metal, alkaline earth metal or ammonium salts,
- monomers selected from monoethylenically unsaturated sulfonic acids, monoethylenically unsaturated phosphonic acids, monounsaturated esters of phosphoric acid, monoethylenically unsaturated carboxylic acids having 3 to 8 carbon atoms in the molecule and / or their alkali metal, alkaline earth metal or ammonium salts,
- optionally compounds which have at least two ethylenically unsaturated double bonds in the molecule with the proviso that the sum of the proportions of the monomers (iia), (trans) and (iic) is in total 1 to 70 mol%, and subsequent partial or complete hydrolysis of the in the polymer copolymerized units of the monomers (I) to form amino groups.
- such copolymers are preferred with a degree of hydrolysis ⁇ 30 mol%.
- this monomer being selected from acrylonitrile, vinyl acetate, sodium acrylate, DADMAC, [3- (dimethylamino) propyl] acrylamide, N- [3- (dimethylamino) propyl] methacrylamide and the available by reaction with methyl chloride
- those having a degree of hydrolysis are preferably 30 mol%.
- Very particular preference is given to partially or fully hydrolyzed copolymers of N-vinylcarboxamide with sodium acrylate, and a degree of hydrolysis of> 30 mol%.
- polymer-analogously reacted polymers of polymers of class A ie polymer-analogously reacted polyvinylamines
- Suitable polymer-analogous reactions are the reaction with Michael systems as described in WO2007 / 136756. Michael systems are compounds with an unsaturated double bond which are conjugated to an electron-withdrawing group. Suitable Michael systems fall under the general formula II
- R 2 and R 3 independently of one another are H, alkyl, alkenyl, carbonyl, carboxyl or carboxamide and X 1 is an electron-withdrawing group or an amino group.
- Examples thereof are known as Michael systems: acrylamide, N-alkylacrylamide, methacrylamide, ⁇ , ⁇ -dimethylacrylamide, N-alkylmethacrylamide, N- (2-methylpropanesulphonic acid acrylamide, N- (glycolic acid) acrylamide, N- [3- (propyl) trimethylammonium chloride] acrylamide, Acrylonitrile, methacrylonitrile, acrolein, methyl acrylate, alkyl acrylate, methyl methacrylate, alkyl methacrylate, aryl acrylate, aryl methacrylates, [2- (methacryloyloxy) ethyl] trimethylammonium chloride, N- [3- (dimethylamino) propyl] meth
- the Michael system acrylamide Preferred as the Michael system acrylamide.
- the Michael systems are used in an amount of 1 to 75 mol% based on the primary amino groups and / or amidine groups.
- the reaction conditions for the reaction are described in WO2007 / 136756, the disclosure of which is expressly incorporated by reference.
- reaction products preferably contain structural units selected from the group of polymer units (III), (IV), (V), (VI) and (VII)
- X- is an anion, preferably, chloride, bromide or iodide
- Y is carbonyl or methylene or a single bond
- R 4 is hydrogen, linear or branched C 1 -C 22 -alkyl
- R5 is linear or branched C 1 -C 6 -alkylene, or linear or branched C 1 -C 6 -alkenylene
- R6 linear or branched Ci-Ci2-alkylene, which is optionally substituted with hydroxyl, preferably CH 2 CH (OH) CH 2 or -Ethylen
- R7 is hydrogen, linear or branched C 1 -C 22 -alkyl, preferably methyl or ethyl
- Rs is hydrogen, linear or branched C 1 -C 22 -alkyl, linear or branched C 1 -C 22 -alkoxy, amino, linear or branched C 1 -C 22 -alkylamino, linear or branched C 1 -C 22
- Dialkylamino preferably amino
- R 9 is linear or branched C 1 -C 12 -alkylene, preferably ethylene
- R 10 is hydrogen, linear or branched C 1 -C 22 -alkyl, preferably methyl or ethyl
- Reaction products containing units of the formula III are obtainable by polymer-analogous reaction of the primary amino groups and / or amidine groups of the polyvinylamines (polymers A) with alkylating agents.
- the alkylation can furthermore be carried out with alkyl glycidyl ethers, glycidol (2,3-epoxy-1-propanol) or chloropropanediol.
- Preferred alkyl glycidyl ethers are butyl glycidyl ether, 2-ethylhexyl glycidyl ether, hexadecyl glycidyl ether and C12 / C14 glycidyl ether.
- the reaction with alkyl glycidyl ethers is generally carried out in water, but can also be carried out in aqueous / organic solvent mixtures.
- Reaction products containing units of the formula IV and VI are obtainable by polymer-analogous reaction of the primary amino groups and / or amidine groups of the polyvinylamines (polymers A) with alkylating agents or acylating agents.
- Such acylating agents are selected from succinic anhydride, substituted succinic anhydrides which are substituted by linear or crosslinked C 1 -C 18 -alkyl or linear or crosslinked C 1 -C 18 -alkenyl, maleic anhydride, glurar anhydride, 3-methylglutaric acid. anhydride.
- 2,2-dimethylsuccinic anhydride 2,2-dimethylsuccinic anhydride, cyclic alkylcarboxylic acid anhydrides, cyclic alkenylcarboxylic anhydrides, alkenylsuccinic anhydrides (ASA), chloroacetic acid, salts of chloroacetic acid, bromoacetic acid, salts of bromoacetic acid, halogen-substituted alkanoic acid acrylamides and halogen-substituted alkenyl acrylamides.
- ASA alkenylcarboxylic anhydrides
- alkylating agents are selected from 3-chloro-2-hydroxypropyltrimethylammonium chloride, 2- (diethylamino) ethyl chloride hydrochlorides, (dialkylamino) alkyl chlorides such as 2- (dimethylamino) ethyl chloride, 3-chloro-2-hydroxypropylalkyl-dimethylammonium chlorides such as 3-chloro 2-hydroxypropyl lauryldimethylammonium chloride, 3-chloro-2-hydroxypropyl-cocoalkyldimethylammonium chloride, 3-chloro-2-hydroxypropylstearyldimethylammonium chloride, (haloalkyl) trimethylammonium chlorides such as (4-chlorobutyl) trimethylammonium chloride, (6-chlorohexyl) trimethylammonium chloride, (8- Chloroctyl) trimethylammonium chloride and glycidylpropyl) trimethylammonium
- Suitable polymers with primary amino groups are the reaction products which can be obtained by Hofmann degradation of homopolymers or copolymers of acrylamide or methacrylamide in an aqueous medium in the presence of sodium hydroxide solution and sodium hypochlorite and subsequent decarboxylation of the carbamate groups of the reaction products in the presence of an acid ,
- Such polymers are for example from EP-A 0 377 313 and
- WO 2006/0751 15 known.
- the preparation of polymers containing vinylamine groups is discussed in detail, for example, in WO 2006/0751 15, page 4, line 25 to page 10, line 22 and in the examples on pages 13 and 14.
- the polymer content without counterion and the content of the amino groups of this type of polymers is determined in a manner known per se by means of polyelectrolyte titration and NMR measurements.
- acrylamide and / or methacrylamide units are homopolymers or copolymers of acrylamide and methacrylamide.
- Suitable comonomers are, for example, dialkylaminoalkyl (meth) acrylamides, diallylamine, methyldiallylamine and also the salts of the amines and the quaternized amines.
- comonomers are dimethyldiallylammonium salts, acrylamidopropyltrimethylammonium chloride and / or methacrylamidopropyltrimethylammonium chloride, N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone, vinyl acetate and acrylic and methacrylic acid esters.
- Comonomers are also optionally anionic monomers such as acrylic acid, methacrylic acid, maleic anhydride, maleic acid, itaconic acid, acrylamidomethylpropanesulfonic acid, methylallyl sulfonic acid and vinylsulfonic acid and the alkali metal, Erdalkylimetall- and ammonium salts of said acidic monomers into consideration.
- the amount of water-insoluble monomers is chosen in the polymerization so that the resulting polymers are soluble in water. If appropriate, comonomers may also be used crosslinkers, for. B.
- ethylenically unsaturated monomers which contain at least two double bonds in the molecule such as triallylamine, methylenebisacrylamide, ethylene glycol diacrylate, ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, triallylamine and Trimethyloltrimethacry-Iat. If a crosslinker is used, the amounts used are, for example, 5 to 5000 ppm.
- the polymerization of the monomers can be carried out by any known method, for. B. by free-radical initiated solution, precipitation or suspension polymerization. If appropriate, it is possible to work in the presence of customary polymerization regulators.
- Hofmann degradation is for example from 20 to 40 wt .-% aqueous solutions of at least one acrylamide and / or methacrylamide units containing polymers.
- the ratio of alkali metal hypochlorite to (meth) acrylamide units in the polymer is decisive for the resulting content of amine groups in the polymer.
- the molar ratio of alkyl metal hydroxide to alkyl metal hypochlorite is, for example, 2 to 6, preferably 2 to 5.
- the amount of alkali metal hydroxide required for the degradation of the polymer is calculated.
- the Hofmann degradation of the polymer takes place z.
- the aqueous reaction solution is passed into a reactor in which an acid for the decarboxylation of the reaction product is initially introduced.
- the pH of the reaction product containing vinylamine units is adjusted to a value of 2 to 7.
- the concentration of the degradation product containing vinylamine units is more than
- aqueous polymer solutions can be concentrated, for example, by means of ultrafiltration.
- ethyleneimine units-containing polymers typically have a mixture of primary, secondary and tertiary amino groups.
- the content of the amino groups and their distributions to primary, secondary and tertiary amino groups of polymers containing ethyleneimine units are determined in a manner known per se by means of NMR.
- the polymers containing ethyleneimine units include all polymers obtainable by polymerization of ethyleneimine in the presence of acids, Lewis acids or haloalkanes, such as homopolymers of ethyleneimine or graft polymers of ethyleneimine, cf. US 2,182,306 or in US 3,203,910. If desired, these polymers can subsequently be subjected to crosslinking.
- crosslinkers z.
- all multifunctional compounds which contain reactive groups with respect to primary amino groups include, for example, multifunctional epoxides such as bisglycol ethers of oligo- or polyethylene oxides or other multifunctional alcohols such as glycerol or sugars, multifunctional carboxylic acid esters, mulifunctional isocyanates, polyfunctional acrylic or methacrylic acid esters, multifunctional Acrylic or methacrylic acid amides, epichlorohydrin, multifunctional acid halides, multifunctional nitriles, ⁇ , ⁇ -chlorohydrin ethers of oligo- or polyethylene oxides or other multifunctional alcohols such as glycerol or sugars, divinylsulfone, maleic anhydride or ⁇ -halocarboxylic acid chlorides, multifunctional haloalkanes especially ⁇ , ⁇ - Dichloroalkanes.
- multifunctional epoxides such as bisglycol ethers of oligo- or poly
- polymers containing ethyleneimine units are known from EP-A-041 1400,
- the content of primary amino groups is usually 10 to 40 mol% in the described ethyleneimine-containing polymers.
- a method for producing such compounds is, for example, in
- Reaction products of polyethyleneimines with monobasic carboxylic acids to amidated polyethyleneimines are known from WO 94/12560.
- Michael addition products of polyethyleneimines to ethylenically unsaturated acids, salts, esters, amides or nitriles of mono- ethylenically unsaturated carboxylic acids are the subject of WO 94/14873.
- Phosphonomethylated polyethyleneimines are described in detail in WO 97/25367.
- Carboxylated polyethyleneimines are, for example, by means of a streamer synthesis by reaction of polyethyleneimines with formaldehyde and ammonia / hydrogen cyanide and hydrolysis of the reaction available.
- Alkoxylated polyethyleneimines can be prepared by reacting polyethylenimines with alkylene oxides, such as ethylene oxide and / or propylene oxide.
- the polymers containing ethyleneimine units have, for example, molecular weights of from 10,000 to 3,000,000.
- the cationic charge of the polymers containing ethyleneimine units is e.g. at least 4 meq / g. It is usually in the range of 8 to 20 meq / g.
- the polymers having primary amino groups and / or amidine units also include hydrolyzed graft polymers of, for example, N-vinylformamide on polyalkylene glycols, polyvinyl acetate, polyvinyl alcohol, polyvinylformamides, polysaccharides such as starch, oligosaccharides or monosaccharides.
- the graft polymers are obtainable by free-radically polymerizing, for example, N-vinylformamide in aqueous medium in the presence of at least one of the stated grafting bases together with copolymerizable other monomers and then hydrolyzing the grafted vinylformamide units in a known manner.
- Such graft polymers are described, for example, in DE-A-19515943, DE-A-4127733, DE-A-1004121 1.
- polymers with primary amino groups and polymethyleneamines as described in DE 10233930 and 10305807 are suitable.
- aqueous composition according to the invention is prepared by combining the individual components.
- the aqueous solution of the polymer having primary amino groups and / or amidine groups is prepared, adjusted to a pH ⁇ 6 at which crosslinking occurs to an insignificant extent, and the 1,4-cyclohexanedione is used as Solid substance too.
- the addition of the 1, 4-cyclohexanedione can also be carried out as an aqueous solution.
- the solution of the polymer having primary amino groups and / or amidine groups is added to the 1,4-cyclohexanedione which has been adjusted to the pH ⁇ 6.
- the preparation of the mixture is preferably carried out at room temperature, but may optionally also be carried out at reduced temperatures to 0 ° C. Likewise, the preparation of the mixture can also be carried out at elevated temperature up to 100 ° C. Preferably, the addition is at room temperature.
- mixing all commercially available mixing units can be used, which can handle the viscosities of the polymer solutions.
- the mixing process should be carried out at least until a homogeneous aqueous composition is present. If 1, 4-cyclohexadione was used as a solid, the mixing process should be continued until the 1, 4-Cyclolhexadion has completely dissolved. It is beneficial to stir for at least one hour, but is not mandatory. It is also possible to mix 1, 4-cyclohexanedione as an aqueous solution in line in the solution of the polymer having primary amino groups and / or amidine groups.
- the aqueous composition contains polymers having primary amino groups and / or amidine groups with a total content of these groups of> 1.5 meq / g of polymer (milliequivalent / gram of polymer). Preference is given to a total content of primary amino groups and / or amidine groups of 3 to 32 meq / g of polymer, in particular of 5 to 23 meq / g of polymer.
- Based on the total amount of primary amino groups and amidine groups of the polymers are 0.01 to 50 mol%, preferably 0.1 to 30 mol%, in particular 0.2 to 15 mol%, 1, 4-Clohexhexandion used.
- the aqueous composition according to the invention preferably contains
- aqueous composition according to the invention consisting of at least 95% by weight, in particular consisting of 100% by weight,
- the present invention further relates to the use of the aqueous composition according to the invention as a solidifying agent in the process for the production of paper and board by increasing the pH by at least one stage.
- the use of the aqueous composition according to the invention as solidifying agent is preferably carried out in the wet end.
- the addition can take place both to the filler, to the pulp or to the pulp.
- the addition to the stock takes place before sheet formation.
- the present invention further relates to a process for producing paper and board by adding the aqueous mixture according to the invention to a paper stock having a pH in the range of 6 to 8 and subsequent dewatering of the paper stock with sheet formation and drying.
- the present invention relates to the paper and board produced by this method. Particularly preferred is a process for the preparation of testliners and wood-free papers.
- paper is to be understood as meaning a weight per unit area of 7 g / m 2 to 225 g / m 2 and, under paperboard, a basis weight of more than 225 g / m 2 .
- paper stock also referred to as pulp
- pulp is understood below to mean a mixture of substances suspended in water and consisting of one or more types of processed fibers and of various auxiliaries, prior to sheet formation.
- the paper stock thus additionally contains the composition according to the invention, optionally filler and optionally paper auxiliaries. If it is a reference to dry paper stock, the total paper pulp of pulp, composition used according to the invention, optionally filler and optionally paper auxiliaries without water to understand (pulp solid).
- Suitable fillers are all pigments customarily used in the paper industry on the basis of metal oxides, silicates and / or carbonates, in particular of pigments from the group consisting of calcium carbonate used in the form of ground (GCC) lime, chalk, marble or precipitated calcium carbonate (PCC) talc, kaolin, bentonite, satin white, calcium sulfate, barium sulfate and titanium dioxide. It is also possible to use mixtures of two or more pigments.
- GCC ground
- PCC precipitated calcium carbonate
- the inventive method is used to produce paper and cardboard comprising dewatering a filler-containing paper stock.
- the filler content of the paper or the cardboard can be 5 to 40 wt .-% based on the paper or cardboard.
- a process for the production of paper is preferred whose filler content is 20 to 30 wt .-%.
- Such papers are, for example, wood-free papers.
- a method for the production of paper is preferred whose filler content is 5 to 20 wt .-%.
- Such papers are used primarily as packaging papers.
- a process for the production of paper is preferred whose filler content is 5 to 15 wt .-%. Such papers are used primarily for newspaper printing. According to another preferred embodiment, preference is given to a process for producing paper whose filler content is from 25 to 40% by weight, for example SC papers.
- native and / or recovered fibers can be used as the fibrous material. All fibers of coniferous and hardwoods commonly used in the paper industry can be used, for example. Pulp, bleached and unbleached pulp and pulp from all annual plants. Wood pulp includes, for example, groundwood, thermo-mechanical pulp (TMP), chemo-thermo-mechanical pulp (CTMP), pressure groundwood, semi-pulp, high yield pulp and refiner mechanical pulp (RMP). As pulp, for example, sulphate, sulphite and soda pulps come into consideration. Preferably, unbleached pulp, also referred to as unbleached kraft pulp, is used.
- Waste paper may also be used to make the pulps, either alone or blended with other pulps.
- the waste paper can come from a deinking process. But it is not necessary that the waste paper to be used is subjected to such a process. Furthermore, it is also possible to start from fiber blends of a primary material and recycled coated broke.
- a pulp having a freeness of 20 to 30 SR can be used.
- a pulp with a freeness of about 30 SR is used, which is ground during the production of the pulp.
- pulp is used which has a freeness of ⁇ 30 SR.
- the treatment of the pulp with the aqueous composition according to the invention is carried out in aqueous suspension.
- the treatment of the pulp is preferably in the absence of other process chemicals commonly used in papermaking. It takes place in the papermaking process by adding the aqueous composition of the invention to an aqueous paper stock, preferably at a pulp concentration of 20 to 40 g / l.
- Particularly preferred is a process variant in which the aqueous composition according to the invention is added to the aqueous paper stock at a time which is before the addition of the filler.
- the addition of the aqueous composition according to the invention to the thin material takes place, that is to say at a fiber concentration of 5 to 15 g / l.
- the aqueous compositions according to the invention are preferably added in an amount of from 0.01 to 6% by weight of the polymer having primary amino groups and / or amidine groups (solid), based on pulp (solid).
- the aqueous composition is used in a ratio to the pulp, which is 0.05 to 5 wt .-% of the polymer having primary amino groups and / or amidine (solids) based on the pulp (solid).
- the dry content of the paper and pulp is the ratio of the mass of a sample which has been dried at a temperature of (105 ⁇ 2) ° C under defined conditions to a constant mass to the mass of the sample before drying. The dry content is usually given as percentage by mass.
- the determination of the dry content is carried out according to DIN EN ISO 638 DE with the oven cabinet method. From the dry content of the pulp, the amount of pulp (solid) can be determined.
- Typical application rates of the aqueous composition according to the invention are, based on the polymer, for example 0.2 to 50 kg, preferably 0.3 to 10 kg, in particular 0.5 to 50 kg of at least the polymer having primary amino groups and / or amidine groups, per ton of a dry pulp ,
- the amounts of the aqueous composition of the invention based on the polymer having primary amino groups and / or amidine groups is from 0.4 to 3 kg, preferably from 0.6 to 3 kg of polymer (solid), per ton of dry pulp.
- reaction time of the aqueous composition according to the invention on a pure pulp or pulp after metering to sheet formation is, for example, 0.5 seconds to 2 hours, preferably 1.0 seconds to 15 minutes, particularly preferably 2 to 20 seconds.
- the determination of the average particle size (volume average) of the fillers and of the particles of the powder composition is carried out in the context of this document generally by the method of quasi-elastic light scattering (DIN-ISO 13320-1), for example with a Mastersizer 2000 from. Malvern Instruments Ltd.
- the filler is preferably metered after the addition of the aqueous composition according to the invention. In this case, according to a preferred embodiment, the addition takes place in the stage in which the pulp is already present as a thin material, ie at a pulp concentration of 5 to 15 g / l.
- the filler is metered both in the thin and in the thick matter, wherein the ratio of the two addition amounts (addition of thick material / addition of thin material) is preferably from 5/1 to 1/5.
- customary paper auxiliaries can optionally be mixed with the paper stock, generally at a pulp concentration of 5 to 15 g / l.
- Conventional paper auxiliaries are, for example, sizing agents, wet strength agents, cationic or anionic retention aids based on synthetic polymers, and dual systems, dehydrating agents, other dry strength agents, optical stabilizers. lers, defoamers, biocides and paper dyes. These conventional paper additives can be used in the usual amounts.
- the sizing agents to be mentioned are alkylketene dimers (AKD), alkenylsuccinic anhydrides (ASA) and rosin size.
- Suitable retention agents are, for example, cationic polyacrylamides, cationic starch, cationic polyethylenimine or cationic polyvinylamine.
- retention aids of this kind can be added to the thick material, but also to the thin material, for example.
- Dry strength agents are synthetic dry strength agents such as polyvinylamine, polyethyleneimine, glyoxylated polyacrylamide (PAM), or natural dry strength agents such as starches based on derivatized starches (cationic) or natural starches which are oxidatively or enzymatically degraded.
- synthetic dry strength agents are recommended, which can preferably be added to the thick stock but also to the thin stock.
- the papers obtained with the aqueous composition according to the invention show very good performance properties.
- the addition of the aqueous composition of the invention results in excellent strengths, especially dry strength.
- the use of less expensive fibers is possible (eg increase of waste paper content in semi-kraft kraftliner or increase of the chemo-thermal pulp in cartons or food cartons), increase the filler content in packaging papers and graphic papers.
- aqueous compositions containing, as polymer having primary amino groups and / or amidine groups, a hydrolyzed homopolymer of N-vinylcarboxamide, preferably having a degree of hydrolysis of 30 mol%, for the preparation of testliners.
- aqueous compositions containing a polymer having primary amino groups and / or amidine groups are selected from hydrolyzed copolymers of N-vinylcarboxamide and other neutral monoethylenically unsaturated monomers, hydrolyzed copolymers of N-vinylcarboxamide and anionic monoethylenically unsaturated monomers, hydrolyzed copolymers of N-Vinylcarbonklareamid and cationic monoethylenically unsaturated monomers, used for the production of wood-free papers.
- aqueous compositions comprising as polymer having primary amino groups and / or amidine groups a partially or fully hydrolyzed copolymers of N-vinylcarboxamide with further neutral, anionic and / or cationic monoethylically unsaturated monomers, this monomer being selected from acrylonitrile, vinyl acetate , Sodium acrylate, diallyldimethylammonium chloride, [3- (dimethylamino) propyl] acrylamide, N- [3- (dimethylamino) propyl] methacrylamide, [3- (trimethylammonium) propyl] acrylamido chloride and N- [3- (trimethylammonium) propyl] methacrylamide chloride Production of woodfree papers used.
- aqueous compositions of the invention comprising as polymer having primary amino groups and / or amidine groups a partially or fully hydrolyzed copolymers of N-vinylcarboxamide with sodium acrylate and a degree of hydrolysis of 30 mol%, for the production of wood-free papers. It is believed, without being bound by theory, that the underlying equilibrium of polymer having primary amino groups and / or amidine groups + cyclohexanedione and the crosslinked product of these two substances at a pH above 6, shifted to the side of the crosslinked product becomes. According to this theory, such an equilibrium shift in the presence of the pulp in papermaking, where there is a pH above, would cause solidification.
- DADMAC diallyldimethylammonium chloride
- PVFA polyvinylformamide
- Copo VFA / NaAS Copolymer of vinylformamide and sodium acrylate
- Copo VFAA / Ac Copolymer of vinylformamide and vinyl acetate
- Copo VFA AN / Na itaconate copolymer of vinylformamide, acrylonitrile, sodium itaconate
- Copo VFA / NaAS / AN Copolymer of vinylformamide, sodium acrylate and acrylonitrile
- the K values were measured according to H. Fikentscher, Cellulose Chemistry, Vol. 13, 48-64 and 71-74 under the particular conditions indicated.
- the figures in parenthesis indicate the concentration of the polymer solution and the solvent.
- the percentages in the examples are by weight unless otherwise specified Solid contents of the polymers were determined by distributing 0.5 to 1.5 g of the polymer solution in a 4 cm diameter tin cover and then drying in a circulating air drying cabinet at 140 ° C. for two hours. The ratio of the mass of the sample after drying under the above conditions to the mass during sampling gives the solids content of the polymer.
- Feed 1 provided 423.1 g of N-vinylformamide (BASF)
- a 2 l glass apparatus with anchor stirrer, descending condenser, internal thermometer and nitrogen inlet tube was charged with 585.2 g of water and 4.6 g of 75% strength by weight phosphoric acid.
- a speed of 100 rpm about 8.2 g of a 25% strength by weight sodium hydroxide solution were added, so that a pH of 6.6 was achieved.
- the initial charge was heated to 80 ° C. and the pressure in the apparatus was reduced to such an extent that the reaction mixture began to boil at 80 ° C. (about 460 mbar).
- Feeds 1 and 2 were then started simultaneously and dosed synchronously at a constant 80 ° C. over a period of 3 hours.
- reaction mixture was postpolymerized at 80 ° C for three more hours. During the entire polymerization and postpolymerization about 100 g of water were distilled off. Subsequently, the batch was cooled to room temperature under normal pressure.
- Feed 1 provided 234 g of N-vinylformamide.
- the feed 1 was metered in one hour and 15 minutes and the feed 2 in 2 hours.
- the reaction mixture was postpolymerized for three more hours at 73 ° C. During the entire polymerization and postpolymerization about 190 g of water were distilled off. Subsequently, the batch was cooled to room temperature under normal pressure.
- the initial charge was heated to 62 ° C and the pressure in the apparatus was reduced to about 220 mbar, so that the reaction mixture began to boil at 62 ° C.
- Feed 1 was metered in at a constant 62 ° C. in four hours.
- the mixture was then postpolymerized at 62 ° C. for two hours. During the entire polymerization and postpolymerization about 200 g of water were distilled off. The batch was then diluted under normal pressure with 670 g of water and cooled to room temperature.
- Example P4 (VFA / Na acrylate copolymer 80 mol% / 20 mol%, K value 86)
- Feed 1 was a mixture of 293.7 g of water, 242.96 g of aqueous 32% by weight Na acrylate solution adjusted to pH 6.4, and 237.2 g of N-vinylformamide.
- reaction mixture was postpolymerized for a further 2.5 hours at 80.degree. During the entire polymerization and postpolymerization about 170 g of water were distilled off. Subsequently, the batch was cooled to room temperature under normal pressure.
- Feed 1 was a mixture of 147.3 g of water, 317.6 g of aqueous 32% by weight Na acrylate solution adjusted to pH 6.4, and 18.1 g of N-vinylformamide.
- reaction mixture was re-polymerized at 80 ° C. for a further 2.5 hours. During the entire polymerization and postpolymerization about 170 g of water were distilled off. Subsequently, the batch was cooled to room temperature under normal pressure.
- feed 1 a mixture of 340.0 g of water, 176.5 g of aqueous 32% Na acrylate solution, which had been adjusted to pH 6.4, and 100.6 g of N-vinylformamide.
- the feed 3 was added in 5 minutes and further polymerized at 80 ° C. for a further two hours. During the entire polymerization and postpolymerization, about 100 g of water were distilled off. Subsequently, the batch was cooled to room temperature under normal pressure.
- Feed 1 was a mixture of 100.0 g of water, 224.6 g of aqueous 32 wt .-% sodium acrylate solution, which was adjusted to pH 6.4, and 128.0 g of N-vinylformamide provided as feed 2 azobis (2-methylpropionamidine) dihydrochloride was added 0.9 g of 2,2 'dissolved in 125.8 g of water at room temperature.
- the reaction mixture was postpolymerized for a further 2.5 hours at 80.degree. During the entire polymerization and postpolymerization about 143 g of water were distilled off. Subsequently, the batch was cooled to room temperature under normal pressure. Obtained was a yellow, viscous solution with a solids content of 23.8 wt .-%.
- the K value of the copolymer was 90 (0.5% by weight in 5% strength by weight aqueous NaCl solution).
- Feed 1 was a mixture of 330 g of water, 217.8 g of aqueous 32% by weight Na acrylate solution adjusted to pH 6.4, and 124.2 g of N-vinylformamide
- a 2 l glass apparatus with anchor stirrer, descending condenser, internal thermometer and nitrogen inlet tube was charged with 668.3 g of water and 1.9 g of 75% strength by weight phosphoric acid.
- 3.1 g of a 25 wt .-% sodium hydroxide solution was added, so that a pH of 6.6 was reached.
- the original was heated to 73 ° C and the pressure in the apparatus reduced to about 340 mbar, so that the reaction mixture at 73 ° C just began to boil.
- feeds 1 and 2 were started simultaneously. At constant 73 ° C, the feed 1 was added in two hours and the feed 2 in 3 hours.
- the reaction mixture was postpolymerized for 2 more hours at 73 ° C. Then, the feed 3 was added in 5 minutes and further polymerized at 73 ° C. for a further two hours. During the entire polymerization and postpolymerization about 190 g of water were distilled off. Subsequently, the batch was cooled to room temperature under normal pressure.
- Feed 1 was a mixture of 423.5 g aqueous 32 wt% Na acrylate solution adjusted to pH 6.4 and 155.1 g N-vinylformamide
- the feed 1 in 1, 5 hours and the feed 2 in 2.5 hours added were postpolymerized for a further 2.5 hours at 80.degree.
- the batch was cooled to room temperature under normal pressure. This gave a slightly yellow, viscous solution with a solids content of 25.0 wt .-%.
- the K value of the copolymer was 92 (0.5% by weight in 5% strength by weight aqueous NaCl solution).
- Feed 1 provided 76.5 g of vinyl acetate
- the feed 1 was added in 5 minutes and then the feed 2 in 5 h. 1, 0 h after the start of the feed 2, the feed 4 is additionally started and added in 2.5 hours.
- polymerization was continued at 65 ° C. for one hour, then feed 3 was added in 5 minutes, and the reaction mixture was heated to 70 ° C. At this temperature, polymerization was continued for a further 2 hours.
- the reflux condenser is replaced by a descending radiator.
- the pressure in the apparatus was lowered to 580 mbar and distilled off at 80 ° C about 68 g of water. At atmospheric pressure, the product was cooled to room temperature.
- Feed 1 provided 100.1 g of vinyl acetate
- Feed 4 750 g of water were provided.
- 352.8 g of water 352.8 g of water, 2.2 g of 85% by weight phosphoric acid and 22.4 g of a 10% by weight were added.
- aqueous Mowiol 44-88 solution 352.8 g of water, 2.2 g of 85% by weight phosphoric acid and 22.4 g of a 10% by weight were added.
- aqueous Mowiol 44-88 solution At a speed of 100 rpm, 4.0 g of a 25 wt .-% sodium hydroxide solution was added, so that a pH of 6.5 was reached.
- 125.2 g of N-vinylformamide were added to the initial charge and nitrogen was introduced at 3 1 / h for half an hour in order to remove the oxygen present. Meanwhile, the original was heated to 65 ° C.
- feed 1 was added in 5 minutes and then the feed 2 in 5 hours. 1.5 hours after the start of feed 2, feed 4 is additionally started and added in 2.5 hours. After the end of feed 2, polymerization was continued at 65 ° C. for 1 hour, then feed 3 was added in 5 minutes and the reaction mixture was heated to 70 ° C. At this temperature, polymerization was continued for a further two hours. Thereafter, the reflux condenser is replaced by a descending radiator. The pressure in the apparatus was lowered to 540 mbar and distilled off at 80 ° C about 102 g of water. At atmospheric pressure, the product was cooled to room temperature.
- a finely divided, white suspension having a solids content of 15.7% by weight was obtained.
- the K value of the copolymer was 74 (0.5% by weight in formamide))
- Feed 1 was 127.3 g of vinyl acetate
- feed 1 was added in 5 min and then the feed 2 in 5 h. 2h after the start of feed 2, feed 4 was also added started and added in 2.5 h.
- polymerization was continued at 65 ° C. for 1 h, then feed 3 was added in 5 min and the reaction mixture was heated to 70 ° C. At this temperature, polymerization was continued for a further two hours. Thereafter, the reflux condenser is replaced by a descending radiator.
- the pressure in the apparatus was lowered to 540 mbar and distilled off at 80 ° C about 200 g of water. The vacuum was broken and the product cooled to room temperature.
- Feed 1 provided 221.3 g of acrylonitrile
- Feed 2 provided 299.3 g of N-vinylformamide
- feeds 1 to 3 were started simultaneously. At constant 60 ° C., feed 1 was metered in in 3.5 hours, feed 2 in three hours and feed 3 in 4 hours. Then, the reaction mixture was postpolymerized at 60 ° C for a further 2.5 hours.
- a finely divided, white suspension having a solids content of 16.3% by weight was obtained.
- the K value of the copolymer was 175 (0.1% by weight in DMSO))
- feed 1 342.7 g of a 32% strength by weight aqueous Na acrylate solution were provided.
- feed 2 139.5 g of N-vinylformamide were provided
- Feed 3 provided 41.2 g of acrylonitrile
- a 2 l glass apparatus with anchor stirrer, reflux condenser, internal thermometer and nitrogen inlet tube was charged with 540.0 g of water and 2.7 g of 75% strength by weight phosphoric acid. at At a speed of 100 rpm, 4.0 g of a 25% strength by weight sodium hydroxide solution were added in such a way that a pH of 6.7 was reached. Nitrogen was introduced into the receiver at 10 l / h for half an hour to remove the oxygen present. Meanwhile, the original was heated to 72 ° C. Then feeds 1 to 4 were started simultaneously. At constant 72 ° C, the feed 1 in two hours, the feed 2 in 1, 3 h, the feed 3 in 2.0 h and the feed 4 in three hours were added. The reaction mixture was then postpolymerized at 72 ° C. for a further 2.5 h.
- Feed 1 provided 19.1 g of N-vinylformamide
- the pressure was reduced to about 240 mbar, so that the reaction mixture at 66 ° C just boil began. Then feeds 1 and 2 were started simultaneously. At constant 66 ° C, the feed 1 was added in two hours and the feed 2 in 4 hours. After completion of the addition of feed 2, the reaction mixture was postpolymerized for a further hour at 66 ° C. Then, the pressure was increased to 360 mbar and the internal temperature to 75 ° C and then the mixture was further post-polymerized at 74 ° C for two hours. Under these conditions, the reaction mixture was still boiling. During the entire polymerization and postpolymerization, about 90 g of water were distilled off.
- the required amount of acid was chosen in such a way that the sodium ita conate units contained in the polymer were additionally protonated.
- the degree of hydrolysis is the proportion in mol% of the hydrolyzed VFA units based on the VFA units originally present in the polymer.
- the degree of hydrolysis of the hydrolyzed homopolymers or copolymers of N-vinylformamide was determined by enzymatic analysis of the formic acid / formates released during the hydrolysis (test set from Boehringer Mannheim).
- the polymer content without counter-ions indicates the content of polymer in the aqueous solution in% by weight, counterions being ignored. It represents the sum of the parts by weight of all the structural units of the polymer in g which are present in 100 g of the solution. He is determined by calculation. In this case, potentially charge-carrying structural units in the charged form are included, ie, for example, amino groups in the protonated form and acid groups in the deprotonated form. Counter ions of the charged structural units such as Na, chloride, phosphate, formate, acetate, etc. are not considered.
- the calculation can be carried out by determining the molar amounts of the structural units of the polymer present at the end of the reaction for an approach starting from the amounts of monomers used, the degree of hydrolysis and, if appropriate, the amount of polymer analog, and using the molar masses of the polymer Structural units are converted into the weight fractions.
- the sum of the parts by weight gives the total amount of the polymer in this approach.
- the polymer content without Jacobion results from the ratio of the total amount of polymer to the total mass of the approach.
- the total content of primary amino groups and / or amidine groups can be carried out analogously to the procedure described above for the polymer content.
- the molar composition of the structural units present at the end of the reaction becomes of the polymer determined.
- the molar proportion of primary amino groups and / or amidine units in meq, which are in 1 g of polymer can be calculated therefrom.
- Example H1 250.0 g of the polymer solution obtained according to P1 were mixed in a 500 ml four-necked flask with paddle stirrer, internal thermometer, dropping funnel and reflux condenser at a stirrer speed of 80 rpm with 6.4 g of a 40 wt .-% aqueous sodium bisulfite solution and then to 80 ° C. heated. Then 147.8 g of a 25% strength by weight aqueous sodium hydroxide solution were added. The mixture was kept at 80 ° C for three hours. The resulting product was cooled to room temperature and adjusted to pH 2.0 with 163.1 g of 37% strength by weight hydrochloric acid. A slightly yellow polymer solution was obtained. The degree of hydrolysis of the vinylformamide units was 70 mol%.
- Example H2 250.0 g of the polymer solution obtained according to P1 were mixed in a 500 ml four-necked flask with paddle stirrer, internal thermometer, dropping funnel and reflux condenser at
- 250.0 g of the polymer solution obtained according to P3 were mixed in a 500 ml four-necked flask with paddle stirrer, internal thermometer, dropping funnel and reflux condenser at a stirrer speed of 80 rpm with 2.3 g of a 40% strength by weight aqueous sodium bisulfite solution and then to 80 ° C heated. Then, 34.7 g of a 25 wt .-% aqueous sodium hydroxide solution was added. The mixture was kept at 80 ° C for three hours. The resulting product was cooled to room temperature and adjusted to pH 3.0 with 31.7 g of 37% strength by weight hydrochloric acid. A slightly yellow polymer solution was obtained. The degree of hydrolysis of the vinylformamide units was 48 mol%.
- 600.0 g of the polymer solution obtained according to P6 were mixed in a 21 four-necked flask with paddle stirrer, internal thermometer, dropping funnel and reflux condenser at a stirrer speed of 80 rpm with 4.5 g of a 40% strength by weight aqueous sodium bisulphite solution and then heated to 80.degree , Then, 150.0 g of a 25% aqueous sodium hydroxide solution was added. The mixture was kept at 80 ° C for 7 hours. The resulting product was cooled to room temperature.
- 200.0 g of the polymer solution obtained according to P10 were in a 500 ml four-necked flask with paddle stirrer, internal thermometer, dropping funnel and reflux condenser at a stirrer speed of 80 rpm with 1, 5 g of a 40 wt .-% aqueous sodium bisulfite solution and then to 80 ° C. heated. Then, 73.4 g of a 25 wt .-% sodium hydroxide solution was added. The mixture was held at 80 ° C for three hours, with the suspension going into solution. The resulting product was cooled to room temperature.
- 200.0 g of the polymer solution obtained according to P12 were in a 500 ml four-necked flask with paddle stirrer, internal thermometer, dropping funnel and reflux condenser at a stirrer speed of 80 rpm with 1, 1 g of a 40 wt .-% aqueous sodium bisulfite solution and then to 80 ° C. heated. Then, 72.8 g of a 25gew .-% sodium hydroxide solution was added. The mixture was held at 80 ° C for three hours, during which the suspension went into solution. The resulting product was cooled to room temperature.
- a viscous, slightly cloudy polymer solution having a solids content of 22.5% by weight was obtained.
- the degree of hydrolysis of the vinylformamide units was 100 mol%.
- the conversion of the subsequent reactions was determined by determining the residual content of the reagent in the final product.
- the methods used are given in the examples.
- the viscous solution obtained had a residual content of acrylamide of 20 ppm (HPLC) and had a polymer content without Gegenion of 5.4 wt .-%.
- Example PA 2
- the viscous solution obtained had a residual content of acrylamide (HPLC) of 40 ppm and had a polymer content without counterion of 13.3 wt .-%.
- the polymer used was identical to the Hofmann degradation product designated in WO 2006/0751 15 on page 13 in the table as C8 beta 2. It was prepared by reacting polyacrylamide with sodium hypochlorite in a molar ratio of 1: 1, and sodium hydroxide solution, the molar ratio of sodium hydroxide to sodium hypochlorite being 2: 1.
- the polymer content without Jacobion was 4.5% and the content of primary amino groups 9.8 meq / g.
- a mixture of bleached birch sulphate and bleached pine sulphite was blotted open in a ratio of 70/30 at a solids concentration of 4% in the laboratory pulper until a freeness of 30-35 was reached.
- the opened fabric an optical brightener (Blankophor.RTM ® PSG, Bayer AG) and a cationic starch (Hi-Cat ® 5163 A) were then added.
- the digestion of the cationic starch was carried out as a 10 wt .-% starch slurry in a jet cooker at 130 ° C and 1 minute residence time.
- the metered amount of the optical brightener was 0.5% by weight of commercial product, based on the solids content of the paper stock suspension.
- the dosage of the cationic starch was 0.5 wt .-% of starch, based on the solids content of the pulp suspension.
- the pH of the substance was in the range between 7 and 8.
- the milled substance was then diluted by addition of water to a solids concentration of 0.35 wt .-%.
- an aqueous composition of Examples EF1 1 - EF33 and EF36 was added to the paper stock. The amount of addition varied depending on the examples.
- the paper stock suspensions thus prepared were used to prepare paper sheets on a Rapid Köthen sheet former according to ISO 5269/2 with a sheet weight of 80 g / m 2 .
- the moist paper sheets were then dried for 7 minutes at 90 ° C.
- aqueous compositions of the examples EF1 1 -EF33 and EF 36 according to the invention were used to produce paper sheets according to the production instructions for wood-free papers.
- the addition amount of the aqueous composition was 0.12% by weight of polymer having primary amino groups and / or amidine groups (solid) based on pulp (solid).
- Comparative Example 1 (Vbsp. 1)
- paper sheets were prepared using instead of the aqueous composition according to the invention a 7 wt .-% aqueous solution of H17 (70/30 VFA / NaAS copolymer having a degree of hydrolysis of 50 and a K value of the unhydrolysed polymer of 122) was used.
- the addition amount of the aqueous composition was 0.12% by weight of polymer having primary amino groups and / or amidine groups (solid) based on pulp (solid).
- aqueous compositions of the examples EF1 1 -EF33 and EF 36 according to the invention were used to produce paper sheets according to the production instructions for wood-free papers.
- the addition amount of the aqueous composition was 0.24% by weight of polymer having primary amino groups and / or amidine groups (solid) based on pulp (solid).
- Comparative Example 2 (Vbsp. 2)
- Papers were prepared according to the general preparation procedure for wood-free papers, using instead of the aqueous composition according to the invention a 7% strength by weight aqueous solution of H 17 (70/30 VFA / NaAS copolymer having a degree of hydrolysis of 50 and a K value of the unhydrolyzed polymer from 122).
- the amount of addition of the aqueous composition was 0.24% by weight of polymer of primary amino groups and / or amidine groups (solid) based on pulp (solid).
- Table 5 Testing of the woodfree paper sheets with an addition amount of the aqueous composition of 0.12% by weight of polymer having primary amino groups and / or amidine groups (solid) based on pulp (solid).
- Table 6 Testing of the woodfree paper sheets with an addition amount of the aqueous composition of 0.24% by weight of polymer having primary amino groups and / or amidine groups (solid) based on pulp (solid).
- Vbsp. 2 25.3 4255 161 54.1
- Retention agent Percol 540 (polyacrylamide emulsion having a solids content of 43% of a cationic charge density of 1.7 mmol / 100 g and a K value of 240).
- Pretreatment of the pulp :
- a stock of 100% waste paper (mixture of grades: 1.02, 1 .04, 4.01) was pitched with drinking water at a consistency of 4 wt .-% in a pulper speck-free and ground in a refiner to a freeness of 40 ° SR. This substance was then diluted with drinking water to a consistency of 0.8% by weight.
- the thus-pretreated paper stock based on waste paper was added with stirring in each case to the inventive compositions of Examples EF1-Fe44 given in Table 7.
- the addition amount of the aqueous composition was selected such that 0.3 wt .-% polymer with primary amino groups and / or amidine (solid) based on recycled paper pulp (solid) was used.
- the retention agent (Percol 540) in the form of a 1 wt .-% aqueous solution was metered to the pulp, with 0.04 wt .-% polymer (solid) based on recycled paper pulp (solid) were used.
- the pH of the stock was kept constant at pH 7 (using 5% by weight sulfuric acid).
- base papers were produced by means of a dynamic sheet former from Tech Pap, France.
- the paper was then dried with contact dryers to a paper moisture content of 5% by weight.
- the addition amount of the polymer H4 was selected such that 0.3 wt .-% polymer with primary amino groups (solid) based on waste paper pulp (solid) was used.
- aqueous compositions according to the invention comprising polymers having primary amino groups and / or amidine groups and 1,4-cyclohexanedione makes it possible to significantly increase the paper strengths.
- The% value for CMT, SCT and Burst represents the increase in% compared to the reference.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Forests & Forestry (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Paper (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14188666 | 2014-10-13 | ||
PCT/EP2015/068725 WO2016058730A1 (fr) | 2014-10-13 | 2015-08-14 | Composition de durcissement pour papier et carton |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3207178A1 true EP3207178A1 (fr) | 2017-08-23 |
Family
ID=51726384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15750736.9A Withdrawn EP3207178A1 (fr) | 2014-10-13 | 2015-08-14 | Composition de durcissement pour papier et carton |
Country Status (8)
Country | Link |
---|---|
US (1) | US20170233950A1 (fr) |
EP (1) | EP3207178A1 (fr) |
KR (1) | KR20170068561A (fr) |
CN (1) | CN107002366A (fr) |
BR (1) | BR112017007524A2 (fr) |
CA (1) | CA2964420A1 (fr) |
MX (1) | MX2017004893A (fr) |
WO (1) | WO2016058730A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3079290A1 (fr) * | 2017-10-18 | 2019-04-25 | Solenis Technologies Cayman, L.P. | Procede de fabrication de papier monocouche ou multicouche |
CN109749012A (zh) * | 2019-01-24 | 2019-05-14 | 湖北中之天科技股份有限公司 | 一种环保型无氯聚丙烯酰胺湿强剂的生产方法及在造纸中的应用 |
US12065367B2 (en) | 2021-04-23 | 2024-08-20 | Ecolab Usa Inc. | Volatile fatty acid control |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3506832A1 (de) * | 1985-02-27 | 1986-08-28 | Basf Ag, 6700 Ludwigshafen | Verfahren zur herstellung von papier mit hoher trockenfestigkeit |
DE4241117A1 (de) * | 1992-12-07 | 1994-06-09 | Basf Ag | Verwendung von hydrolysierten Copolymerisaten aus N-Vinylcarbonsäureamiden und monoethylenisch ungesättigten Carbonsäuren bei der Papierherstellung |
US5630907A (en) * | 1992-12-07 | 1997-05-20 | Basf Aktiengesellschaft | Use of hydrolyzed copolymers of N-vinylcarboxamides and monoethylenically unsaturated carboxylic acids in papermaking |
DE10334133A1 (de) * | 2003-07-25 | 2005-02-24 | Basf Ag | Wässrige Zusammensetzung und deren Verwendung zur Papierherstellung |
CN102076910B (zh) * | 2008-06-24 | 2013-09-25 | 巴斯夫欧洲公司 | 纸的生产 |
EP2315875B1 (fr) * | 2008-08-18 | 2014-03-05 | Basf Se | Procédé pour améliorer la résistance à sec du papier, du carton-pâte et du carton |
PL2443284T5 (pl) * | 2009-06-16 | 2021-04-19 | Basf Se | Sposób zwiększania wytrzymałości na sucho papieru, tektury i kartonu |
-
2015
- 2015-08-14 WO PCT/EP2015/068725 patent/WO2016058730A1/fr active Application Filing
- 2015-08-14 MX MX2017004893A patent/MX2017004893A/es unknown
- 2015-08-14 CA CA2964420A patent/CA2964420A1/fr active Pending
- 2015-08-14 EP EP15750736.9A patent/EP3207178A1/fr not_active Withdrawn
- 2015-08-14 BR BR112017007524A patent/BR112017007524A2/pt not_active Application Discontinuation
- 2015-08-14 CN CN201580067777.2A patent/CN107002366A/zh active Pending
- 2015-08-14 KR KR1020177012953A patent/KR20170068561A/ko not_active Withdrawn
- 2015-08-14 US US15/518,514 patent/US20170233950A1/en not_active Abandoned
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2016058730A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN107002366A (zh) | 2017-08-01 |
MX2017004893A (es) | 2017-07-19 |
CA2964420A1 (fr) | 2016-04-21 |
US20170233950A1 (en) | 2017-08-17 |
WO2016058730A1 (fr) | 2016-04-21 |
KR20170068561A (ko) | 2017-06-19 |
BR112017007524A2 (pt) | 2017-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2443284B1 (fr) | Procédé de fabrication pour augmenter la résistance à sec de papier et de carton présentant | |
EP2288750B1 (fr) | Procédé de production de papier, de carton-pâte, et de carton présentant une résistance à sec élevée | |
EP2491177B1 (fr) | Procédé de fabrication de papier, carton souple et carton avec une grande résistance à sec | |
EP2315875B1 (fr) | Procédé pour améliorer la résistance à sec du papier, du carton-pâte et du carton | |
EP2393982B1 (fr) | Procédé de fabrication de papier, de carton-pâte et de carton présentant une grande résistance à sec | |
EP2304106B1 (fr) | Production de papier | |
DE69408485T2 (de) | Verfahren zur Herstellung von Papier mit erhöhter Festigkeit im nassen und trockenen Zustand | |
EP1819877A1 (fr) | Procede pour produire du papier, du carton, du carton blanchi presentant une resistance elevee a sec | |
EP2443282A1 (fr) | Procédé de réduction de dépôts dans la partie sèche lors de la fabrication de papier et carton | |
EP3697963B1 (fr) | Procédé de fabrication de papier multicouche | |
WO2016096477A1 (fr) | Procédé de fabrication de papier et de carton | |
WO2016058730A1 (fr) | Composition de durcissement pour papier et carton | |
EP2723943B1 (fr) | Procédé de fabrication de papier, de papier-carton et de carton compact | |
EP2888404B1 (fr) | Procédé de fabrication de papier, de carton-pâte et de carton | |
EP3695051B1 (fr) | Procédé de fabrication à partir du papier ou du carton | |
WO2006136556A2 (fr) | Procede de fabrication de papier et de carton |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20170515 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D21H 17/34 20060101ALI20180124BHEP Ipc: C08K 5/00 20060101ALI20180124BHEP Ipc: D21H 17/55 20060101ALI20180124BHEP Ipc: D21H 17/09 20060101AFI20180124BHEP Ipc: C08L 39/02 20060101ALI20180124BHEP Ipc: C08F 26/02 20060101ALI20180124BHEP Ipc: C08F 18/08 20060101ALI20180124BHEP Ipc: D21H 17/10 20060101ALI20180124BHEP Ipc: D21H 23/04 20060101ALI20180124BHEP Ipc: C08F 20/56 20060101ALI20180124BHEP Ipc: D21H 17/37 20060101ALI20180124BHEP Ipc: D21H 17/56 20060101ALI20180124BHEP Ipc: D21H 21/20 20060101ALI20180124BHEP Ipc: C08K 5/07 20060101ALI20180124BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180220 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20180703 |