EP3161399B1 - Cryogenic purification with heat uptake - Google Patents
Cryogenic purification with heat uptake Download PDFInfo
- Publication number
- EP3161399B1 EP3161399B1 EP15733826.0A EP15733826A EP3161399B1 EP 3161399 B1 EP3161399 B1 EP 3161399B1 EP 15733826 A EP15733826 A EP 15733826A EP 3161399 B1 EP3161399 B1 EP 3161399B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flow
- gaseous
- impurity
- exchanger
- cooled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/04054—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/0406—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04242—Cold end purification of the feed air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
- F25J2205/66—Regenerating the adsorption vessel, e.g. kind of reactivation gas
- F25J2205/70—Heating the adsorption vessel
Definitions
- the present invention relates to a process for purifying a feed gas stream using an adsorption unit and a cryogenic distillation unit.
- Adsorption is a phenomenon generally favored by a low temperature.
- ASU Air Separation Unit
- stopping CO2 on a molecular sieve is up to 5 times greater than -100 ° C than at 20 ° C, about 3 times for stopping propane.
- Regeneration requires additional heat which disturbs the refrigerant balance of the apparatus, if the adsorption took place at a negative temperature. Its energy cost can be all the more important as the temperature is low.
- the adsorption is made at a positive temperature and the heat to regenerate (that in excess) is released into the atmosphere without impacting the cooling balance of the cryogenic part.
- the document CN 1 873 357 A discloses a method for purifying a feed gas stream employing an adsorption unit comprising at least two adsorbers, a cryogenic distillation unit, an exchanger and a compressor operating at a temperature below -50 °, wherein the heat necessary for the regeneration of the adsorbers originates, at least in part, from at least a portion of the heat generated by the compressor, during the compression of a fluid.
- a solution of the present invention is a method for purifying a feed gas stream using an adsorption unit (4) comprising at least 2 adsorbers, a cryogenic distillation unit (7), an exchanger (2) , and a compressor (10) operating at a temperature of less than or equal to -50 ° C, wherein the heat required for the regeneration of the adsorbers results, at least in part, from at least a portion of the heat generated by the compressor, during the compression of a fluid, and said process comprises an adsorption step carried out by the adsorption unit, with said process characterized in that the adsorption step is carried out at a negative temperature
- the invention will be illustrated on an ASU with a cold compressor.
- the cold compressor introduces into the cold box a thermal input that heats the compressed gas.
- the natural refrigerant balance of the device makes it possible to manage this thermal input.
- Part of the hot gas will be used directly or indirectly via a heat exchange with another fluid to ensure the heating phase of the regeneration. This is done without real energy penalty, because it does not disturb (or little) the refrigeration balance of the device.
- the figure 1 represents the first alternative of the solution according to the invention.
- the air 1 is cooled in the exchange line 2 (for example, up to -120 ° C.), then passes into a bed of adsorbent 4 at a low temperature (-120 ° C.), and is then reintroduced (optionally slightly warmer, due to the adsorption) in the exchange line 2 for final cooling before being sent to the distillation part 7.
- Part of the residual nitrogen 9 is drawn off at -120 ° C. from the exchange line, then compressed in a cold compressor 10 where it is heated to a temperature of, for example, -80 ° C. and then sent to an adsorbent bed in regeneration.
- the heat provided by the compression constitutes the heat input required for the heating phase of the regeneration.
- the nitrogen cools in the adsorbent bed 4, and is then sent at around -120 ° C towards the exchange line 2 for further heating to room temperature.
- the adsorption temperature may be preferably close to the "natural temperature in the cold booster", that is to say that dictated by the process, as if there had been a conventional purification at room temperature.
- the heating phase of the regeneration does not disturb (or little) the refrigeration balance of the apparatus, this being done on the natural heat input brought by the cold compression. There is no energy penalty to cryogenic purification.
- part of the residual nitrogen is withdrawn at about -120 ° C. from the exchange line, then is compressed first, before being passed through the bed in regeneration (cooling phase), then sent to the exchange line for further heating up to room temperature.
- heating and cooling phase is at a different pressure requiring an intermediate phase of adaptation of the bed to the correct pressure.
- the figure 2 represents the second alternative of the solution according to the invention.
- Air 1 is partially cooled to -120 ° C, then passes through the adsorbent bed 4 before being cold pressed where it heats to -80 ° C, and then returned to the exchange line 2 hotter, for final cooling before being sent to the distillation part 7.
- Part of the waste nitrogen 9 heats up in the exchange line 2, to a temperature close to that of the cold compressed air, for example -80 ° C., thus indirectly recovering the heat introduced by the compression of the air.
- the nitrogen thus warmed to -80 ° C. ensures the heating phase of the regeneration by passing through a bed of adsorbent 4 where it cools to -120 ° C. and is then sent to the exchange line 2 for reheating. additional up to room temperature.
- the adsorption temperature may be preferably close to the "natural" inlet temperature in the cold booster, typically around the temperature of the vaporization stage of oxygen, for example for the conventional single-machine cold booster -120 ° C for pressurized oxygen at 40 bar).
- the heating phase of the regeneration does not disturb (or little) the refrigeration balance of the apparatus, this being done on the natural heat input brought by the cold compression, indirectly in that case. There is no energy penalty to cryogenic purification.
- part of the residual nitrogen leaves the exchange line at a temperature close to the inlet of the cold compressor (around -120 ° C.), passes through the adsorbent bed to cool it, then is sent to the exchange line for additional heating up to room temperature.
- the heating and cooling phases are at the same pressure.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation Of Gases By Adsorption (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
La présente invention est relative à un procédé de purification d'un flux gazeux d'alimentation mettant en oeuvre une unité d'adsorption et une unité de distillation cryogénique.The present invention relates to a process for purifying a feed gas stream using an adsorption unit and a cryogenic distillation unit.
L'adsorption est un phénomène en général favorisé par une température basse. Par exemple, pour une ASU (Air Separation Unit = Unité de séparation d'air), l'arrêt du CO2 sur un tamis moléculaire est jusqu'à 5 fois supérieure à -100°C qu'à 20°C, environ 3 fois pour l'arrêt du propane.Adsorption is a phenomenon generally favored by a low temperature. For example, for an ASU (Air Separation Unit), stopping CO2 on a molecular sieve is up to 5 times greater than -100 ° C than at 20 ° C, about 3 times for stopping propane.
La régénération nécessite un appoint de chaleur qui perturbe le bilan frigorifique de l'appareil, si l'adsorption a eu lieu à une température négative. Son coût énergétique peut être d'autant plus important que la température est basse.Regeneration requires additional heat which disturbs the refrigerant balance of the apparatus, if the adsorption took place at a negative temperature. Its energy cost can be all the more important as the temperature is low.
Dans les procédés selon l'état de la technique, l'adsorption est faite à une température positive et la chaleur pour régénérer (celle en excédent) est rejetée à l'atmosphère sans impacter le bilan frigorifique de la partie cryogénique.In the processes according to the state of the art, the adsorption is made at a positive temperature and the heat to regenerate (that in excess) is released into the atmosphere without impacting the cooling balance of the cryogenic part.
Le document
Partant de là, un problème qui se pose est de fournir une épuration cryogénique dans un procédé de séparation cryogénique qui sait déjà gérer au niveau bilan frigorifique une entrée de chaleur au moins égale à celle nécessaire à la régénération des adsorbeurs.Starting from there, a problem that arises is to provide a cryogenic purification in a cryogenic separation process that already knows how to manage at the refrigeration balance level a heat input at least equal to that required for the regeneration of the adsorbers.
Une solution de la présente invention est un procédé de purification d'un flux gazeux d'alimentation mettant en oeuvre une unité d'adsorption (4) comprenant au moins 2 adsorbeurs, une unité de distillation cryogénique (7), un échangeur (2), et un compresseur (10) fonctionnant à une température inférieure ou égale à -50°C, dans lequel la chaleur nécessaire à la régénération des adsorbeurs est issue, au moins en partie, d'au moins une partie de la chaleur générée par le compresseur, lors de la compression d'un fluide, et ledit procédé comprend une étape d'adsorption mise en oeuvre par l'unité d'adsorption, avec ledit procédé caractérisé en ce que l'étape d'adsorption est réalisée à une température négativeA solution of the present invention is a method for purifying a feed gas stream using an adsorption unit (4) comprising at least 2 adsorbers, a cryogenic distillation unit (7), an exchanger (2) , and a compressor (10) operating at a temperature of less than or equal to -50 ° C, wherein the heat required for the regeneration of the adsorbers results, at least in part, from at least a portion of the heat generated by the compressor, during the compression of a fluid, and said process comprises an adsorption step carried out by the adsorption unit, with said process characterized in that the adsorption step is carried out at a negative temperature
Selon le cas, le procédé selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :
- ledit procédé comprend selon une première alternative les étapes successives suivantes (
figure 1 ):- a) le flux gazeux d'alimentation 1 est refroidi dans l'échangeur 2 à une température inférieure à -50°C, de préférence inférieure à -100°C ;
- b) le flux
gazeux refroidi 3 est envoyé à l'unité d'adsorption 4 où au moins une impureté X est au moins en partie adsorbée de manière à récupérer un flux gazeux 5 appauvri en impureté X ; - c) le flux gazeux appauvri en
impureté X 5 est introduit dans l'échangeur 2 pour être refroidi à une température inférieure à -50°C, de préférence -150°C ; - d) le flux gazeux 5 appauvri en impureté X et refroidi est envoyé à l'unité de distillation cryogénique 7 où il est séparé en au moins 2
flux 8 et 9 ; - e) une partie du
flux 9 est introduit dans l'échangeur pour être réchauffée à une température supérieure à -150°C, de préférence supérieure à-100°C, plus préférentiellement supérieure à - 50°C, idéalement à une température proche de celle du flux gazeux d'alimentation 1 à l'issu de l'étape a)
avant d'être comprimé dans lecompresseur 10 avec un taux de compression supérieur à 1.2 - f) le
flux 9 comprimé est envoyé à l'unité d'adsorption 4 pour régénérer un des deux adsorbeurs;
avec la compression à l'étape e) entraînant une augmentation de température duflux 9 d'au moins 20°C et fournissant ainsi l'apport de chaleur nécessaire à la régénération d'au moins un des adsorbeurs ;
- ledit procédé comprend selon une deuxième alternative les étapes successives suivantes (
figure 2 ):- a) le flux gazeux d'alimentation 1 est refroidi dans l'échangeur 2 à une température inférieure à -50°C, de préférence inférieure à -100°C ;
- b) le flux
gazeux refroidi 3 est envoyé à l'unité d'adsorption 4 où au moins une impureté X est au moins en partie adsorbée de manière à récupérer un premier flux appauvri enimpureté X 5; - c) le flux gazeux 5 appauvri en impureté X est comprimé dans le
compresseur 10 avec un taux de compression supérieur à 1.2 avant d'être refroidi dans l'échangeur 2 à une température inférieure à -50°C, de préférence inférieure à -150°C ; - d) le flux gazeux 5 appauvri en impureté X, comprimé et refroidi est envoyé à l'unité de distillation cryogénique 7 où il est séparé en au moins 2
flux 8 et 9 ; - e) une partie du
flux 9 est introduit dans l'échangeur pour être réchauffée à une température supérieure à -150°C, de préférence supérieure à -100°C, plus préférentiellement -50°C, idéalement à une température proche de celle du flux gazeux d'alimentation 5 à l'issue de la compression de l'étape c) ; - f) le
flux 9 réchauffé est envoyé à l'unité d'adsorption 4 pour régénérer au moins un des deux adsorbeurs;
avec la compression à l'étape c) entraînant une augmentation de température du flux gazeux 5 appauvri en impureté X d'au moins 20°C et fournissant ainsi de façon indirecte via l'échangeur 2 l'apport de chaleur nécessaire au réchauffage d'une partie duflux 9 et donc à la régénération d'au moins un des deux adsorbeurs à l'étape f) ;
- les adsorbeurs comprennent un monolit, de préférence un tamis moléculaire.
- le flux gazeux d'alimentation est de l'air et l'impureté X est choisie parmi H2O, CO2, N2O, CnHm, NOx;
- le flux gazeux d'alimentation comprend de l'eau et ledit procédé comprend avant l'étape a) une étape de pré-purification du flux gazeux d'alimentation permettant d'éliminer au moins une partie de l'eau ;
- l'étape de pré-purification se fait par adsorption à température ambiante ;
- l'adsorption de l'étape de pré-purification se fait sur monolit de type alumine, gel de silice ou tamis moléculaire.
- said method comprises according to a first alternative the following successive steps (
figure 1 ):- a) the
feed gas stream 1 is cooled in theexchanger 2 at a temperature below -50 ° C, preferably below -100 ° C; - b) the cooled
gas stream 3 is sent to theadsorption unit 4 where at least one impurity X is at least partially adsorbed so as to recover agaseous stream 5 depleted in impurity X; - c) the gas stream depleted in
impurity X 5 is introduced into theexchanger 2 to be cooled to a temperature below -50 ° C, preferably -150 ° C; - d) the cooled and impurity-degraded gaseous stream X is sent to the
cryogenic distillation unit 7 where it is separated into at least 2 8 and 9;streams - e) a portion of the
stream 9 is introduced into the exchanger to be heated to a temperature greater than -150 ° C, preferably greater than -100 ° C, more preferably greater than -50 ° C, ideally at a temperature close to that of thefeed gas stream 1 at the end of step a)
before being compressed in thecompressor 10 with a compression ratio greater than 1.2 - f) the
compressed stream 9 is sent to theadsorption unit 4 to regenerate one of the two adsorbers;
with the compression in step e) resulting in a temperature increase of theflow 9 of at least 20 ° C and thus providing the heat input necessary for the regeneration of at least one of the adsorbers;
- a) the
- said method comprises according to a second alternative the following successive steps (
figure 2 ):- a) the
feed gas stream 1 is cooled in theexchanger 2 at a temperature below -50 ° C, preferably below -100 ° C; - b) the cooled
gaseous flow 3 is sent to theadsorption unit 4 where at least one impurity X is at least partially adsorbed so as to recover a first stream impoverished inimpurity X 5; - c) the impurity-degraded gaseous stream X is compressed in the
compressor 10 with a compression ratio greater than 1.2 before being cooled in theexchanger 2 to a temperature below -50 ° C, preferably below -150 ° C; - d) the compressed and cooled impurity X impurity stream X is fed to the
cryogenic distillation unit 7 where it is separated into at least 2 8 and 9;streams - e) part of the
stream 9 is introduced into the exchanger to be heated to a temperature greater than -150 ° C, preferably greater than -100 ° C, more preferably -50 ° C, ideally at a temperature close to that ofgaseous feed stream 5 at the end of the compression of step c); - f) the heated
stream 9 is sent to theadsorption unit 4 to regenerate at least one of the two adsorbers;
with the compression in step c) resulting in an increase in the temperature of the impurity-impregnated gas stream X by at least 20 ° C. and thus indirectly supplying via theexchanger 2 the supply of heat required for reheating a part of theflow 9 and therefore the regeneration of at least one of the two adsorbers in step f);
- a) the
- the adsorbers comprise a monolith, preferably a molecular sieve.
- the feed gas stream is air and the impurity X is selected from H 2 O, CO 2 , N 2 O, C n H m , NOx;
- the feed gas stream comprises water and said process comprises before step a) a pre-purification step of the feed gas stream for removing at least a portion of the water;
- the pre-purification step is by adsorption at room temperature;
- the adsorption of the pre-purification step is done on monolith of alumina type, silica gel or molecular sieve.
L'invention va être illustrée sur une ASU avec un compresseur froid. Le compresseur froid introduit dans la boite froide une entrée thermique qui réchauffe le gaz comprimé. Le bilan frigorifique naturel de l'appareil permet de gérer cette entrée thermique. Une partie du gaz chaud va être utilisé directement ou indirectement via un échange thermique avec un autre fluide pour assurer la phase chauffage de la régénération. Ceci se fait sans réelle pénalité énergétique, car cela ne perturbe pas (ou peu) le bilan frigorifique de l'appareil.The invention will be illustrated on an ASU with a cold compressor. The cold compressor introduces into the cold box a thermal input that heats the compressed gas. The natural refrigerant balance of the device makes it possible to manage this thermal input. Part of the hot gas will be used directly or indirectly via a heat exchange with another fluid to ensure the heating phase of the regeneration. This is done without real energy penalty, because it does not disturb (or little) the refrigeration balance of the device.
La
L'air 1 est refroidi dans la ligne d'échange 2 (par exemple, jusqu'à -120°C), puis passe dans un lit d'adsorbant 4 à basse température (-120°C), puis est réintroduit (éventuellement légèrement plus chaud, du fait de l'adsorption) dans la ligne d'échange 2 pour refroidissement final avant d'être envoyé dans la partie distillation 7.The
Une partie de l'azote résiduaire 9 est soutiré vers -120°C de la ligne d'échange, puis comprimé dans un compresseur froid 10 où il s'échauffe jusqu'à une température de -80°C par exemple, puis envoyé dans un lit d'adsorbant en régénération. La chaleur apportée par la compression constitue l'apport de chaleur nécessaire pour la phase de chauffage de la régénération. L'azote se refroidit dans le lit d'adsorbant 4, et est ensuite envoyé à température autour de -120°C vers la ligne d'échange 2 pour réchauffage supplémentaire jusqu'à la température ambiante.Part of the
La température d'adsorption peut être préférentiellement proche de la température d'entrée « naturelle dans le booster froid», c'est-à-dire celle dictée par le procédé, comme si on avait eu une épuration classique à température ambiante.The adsorption temperature may be preferably close to the "natural temperature in the cold booster", that is to say that dictated by the process, as if there had been a conventional purification at room temperature.
On voit que la phase de chauffage de la régénération ne perturbe pas (ou peu) le bilan frigorifique de l'appareil, celle-ci se faisant sur l'apport de chaleur naturelle apportée par la compression froide. Il n'y a donc pas de pénalité énergétique à faire une épuration cryogénique. Concernant la phase de refroidissement de la régénération du procédé selon la première alternative, une partie de l'azote résiduaire est soutiré vers -120°C de la ligne d'échange, puis est d'abord comprimé, avant d'être passé dans le lit en régénération (phase de refroidissement), puis envoyé vers la ligne d'échange pour réchauffage supplémentaire jusqu'à la température ambiante.It can be seen that the heating phase of the regeneration does not disturb (or little) the refrigeration balance of the apparatus, this being done on the natural heat input brought by the cold compression. There is no energy penalty to cryogenic purification. As regards the cooling phase of the regeneration of the process according to the first alternative, part of the residual nitrogen is withdrawn at about -120 ° C. from the exchange line, then is compressed first, before being passed through the bed in regeneration (cooling phase), then sent to the exchange line for further heating up to room temperature.
On constate que la phase de chauffage et de refroidissement se fait à une pression différente nécessitant une phase intermédiaire d'adaptation du lit à la bonne pression.It is found that the heating and cooling phase is at a different pressure requiring an intermediate phase of adaptation of the bed to the correct pressure.
La
L'air 1 est partiellement refroidi jusqu'à -120°C, puis passe à travers le lit d'adsorbant 4 avant d'être comprimé à froid 10 où il s'échauffe jusqu'à -80°C, puis renvoyé dans la ligne d'échange 2 plus chaud, pour refroidissement final avant d'être envoyé dans la partie distillation 7.
Une partie de l'azote résiduaire 9 se réchauffe dans la ligne d'échange 2, jusqu'à une température proche de celle de l'air comprimé à froid, par exemple -80°C, récupérant ainsi de façon indirecte la chaleur introduite par la compression de l'air. L'azote ainsi réchauffé à -80°C assure la phase de chauffage de la régénération en traversant un lit d'adsorbant 4 où il se refroidit jusqu'à -120°C, puis est envoyé vers la ligne d'échange 2 pour réchauffage supplémentaire jusqu'à la température ambiante.Part of the
La température d'adsorption peut être préférentiellement proche de la température d'entrée « naturelle » dans le booster froid, typiquement autour de la température du palier de vaporisation de l'oxygène par exemple pour les schémas classiques mono-machines avec booster froid (vers -120°C pour de l'oxygène pressurisé à 40 bar).The adsorption temperature may be preferably close to the "natural" inlet temperature in the cold booster, typically around the temperature of the vaporization stage of oxygen, for example for the conventional single-machine cold booster -120 ° C for pressurized oxygen at 40 bar).
De nouveau, on voit que la phase de chauffage de la régénération ne perturbe pas (ou peu) le bilan frigorifique de l'appareil, celle-ci se faisant sur l'apport de chaleur naturelle apportée par la compression froide, de façon indirecte dans ce cas. Il n'y a donc pas de pénalité énergétique à faire une épuration cryogénique.Again, it can be seen that the heating phase of the regeneration does not disturb (or little) the refrigeration balance of the apparatus, this being done on the natural heat input brought by the cold compression, indirectly in that case. There is no energy penalty to cryogenic purification.
Concernant la phase de refroidissement de la régénération du procédé selon la deuxième alternative, une partie de l'azote résiduaire sort de la ligne d'échange à une température proche de l'entrée du compresseur froid (vers -120°C), traverse le lit adsorbant pour le refroidir, puis est envoyé vers la ligne d'échange pour réchauffage supplémentaire jusqu'à la température ambiante. Dans ce cas, les phases de chauffage et de refroidissement se font à la même pression.With regard to the cooling phase of the regeneration of the process according to the second alternative, part of the residual nitrogen leaves the exchange line at a temperature close to the inlet of the cold compressor (around -120 ° C.), passes through the adsorbent bed to cool it, then is sent to the exchange line for additional heating up to room temperature. In this case, the heating and cooling phases are at the same pressure.
Claims (8)
- Method for purifying a gaseous supply flow implementing an adsorption unit (4) comprising at least 2 adsorbers, a cryogenic distillation unit (7), an exchanger (2) and a compressor (10) functioning at a temperature lower than or equal to -50°C, wherein the heat necessary to regenerate the adsorbers, comes from, at least in part, at least one part of the heat generated by the compressor (10), during the compression of a fluid and said method comprises an adsorption step implemented by the adsorption unit, with said method characterised in that the adsorption step is carried out at a negative temperature.
- Purification method according to claim 1, characterised in that said method comprises the following successive steps:a) the gaseous supply flow (1) is cooled in the exchanger (2) to a temperature lower than -50°C;b) the cooled gaseous flow (3) is sent to the adsorption unit (4) where at least one impurity X is at least in part adsorbed so as to recover the gaseous flow (5) depleted in impurity X;c) the gaseous flow depleted in impurity X (5) is inserted in the exchanger (2) to be cooled to a temperature lower than -50°C;d) the gaseous flow (5) depleted in impurity X and cooled is sent to the cryogenic distillation unit (7) where it is separated into at least 2 flows (8) and (9);e) a part of the flow (9) is inserted in the exchanger to be reheated to a temperature higher than -150°C before being compressed in the compressor (10) with a compression rate higher than 1.2;f) the compressed flow (9) is sent to the adsorption unit (4) to regenerate one of the two adsorbers;with the compression in step e) leading to an increase in temperature of the flow (9) by at least 20°C and thus providing the inflow of heat necessary to regenerate at least one of the adsorbers.
- Purification method according to claim 1, characterised in that said method comprises the following successive steps:a) the gaseous supply flow (1) is cooled in the exchanger (2) to a temperature lower than -50°C;b) the cooled gaseous flow (3) is sent to the adsorption unit (4) where at least one impurity X is at least in part adsorbed so as to recover the gaseous flow (5) depleted in impurity X;c) the gaseous flow (5) depleted in impurity X is compressed in the compressor (10) with a compression rate higher than 1.2 before being cooled in the exchanger (2) to a temperature lower than -50°C;d) the gaseous flow (5) depleted in impurity X and cooled is sent to the cryogenic distillation unit (7) where it is separated into at least 2 flows (8) and (9);e) a part of the flow (9) is inserted in the exchanger to be reheated to a temperature higher than -150°C;f) the reheated flow (9) is sent to the adsorption unit (4) to regenerate one of the two adsorbers;with the compression in step c) leading to an increase in temperature of the gaseous flow (5) depleted in compound X by 20°C and thus indirectly providing, via the exchanger (2), the inflow of heat necessary to reheat a part of the flow (9) and therefore to regenerate at least one of the two adsorbers in step f).
- Method according to one of claims 1 to 3, characterised in that the adsorbers comprise a monolith, preferably a molecular sieve.
- Method according to one of claims 2, 3 or 4, when it refers to one of claims 2 or 3, characterised in that the gaseous supply flow is air and the impurity X is chosen among H2O, CO2, N2O, CnHm, NOx.
- Method according to one of claims 1 to 5, characterised in that the gaseous supply flow comprises water and said method comprises, before step a), a step for pre-purifying the gaseous supply flow enabling to eliminate at least one part of the water.
- Method according to claim 6, characterised in that the pre-purification step is carried out by adsorption at room temperature.
- Method according to claim 7, characterised in that the adsorption in the pre-purification step is carried out an alumina, silica gel or molecular sieve-type monolith.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1455985A FR3022993A1 (en) | 2014-06-26 | 2014-06-26 | CRYOGENIC CLEANING WITH HEAT INPUT |
PCT/FR2015/051567 WO2015197940A1 (en) | 2014-06-26 | 2015-06-12 | Cryogenic purification with heat uptake |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3161399A1 EP3161399A1 (en) | 2017-05-03 |
EP3161399B1 true EP3161399B1 (en) | 2018-08-15 |
Family
ID=51519043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15733826.0A Active EP3161399B1 (en) | 2014-06-26 | 2015-06-12 | Cryogenic purification with heat uptake |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170138665A1 (en) |
EP (1) | EP3161399B1 (en) |
CN (1) | CN106461323B (en) |
FR (1) | FR3022993A1 (en) |
WO (1) | WO2015197940A1 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1189094B (en) * | 1962-06-09 | 1965-03-18 | Linde Eismasch Ag | Process for removing carbon dioxide from gas mixtures |
US3236059A (en) * | 1962-08-29 | 1966-02-22 | Air Prod & Chem | Separation of gaseous mixtures |
JPS6272504A (en) * | 1985-09-27 | 1987-04-03 | Hitachi Ltd | Method for producing high purity nitrogen |
US5551257A (en) * | 1992-10-01 | 1996-09-03 | The Boc Group, Inc. | Production of ultrahigh purity nitrogen |
FR2766735B1 (en) * | 1997-07-31 | 1999-09-03 | Air Liquide | PROCESS AND DEVICE FOR THE PRODUCTION OF ULTRA-PUR INERT GAS |
CN100363699C (en) * | 2005-04-25 | 2008-01-23 | 林福粦 | Air separation system for recycling cold energy of liquified natural gas |
JP5005894B2 (en) * | 2005-06-23 | 2012-08-22 | エア・ウォーター株式会社 | Nitrogen generation method and apparatus used therefor |
CN201265997Y (en) * | 2008-09-05 | 2009-07-01 | 苏州制氧机有限责任公司 | Liquid air separation plant |
-
2014
- 2014-06-26 FR FR1455985A patent/FR3022993A1/en not_active Ceased
-
2015
- 2015-06-12 EP EP15733826.0A patent/EP3161399B1/en active Active
- 2015-06-12 CN CN201580033220.7A patent/CN106461323B/en not_active Expired - Fee Related
- 2015-06-12 US US15/318,801 patent/US20170138665A1/en not_active Abandoned
- 2015-06-12 WO PCT/FR2015/051567 patent/WO2015197940A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3161399A1 (en) | 2017-05-03 |
US20170138665A1 (en) | 2017-05-18 |
CN106461323B (en) | 2019-08-06 |
FR3022993A1 (en) | 2016-01-01 |
WO2015197940A1 (en) | 2015-12-30 |
CN106461323A (en) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0456575B1 (en) | Process and apparatus for purifying, by adsorption, air to be distilled | |
CN101231131B (en) | Purification of carbon dioxide | |
CA2552327C (en) | Method for selective extraction of natural gas liquids from "rich" natural gas | |
FR2934170A3 (en) | Separating feed flow having carbon dioxide as major component, comprises passing cooled feed flow to column, and heating column in tank by flow of heating gas which heats bottom of column and is richer in carbon dioxide than feed flow | |
TW201726232A (en) | Heater arrangement for TEPSA system | |
KR101349493B1 (en) | Pure oxygen combustion type Submerged Vaporizer | |
CA2552865C (en) | Method for selective extraction of natural gas liquids from "rich" natural gas | |
CA2877452C (en) | Method for separating a carbon dioxide-rich gas by partial condensation and permeation | |
EP3161399B1 (en) | Cryogenic purification with heat uptake | |
WO2014128409A1 (en) | Separation at sub-ambient temperature of a gaseous mixture containing carbon dioxide and a lighter contaminant | |
EP2227309B1 (en) | Method for drying a gas flow rich in carbon dioxide | |
EP1090670A1 (en) | Process for treating a gas using temperature swing adsorption | |
WO2014049259A1 (en) | Method and appliance for separating a mixture containing carbon dioxide by cryogenic distillation | |
US20150021522A1 (en) | Method and device for producing a krypton/xenon mixture | |
JP2022156743A (en) | Air-to-liquid separation device and standby method for air-to-liquid separation device | |
WO2018019749A1 (en) | Method and apparatus for cooling down a cryogenic heat exchanger | |
FR2956478A1 (en) | Method for separating air by cryogenic distillation, involves compressing part of released nitrogen flow from pressure until another pressure and sending part of flow to purification unit at former pressure to regenerate purification unit | |
WO2017042491A1 (en) | Method and apparatus for purifying air by means of an adsorption wheel | |
EP4295096B1 (en) | Method for separating air by cryogenic distillation | |
FR2993352A1 (en) | METHOD AND APPARATUS FOR SEPARATING CARBON DIOXIDE-RICH GAS | |
JP3969874B2 (en) | Air liquefaction separator | |
WO2025011874A2 (en) | Method for liquefying and/or solidifying a gas rich in carbon dioxide | |
WO2024235564A1 (en) | Method and apparatus for cooling and separating a flow of co2 containing a first component | |
FR2977303A1 (en) | Method for producing nitrogen by cryogenic distillation, involves withdrawing nitrogen gas flow of top of column at room temperature, and providing nitrogen gas flow to customer at cold temperature equal to, or lower than room temperature | |
BE537565A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170126 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180313 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SAULNIER, BERNARD Inventor name: DAVIDIAN, BENOIT |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: AT Ref legal event code: REF Ref document number: 1030271 Country of ref document: AT Kind code of ref document: T Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015014821 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1030271 Country of ref document: AT Kind code of ref document: T Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181116 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181115 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181215 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181115 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015014821 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150612 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220627 Year of fee payment: 8 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230518 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230620 Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230612 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240628 Year of fee payment: 10 |