[go: up one dir, main page]

EP3161399B1 - Cryogenic purification with heat uptake - Google Patents

Cryogenic purification with heat uptake Download PDF

Info

Publication number
EP3161399B1
EP3161399B1 EP15733826.0A EP15733826A EP3161399B1 EP 3161399 B1 EP3161399 B1 EP 3161399B1 EP 15733826 A EP15733826 A EP 15733826A EP 3161399 B1 EP3161399 B1 EP 3161399B1
Authority
EP
European Patent Office
Prior art keywords
flow
gaseous
impurity
exchanger
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15733826.0A
Other languages
German (de)
French (fr)
Other versions
EP3161399A1 (en
Inventor
Benoît DAVIDIAN
Bernard Saulnier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3161399A1 publication Critical patent/EP3161399A1/en
Application granted granted Critical
Publication of EP3161399B1 publication Critical patent/EP3161399B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04242Cold end purification of the feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • F25J2205/70Heating the adsorption vessel

Definitions

  • the present invention relates to a process for purifying a feed gas stream using an adsorption unit and a cryogenic distillation unit.
  • Adsorption is a phenomenon generally favored by a low temperature.
  • ASU Air Separation Unit
  • stopping CO2 on a molecular sieve is up to 5 times greater than -100 ° C than at 20 ° C, about 3 times for stopping propane.
  • Regeneration requires additional heat which disturbs the refrigerant balance of the apparatus, if the adsorption took place at a negative temperature. Its energy cost can be all the more important as the temperature is low.
  • the adsorption is made at a positive temperature and the heat to regenerate (that in excess) is released into the atmosphere without impacting the cooling balance of the cryogenic part.
  • the document CN 1 873 357 A discloses a method for purifying a feed gas stream employing an adsorption unit comprising at least two adsorbers, a cryogenic distillation unit, an exchanger and a compressor operating at a temperature below -50 °, wherein the heat necessary for the regeneration of the adsorbers originates, at least in part, from at least a portion of the heat generated by the compressor, during the compression of a fluid.
  • a solution of the present invention is a method for purifying a feed gas stream using an adsorption unit (4) comprising at least 2 adsorbers, a cryogenic distillation unit (7), an exchanger (2) , and a compressor (10) operating at a temperature of less than or equal to -50 ° C, wherein the heat required for the regeneration of the adsorbers results, at least in part, from at least a portion of the heat generated by the compressor, during the compression of a fluid, and said process comprises an adsorption step carried out by the adsorption unit, with said process characterized in that the adsorption step is carried out at a negative temperature
  • the invention will be illustrated on an ASU with a cold compressor.
  • the cold compressor introduces into the cold box a thermal input that heats the compressed gas.
  • the natural refrigerant balance of the device makes it possible to manage this thermal input.
  • Part of the hot gas will be used directly or indirectly via a heat exchange with another fluid to ensure the heating phase of the regeneration. This is done without real energy penalty, because it does not disturb (or little) the refrigeration balance of the device.
  • the figure 1 represents the first alternative of the solution according to the invention.
  • the air 1 is cooled in the exchange line 2 (for example, up to -120 ° C.), then passes into a bed of adsorbent 4 at a low temperature (-120 ° C.), and is then reintroduced (optionally slightly warmer, due to the adsorption) in the exchange line 2 for final cooling before being sent to the distillation part 7.
  • Part of the residual nitrogen 9 is drawn off at -120 ° C. from the exchange line, then compressed in a cold compressor 10 where it is heated to a temperature of, for example, -80 ° C. and then sent to an adsorbent bed in regeneration.
  • the heat provided by the compression constitutes the heat input required for the heating phase of the regeneration.
  • the nitrogen cools in the adsorbent bed 4, and is then sent at around -120 ° C towards the exchange line 2 for further heating to room temperature.
  • the adsorption temperature may be preferably close to the "natural temperature in the cold booster", that is to say that dictated by the process, as if there had been a conventional purification at room temperature.
  • the heating phase of the regeneration does not disturb (or little) the refrigeration balance of the apparatus, this being done on the natural heat input brought by the cold compression. There is no energy penalty to cryogenic purification.
  • part of the residual nitrogen is withdrawn at about -120 ° C. from the exchange line, then is compressed first, before being passed through the bed in regeneration (cooling phase), then sent to the exchange line for further heating up to room temperature.
  • heating and cooling phase is at a different pressure requiring an intermediate phase of adaptation of the bed to the correct pressure.
  • the figure 2 represents the second alternative of the solution according to the invention.
  • Air 1 is partially cooled to -120 ° C, then passes through the adsorbent bed 4 before being cold pressed where it heats to -80 ° C, and then returned to the exchange line 2 hotter, for final cooling before being sent to the distillation part 7.
  • Part of the waste nitrogen 9 heats up in the exchange line 2, to a temperature close to that of the cold compressed air, for example -80 ° C., thus indirectly recovering the heat introduced by the compression of the air.
  • the nitrogen thus warmed to -80 ° C. ensures the heating phase of the regeneration by passing through a bed of adsorbent 4 where it cools to -120 ° C. and is then sent to the exchange line 2 for reheating. additional up to room temperature.
  • the adsorption temperature may be preferably close to the "natural" inlet temperature in the cold booster, typically around the temperature of the vaporization stage of oxygen, for example for the conventional single-machine cold booster -120 ° C for pressurized oxygen at 40 bar).
  • the heating phase of the regeneration does not disturb (or little) the refrigeration balance of the apparatus, this being done on the natural heat input brought by the cold compression, indirectly in that case. There is no energy penalty to cryogenic purification.
  • part of the residual nitrogen leaves the exchange line at a temperature close to the inlet of the cold compressor (around -120 ° C.), passes through the adsorbent bed to cool it, then is sent to the exchange line for additional heating up to room temperature.
  • the heating and cooling phases are at the same pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention est relative à un procédé de purification d'un flux gazeux d'alimentation mettant en oeuvre une unité d'adsorption et une unité de distillation cryogénique.The present invention relates to a process for purifying a feed gas stream using an adsorption unit and a cryogenic distillation unit.

L'adsorption est un phénomène en général favorisé par une température basse. Par exemple, pour une ASU (Air Separation Unit = Unité de séparation d'air), l'arrêt du CO2 sur un tamis moléculaire est jusqu'à 5 fois supérieure à -100°C qu'à 20°C, environ 3 fois pour l'arrêt du propane.Adsorption is a phenomenon generally favored by a low temperature. For example, for an ASU (Air Separation Unit), stopping CO2 on a molecular sieve is up to 5 times greater than -100 ° C than at 20 ° C, about 3 times for stopping propane.

La régénération nécessite un appoint de chaleur qui perturbe le bilan frigorifique de l'appareil, si l'adsorption a eu lieu à une température négative. Son coût énergétique peut être d'autant plus important que la température est basse.Regeneration requires additional heat which disturbs the refrigerant balance of the apparatus, if the adsorption took place at a negative temperature. Its energy cost can be all the more important as the temperature is low.

Dans les procédés selon l'état de la technique, l'adsorption est faite à une température positive et la chaleur pour régénérer (celle en excédent) est rejetée à l'atmosphère sans impacter le bilan frigorifique de la partie cryogénique.In the processes according to the state of the art, the adsorption is made at a positive temperature and the heat to regenerate (that in excess) is released into the atmosphere without impacting the cooling balance of the cryogenic part.

Le document CN 1 873 357 A décrit un procédé de purification d'un flux gazeux d'alimentation mettant en oeuvre une unité d'adsorption comprenant au moins deux adsorbeurs, une unité de distillation cryogénique, un échangeur et un compresseur fonctionnant à une température inférieure à - 50°, dans lequel la chaleur nécessaire à la régénération des adsorbeurs est issue, au moins en partie, d'au moins une partie de la chaleur générée par le compresseur, lors de la compression d'un fluide.The document CN 1 873 357 A discloses a method for purifying a feed gas stream employing an adsorption unit comprising at least two adsorbers, a cryogenic distillation unit, an exchanger and a compressor operating at a temperature below -50 °, wherein the heat necessary for the regeneration of the adsorbers originates, at least in part, from at least a portion of the heat generated by the compressor, during the compression of a fluid.

Partant de là, un problème qui se pose est de fournir une épuration cryogénique dans un procédé de séparation cryogénique qui sait déjà gérer au niveau bilan frigorifique une entrée de chaleur au moins égale à celle nécessaire à la régénération des adsorbeurs.Starting from there, a problem that arises is to provide a cryogenic purification in a cryogenic separation process that already knows how to manage at the refrigeration balance level a heat input at least equal to that required for the regeneration of the adsorbers.

Une solution de la présente invention est un procédé de purification d'un flux gazeux d'alimentation mettant en oeuvre une unité d'adsorption (4) comprenant au moins 2 adsorbeurs, une unité de distillation cryogénique (7), un échangeur (2), et un compresseur (10) fonctionnant à une température inférieure ou égale à -50°C, dans lequel la chaleur nécessaire à la régénération des adsorbeurs est issue, au moins en partie, d'au moins une partie de la chaleur générée par le compresseur, lors de la compression d'un fluide, et ledit procédé comprend une étape d'adsorption mise en oeuvre par l'unité d'adsorption, avec ledit procédé caractérisé en ce que l'étape d'adsorption est réalisée à une température négativeA solution of the present invention is a method for purifying a feed gas stream using an adsorption unit (4) comprising at least 2 adsorbers, a cryogenic distillation unit (7), an exchanger (2) , and a compressor (10) operating at a temperature of less than or equal to -50 ° C, wherein the heat required for the regeneration of the adsorbers results, at least in part, from at least a portion of the heat generated by the compressor, during the compression of a fluid, and said process comprises an adsorption step carried out by the adsorption unit, with said process characterized in that the adsorption step is carried out at a negative temperature

Selon le cas, le procédé selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :

  • ledit procédé comprend selon une première alternative les étapes successives suivantes (figure 1):
    1. a) le flux gazeux d'alimentation 1 est refroidi dans l'échangeur 2 à une température inférieure à -50°C, de préférence inférieure à -100°C ;
    2. b) le flux gazeux refroidi 3 est envoyé à l'unité d'adsorption 4 où au moins une impureté X est au moins en partie adsorbée de manière à récupérer un flux gazeux 5 appauvri en impureté X ;
    3. c) le flux gazeux appauvri en impureté X 5 est introduit dans l'échangeur 2 pour être refroidi à une température inférieure à -50°C, de préférence -150°C ;
    4. d) le flux gazeux 5 appauvri en impureté X et refroidi est envoyé à l'unité de distillation cryogénique 7 où il est séparé en au moins 2 flux 8 et 9 ;
    5. e) une partie du flux 9 est introduit dans l'échangeur pour être réchauffée à une température supérieure à -150°C, de préférence supérieure à-100°C, plus préférentiellement supérieure à - 50°C, idéalement à une température proche de celle du flux gazeux d'alimentation 1 à l'issu de l'étape a)
      avant d'être comprimé dans le compresseur 10 avec un taux de compression supérieur à 1.2
    6. f) le flux 9 comprimé est envoyé à l'unité d'adsorption 4 pour régénérer un des deux adsorbeurs;
      avec la compression à l'étape e) entraînant une augmentation de température du flux 9 d'au moins 20°C et fournissant ainsi l'apport de chaleur nécessaire à la régénération d'au moins un des adsorbeurs ;
  • ledit procédé comprend selon une deuxième alternative les étapes successives suivantes (figure 2):
    1. a) le flux gazeux d'alimentation 1 est refroidi dans l'échangeur 2 à une température inférieure à -50°C, de préférence inférieure à -100°C ;
    2. b) le flux gazeux refroidi 3 est envoyé à l'unité d'adsorption 4 où au moins une impureté X est au moins en partie adsorbée de manière à récupérer un premier flux appauvri en impureté X 5;
    3. c) le flux gazeux 5 appauvri en impureté X est comprimé dans le compresseur 10 avec un taux de compression supérieur à 1.2 avant d'être refroidi dans l'échangeur 2 à une température inférieure à -50°C, de préférence inférieure à -150°C ;
    4. d) le flux gazeux 5 appauvri en impureté X, comprimé et refroidi est envoyé à l'unité de distillation cryogénique 7 où il est séparé en au moins 2 flux 8 et 9 ;
    5. e) une partie du flux 9 est introduit dans l'échangeur pour être réchauffée à une température supérieure à -150°C, de préférence supérieure à -100°C, plus préférentiellement -50°C, idéalement à une température proche de celle du flux gazeux d'alimentation 5 à l'issue de la compression de l'étape c) ;
    6. f) le flux 9 réchauffé est envoyé à l'unité d'adsorption 4 pour régénérer au moins un des deux adsorbeurs;
      avec la compression à l'étape c) entraînant une augmentation de température du flux gazeux 5 appauvri en impureté X d'au moins 20°C et fournissant ainsi de façon indirecte via l'échangeur 2 l'apport de chaleur nécessaire au réchauffage d'une partie du flux 9 et donc à la régénération d'au moins un des deux adsorbeurs à l'étape f) ;
  • les adsorbeurs comprennent un monolit, de préférence un tamis moléculaire.
  • le flux gazeux d'alimentation est de l'air et l'impureté X est choisie parmi H2O, CO2, N2O, CnHm, NOx;
  • le flux gazeux d'alimentation comprend de l'eau et ledit procédé comprend avant l'étape a) une étape de pré-purification du flux gazeux d'alimentation permettant d'éliminer au moins une partie de l'eau ;
  • l'étape de pré-purification se fait par adsorption à température ambiante ;
  • l'adsorption de l'étape de pré-purification se fait sur monolit de type alumine, gel de silice ou tamis moléculaire.
Depending on the case, the method according to the invention may have one or more of the following characteristics:
  • said method comprises according to a first alternative the following successive steps ( figure 1 ):
    1. a) the feed gas stream 1 is cooled in the exchanger 2 at a temperature below -50 ° C, preferably below -100 ° C;
    2. b) the cooled gas stream 3 is sent to the adsorption unit 4 where at least one impurity X is at least partially adsorbed so as to recover a gaseous stream 5 depleted in impurity X;
    3. c) the gas stream depleted in impurity X 5 is introduced into the exchanger 2 to be cooled to a temperature below -50 ° C, preferably -150 ° C;
    4. d) the cooled and impurity-degraded gaseous stream X is sent to the cryogenic distillation unit 7 where it is separated into at least 2 streams 8 and 9;
    5. e) a portion of the stream 9 is introduced into the exchanger to be heated to a temperature greater than -150 ° C, preferably greater than -100 ° C, more preferably greater than -50 ° C, ideally at a temperature close to that of the feed gas stream 1 at the end of step a)
      before being compressed in the compressor 10 with a compression ratio greater than 1.2
    6. f) the compressed stream 9 is sent to the adsorption unit 4 to regenerate one of the two adsorbers;
      with the compression in step e) resulting in a temperature increase of the flow 9 of at least 20 ° C and thus providing the heat input necessary for the regeneration of at least one of the adsorbers;
  • said method comprises according to a second alternative the following successive steps ( figure 2 ):
    1. a) the feed gas stream 1 is cooled in the exchanger 2 at a temperature below -50 ° C, preferably below -100 ° C;
    2. b) the cooled gaseous flow 3 is sent to the adsorption unit 4 where at least one impurity X is at least partially adsorbed so as to recover a first stream impoverished in impurity X 5;
    3. c) the impurity-degraded gaseous stream X is compressed in the compressor 10 with a compression ratio greater than 1.2 before being cooled in the exchanger 2 to a temperature below -50 ° C, preferably below -150 ° C;
    4. d) the compressed and cooled impurity X impurity stream X is fed to the cryogenic distillation unit 7 where it is separated into at least 2 streams 8 and 9;
    5. e) part of the stream 9 is introduced into the exchanger to be heated to a temperature greater than -150 ° C, preferably greater than -100 ° C, more preferably -50 ° C, ideally at a temperature close to that of gaseous feed stream 5 at the end of the compression of step c);
    6. f) the heated stream 9 is sent to the adsorption unit 4 to regenerate at least one of the two adsorbers;
      with the compression in step c) resulting in an increase in the temperature of the impurity-impregnated gas stream X by at least 20 ° C. and thus indirectly supplying via the exchanger 2 the supply of heat required for reheating a part of the flow 9 and therefore the regeneration of at least one of the two adsorbers in step f);
  • the adsorbers comprise a monolith, preferably a molecular sieve.
  • the feed gas stream is air and the impurity X is selected from H 2 O, CO 2 , N 2 O, C n H m , NOx;
  • the feed gas stream comprises water and said process comprises before step a) a pre-purification step of the feed gas stream for removing at least a portion of the water;
  • the pre-purification step is by adsorption at room temperature;
  • the adsorption of the pre-purification step is done on monolith of alumina type, silica gel or molecular sieve.

L'invention va être illustrée sur une ASU avec un compresseur froid. Le compresseur froid introduit dans la boite froide une entrée thermique qui réchauffe le gaz comprimé. Le bilan frigorifique naturel de l'appareil permet de gérer cette entrée thermique. Une partie du gaz chaud va être utilisé directement ou indirectement via un échange thermique avec un autre fluide pour assurer la phase chauffage de la régénération. Ceci se fait sans réelle pénalité énergétique, car cela ne perturbe pas (ou peu) le bilan frigorifique de l'appareil.The invention will be illustrated on an ASU with a cold compressor. The cold compressor introduces into the cold box a thermal input that heats the compressed gas. The natural refrigerant balance of the device makes it possible to manage this thermal input. Part of the hot gas will be used directly or indirectly via a heat exchange with another fluid to ensure the heating phase of the regeneration. This is done without real energy penalty, because it does not disturb (or little) the refrigeration balance of the device.

La figure 1 représente la première alternative de la solution selon l'invention.The figure 1 represents the first alternative of the solution according to the invention.

L'air 1 est refroidi dans la ligne d'échange 2 (par exemple, jusqu'à -120°C), puis passe dans un lit d'adsorbant 4 à basse température (-120°C), puis est réintroduit (éventuellement légèrement plus chaud, du fait de l'adsorption) dans la ligne d'échange 2 pour refroidissement final avant d'être envoyé dans la partie distillation 7.The air 1 is cooled in the exchange line 2 (for example, up to -120 ° C.), then passes into a bed of adsorbent 4 at a low temperature (-120 ° C.), and is then reintroduced (optionally slightly warmer, due to the adsorption) in the exchange line 2 for final cooling before being sent to the distillation part 7.

Une partie de l'azote résiduaire 9 est soutiré vers -120°C de la ligne d'échange, puis comprimé dans un compresseur froid 10 où il s'échauffe jusqu'à une température de -80°C par exemple, puis envoyé dans un lit d'adsorbant en régénération. La chaleur apportée par la compression constitue l'apport de chaleur nécessaire pour la phase de chauffage de la régénération. L'azote se refroidit dans le lit d'adsorbant 4, et est ensuite envoyé à température autour de -120°C vers la ligne d'échange 2 pour réchauffage supplémentaire jusqu'à la température ambiante.Part of the residual nitrogen 9 is drawn off at -120 ° C. from the exchange line, then compressed in a cold compressor 10 where it is heated to a temperature of, for example, -80 ° C. and then sent to an adsorbent bed in regeneration. The heat provided by the compression constitutes the heat input required for the heating phase of the regeneration. The nitrogen cools in the adsorbent bed 4, and is then sent at around -120 ° C towards the exchange line 2 for further heating to room temperature.

La température d'adsorption peut être préférentiellement proche de la température d'entrée « naturelle dans le booster froid», c'est-à-dire celle dictée par le procédé, comme si on avait eu une épuration classique à température ambiante.The adsorption temperature may be preferably close to the "natural temperature in the cold booster", that is to say that dictated by the process, as if there had been a conventional purification at room temperature.

On voit que la phase de chauffage de la régénération ne perturbe pas (ou peu) le bilan frigorifique de l'appareil, celle-ci se faisant sur l'apport de chaleur naturelle apportée par la compression froide. Il n'y a donc pas de pénalité énergétique à faire une épuration cryogénique. Concernant la phase de refroidissement de la régénération du procédé selon la première alternative, une partie de l'azote résiduaire est soutiré vers -120°C de la ligne d'échange, puis est d'abord comprimé, avant d'être passé dans le lit en régénération (phase de refroidissement), puis envoyé vers la ligne d'échange pour réchauffage supplémentaire jusqu'à la température ambiante.It can be seen that the heating phase of the regeneration does not disturb (or little) the refrigeration balance of the apparatus, this being done on the natural heat input brought by the cold compression. There is no energy penalty to cryogenic purification. As regards the cooling phase of the regeneration of the process according to the first alternative, part of the residual nitrogen is withdrawn at about -120 ° C. from the exchange line, then is compressed first, before being passed through the bed in regeneration (cooling phase), then sent to the exchange line for further heating up to room temperature.

On constate que la phase de chauffage et de refroidissement se fait à une pression différente nécessitant une phase intermédiaire d'adaptation du lit à la bonne pression.It is found that the heating and cooling phase is at a different pressure requiring an intermediate phase of adaptation of the bed to the correct pressure.

La figure 2 représente la deuxième alternative de la solution selon l'invention.The figure 2 represents the second alternative of the solution according to the invention.

L'air 1 est partiellement refroidi jusqu'à -120°C, puis passe à travers le lit d'adsorbant 4 avant d'être comprimé à froid 10 où il s'échauffe jusqu'à -80°C, puis renvoyé dans la ligne d'échange 2 plus chaud, pour refroidissement final avant d'être envoyé dans la partie distillation 7.Air 1 is partially cooled to -120 ° C, then passes through the adsorbent bed 4 before being cold pressed where it heats to -80 ° C, and then returned to the exchange line 2 hotter, for final cooling before being sent to the distillation part 7.

Une partie de l'azote résiduaire 9 se réchauffe dans la ligne d'échange 2, jusqu'à une température proche de celle de l'air comprimé à froid, par exemple -80°C, récupérant ainsi de façon indirecte la chaleur introduite par la compression de l'air. L'azote ainsi réchauffé à -80°C assure la phase de chauffage de la régénération en traversant un lit d'adsorbant 4 où il se refroidit jusqu'à -120°C, puis est envoyé vers la ligne d'échange 2 pour réchauffage supplémentaire jusqu'à la température ambiante.Part of the waste nitrogen 9 heats up in the exchange line 2, to a temperature close to that of the cold compressed air, for example -80 ° C., thus indirectly recovering the heat introduced by the compression of the air. The nitrogen thus warmed to -80 ° C. ensures the heating phase of the regeneration by passing through a bed of adsorbent 4 where it cools to -120 ° C. and is then sent to the exchange line 2 for reheating. additional up to room temperature.

La température d'adsorption peut être préférentiellement proche de la température d'entrée « naturelle » dans le booster froid, typiquement autour de la température du palier de vaporisation de l'oxygène par exemple pour les schémas classiques mono-machines avec booster froid (vers -120°C pour de l'oxygène pressurisé à 40 bar).The adsorption temperature may be preferably close to the "natural" inlet temperature in the cold booster, typically around the temperature of the vaporization stage of oxygen, for example for the conventional single-machine cold booster -120 ° C for pressurized oxygen at 40 bar).

De nouveau, on voit que la phase de chauffage de la régénération ne perturbe pas (ou peu) le bilan frigorifique de l'appareil, celle-ci se faisant sur l'apport de chaleur naturelle apportée par la compression froide, de façon indirecte dans ce cas. Il n'y a donc pas de pénalité énergétique à faire une épuration cryogénique.Again, it can be seen that the heating phase of the regeneration does not disturb (or little) the refrigeration balance of the apparatus, this being done on the natural heat input brought by the cold compression, indirectly in that case. There is no energy penalty to cryogenic purification.

Concernant la phase de refroidissement de la régénération du procédé selon la deuxième alternative, une partie de l'azote résiduaire sort de la ligne d'échange à une température proche de l'entrée du compresseur froid (vers -120°C), traverse le lit adsorbant pour le refroidir, puis est envoyé vers la ligne d'échange pour réchauffage supplémentaire jusqu'à la température ambiante. Dans ce cas, les phases de chauffage et de refroidissement se font à la même pression.With regard to the cooling phase of the regeneration of the process according to the second alternative, part of the residual nitrogen leaves the exchange line at a temperature close to the inlet of the cold compressor (around -120 ° C.), passes through the adsorbent bed to cool it, then is sent to the exchange line for additional heating up to room temperature. In this case, the heating and cooling phases are at the same pressure.

Claims (8)

  1. Method for purifying a gaseous supply flow implementing an adsorption unit (4) comprising at least 2 adsorbers, a cryogenic distillation unit (7), an exchanger (2) and a compressor (10) functioning at a temperature lower than or equal to -50°C, wherein the heat necessary to regenerate the adsorbers, comes from, at least in part, at least one part of the heat generated by the compressor (10), during the compression of a fluid and said method comprises an adsorption step implemented by the adsorption unit, with said method characterised in that the adsorption step is carried out at a negative temperature.
  2. Purification method according to claim 1, characterised in that said method comprises the following successive steps:
    a) the gaseous supply flow (1) is cooled in the exchanger (2) to a temperature lower than -50°C;
    b) the cooled gaseous flow (3) is sent to the adsorption unit (4) where at least one impurity X is at least in part adsorbed so as to recover the gaseous flow (5) depleted in impurity X;
    c) the gaseous flow depleted in impurity X (5) is inserted in the exchanger (2) to be cooled to a temperature lower than -50°C;
    d) the gaseous flow (5) depleted in impurity X and cooled is sent to the cryogenic distillation unit (7) where it is separated into at least 2 flows (8) and (9);
    e) a part of the flow (9) is inserted in the exchanger to be reheated to a temperature higher than -150°C before being compressed in the compressor (10) with a compression rate higher than 1.2;
    f) the compressed flow (9) is sent to the adsorption unit (4) to regenerate one of the two adsorbers;
    with the compression in step e) leading to an increase in temperature of the flow (9) by at least 20°C and thus providing the inflow of heat necessary to regenerate at least one of the adsorbers.
  3. Purification method according to claim 1, characterised in that said method comprises the following successive steps:
    a) the gaseous supply flow (1) is cooled in the exchanger (2) to a temperature lower than -50°C;
    b) the cooled gaseous flow (3) is sent to the adsorption unit (4) where at least one impurity X is at least in part adsorbed so as to recover the gaseous flow (5) depleted in impurity X;
    c) the gaseous flow (5) depleted in impurity X is compressed in the compressor (10) with a compression rate higher than 1.2 before being cooled in the exchanger (2) to a temperature lower than -50°C;
    d) the gaseous flow (5) depleted in impurity X and cooled is sent to the cryogenic distillation unit (7) where it is separated into at least 2 flows (8) and (9);
    e) a part of the flow (9) is inserted in the exchanger to be reheated to a temperature higher than -150°C;
    f) the reheated flow (9) is sent to the adsorption unit (4) to regenerate one of the two adsorbers;
    with the compression in step c) leading to an increase in temperature of the gaseous flow (5) depleted in compound X by 20°C and thus indirectly providing, via the exchanger (2), the inflow of heat necessary to reheat a part of the flow (9) and therefore to regenerate at least one of the two adsorbers in step f).
  4. Method according to one of claims 1 to 3, characterised in that the adsorbers comprise a monolith, preferably a molecular sieve.
  5. Method according to one of claims 2, 3 or 4, when it refers to one of claims 2 or 3, characterised in that the gaseous supply flow is air and the impurity X is chosen among H2O, CO2, N2O, CnHm, NOx.
  6. Method according to one of claims 1 to 5, characterised in that the gaseous supply flow comprises water and said method comprises, before step a), a step for pre-purifying the gaseous supply flow enabling to eliminate at least one part of the water.
  7. Method according to claim 6, characterised in that the pre-purification step is carried out by adsorption at room temperature.
  8. Method according to claim 7, characterised in that the adsorption in the pre-purification step is carried out an alumina, silica gel or molecular sieve-type monolith.
EP15733826.0A 2014-06-26 2015-06-12 Cryogenic purification with heat uptake Active EP3161399B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1455985A FR3022993A1 (en) 2014-06-26 2014-06-26 CRYOGENIC CLEANING WITH HEAT INPUT
PCT/FR2015/051567 WO2015197940A1 (en) 2014-06-26 2015-06-12 Cryogenic purification with heat uptake

Publications (2)

Publication Number Publication Date
EP3161399A1 EP3161399A1 (en) 2017-05-03
EP3161399B1 true EP3161399B1 (en) 2018-08-15

Family

ID=51519043

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15733826.0A Active EP3161399B1 (en) 2014-06-26 2015-06-12 Cryogenic purification with heat uptake

Country Status (5)

Country Link
US (1) US20170138665A1 (en)
EP (1) EP3161399B1 (en)
CN (1) CN106461323B (en)
FR (1) FR3022993A1 (en)
WO (1) WO2015197940A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1189094B (en) * 1962-06-09 1965-03-18 Linde Eismasch Ag Process for removing carbon dioxide from gas mixtures
US3236059A (en) * 1962-08-29 1966-02-22 Air Prod & Chem Separation of gaseous mixtures
JPS6272504A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Method for producing high purity nitrogen
US5551257A (en) * 1992-10-01 1996-09-03 The Boc Group, Inc. Production of ultrahigh purity nitrogen
FR2766735B1 (en) * 1997-07-31 1999-09-03 Air Liquide PROCESS AND DEVICE FOR THE PRODUCTION OF ULTRA-PUR INERT GAS
CN100363699C (en) * 2005-04-25 2008-01-23 林福粦 Air separation system for recycling cold energy of liquified natural gas
JP5005894B2 (en) * 2005-06-23 2012-08-22 エア・ウォーター株式会社 Nitrogen generation method and apparatus used therefor
CN201265997Y (en) * 2008-09-05 2009-07-01 苏州制氧机有限责任公司 Liquid air separation plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3161399A1 (en) 2017-05-03
US20170138665A1 (en) 2017-05-18
CN106461323B (en) 2019-08-06
FR3022993A1 (en) 2016-01-01
WO2015197940A1 (en) 2015-12-30
CN106461323A (en) 2017-02-22

Similar Documents

Publication Publication Date Title
EP0456575B1 (en) Process and apparatus for purifying, by adsorption, air to be distilled
CN101231131B (en) Purification of carbon dioxide
CA2552327C (en) Method for selective extraction of natural gas liquids from "rich" natural gas
FR2934170A3 (en) Separating feed flow having carbon dioxide as major component, comprises passing cooled feed flow to column, and heating column in tank by flow of heating gas which heats bottom of column and is richer in carbon dioxide than feed flow
TW201726232A (en) Heater arrangement for TEPSA system
KR101349493B1 (en) Pure oxygen combustion type Submerged Vaporizer
CA2552865C (en) Method for selective extraction of natural gas liquids from "rich" natural gas
CA2877452C (en) Method for separating a carbon dioxide-rich gas by partial condensation and permeation
EP3161399B1 (en) Cryogenic purification with heat uptake
WO2014128409A1 (en) Separation at sub-ambient temperature of a gaseous mixture containing carbon dioxide and a lighter contaminant
EP2227309B1 (en) Method for drying a gas flow rich in carbon dioxide
EP1090670A1 (en) Process for treating a gas using temperature swing adsorption
WO2014049259A1 (en) Method and appliance for separating a mixture containing carbon dioxide by cryogenic distillation
US20150021522A1 (en) Method and device for producing a krypton/xenon mixture
JP2022156743A (en) Air-to-liquid separation device and standby method for air-to-liquid separation device
WO2018019749A1 (en) Method and apparatus for cooling down a cryogenic heat exchanger
FR2956478A1 (en) Method for separating air by cryogenic distillation, involves compressing part of released nitrogen flow from pressure until another pressure and sending part of flow to purification unit at former pressure to regenerate purification unit
WO2017042491A1 (en) Method and apparatus for purifying air by means of an adsorption wheel
EP4295096B1 (en) Method for separating air by cryogenic distillation
FR2993352A1 (en) METHOD AND APPARATUS FOR SEPARATING CARBON DIOXIDE-RICH GAS
JP3969874B2 (en) Air liquefaction separator
WO2025011874A2 (en) Method for liquefying and/or solidifying a gas rich in carbon dioxide
WO2024235564A1 (en) Method and apparatus for cooling and separating a flow of co2 containing a first component
FR2977303A1 (en) Method for producing nitrogen by cryogenic distillation, involves withdrawing nitrogen gas flow of top of column at room temperature, and providing nitrogen gas flow to customer at cold temperature equal to, or lower than room temperature
BE537565A (en)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180313

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SAULNIER, BERNARD

Inventor name: DAVIDIAN, BENOIT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1030271

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015014821

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1030271

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181116

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015014821

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150612

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220627

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240628

Year of fee payment: 10