[go: up one dir, main page]

EP3156651B1 - Druckerhöhungsvorrichtung - Google Patents

Druckerhöhungsvorrichtung Download PDF

Info

Publication number
EP3156651B1
EP3156651B1 EP15190110.5A EP15190110A EP3156651B1 EP 3156651 B1 EP3156651 B1 EP 3156651B1 EP 15190110 A EP15190110 A EP 15190110A EP 3156651 B1 EP3156651 B1 EP 3156651B1
Authority
EP
European Patent Office
Prior art keywords
pressure
control device
booster pump
designed
manner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15190110.5A
Other languages
English (en)
French (fr)
Other versions
EP3156651A1 (de
Inventor
Torben Thorsager Dissing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Management AS
Original Assignee
Grundfos Management AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos Management AS filed Critical Grundfos Management AS
Priority to EP15190110.5A priority Critical patent/EP3156651B1/de
Priority to RU2016140465A priority patent/RU2658719C2/ru
Priority to US15/293,708 priority patent/US11326591B2/en
Priority to CN201610902881.5A priority patent/CN106869249B/zh
Publication of EP3156651A1 publication Critical patent/EP3156651A1/de
Application granted granted Critical
Publication of EP3156651B1 publication Critical patent/EP3156651B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/09Component parts or accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0027Varying behaviour or the very pump
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B5/00Use of pumping plants or installations; Layouts thereof
    • E03B5/02Use of pumping plants or installations; Layouts thereof arranged in buildings
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/04Domestic or like local pipe systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/008Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/04Pressure in the outlet chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/06Pressure in a (hydraulic) circuit

Definitions

  • the invention relates to a pressure-increasing device for increasing the pressure of a liquid flowing through a line.
  • Such pressure boosting devices are used, for example, in the drinking water supply of buildings, when the line-side pressure in a drinking water supply is not high enough, for example, to convey the drinking water to the top floors of a building.
  • Such pressure increasing devices have one or more pressure increasing pumps which can be connected in parallel or in series and which are switched on when the pressure on the output side of the pressure increasing pumps falls below a predetermined limit value. Accordingly, the booster pumps are switched off again when a desired target pressure is reached. In addition to such a start-stop operation, it is possible, in particular with larger flow rates, to operate the booster pumps constantly and to regulate their speed in order to adapt the pressure in the desired manner.
  • EP 2 778 296 A1 describes a pump system for a water supply network with a central pump which is arranged on the input side of a branched water supply network.
  • the pressure-increasing device is regulated on the basis of a model of the supply network so that there is always a sufficiently high pressure at all points in the water supply network. This involves adjusting the output pressure of the pressure-increasing device.
  • the object of the invention is to improve a pressure increasing device for increasing the pressure of a liquid flowing through a line in such a way that an automatic adaptation to the respective hydraulic system takes place in order to minimize the pressure fluctuations occurring.
  • This object is achieved by a pressure increasing device with the features specified in claim 1.
  • the pressure increasing device is used to increase the pressure of a liquid flowing through a line, for example drinking water in a drinking water line.
  • the pressure increasing device has at least one pressure increasing pump.
  • several booster pumps can also be connected in parallel and / or in series. If the term booster pump is used in the following, this also expressly includes such arrangements of several booster pumps.
  • the pressure-increasing device also has a control device which controls the booster pump. For this purpose, there is at least one pressure sensor arranged on the output side of the pressure booster pump on or in the line, which is connected to the control device in such a way that measured pressure values recorded by the pressure sensor are transmitted to the control device.
  • the control device is designed such that it controls the booster pump in a start-stop mode at least in one operating range. That is, the pump is when it reaches an upper Pressure limit switched off and switched on when a lower pressure limit is reached. In this way, the pressure in the line on the outlet side of the pressure increasing device is kept between the upper and lower pressure limit values.
  • the control device is designed such that it automatically adjusts at least one pressure control parameter of the control device in this start-stop mode.
  • a pressure control parameter is a parameter on which the control of the pressure booster pump by the control device is based, in particular a parameter which influences the switch-on and switch-off times in start-stop operation.
  • the automatic adjustment of this at least one pressure control parameter takes place according to the invention on the basis of the time advance of at least one pressure value detected by the pressure sensor. In this way, a self-learning system is created that automatically adapts to the current conditions in the hydraulic system on the output side of the pressure increasing device.
  • the control device is preferably designed such that the adaptation takes place in such a way that the pressure difference between the upper and lower pressure limit values is minimized without increasing the number of switch-on processes above a predetermined limit value. This ensures that the running time of the pressure booster pump in the start-stop mode is essentially not extended, while at the same time comfort is improved by minimizing pressure fluctuations in the system. In this way, comfort can be increased with simultaneous energy efficiency.
  • the pressure increasing device or its control device is designed in such a way that the at least one pressure control parameter which is automatically adapted is the upper and / or the lower pressure limit value.
  • the pressure control parameter can be the difference between the upper and the lower pressure limit, ie a hysteresis range.
  • the adaptation of the pressure limit values or their difference enables an automatic adaptation of the pressure booster to the subsequent hydraulic system or the conditions prevailing in the system by adapting the pressure limit values so that the pressure difference is minimized during operation without the number of switch-on processes or . to significantly increase the total duty cycle of the booster pump. In this way a gain in comfort is achieved.
  • the control device is designed in such a way that the adaptation of the at least one pressure control parameter, for example the upper and / or lower pressure limit value, takes place on the basis of the lead time of the at least one detected pressure value in such evaluation periods, in which is given a constant flow in the line.
  • This has the advantage that pressure fluctuations, which result, for example, from the opening and closing of tapping points or consumers in the hydraulic system, have essentially no influence on the measurement and adaptation of the pressure control parameter. This ensures that essentially only influences that originate from the system itself are taken into account. If, for example, one or more taps in a drinking water pipe are opened, there is a sudden drop in pressure in the system with a sudden increase in flow. These changes in status do not come from the design of the system but from user behavior and should, if possible, be disregarded during the adjustment. This means that the evaluation should preferably take place in a stable operating state.
  • control device is designed in such a way that it places the evaluation periods in those periods in which the pressure booster pump is switched on in the start-stop operation. That is to say, the pressure curve over time, on the basis of which the adjustment of the pressure control parameter takes place, is preferably recorded during the pressure increase by the pressure increase pump.
  • control device is designed in such a way that the said evaluation periods are placed in time periods in which a speed of the pressure booster pump is increased or decreased by the control device.
  • the control device is preferably designed in such a way that it monitors the pressure profile, that is, the profile of the pressure measured by the at least one pressure sensor in the system, in the evaluation periods and only adjusts the at least one pressure control parameter as long as the pressure profile is in predefined Limits a target pressure curve follows. If this is the case, it can be concluded from this that there are no changes in the stable operating state, which result, for example, from the fact that draw-off points are opened or closed. According to the invention, these influences should be excluded as far as possible.
  • control device is designed such that it is used to adapt the at least a pressure control parameter uses a prediction error system identification method. As described above, the deviation from a predicted pressure value is considered and an adaptation is carried out in such a way that this deviation or this error is minimized.
  • the control device preferably has a prediction system for predicting a pressure value on the basis of a prediction model.
  • the prediction system is designed such that the prediction is made as a function of the speed of the pressure booster pump. That is, the prediction system predicts an expected pressure value in the system as a function of a current speed of the pressure booster pump.
  • the prediction system adapts at least one system parameter in the prediction model on the basis of a predetermined algorithm. What is achieved thereby is that the prediction model is adapted to the actual system and the prediction error is minimized or becomes smaller.
  • this system can also be used to detect changes in the hydraulic system, for example leaks. If larger changes in the at least one system parameter in the prediction model are required after a previously constant operation, this indicates a change in the system, for example a leak.
  • the control device can be designed in such a way that, if it detects such a deviation, it indicates, for example, an error.
  • the prediction system is preferably designed such that it uses a prediction model that is an autoregressive model (ARX model), in particular an autoregressive model (ARX model) of the first order.
  • a prediction of the pressure values can be achieved in a simple manner on the basis of such a model.
  • at least one system parameter used can be adapted in the manner described above in order to minimize the prediction error.
  • control device is designed such that the at least one pressure control parameter is stored in the prediction model as a function of the at least one system parameter, in particular on the basis of a predetermined algorithm or a table, in particular a predetermined one and stored in the control device Table, is fixed.
  • the pressure limit values described above can also be adapted as pressure control parameters as a function of the system parameter in the prediction model, which is adapted in the manner described above.
  • the pressure control parameter which in start-stop operation preferably influences the switch-on and / or switch-off times of the pressure booster pump, is adapted as a function of the at least one adapted system parameter, so that in addition to minimizing the prediction error in the In the manner described above, the pressure difference between switching the pressure booster pump on and off can be minimized and thus a gain in comfort can be achieved.
  • the control device preferably has a pressure regulator which regulates the pressure increasing pump to a pressure setpoint.
  • the pressure setpoint is fed to the pressure regulator as an input variable.
  • the pressure setpoint is preferably provided by the control device set on the basis of a desired pressure value specified by a user.
  • the at least one pressure control parameter can be a control or regulating parameter in the pressure regulator.
  • a pressure control parameter can be adapted alone or in addition to other pressure control parameters in the manner described above on the basis of the time profile of the pressure value.
  • the pressure increasing device is designed such that a check valve is arranged on the outlet side of the pressure increasing pump.
  • a check valve is advantageous in order to ensure, when the pressure increasing pump is switched off, that the liquid does not flow back and that the pressure is maintained on the outlet side of the pressure increasing pump, that is to say on the outlet side of the check valve.
  • This check valve also closes at low flow rates. In such a state, a change in the speed of the pressure booster pump no longer has any influence on the actual pressure, which is measured by the pressure sensor downstream of the check valve.
  • the pressure sensor is preferably arranged downstream of the check valve.
  • the control device can switch the controller to the start-stop mode described. The described adaptation of the at least one pressure control parameter then takes place in this state.
  • the control device is preferably designed so that it controls the booster pump in an operating range in which there is a low flow rate, in the described start-stop operation, and to reach the booster pump in at least one other operating range, preferably an operating range with a higher flow rate a desired pressure increase regulates their speed.
  • the limit for the start-stop operation can be set in a known manner, for example in the from DE 38 24 293 A1 known manner. In particular, as described above, this can be recognized by the action of the check valve and by whether the actual pressure profile follows the predicted pressure profile within the desired limits.
  • the pressure booster pump is preferably in continuous operation and the pressure is set in the desired manner by speed control or speed adjustment.
  • the pressure increasing pump is preferably an electronically controlled pump, in particular a pump controlled via a frequency converter, so that the speed can be changed as required.
  • the control device is preferably designed such that it detects the area of low flow.
  • the control device can preferably have a flow detection model which is designed to detect the low flow operating range on the basis of at least one pressure value detected by the pressure sensor and on the basis of changes in the speed of the pressure booster pump.
  • the pressure sensor is preferably arranged behind a check valve, as described above.
  • the flow detection model can recognize the area of low flow from the fact that when the check valve is closed, which occurs at low flow, the measured pressure value no longer follows a change in the setpoint pressure. The That is, the limit for the low speed range in which the start-stop mode is switched on depends on the function of the check valve and preferably on its bias.
  • Fig. 1 shows schematically a pressure-increasing device in a drinking water supply line.
  • the pressure increasing device has a pressure booster pump 2, to which a check valve 4 is connected further downstream on the output side.
  • a buffer tank 6 is arranged on the outlet side of the check valve 4, which buffer tank can be designed in the usual way as a storage tank with a membrane and a closed air volume arranged above it.
  • a pressure sensor 8 is arranged further downstream, which detects the pressure P on the output side of the pressure increasing pump 2 and on the output side of the check valve 4.
  • a valve 10 is shown schematically, which is intended to represent one or more consumers, for example extraction points, and via which the flow in the line 5 is set on the outlet side of the check valve 4. It is to be understood that, instead of a valve 10, a branched network with a plurality of valves 10 can be connected to the line 5 in practice.
  • control device 12 which controls or regulates the pressure increasing pump 2.
  • the pressure booster pump 2 is switched on and off by the control device 12, on the one hand, but its speed is also regulated on the other.
  • the pressure booster pump 2 can be controlled via a speed controller, in particular a frequency converter.
  • the control device 12 is signal-connected to the pressure sensor 8, so that it receives the pressure values detected by the pressure sensor 8.
  • booster pump 2 instead of a single pressure increasing pump 2, several pressure increasing pumps connected in parallel and / or in series could also be used, which are controlled or regulated by the control device 12. If a booster pump 2 is described here, it is to be understood that this also expressly includes an arrangement of a plurality of booster pumps 2.
  • the pressure booster pump 2 When the pressure increasing device shown is in operation, there are preferably two operating states, namely an operating state of low flow and an operating state of high flow.
  • the pressure booster pump 2 In the high flow operating state, the pressure booster pump 2 preferably runs continuously and its speed is regulated via the control device 12 as a function of the pressure value detected at the pressure sensor 8 in order to achieve or maintain a setpoint pressure value.
  • the check valve 4 closes and the speed control of the pressure booster pump 2 no longer has any influence on reducing the pressure in the line 5.
  • pressure control as described above can no longer be carried out.
  • the pressure-increasing device switches to a start-stop mode in which the pressure-increasing pump 2 is switched on when the pressure P in the line 5 falls below a lower pressure limit value, and the pressure-increasing pump 2 is switched off when the pressure P in the line 5 has reached an upper pressure limit. This switching on and off of the pressure increasing pump 2 is accomplished by the control device 12.
  • FIG. 2a and Figure 2b the pressure P in the line 5 is plotted against the time t in the upper diagram.
  • the lower diagram shows the switch-on states of the pressure booster pump 2 over the time t. If the value is 1, the pressure increasing pump 2 is switched on;
  • Fig. 2a shows in the upper curve the pressure curve over time t with a small tank volume and in the lower curve the associated switch-on states.
  • the pressure booster pump 2 is always switched off when the upper pressure limit value P 1 is reached T A switched off. The pressure then falls to the lower pressure limit value P 2 .
  • the upper pressure limit value P 1 is reduced to the pressure limit value P 1 'and the lower pressure limit value P 2 is increased to the lower pressure limit value P 2 ', ie the hysteresis range is reduced to P 1 '- P 2 '.
  • the pressure difference between switching the pressure booster pump 2 off and on is thus reduced.
  • the time interval between the switching-off times T A and the switching-on times T E is also shortened again.
  • FIG. 7 which shows the pressure curve P over time t, similar to the upper curve in Figure 2b .
  • a first operating state a there is a low flow rate with a small tank volume.
  • the actual pressure P fluctuates around the pressure P u selected by the user in a relatively large range.
  • the switching intervals are short.
  • the operating state b in Fig. 7 represents a low flow condition with a larger tank volume.
  • the pressure fluctuations remain the same, but the intervals between switching the pressure increasing pump 2 on and off lengthen.
  • the operating range c represents a low flow rate with a large tank volume after the adjustment of the Pressure limit values P 1 and P 2 .
  • the switching intervals are shortened again.
  • the pressure fluctuation is reduced by the desired value P u .
  • the operating range d corresponds to an operating range with a high flow rate, in which the pressure increasing pump 2 is no longer operated in start-stop operation but in constant operation with pressure regulation. There are essentially no pressure fluctuations in this operating range.
  • Fig. 3 shows in a diagram the sequence of the regulation or control of the pressure booster pump 2 by the control device 12.
  • the in Fig. 3 The control components shown are integrated in the control device 12 or run there in corresponding modules. These are in particular software modules.
  • the physical system 14 and its influences on the control or regulation are shown in Fig. 3 indicated by the dashed line.
  • An essential component of the physical system 14 is a transfer function 16 which represents the hydraulic system or is formed by the hydraulic system and on which the conversion of the speed n of the pressure increasing pump 2 into the pressure P in the line 5 depends.
  • a user-dependent transfer function 18 which represents the influence of the position of the valve 10.
  • the speed n is the output variable of a pressure regulator 20 which is integrated in the control device 12.
  • the pressure regulator 20 is supplied with a setpoint pressure P S , from which the actual pressure P at the subtracter 22 is subtracted.
  • the setpoint pressure P S is calculated or output by a state control or state regulating module 24.
  • a pressure P u desired by the user is fed to the state control module 24 as an input variable.
  • the difference between the upper pressure limit value P 1 and the lower pressure limit value P 2 , ie a hysteresis range P 1 -P 2 is determined in a parameter module 28. This takes place on the basis of the parameters a 1 and b 1 determined in a prediction module 26.
  • a prediction model is used, which in the present example is an autoregressive model of the first order (ARX model). Its parameters a 1 and b 1 are determined in a prediction module 26.
  • the prediction module 26 is supplied with the actual pressure P, the speed n and a status value Z as input variables, the status value Z representing the operating range, namely an operating range of low flow or an operating range of high flow, with the start-stop- Operation is applied.
  • the regulation or control is adapted to the state of the physical system 14 by using the parameter module 28 the pressure control parameter in the form of the difference P 1 - P 2 of the pressure limit values P 1 and P 2 is adapted.
  • the difference between the pressure limit values P 1 and P 2 is an example of a pressure control parameter to be adapted.
  • pressure control parameters can also be adapted in a corresponding manner, for example parameters which flow into the pressure regulation.
  • the actual pressure limit values P 1 and P 2 are set by the state control module 24 based on the desired pressure P U , so that the desired pressure P U is preferably located in the middle of the hysteresis range P 1 -P 2 .
  • the control device 12 and in particular its status control module 24 have, in particular, an operating status recognition function in order to determine the area of low flow in which a start-stop operation is to take place. How this works is based on Fig. 4 explained.
  • Fig. 1 the lower curve shows the speed n of the booster pump 2 over time t.
  • the upper curve shows the pressure profile of the pressure P over time t, the solid line representing the actually measured pressure P at the pressure sensor 8 and the dashed line representing the setpoint pressure P S.
  • the middle diagram in Fig. 4 shows the flow rate Q over time t.
  • the three diagrams shown represent a chronologically parallel sequence. At time t1, the flow rate Q drops, so that the operating state changes from a state of high flow to the state of low flow or essentially no flow.
  • the actual pressure P initially increases and falls again to the setpoint pressure P S due to the pressure control carried out in the pressure regulator 20.
  • the detection takes place as to whether a state of lower flow is present.
  • the setpoint pressure P S and thus the speed n are reduced and a check is made as to whether the actual pressure profile P follows the profile of the setpoint pressure P S.
  • Fig. 4 clearly not the case.
  • the system then switches to start-stop mode.
  • the pressure increasing pump 2 is switched on between the times t3 and t4 and t5 and t6.
  • the speed n and thus the pressure P increase.
  • the pressure increasing pump 2 is switched off between times t4 and t5 and after time t6.
  • the speed initially drops.
  • the pressure P then drops more slowly, as shown in FIG Fig. 2 was explained.
  • a 1 and b 1 represent two parameters.
  • represents a step size parameter and e the prediction error.
  • the mode of operation of the prediction error model for adapting the predicted pressure P p is based on Fig. 5 explained.
  • Fig. 5 shows in the upper diagram the pressure plotted against time t, the solid line showing the measured pressure P and the dashed line showing the predicted pressure P p .
  • the second diagram shows the prediction error e versus time t and the two lower curves represent the parameters a 1 and b 1 versus time t. It can be seen that the predicted pressure P p initially deviates significantly from the actual pressure P. This results in a prediction error e, on the basis of which the parameters a 1 and b 1 are adapted in such a way that the predicted pressure P p and the actual pressure P are made to coincide, that is to say the prediction error e is essentially zero.
  • this prediction error method is also used to adapt at least one pressure control parameter in the parameter module 28.
  • the pressure control parameter is the difference P 1 - P 2 between the pressure limit values P 1 and P 2 .
  • these pressure limit values are adapted on the basis of parameter b 1 .
  • a table is stored in the control device 12, in particular in the parameter module 28, which defines pressure differences between the pressure limit values P 1 and P 2 , ie pressure hysteresis ranges, for certain parameters b 1 .
  • pressure limit values P 1 and P 2 could also be stored directly in the table, but for this it would also be necessary to supply the desired pressure Pu to the parameter module 28 and to take this into account in the table.
  • a table from which the pressure difference P 1 -P 2 result can for example as in Fig. 6 look shown.
  • a pressure difference or a hysteresis range of 0.1 bar is provided between the pressure limit values P 1 and P 2
  • a pressure difference or hysteresis range of 0.5 bar is provided. It is conceivable that the table is designed in more detail in even more printing steps in order to enable a finer adjustment.
  • the described adaptation of the parameters a 1 and b 1 takes place preferably at operating points or in operating ranges of the pressure booster pump 2 in which a stable operating state, that is to say in particular a flow that is as constant as possible, is given.
  • a stable operating state that is to say in particular a flow that is as constant as possible.
  • the control device 12 is preferably designed in such a way that it recognizes these operating states. In particular, it recognizes a change in the flow rate from the fact that the Pressure suddenly changes or the actually measured pressure P deviates from the setpoint pressure P S.
  • control device 12 can be designed so that, for example, whenever the pressure booster pump 2 is switched on in start-stop operation, a parameter adjustment of the parameters a 1 and b 1 is carried out, provided that there are no changes in the pressure curve due to a change in the position of the Valve is detected.
  • the table, according to which the difference P 1 - P 2 of the pressure limit values P 1 and P 2 is adjusted, is predetermined in such a way that, depending on the parameter b 1, the pressure difference or pressure hysteresis range P 1 - P 2 is determined in such a way that the pressure difference is minimized without the number of switch-on operations of the booster pump 2 exceeding a certain limit. This is guaranteed by the predetermined table. Since the parameter b 1 is dependent on the course of the measured pressure P, the difference P 1 - P 2 of the pressure limit values P 1 and P 2 , which represents the pressure control parameter, are also calculated on the basis of the course of the measured pressure P adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Computer Hardware Design (AREA)
  • Structural Engineering (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Fluid Pressure (AREA)

Description

  • Die Erfindung betrifft eine Druckerhöhungsvorrichtung zur Druckerhöhung einer durch eine Leitung strömenden Flüssigkeit.
  • Derartige Druckerhöhungseinrichtungen finden beispielsweise in der Trinkwasserversorgung von Gebäuden Verwendung, wenn der in einer Trinkwasserversorgung anstehende leitungsseitige Druck beispielsweise nicht ausreichend hoch ist, das Trinkwasser bis in die obersten Stockwerke eines Gebäudes zu fördern. Derartige Druckerhöhungseinrichtungen weisen eine oder mehrere Druckerhöhungspumpen auf, welche parallel oder in Reihe geschaltet werden können und welche eingeschaltet werden, wenn der Druck ausgangsseitig der Druckerhöhungspumpen einen vorbestimmten Grenzwert unterschreitet. Entsprechend werden die Druckerhöhungspumpen bei Erreichen eines gewünschten Zieldruckes wieder ausgeschaltet. Neben einem solchen Start-Stopp-Betrieb ist es insbesondere bei größeren Durchflüssen möglich, die Druckerhöhungspumpen konstant zu betreiben und in ihrer Drehzahl zu regeln, um den Druck in gewünschter Weise anzupassen.
  • Wenn eine solche Druckerhöhungsvorrichtung im genannten Start-Stopp-Betrieb betrieben wird, besteht das Problem, dass die Zeitspanne zwischen Aus- und Einschalten der Druckerhöhungspumpen u.a. davon abhängig ist, wie groß das Volumen in dem sich anschließenden Leitungssystem ist und insbesondere in einem gegebenenfalls vorhandenen Puffertank ist. Ein großes Volumen führt zu großen Druckschwankungen über einen vergleichsweise langen Zeitraum. Bei gleicher Einschaltdauer der Druckerhöhungspumpen ließe sich in einem solchen System ein besserer Komfort mit geringeren Druckschwankungen erreichen. In bisherigen Systemen kann dies nur durch manuelle Anpassung erreicht werden.
  • EP 2 778 296 A1 beschreibt ein Pumpensystem für ein Wasserversorgungsnetz mit einer zentralen Pumpe, welche eingangsseitig eines verzweigten Wasserversorgungsnetzes angeordnet ist. Die Druckerhöhungseinrichtung wird auf Grundlage eines Modells des Versorgungsnetzes so geregelt, dass an allen Punkten des Wasserversorgungsnetzes stets ein ausreichend hoher Druck gegeben ist. Dabei geht es um eine Anpassung des Ausgangsdruckes der Druckerhöhungsvorrichtung.
  • Im Hinblick auf die vorgenannte Problematik ist es Aufgabe der Erfindung, eine Druckerhöhungsvorrichtung zur Erhöhung des Druckes einer durch eine Leitung strömenden Flüssigkeit dahingehend zu verbessern, dass eine automatische Anpassung an das jeweilige hydraulische System zur Minimierung der auftretenden Druckschwankungen erfolgt. Diese Aufgabe wird durch eine Druckerhöhungsvorrichtung mit den in Anspruch 1 angegebenen Merkmalen gelöst. Bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.
  • Die erfindungsgemäße Druckerhöhungsvorrichtung dient zur Erhöhung des Druckes einer durch eine Leitung strömenden Flüssigkeit, beispielsweise von Trinkwasser in einer Trinkwasserleitung. Die Druckerhöhungsvorrichtung weist zumindest eine Druckerhöhungspumpe auf. Es können jedoch auch mehrere Druckerhöhungspumpen parallel und/oder in Reihe geschaltet sein. Wenn nachfolgend der Begriff Druckerhöhungspumpe verwendet wird, so schließt dies ausdrücklich auch derartige Anordnungen von mehreren Druckerhöhungspumpen mit ein. Die Druckerhöhungseinrichtung weist darüber hinaus eine Steuereinrichtung auf, welche die Druckerhöhungspumpe steuert. Dazu ist zumindest ein ausgangsseitig der Druckerhöhungspumpe an oder in der Leitung angeordneter Drucksensor vorhanden, welcher mit der Steuereinrichtung derart verbunden ist, dass von dem Drucksensor erfasste Druck-Messwerte an die Steuereinrichtung übertragen werden.
  • Die Steuereinrichtung ist so ausgebildet, dass sie zumindest in einem Betriebsbereich die Druckerhöhungspumpe in einem Start-Stopp-Betrieb steuert. Das heißt die Pumpe wird bei Erreichen eines oberen Druckgrenzwertes ausgeschaltet und bei Erreichen eines unteren Druckgrenzwertes eingeschaltet. So wird der Druck in der Leitung ausgangsseitig der Druckerhöhungsvorrichtung zwischen dem oberen und dem unteren Druckgrenzwert gehalten.
  • Erfindungsgemäß ist die Steuereinrichtung derart ausgestaltet, dass sie in diesem Start-Stopp-Betrieb zumindest einen Druck-Steuer-Parameter der Steuereinrichtung automatisch anpasst. Ein solcher Druck-Steuer-Parameter ist ein Parameter, welcher der Steuerung der Druckerhöhungspumpe durch die Steuereinrichtung zugrundegelegt wird, insbesondere ein Parameter, welcher Einfluss auf die Ein- und Ausschaltzeitpunkte im Start-Stopp-Betrieb hat. Die automatische Anpassung dieses zumindest einen Druck-Steuer-Parameters erfolgt erfindungsgemäß auf Grundlage des zeitlichen Vorlaufs zumindest eines von dem Drucksensor erfassten Druckwertes. So wird ein selbstlernendes System geschaffen, welches sich an die aktuellen Bedingungen in dem hydraulischen System ausgangsseitig der Druckerhöhungsvorrichtung selbsttätig anpasst. Vorzugsweise ist die Steuereinrichtung derart ausgebildet, dass die Anpassung in der Weise geschieht, dass die Druckdifferenz zwischen dem oberen und dem unteren Druckgrenzwert minimiert wird, ohne die Zahl der Einschaltvorgänge über einen vorbestimmten Grenzwert zu erhöhen. So wird sichergestellt, dass die Laufzeit der Druckerhöhungspumpe in dem Start-Stopp-Betrieb im Wesentlichen nicht verlängert wird, gleichzeitig aber der Komfort verbessert wird, indem Druckschwankungen im System minimiert werden. So kann der Komfort bei gleichzeitiger Energieeffizienz gesteigert werden.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung ist die Druckerhöhungsvorrichtung bzw. deren Steuereinrichtung derart ausgestaltet, dass der zumindest eine Druck-Steuer-Parameter, welcher automatisch angepasst wird, der obere und/oder der untere Druckgrenzwert ist. Insbesondere kann der Druck-Steuer-Parameter die Differenz zwischen dem oberen und dem unteren Druckgrenzwert, d.h. eine Hystrese-Spanne sein. Die Anpassung der Druckgrenzwerte bzw. deren Differenz ermöglicht eine automatische Anpassung der Druckerhöhungsvorrichtung an das sich anschließende hydraulische System bzw. die in dem System herrschenden Zustände, indem die Druckgrenzwerte so angepasst werden, dass die Druckdifferenz im Betrieb minimiert wird, ohne die Zahl der Einschaltvorgänge bzw. die gesamte Einschaltdauer der Druckerhöhungspumpe wesentlich zu erhöhen. So wird ein Komfortgewinn erzielt. Insbesondere ist eine Anpassung des Systems an ein Tankvolumen eines Puffertankes im System möglich. Bei großem Volumen ist es möglich die Druckdifferenz zu verkleinern, so dass insgesamt geringere Druckschwankungen im System auftreten.
  • Gemäß einer weiter bevorzugten Ausführungsform der Erfindung ist die Steuereinrichtung derart ausgebildet, dass die Anpassung des zumindest einen Druck-Steuer-Parameters, beispielsweise des oberen und/oder unteren Druckgrenzwertes, auf Grundlage des zeitlichen Vorlaufes des zumindest einen erfassten Druckwertes in derartigen Auswertezeiträumen erfolgt, in welchen ein konstanter Durchfluss in der Leitung gegeben ist. Dies hat den Vorteil, dass Druckschwankungen, welche beispielsweise durch das Öffnen und Schließen von Zapfstellen bzw. Verbrauchern im hydraulischen System herrühren, im Wesentlichen keinen Einfluss auf die Messung und die Anpassung des Druck-Steuer-Parameters haben. So wird sichergestellt, dass tatsächlich im Wesentlichen nur Einflüsse, welche aus dem System selber herrühren, berücksichtigt werden. Wenn beispielsweise ein oder mehrere Zapfstellen einer Trinkwasserleitung geöffnet werden, kommt es im System zu einem plötzlichen Druckabfall mit einer plötzlichen Erhöhung des Durchflusses. Diese Zustandsänderungen rühren nicht aus der Gestaltung des Systems sondern aus dem Nutzerverhalten her und sollen bei der Anpassung nach Möglichkeit unberücksichtigt bleiben. Das heißt die Auswertung soll vorzugsweise in einem stabilen Betriebszustand stattfinden.
  • Gemäß einer weiter bevorzugten Ausführungsform der Erfindung ist die Steuereinrichtung derart ausgebildet, dass sie die Auwertzeiträume in solche Zeiträume legt, in welchen bei dem Start-Stopp-Betrieb die Druckerhöhungspumpe eingeschaltet ist. Das heißt der zeitliche Druckverlauf, auf dessen Grundlage die Anpassung des Druck-Steuer-Parameters erfolgt, wird bevorzugt während der Druckerhöhung durch die Druckerhöhungspumpe erfasst.
  • Gemäß einer weiter bevorzugten Ausführungsform ist die Steuereinrichtung so ausgebildet, dass die genannten Auswertezeiträume in Zeiträume gelegt werden, in welchen eine Drehzahl der Druckerhöhungspumpe von der Steuereinrichtung erhöht oder verringert wird. Dies hat den Vorteil, dass die Abhängigkeit der Veränderung des gemessenen Druckes im System von der Drehzahländerung betrachtet werden kann. Es kann beurteilt werden, ob der Druck der Drehzahländerung in erwarteter Weise folgt, das heißt die Änderung des tatsächlich erfassten Druckes einer vorbestimmten bzw. beabsichtigten Druckänderung folgt.
  • So ist die Steuereinrichtung vorzugsweise derart ausgebildet, dass sie in den Auswertezeiträumen den Druckverlauf, das heißt den Verlauf des von dem zumindest einen Drucksensor im System gemessenen Druckes überwacht und eine Anpassung des zumindest einen Druck-Steuer-Parameters nur vornimmt, solange der Druckverlauf in vordefinierten Grenzen einem Soll-Druckverlauf folgt. Ist dies der Fall, so lässt sich daraus schließen, dass keine Veränderungen des stabilen Betriebszustandes vorliegen, welche beispielsweise daher rühren, dass Zapfstellen geöffnet oder geschlossen werden. Diese Einflüsse sollen erfindungsgemäß nach Möglichkeit ausgeschlossen werden.
  • Gemäß einer weiter bevorzugten Ausführungsform der Erfindung ist die Steuereinrichtung so ausgebildet, dass sie zur Anpassung des zumindest einen Druck-Steuer-Parameters eine Vorhersagefehler-Methode (prediction error system identification method) verwendet. Wie oben beschrieben, wird dabei die Abweichung von einem vorhergesagten Druckwert betrachtet und es wird eine Anpassung in der Weise durchgeführt, dass diese Abweichung bzw. dieser Fehler minimiert wird.
  • Die Steuereinrichtung weist vorzugsweise ein Vorhersagesystem zur Vorhersage eines Druckwertes auf Grundlage eines Vorhersagemodells auf. Dabei ist das Vorhersagesystem so ausgebildet ist, dass die Vorhersage in Abhängigkeit der Drehzahl der Druckerhöhungspumpe erfolgt. Das heißt das Vorhersagesystem sagt einen erwarteten Druckwert im System in Abhängigkeit von einer aktuellen Drehzahl der Druckerhöhungspumpe voraus. Bei einer erfassten Abweichung des tastsächlichen erfassten Druckwertes von dem vorhergesagten Druckwert passt das Vorhersagesystem zumindest einen System-Parameter in den Vorhersagemodell auf Grundlage eines vorgegebenen Algorithmus an. Dadurch wird erreicht, dass das Vorhersagemodell an das tatsächliche System angepasst wird, und der Vorhersagefehler minimiert wird bzw. kleiner wird.
  • Dieses System kann neben der Anpassung der Steuerung an die tatsächlichen Bedingungen im hydraulischen System auch dazu genutzt werden, Veränderungen im hydraulischen System, beispielsweise Leckagen zu erkennen. Wenn größere Veränderungen des zumindest einen System-Parameters in dem Vorhersagemodell nach einem vorher konstanten Betrieb erforderlich sind, lässt dies auf eine Veränderung im System, beispielsweise eine Leckage schließen. Die Steuereinrichtung kann so ausgebildet sein, dass, wenn sie eine solche Abweichung erkennt, beispielsweise einen Fehler anzeigt.
  • Das Vorhersagesystem ist vorzugsweise so ausgebildet, dass es ein Vorhersagemodell verwendet, welches ein autoregressives Modell (ARX-model), insbesondere ein autoregressives Model (ARX-model) erster Ordnung ist. Auf Grundlage eines solchen Modells lässt sich auf einfache Weise eine Vorhersage der Druckwerte erreichen. Ferner kann in einem solchen Modell zumindest ein verwendeter System-Parameter in der oben beschriebenen Weise angepasst werden, um den Vorhersagefehler zu minimieren.
  • Gemäß einer weiter bevorzugten Ausführungsform ist die Steuereinrichtung derart ausgebildet, dass der zumindest eine Druck-Steuer-Parameter in Abhängigkeit des zumindest einen System-Parameters in dem Vorhersagemodel, insbesondere auf Grundlage eines vorgegebenen Algorithmus oder einer Tabelle, insbesondere eine vorgegebenen und in der Steuereinrichtung hinterlegten Tabelle, festgesetzt wird. So können insbesondere die oben beschriebenen Druckgrenzwerte als Druck-Steuer-Parameter in Abhängigkeit des System-Parameters in dem Vorhersagemodell, welcher in der oben beschriebenen Weise angepasst wird, ebenfalls angepasst werden. So wird der Druck-Steuer-Parameter, welcher im Start-Stopp-Betrieb vorzugsweise Einfluss auf die Ein- und/oder Ausschaltzeitpunkte der Druckerhöhungspumpe hat, in Abhängigkeit des zumindest einen angepassten System-Parameters angepasst, so dass neben der Minimierung des Vorhersagefehlers in der vorangehend beschriebenen Weise die Druckdifferenz zwischen Ein- und Ausschalten der Druckerhöhungspumpe minimiert werden kann und so ein Komfortgewinn erreicht werden kann.
  • Die Steuereinrichtung weist vorzugsweise einen Druckregler auf, welcher die Druckerhöhungspumpe auf einen Drucksollwert regelt. Dem Druckregler wird der Drucksollwert als Eingangsgröße zugeführt. Dabei wird der Drucksollwert vorzugsweise von der Steuereinrichtung auf Grundlage eines von einem Nutzer vorgegebenen gewünschten Druckwertes eingestellt.
  • Gemäß einer weiteren bevorzugten Ausführungsform kann der zumindest eine Druck-Steuer-Parameter ein Steuer- bzw. Regelparameter in dem Druckregler sein. Ein solcher Druck-Steuer-Parameter kann allein oder zusätzlich zu anderen Druck-Steuer-Parametern in der oben beschriebenen Weise auf Grundlage des zeitlichen Verlaufes des Druckwertes angepasst werden.
  • Weiter bevorzugt ist die Druckerhöhungsvorrichtung so ausgebildet, dass ausgangsseitig der Druckerhöhungspumpe ein Rückschlagventil angeordnet ist. Ein solches Rückschlagventil ist vorteilhaft, um bei ausgeschalteter Druckerhöhungspumpe sicherzustellen, dass keine Rückströmung der Flüssigkeit auftritt und der Druck ausgangsseitig der Druckerhöhungspumpe, das heißt ausgangsseitig des Rückschlagventils gehalten wird. Ferner schließt dieses Rückschlagventil bei geringen Durchflüssen. In einem solchen Zustand hat eine Drehzahländerung der Druckerhöhungspumpe keinerlei Einfluss mehr auf den tatsächlichen Druck, welcher von dem Drucksensor stromabwärts des Rückschlagventiles gemessen wird. Der Drucksensor ist vorzugsweise stromabwärts des Rückschlagventiles angeordnet. Wenn die Drehzahländerung keinen Einfluss mehr auf den tatsächlichen Druck hat, folgt der tatsächliche Druck bei einer Verringerung des Drucksollwertes, welchen die Pumpe durch die Drehzahländerung einzustellen versucht, nicht mehr dem vorhergesagten Druckwert. Hieran kann ein geringer Durchfluss erkannt werden und es kann die Steuereinrichtung die Steuerung in den beschriebenen Start-Stopp-Betrieb schalten. In diesem Zustand erfolgt dann die beschriebene Anpassung des zumindest einen Druck-Steuer-Parameters.
  • So ist vorzugsweise die Steuereinrichtung so ausgebildet, dass sie die Druckerhöhungspumpe in einem Betriebsbereich, in welchem ein geringer Durchfluss herrscht, in dem beschriebenen Start-Stopp-Betrieb steuert und in zumindest einem anderen Betriebsbereich, vorzugsweise einem Betriebsbereich mit größerem Durchfluss, die Druckerhöhungspumpe zum Erreichen einer gewünschten Druckerhöhung in ihrer Drehzahl regelt. Die Grenze für den Start-Stopp-Betrieb kann in bekannter Weise, beispielsweise in der aus DE 38 24 293 A1 bekannten Weise erfolgen. Insbesondere kann dies wie vorangehend beschrieben durch die Wirkung des Rückschlagventils und daran, ob der tatsächliche Druckverlauf dem vorhergesagten Druckverlauf in gewünschten Grenzen folgt, erkannt werden.
  • Bei hohem Durchfluss ist die Druckerhöhungspumpe vorzugsweise im Dauerbetrieb und der Druck wird durch Drehzahlregelung bzw. Drehzahlanpassung in gewünschter Weise eingestellt. Die Druckerhöhungspumpe ist vorzugsweise eine elektronisch geregelte Pumpe, insbesondere eine über einen Frequenzumrichter geregelte Pumpe, so dass die Drehzahl beliebig verändert werden kann.
  • Wir vorangehend beschrieben, ist die Steuereinrichtung vorzugsweise so ausgebildet, dass sie den Bereich geringen Durchflusses erkennt. Dazu kann die Steuereinrichtung bevorzugt ein Durchflusserkennungsmodell aufweisen, welches ausgebildet ist, auf Grundlage zumindest eines von dem Drucksensor erfassten Druckwertes und auf Grundlage von Drehzahländerungen der Druckerhöhungspumpe den Betriebsbereich geringen Durchflusses zu erkennen. Der Drucksensor ist dabei vorzugsweise hinter einem Rückschlagventil angeordnet, wie es oben beschrieben ist. Das Durchflusserkennungsmodell kann den Bereich geringen Durchflusses daran erkennen, dass bei geschlossenem Rückschlagventil, was bei geringem Durchfluss auftritt, der gemessene Druckwert einer Veränderung des Solldruckes nicht mehr folgt. Das heißt die Grenze für den Bereich geringer Drehzahl, in welcher in den Start-Stopp-Betrieb geschaltet wird, hängt von der Funktion des Rückschlagventils und vorzugsweise von dessen Vorspannung ab.
  • Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:
  • Fig. 1
    schematisch eine Druckerhöhungsvorrichtung gemäß der Erfindung,
    Fig. 2a und Fig. 2b
    schematisch den Druckverlauf im Start-Stopp-Betrieb einer Druckerhöhungseinrichtung bei geringem Durchfluss,
    Fig. 3
    schematisch die Regelung einer erfindungsgemäßen Druckerhöhungsvorrichtung,
    Fig. 4
    schematisch den Start-Stopp-Betrieb bei geringen Durchflüssen,
    Fig. 5
    schematisch die Parameteranpassung in einer erfindungsgemäßen Druckerhöhungsvorrichtung,
    Fig. 6
    eine Tabelle zur Ermittlung der Druckdifferenz zwischen den Druckgrenzwerten, und
    Fig. 7
    den Druckverlauf über der Zeit für vier verschiedene Betriebszustände.
  • Fig. 1 zeigt schematisch eine Druckerhöhungsvorrichtung in einer Trinkwasserversorgungsleitung. Die Druckerhöhungsvorrichtung weist eine Druckerhöhungspumpe 2 auf, an welche sich ausgangsseitig weiter stromabwärts ein Rückschlagventil 4 anschließt. Ausgangsseitig des Rückschlagventils 4 ist ein Puffertank 6 angeordnet, welcher in üblicher Weise als Speichertank mit einer Membran und einen darüber angeordneten geschlossenen Luftvolumen ausgebildet sein kann. Weiter stromabwärts ist ein Drucksensor 8 angeordnet, welcher den Druck P ausgangsseitig der Druckerhöhungspumpe 2 und ausgangsseitig des Rückschlagventiles 4 erfasst. Weiter stromabwärts ist schematisch ein Ventil 10 dargestellt, welches einen oder mehrere Verbraucher, beispielsweise Entnahmestellen repräsentieren soll und über welches der Durchfluss in der Leitung 5 ausgangsseitig des Rückschlagventiles 4 eingestellt wird. Es ist zu verstehen, dass anstatt eines Ventiles 10 sich in der Praxis an die Leitung 5 ein verzweigtes Netz mit einer Vielzahl von Ventilen 10 anschließen kann.
  • Ferner ist eine Steuereinrichtung 12 vorhanden, welche die Druckerhöhungspumpe 2 steuert bzw. regelt. Die Druckerhöhungspumpe 2 wird dazu von der Steuereinrichtung 12 zum einen ein- und ausgeschaltet zum anderen aber auch in ihrer Drehzahl geregelt. Dazu kann die Druckerhöhungspumpe 2 über einen Drehzahlsteller, insbesondere einen Frequenzumrichter angesteuert werden. Die Steuereinrichtung 12 ist mit dem Drucksensor 8 signalverbunden, so dass sie die von dem Drucksensor 8 erfassten Druckwerte empfängt.
  • Es ist zu verstehen, dass statt einer einzelnen Druckerhöhungspumpe 2 auch mehrere parallel und/oder in Reihe geschaltete Druckerhöhungspumpen Verwendung finden könnten, welche von der Steuereinrichtung 12 gesteuert bzw. geregelt werden. Wenn hier eine Druckerhöhungspumpe 2 beschrieben wird, so ist zu verstehen, dass dies ausdrücklich auch eine Anordnung mehrerer Druckerhöhungspumpen 2 mit umfasst.
  • Im Betrieb der gezeigten Druckerhöhungsvorrichtung gibt es bevorzugt zwei Betriebszustände, nämlich einen Betriebszustand geringen Durchflusses und einen Betriebszustand hohen Durchflusses. Im Betriebszustand hohen Durchflusses läuft die Druckerhöhungspumpe 2 bevorzugt im Dauerbetrieb und wird über die Steuereinrichtung 12 in Abhängigkeit des an dem Drucksensor 8 erfassten Druckwertes in ihrer Drehzahl geregelt, um einen Solldruckwert zu erreichen bzw. einzuhalten.
  • In dem Betriebszustand geringen Durchflusses schließt das Rückschlagventil 4 und die Drehzahlregelung der Druckerhöhungspumpe 2 hat keinerlei Einfluss mehr auf eine Verringerung des Druckes in der Leitung 5. Insofern kann eine Druckregelung, wie sie vorangehend beschrieben wurde, nicht mehr durchgeführt werden. In diesem Betriebszustand schaltet die Druckerhöhungsvorrichtung in einen Start-Stopp-Betrieb, bei welchem die Druckerhöhungspumpe 2 eingeschaltet wird, wenn der Druck P in der Leitung 5 unter einen unteren Druckgrenzwert fällt, und die Druckerhöhungspumpe 2 ausgeschaltet wird, wenn der Druck P in der Leitung 5 einen oberen Druckgrenzwert erreicht. Dieses Ein- und Ausschalten der Druckerhöhungspumpe 2 wird von der Steuereinrichtung 12 bewerkstelligt.
  • In diesem Start-Stopp-Betrieb ist die Größe des Puffertankes 6 von erheblicher Bedeutung, da von dieser die auftretenden Druckschwankungen abhängen, wie anhand von Fig. 2a und Fig. 2b erläutert wird. In Fig. 2a und Fig. 2b ist in jeweils dem oberen Diagramm der Druck P in der Leitung 5 über der Zeit t aufgetragen. Das untere Diagramm zeigt jeweils über der Zeit t die Einschaltzustände der Druckerhöhungspumpe 2. Beim Wert 1 ist die Druckerhöhungspumpe 2 eingeschaltet, beim Wert 0 ausgeschaltet. Fig. 2a zeigt in der oberen Kurve den Druckverlauf über der Zeit t bei einem kleinen Tankvolumen und in der unteren Kurve die zugehörigen Einschaltzustände. Die Druckerhöhungspumpe 2 wird jeweils bei Erreichen des oberen Druckgrenzwertes P1 zu den Ausschaltzeitpunkten TA ausgeschaltet. Anschließend fällt der Druck auf den unteren Druckgrenzwert P2. Wenn dieser zu dem Einschaltzeitpunkt TE erreicht wird, wird die Druckerhöhungspumpe 2 wieder eingeschaltet, bis zum Zeitpunkt TA wieder der obere Druckgrenzwert P1 erreicht wird. Das obere Diagramm in Fig. 2b zeigt den Druckverlauf bei einem größeren Volumen des Puffertanks 6. Im Vergleich der oberen Diagramme in Fig. 2a und Fig. 2b ist erkennbar, dass der Abstand zwischen dem Ausschaltzeitpunkt TA und dem Einschaltzeitpunkt TE größer wird, wenn ein größeres Volumen des Puffertanks 6 vorhanden ist. Dann verringert sich in der Leitung 5 der Druck P langsamer. Erfindungsgemäß ist nun vorgesehen, in diesem Zustand die Druckgrenzwerte P1 und P2 zu ändern bzw. anzupassen. Der obere Druckgrenzwert P1 wird auf den Druckgrenzwert P1' verringert und der untere Druckgrenzwert P2 wird auf den unteren Druckgrenzwert P2' erhöht, d.h. die Hystresespanne wird auf P1' - P2' verkleinert. So verringert sich die Druckdifferenz zwischen Aus- und Einschalten der Druckerhöhungspumpe 2. Gleichzeitig verkürzt sich auch wieder der zeitliche Abstand zwischen den Ausschaltzeitpunkten TA und den Einschaltzeitpunkten TE. So wird bei im Wesentlichen gleicher Laufzeit und Einschalthäufigkeit der Druckerhöhungspumpe 2 wie bei einem kleinen Volumen des Puffertankes 6 bei einem großen Volumen des Puffertankes 6 ein glatterer Druckverlauf mit geringeren Druckschwankungen erreicht. Der Effekt dieser Anpassung wird deutlich anhand von Fig. 7, welche den Druckverlauf P über der Zeit t zeigt, ähnlich der oberen Kurve in Fig. 2b. In einem ersten Betriebszustand a herrscht ein geringer Durchfluss bei einem kleinen Tankvolumen. Der tatsächliche Druck P schwankt um den vom Nutzer gewählten Druck Pu in einer relativ großen Bandbreite. Die Schaltintervalle sind kurz. Der Betriebszustand b in Fig. 7 repräsentiert einen Zustand geringen Durchflusses bei einem größeren Tankvolumen. Die Druckschwankungen bleiben gleich, allerdings verlängern sich die Intervalle zwischen Ein- und Ausschalten der Druckerhöhungspume 2. Der Betriebsbereich c repräsentiert einen geringen Durchfluss bei einem großen Tankvolumen nach Anpassung der Druckgrenzwerte P1 und P2. Die Schaltintervalle verkürzen sich wieder. Gleichzeitig verkleinert sich die Druckschwankung um den gewünschten Wert Pu. Der Betriebsbereich d entspricht einem Betriebsbereich hohen Durchflusses, in welchem die Druckerhöhungspumpe 2 nicht mehr im Start-Stopp-Betrieb sondern im konstanten Betrieb mit Druckregelung betrieben wird. In diesem Betriebsbereich gibt es im Wesentlichen keine Druckschwankungen.
  • Die Anpassung und Regelung wird nun anhand von Fig. 3 näher beschrieben. Fig. 3 zeigt in einem Diagramm den Ablauf der Regelung bzw. Steuerung der Druckerhöhungspumpe 2 durch die Steuereinrichtung 12. Die in Fig. 3 gezeigten Regelungskomponenten sind in die Steuereinrichtung 12 integriert bzw. laufen dort in entsprechenden Modulen ab. Dabei handelt es sich insbesondere um Softwaremodule. Das physikalische System 14 und dessen Einflüsse auf die Steuerung bzw. Regelung sind in Fig. 3 durch die gestrichelte Linie gekennzeichnet. Wesentlicher Bestandteil des physikalischen Systems 14 ist eine Übertragungsfunktion 16, welche das hydraulische System repräsentiert bzw. von dem hydraulischen System gebildet wird und von welcher die Umsetzung der Drehzahl n der Druckerhöhungspumpe 2 in den Druck P in der Leitung 5 abhängt. Darüber hinaus gibt es noch eine nutzerabhängige Übertragungsfunktion 18, die den Einfluss der Stellung des Ventils 10 repräsentiert. Je nach Stellung des Ventils 10 verändert sich ebenfalls der Druck P in der Leitung 5. Dies wird durch die Übertragungsfunktion 18 repräsentiert. Die Drehzahl n ist die Ausgangsgröße eines Druckreglers 20, welcher in der Steuereinrichtung 12 integriert ist. Dem Druckregler 20 wird ein Solldruck PS zugeführt, von welchem der tatsächliche Druck P an dem Subtrahierer 22 subtrahiert wird.
  • Der Solldruck PS wird von einem Zustandssteuer- bzw. Zustandsregelmodul 24 berechnet bzw. ausgegeben. Dem Zustandsregelmodul 24 wird als Eingangsgröße ein vom Nutzer gewünschter Druck Pu zugeführt. Die Differenz zwischen dem oberen Druckgrenzwert P1 und dem unteren Druckgrenzwert P2 , d.h. eine Hystresespanne P1 - P2, wird in einem Parametermodul 28 bestimmt. Dies erfolgt auf Grundlage der in einem Vorhersagemodul 26 bestimmten Parameter a1 und b1.In dem Vorhersagemodul 26 kommt ein Vorhersagemodell zur Anwendung, welches im vorliegenden Beispiel ein autoregressives Modell erster Ordnung (ARX-model) ist. Dessen Parameter a1 und b1 werden in einem Vorhersagemodul 26 ermittelt. Dem Vorhersagemodul 26 werden als Eingangsgrößen der tatsächliche Druck P, die Drehzahl n sowie ein Zustandswert Z zugeführt, wobei der Zustandswert Z den Betriebsbereich, nämlich einen Betriebsbereich kleinen Durchflusses oder einen Betriebsbereich hohen Durchflusses repräsentiert, wobei in dem Betriebsbereich kleinen Durchflusses der Start-Stopp-Betrieb zur Anwendung kommt. Auf Grundlage zumindest eines der Parameter a1 und b1, welche im Rahmen einer Vorhersagefehler-Methode (prediction error system identification method) angepasst werden, erfolgt eine Anpassung der Regelung bzw. Steuerung an den Zustand des physikalischen Systems 14, indem in dem Parametermodul 28 der Druck-Steuer-Parameter in Form der Differenz P1 - P2 der Druckgrenzwerte P1 und P2 angepasst wird. Die Differenz der Druckgrenzwerte P1 und P2 ist ein Beispiel für einen anzupassenden Druck-Steuer-Parameter. Es können auch andere Druck-Steuer-Parameter in entsprechender Weise angepasst werden, beispielsweise Parameter, welche in die Druckregelung einfließen. Die tatsächlichen Druckgrenzwerte P1 und P2 werden von dem Zustandsregelmodul 24 basierend auf dem gewünschten Druck PU festgesetzt, so dass der gewünschte Druck PU vorzugsweise in der Mitte der Hysteresespanne P1 - P2 gelegen ist.
  • Die Steuereinrichtung 12 und insbesondere deren Zustandsregelmodul 24 weisen insbesondere eine Betriebszustand-Erkennungsfunktion auf, um den Bereich kleinen Durchflusses, in welchem ein Start-Stopp-Betrieb stattfinden soll, zu ermitteln. Wie dies funktioniert, wird anhand von Fig. 4 erläutert. In Fig. 1 zeigt die untere Kurve die Drehzahl n der Druckerhöhungspumpe 2 über der Zeit t. Die obere Kurve zeigt den Druckverlauf des Drucks P über der Zeit t, wobei die durchgezogene Linie den tatsächlich gemessenen Druck P am Drucksensor 8 darstellt und die gestrichelte Linie den Solldruck PS repräsentiert. Das mittlere Diagramm in Fig. 4 zeigt den Durchfluss Q über der Zeit t. Dabei stellen die drei gezeigten Diagramme einen zeitlich parallelen Ablauf dar. Zum Zeitpunkt t1 fällt der Durchfluss Q ab, so dass der Betriebszustand von einem Zustand großen Durchflusses in den Zustand kleinen Durchflusses bzw. im Wesentlichen ohne Durchfluss wechselt. Zu diesem Zeitpunkt erhöht sich, wie an der durchgezogenen Linie in dem oberen Diagramm zu erkennen ist, zunächst der tatsächliche Druck P und fällt wegen der durchgeführten Druckregelung im Druckregler 20 wieder auf den Solldruck PS ab. Zwischen den Zeitpunkten t2 und t3 erfolgt die Erkennung, ob ein Zustand geringeren Durchflusses gegeben ist. Dazu wird der Solldruck PS und damit die Drehzahl n reduziert und es wird geprüft, ob der tatsächliche Druckverlauf P dem Verlauf des Solldruckes PS folgt. Dies ist in Fig. 4 erkennbar nicht der Fall. Daraufhin schaltet das System in den Start-Stopp-Betrieb. Zwischen den Zeitpunkten t3 und t4 sowie t5 und t6 ist in diesem Beispiel die Druckerhöhungspumpe 2 eingeschaltet. Die Drehzahl n und damit der Druck P erhöhen sich. Zwischen den Zeitpunkten t4 und t5 und nach dem Zeitpunkt t6 ist die Druckerhöhungspumpe 2 ausgeschaltet. Zu Beginn des Ausschaltzeitraumes fällt die Drehzahl zunächst ab. Der Druck P fällt dann langsamer ab, wie anhand von Fig. 2 erläutert wurde.
  • In dem Vorhersagemodell, welches in dem Vorhersagemodull 24 zur Anwendung kommt, wird beispielsweise ein ARX-model erster Ordnung in der nachfolgenden Form verwendet: P k = a 1 P k 1 + b 1 n k 1
    Figure imgb0001
  • In dieser Gleichung ist P der Druck, k die Proben- bzw. Zyklusnummer, n die Drehzahl und a1 und b1 stellen zwei Parameter dar. Die Parameter a1 und b1 können über einen Algorithmus, beispielsweise in der nachfolgend dargestellten Weise ermittelt werden: a 1 k = a 1 k 1 λe k P k 1
    Figure imgb0002
    b 1 k = b 1 k 1 + λe k n k 1
    Figure imgb0003
  • Dabei stellt λ einen Schrittgrößenparameter dar und e den Vorhersagefehler. Die Funktionsweise des Vorhersagefehlermodells zur Anpassung des vorhergesagten Druckes Pp wird anhand von Fig. 5 erläutert. Fig. 5 zeigt in dem oberen Diagramm den Druck über der Zeit t aufgetragen, wobei die durchgezogene Linie den gemessenen Druck P und die gestrichelte Linie den vorhergesagten Druck Pp zeigt. Das zweite Diagramm zeigt den Vorhersagefehler e gegenüber der Zeit t und die beiden unteren Kurven stellen die Parameter a1 und b1 über der Zeit t dar. Es ist zu erkennen, dass anfänglich der vorhergesagte Druck Pp stark von dem tatsächlichen Druck P abweicht. Daraus resultiert ein Vorhersagefehler e auf dessen Grundlage die Parameter a1 und b1 so angepasst werden, dass der vorhergesagte Druck Pp und der tatsächliche Druck P zur Deckung gebracht werden, das heißt der Vorhersagefehler e im Wesentlichen gleich null wird.
  • Erfindungsgemäß wird diese Vorhersagefehler-Methode auch dazu genutzt, zumindest einen Druck-Steuer-Parameter in dem Parametermodul 28 anzupassen. In diesem Beispiel ist der Druck-Steuer-Parameter die Differenz P1 - P2 der Druckgrenzwerte P1 und P2. Die Anpassung dieser Druckgrenzwerte erfolgt in diesem Ausführungsbeispiel auf Grundlage des Parameters b1. In der Steuereinrichtung 12, insbesondere in dem Parametermodul 28 ist eine Tabelle hinterlegt, welche für bestimmte Parameter b1 Druckdifferenzen zwischen den Druckgrenzwerten P1 und P2, d.h. Druck-Hysterese-Spannen, definiert. Alternativ könnten auch direkt Druckgrenzwerte P1 und P2 in der Tabelle hinterlegt sein, dazu wäre es aber zusätzlich erforderlich, dem Parametermodul 28 den gewünschten Druck Pu zuzuführen und diesen in der Tabelle zu berücksichtigen. Eine Tabelle, aus der sich die Druckdifferenz P1 - P2 ergeben, kann beispielsweise wie in Fig. 6 dargestellt aussehen. Dort wird beispielsweise für einen Wert des Parameters b1<0,32 eine Druckdifferenz bzw. eine Hysteresespanne von 0,1 bar zwischen den Druckgrenzwerten P1 und P2 vorgesehen, während für den Fall, dass der Parameter b1 größer oder gleich 0,32 ist, eine Druckdifferenz bzw. Hysteresespanne von 0,5 bar vorgesehen ist. Es ist denkbar, dass die Tabelle detaillierter in noch mehr Druckschritten ausgestaltet ist, um eine feinere Anpassung zu ermöglichen.
  • Die beschriebene Anpassung der Parameter a1 und b1 erfolgt bevorzugt zu Betriebspunkten bzw. in Betriebsbereichen der Druckerhöhungspumpe 2, in welchen ein stabiler Betriebszustand, das heißt insbesondere ein möglichst konstanter Durchfluss gegeben ist. Dies ist in dem Diagramm gemäß Fig. 4 beispielsweise zwischen den Zeitpunkten t3 und t4 sowie t5 und t6 der Fall. In diesem Zeitpunkt herrscht ein konstanter Durchfluss, das heißt die Stellung des Ventils 10 wird nicht verändert. Die Steuereinrichtung 12 ist bevorzugt so ausgebildet, dass sie diese Betriebszustände erkennt. Insbesondere erkennt sie eine Änderung des Durchflusses daran, dass in den genannten Betriebsbereichen sich der Druck plötzlich ändert bzw. der tatsächlich gemessene Druck P von dem Solldruck PS abweicht. Sollte ein solcher Zustand erkannt werden, wird die Anpassung der Parameter a1 und b1 ausgesetzt, bis wieder ein stabiler Betriebszustand erreicht ist. So kann die Steuereinrichtung 12 so ausgebildet sein, dass beispielsweise immer dann, wenn im Start-Stopp-Betrieb die Druckerhöhungspumpe 2 eingeschaltet wird, eine Parameteranpassung der Parameter a1 und b1 durchgeführt wird, sofern keine Änderungen des Druckverlaufes aufgrund einer Veränderung der Stellung des Ventils detektiert wird. Die Tabelle, nach der die Differenz P1 - P2 der Druckgrenzwerte P1 und P2 angepasst wird, ist so vorbestimmt, dass in Abhängigkeit des Parameters b1 die Druckdifferenz bzw. Druck-Hysteresespanne P1 - P2 so bestimmt wird, dass die Druckdifferenz minimiert wird, ohne das die Zahl der Einschaltvorgänge der Druckerhöhungspumpe 2 eine bestimmte Grenze übersteigt. Dies wird durch die vorbestimmte Tabelle gewährleistet. Da der Parameter b1 abhängig vom Verlauf des gemessenen Druckes P ist, werden auf diese Weise auch die Differenz P1 - P2 der Druckgrenzwerte P1 und P2, welche den Druck-Steuer-Parameter darstellt, auf Grundlage des Verlaufes des gemessenen Druckes P angepasst.
  • Bezugszeichenliste
  • 2
    Druckerhöhungspumpe
    4
    Rückschlagventil
    5
    Leitung
    6
    Puffertank
    8
    Drucksensor
    10
    Ventil
    12
    Steuereinrichtung
    14
    physikalisches System
    16
    Übertragungsfunktion
    18
    nutzerabhängige Übertragungsfunktion
    20
    Druckregler
    22
    Substrahierer
    24
    Zustandsregelmodul
    26
    Vorhersagemodul, Vorhersagesystem
    28
    Parametermodul
    P
    Druck
    Pu
    gewünschter Druck
    Pp
    vorhergesagter Druck
    PS
    Solldruck
    P1, P1'
    oberer Druckgrenzwert
    P2, P2'
    unterer Druckgrenzwert
    P1 - P2, P1' - P2'
    Druckdifferenz bzw. Hysteresespanne
    t
    Zeit
    TA
    Ausschaltzeitpunkt
    TE
    Einschaltzeitpunkt
    a1, b1
    Parameter
    Z
    Zustandswert
    Q
    Durchfluss

Claims (15)

  1. Druckerhöhungsvorrichtung zur Erhöhung des Drucks einer durch eine Leitung (5) strömenden Flüssigkeit mit zumindest einer Druckerhöhungspumpe (2), einer Steuereinrichtung (12), welche die Druckerhöhungspumpe (2) steuert, sowie zumindest einem ausgangseitig der Druckerhöhungspumpe (2) angeordneten und mit der Steuereinrichtung verbundenen Drucksensor (8), wobei die Steuereinrichtung (12) derart ausgebildet ist, dass sie zumindest in einem Betriebsbereich die Druckerhöhungspumpe derart in einem Start-Stopp-Betrieb steuert, dass sie die Druckerhöhungspumpe (2) bei Erreichen eines oberen Druckgrenzwertes ausschaltet und bei Erreichen eines unteren Druckgrenzwertes einschaltet, dadurch gekennzeichnet, dass
    die Steuereinrichtung (12) derart ausgestaltet ist, dass sie in dem Start-Stopp-Betrieb zumindest einen Druck-Steuer-Parameter (P1, P2) der Steuereinrichtung (12) automatisch auf Grundlage des zeitlichen Verlaufes zumindest eines von dem Drucksensor erfassten Druckwertes (P) anpasst.
  2. Druckerhöhungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der zumindest eine Druck-Steuer-Parameter (P1, P2) der obere und/oder der untere Druckgrenzwert ist oder eine Druckdifferenz (P1 - P2) zwischen dem oberen und dem unteren Druckgrenzwert ist.
  3. Druckerhöhungsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Steuereinrichtung (12) derart ausgebildet ist, dass die Anpassung des zumindest einen Druck-Steuer-Parameters (P1, P2) auf Grundlage des zeitlichen Verlaufes des zumindest einen erfassten Druckwertes (P) in derartigen Auswertezeiträumen erfolgt, in welchen ein konstanter Durchfluss (Q) in der Leitung (5) gegeben ist.
  4. Druckerhöhungsvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Steuereinrichtung (12) derart ausgebildet ist, dass sie die Auswertezeiträume in solche Zeiträume legt, in welchen bei dem Start-Stopp-Betrieb die Druckerhöhungspumpe (2) eingeschaltet ist.
  5. Druckerhöhungsvorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Steuereinrichtung (12) derart ausgebildet ist, dass sie die Auswertezeiträume in Zeiträume legt, in welchen eine Drehzahl (n) der Druckerhöhungspumpe (2) von der Steuereinrichtung erhöht oder verringert wird.
  6. Druckerhöhungsvorrichtung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Steuereinrichtung (12) derart ausgebildet ist, dass sie in den Auswertezeiträumen den Druckverlauf (P) überwacht und eine Anpassung des zumindest einen Druck-Steuer-Parameters (P1, P2) nur vornimmt, solange der Druckverlaufes (P) in vordefinierten Grenzen einem Soll-Druckverlauf (PS) folgt.
  7. Druckerhöhungsvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinrichtung (12) derart ausgebildet ist, dass sie zur Anpassung des zumindest einen Druck-Steuer-Parameters (P1, P2) eine Vorhersagefehler-Methode (prediction error system identification method) einsetzt.
  8. Druckerhöhungsvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinrichtung (12) derart ausgebildet ist, dass die Steuereinrichtung (12) ein Vorhersagesystem (26 zur Vorhersage eines Druckwertes (Pp) auf Grundlage eines Vorhersagemodells in Abhängigkeit der Drehzahl (n) der Druckerhöhungspumpe (2) aufweist und dass das Vorhersagesystem (26) bei einer Abweichung des tatsächlich erfassten Druckwertes (P) von dem vorhergesagten Druckwert (Pp) zumindest einen Parameter (a1, b1) in dem Vorhersagemodell auf Grundlage eines vorgegebenen Algorithmus anpasst.
  9. Druckerhöhungsvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass das Vorhersagemodell ein autoregressives Modell (ARX-model), insbesondere ein autoregressives Modell (ARX-model) erster Ordnung ist.
  10. Druckerhöhungsvorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Steuereinrichtung (12) derart ausgebildet ist, dass der zumindest eine Druck-Steuer-Parameter (P1, P2) in Abhängigkeit des zumindest einen Parameters (a1, b1 in dem Vorhersagemodell, insbesondere auf Grundlage eines vorgegebenen Algorithmus oder einer Tabelle festgesetzt wird.
  11. Druckerhöhungsvorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Steuereinrichtung (12) einen Druckregler (20) aufweist, welcher die Druckerhöhungspumpe (2) auf einen Drucksollwert (PS) regelt.
  12. Druckerhöhungsvorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass der zumindest eine Druck-Steuer-Parameter ein Regelparameter in dem Druckregler (20) ist.
  13. Druckerhöhungsvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ausgangsseitig der Druckerhöhungspumpe (2) ein Rückschlagventil (4) angeordnet ist.
  14. Druckerhöhungsvorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinrichtung (12) derart ausgebildet ist, dass sie die Druckerhöhungspumpe (2) in einem Betriebsbereich, in welchem ein geringer Durchfluss (Q) herrscht, in dem Start-Stopp-Betrieb steuert und in zumindest einem anderen Betriebsbereich die Druckerhöhungspumpe (2) zum Erreichen einer gewünschten Druckerhöhung in ihrer Drehzahl (n) regelt.
  15. Druckerhöhungsvorrichtung nach einem der vorangehenden Ansprüchen, dadurch gekennzeichnet, dass die Steuereinrichtung (12) ein Durchflusserkennungsmodul aufweist, welches ausgebildet ist, auf Grundlage zumindest eines von dem Drucksensor (8) erfassten Druckwertes (P) und auf Grundlage von Änderungen eines Solldruckes (PS) der Druckerhöhungspumpe (2) den Betriebsbereich geringen Durchflusses (Q) zu erkennen.
EP15190110.5A 2015-10-16 2015-10-16 Druckerhöhungsvorrichtung Active EP3156651B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15190110.5A EP3156651B1 (de) 2015-10-16 2015-10-16 Druckerhöhungsvorrichtung
RU2016140465A RU2658719C2 (ru) 2015-10-16 2016-10-14 Повышающее давление устройство
US15/293,708 US11326591B2 (en) 2015-10-16 2016-10-14 Pressure boosting device
CN201610902881.5A CN106869249B (zh) 2015-10-16 2016-10-17 增压装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15190110.5A EP3156651B1 (de) 2015-10-16 2015-10-16 Druckerhöhungsvorrichtung

Publications (2)

Publication Number Publication Date
EP3156651A1 EP3156651A1 (de) 2017-04-19
EP3156651B1 true EP3156651B1 (de) 2021-01-20

Family

ID=54365945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15190110.5A Active EP3156651B1 (de) 2015-10-16 2015-10-16 Druckerhöhungsvorrichtung

Country Status (4)

Country Link
US (1) US11326591B2 (de)
EP (1) EP3156651B1 (de)
CN (1) CN106869249B (de)
RU (1) RU2658719C2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528506A (ja) 2017-03-22 2020-09-24 バレステロス,ジョナサン 低流量流体送達システム及び低流量流体送達システム用の低流量デバイス
BE1026577B1 (nl) * 2018-08-29 2020-03-30 Atlas Copco Airpower Nv Compressor of pomp voorzien van een sturing voor de regeling van een regelparameter en werkwijze voor de regeling daarbij toegepast
IT201900009747A1 (it) * 2019-06-21 2020-12-21 Calpeda A Spa Metodo di gestione e controllo di un sistema di pressurizzazione
CN110454370B (zh) * 2019-08-19 2020-11-10 蘑菇物联技术(深圳)有限公司 一种动态优化空压站联控压力带的方法
DE102019213530A1 (de) * 2019-09-05 2021-03-11 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Wasserverteilungssystems
DE102019134613B3 (de) * 2019-12-16 2021-03-18 Aventics Gmbh Ventilanordnung und Verfahren zur Druckregelung eines Fluids
DE102020105670A1 (de) 2020-03-03 2021-09-09 KSB SE & Co. KGaA Druckerhöhungsanlage zur Erhöhung des Versorgungsdrucks in der Wasserversorgung wenigstens einer Entnahmestelle oder eines hydraulischen Verbrauchers
US20220155117A1 (en) 2020-11-16 2022-05-19 Sensia Llc System and method for quantitative verification of flow measurements
CN115030904A (zh) * 2022-06-30 2022-09-09 朱志海 一种压力控制式循环增压泵

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3824293A1 (de) 1988-07-18 1990-01-25 Loewe Pumpenfabrik Gmbh Verfahren zur sollwertverstellung in geregelten pumpensystemen
JP3414881B2 (ja) * 1995-04-17 2003-06-09 株式会社川本製作所 給水装置
US5883489A (en) * 1996-09-27 1999-03-16 General Electric Company High speed deep well pump for residential use
JP3995227B2 (ja) * 1999-01-21 2007-10-24 株式会社スギノマシン 液体加圧装置
US6701223B1 (en) * 2000-09-11 2004-03-02 Advantica, Inc. Method and apparatus for determining optimal control settings of a pipeline
CN101509268A (zh) 2009-03-14 2009-08-19 李锦洪 一种储水设备
US8564233B2 (en) * 2009-06-09 2013-10-22 Sta-Rite Industries, Llc Safety system and method for pump and motor
SG188534A1 (en) * 2010-09-14 2013-04-30 Amitsur Preis System and method for water distribution modelling
JP5775762B2 (ja) * 2011-08-19 2015-09-09 株式会社日立産機システム 冷温水循環送水系ポンプシステム
EP2778296B1 (de) * 2013-03-11 2018-04-25 Grundfos Holding A/S Pumpensystem
CN203514400U (zh) * 2013-08-20 2014-04-02 北京同力华盛环保科技有限公司 一种恒压变频供水控制系统
RU2551139C1 (ru) * 2013-11-21 2015-05-20 Государственное бюджетное образовательное учреждение высшего профессионального образования "Альметьевский государственный нефтяной институт" Способ автоматизированного управления электроприводом насосной станции

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3156651A1 (de) 2017-04-19
CN106869249B (zh) 2020-06-19
CN106869249A (zh) 2017-06-20
US11326591B2 (en) 2022-05-10
RU2016140465A (ru) 2018-04-17
US20170107702A1 (en) 2017-04-20
RU2658719C2 (ru) 2018-06-22

Similar Documents

Publication Publication Date Title
EP3156651B1 (de) Druckerhöhungsvorrichtung
EP3097623B1 (de) Windpark mit vorsteuerung im leistungsregler
EP2708825B1 (de) Verfahren zum Steuern einer Umwälzpumpe in einer Anlage mit mindestens zwei Umwälzkreisen
EP2137811B1 (de) Steuereinrichtung für stromrichterstationen bei einer hochspannungsgleichstromübertragungseinrichtung
EP2913594B1 (de) Verfahren zum Betreiben einer pufferspeicherlosen Heizungsanlage, insbesondere zur Gewährleistung eines sicheren und einwandfreien Betriebs
EP3589898B1 (de) Verfahren zur regelung einer drehzahlvariablen umwälzpumpe sowie umwälzpumpe
EP2237128A1 (de) Vorgesteuerte Druckproportionalventilanordnung mit einer durch eine elektronische Regelungseinrichtung angesteuerten Vorsteuerstufe
EP1312572B1 (de) Hydraulischer Aufzug mit einem Druckspeicher sowie Verfahren zur Steuerung und Regelung eines solchen Aufzugs
DE202011052170U1 (de) Kühlmittelsystem für Werkzeugmaschinen
DE102014206878B4 (de) Verfahren zum Steuern der Atemgaszufuhr
DE202011052171U1 (de) Kühlmittelsystem für Werkzeugmaschinen
CH621855A5 (en) Method for regulating turbo-compressors
EP0223207A2 (de) Einrichtung und Verfahren zum Regeln eines Turbokompressors zur Verhinderung des Pumpens
CH682185A5 (de)
CH619509A5 (de)
CH663837A5 (de) Verfahren zur regelung der temperatur eines waermetraegers sowie zur lastabhaengigen zu- oder abschaltung einzelner waermeerzeuger.
EP4189295B1 (de) Verfahren zur regelung einer umwälzpumpe, insbesondere heizungspumpe
DE102017116916B4 (de) Brennstoffzellen-Erholungssystem
EP3267039B1 (de) Verfahren und system zur regelung einer pumpstation
EP3955084B1 (de) Sicherheitseinrichtung für einen wandler
DE4031427A1 (de) Verfahren und vorrichtung zum energiereduzierten betrieb eines elektromagnetischen stellgliedes
EP3987377B1 (de) Förderanordnung mit zwei parallel geschalteten förderelementen
EP1081442A1 (de) Verfahren zum Regeln einer Zuluft-Konditionieranlage und Regelvorrichtung für eine Zuluft-Konditionieranlage
EP0151805B1 (de) Einrichtung zur elektrischen Leerlaufregelung von Verbrennungsmotoren
DE4016017C1 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171013

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201009

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015014170

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1356619

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210120

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210520

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210420

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210420

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015014170

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

26N No opposition filed

Effective date: 20211021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210520

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211016

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015014170

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211016

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1356619

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241021

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20241025

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20241030

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20241025

Year of fee payment: 10