[go: up one dir, main page]

EP3120379A1 - Abrasive pad and glass substrate abrading method - Google Patents

Abrasive pad and glass substrate abrading method

Info

Publication number
EP3120379A1
EP3120379A1 EP15764427.9A EP15764427A EP3120379A1 EP 3120379 A1 EP3120379 A1 EP 3120379A1 EP 15764427 A EP15764427 A EP 15764427A EP 3120379 A1 EP3120379 A1 EP 3120379A1
Authority
EP
European Patent Office
Prior art keywords
abrasive
abrading
filler
abrasive pad
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15764427.9A
Other languages
German (de)
French (fr)
Other versions
EP3120379A4 (en
Inventor
Yoko Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of EP3120379A1 publication Critical patent/EP3120379A1/en
Publication of EP3120379A4 publication Critical patent/EP3120379A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/24Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding or polishing glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/10Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
    • B24B37/105Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping the workpieces or work carriers being actively moved by a drive, e.g. in a combined rotary and translatory movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • B24B37/245Pads with fixed abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/10Single-purpose machines or devices
    • B24B7/16Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings
    • B24B7/17Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings for simultaneously grinding opposite and parallel end faces, e.g. double disc grinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D2203/00Tool surfaces formed with a pattern

Definitions

  • the present invention relates to an abrasive pad and a glass substrate abrading method.
  • the abrasive article disclosed in, for example, Patent Document 1 is a conventional abrasive pad.
  • This abrasive article is configured from an abrasive material provided on one side of a backing member with a rectangular or other shape.
  • pointed protruding portions are formed on the base portion of the abrasive layer formed with abrasive material.
  • Patent Document 1 Japanese Unexamined Patent Application
  • Patent Document 2 U.S. Unexamined Patent Application
  • a conceivable measure to extend the useful life of an abrasive article is to increase the height of the protruding portions of the abrasive layer to increase the volume of the abrasive layer.
  • increasing the height of the protruding portions may lead to the protruding portions becoming prone to collapsing due to the load during abrading.
  • the quantity of abrasive material required to form the protruding portion increases, which has the problem that the cost advantages are reduced.
  • Reducing the amount of abrasion of the abrasive layer is also conceivable in order to extend the life of the abrasive article.
  • the amount of abrasion of the abrasive layer can conceivably be reduced by, for example, reducing the hardness of the abrasive layer to more easily release uneven load during abrasion.
  • the hardness of the abrasive layer is reduced, the amount of abrasion of the object to be abraded is significantly reduced, and it may not be possible to achieve sufficient abrasion.
  • One aspect of the present invention relates to an abrasive pad used to abrade the surface of glass substrates, and includes a base material layer, and an abrasive layer provided on one side of the base material layer.
  • the abrasive layer includes a plurality of pillar shaped abrading portions arranged separated from each other on the base material layer, the abrading portions are made from abrasive material that includes polishing abrasive particles, a filler, and a binder resin, the polishing abrasive particles include abrasive particles and a glass matrix, and the filler includes a first filler that fractures or drops out when the surface is being abraded, forming approximately spherical crown shaped recesses in the top face of the abrading portions.
  • another aspect of the present invention is a glass substrate abrading method using the above abrasive pad, that includes: securing a second surface side of the base material layer on a surface plate and bringing the abrasive layer into contact with an object to be abraded; and relatively rubbing the abrasive pad and the object to be abraded while introducing grinding fluid between the object to be abraded and the abrasive layer.
  • FIG. 1 is a perspective view illustrating an abrasive pad according to an embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view illustrating the main parts of the abrasive pad illustrated in FIG. 1.
  • FIG. 3 is an enlarged side view illustrating the main parts of the abrasive pad illustrated in FIG. 1.
  • FIGS. 4A to 4E are perspective views illustrating modified examples of an abrading portion.
  • FIGS. 5 A and 5B are side views illustrating abrading methods of an object to be abraded using the abrasive pad illustrated in FIG. 1.
  • FIGS. 6A-6D illustrate the results of observation of the abrading portion top face of samples of abrasive pads produced in the working examples and comparative examples, after the abrasion test, using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • FIG. 1 is a perspective view illustrating an abrasive pad according to an embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view illustrating the main parts of the abrasive pad illustrated in FIG. 1
  • FIG. 3 is an enlarged side view thereof.
  • an abrasive pad 1 includes a base material layer 11 that is a support member for the pad, and an abrasive layer 12 provided on one side of the base material layer 11.
  • the abrasive layer 12 includes a plurality of pillar shaped abrading portions 15 arranged separated from each other on the base material layer 11.
  • the abrasive pad 1 has a disk shape with, for example, a diameter of from 30 mm to 1,500 mm.
  • the shape of the abrasive pad according to the present invention is not limited to this, and the shape can be changed as appropriate in accordance with the abrading conditions, the abrading device, and so on.
  • the base material layer 11 for example, is configured with a thickness of around 1 mm so that the abrasive pad 1 has a certain amount of strength and flexibility. Also, the base material layer is configured from, for example, a base material 13 and an adhesive layer 14.
  • the base material 13 can be configured from, for example, polymer film, paper, vulcanized fiber, nonwoven fabric, woven fabric, and so on. Of these, preferably polymer film is used, and the polymer film can be, for example, polyethylene terephthalate film, polyester film, copolyester film, polyimide film, polyamide film, and so on.
  • the adhesive layer 14 is a layer that joins the base material 13 and the abrading portions 15 to provide an integrated abrasive pad.
  • the adhesive layer 14 can be formed from, for example, hot melt adhesive, thermosetting adhesive, or the like.
  • the hot melt adhesive can be, for example, a hot melt adhesive that includes a thermoplastic resin such as ethylene acrylic acid copolymer (EAA), ethylene vinyl acetate copolymer (EVA), and so on.
  • EAA ethylene acrylic acid copolymer
  • EVA ethylene vinyl acetate copolymer
  • the thermosetting adhesive can be, for example, a thermosetting adhesive that includes a thermosetting resin such as epoxy resin, phenol resin, urea resin, and so on and a curing agent.
  • the abrading portions 15 are arranged on the base material layer 11 separated from each other, and are configured from abrasive materials including polishing abrasive particles, filler, and binder resin.
  • the polishing abrasive particles include abrasive particles and a glass matrix that are dispersed within the abrading portions 15 and retained by the binder resin. Also, in the polishing abrasive particles, the abrasive particles are retained dispersed within the glass matrix.
  • the average particle size of the polishing abrasive particles may be, for example, 10 ⁇ or more, and preferably 25 ⁇ or more. Also, the average particle size of the polishing abrasive particles may be, for example, 200 ⁇ or less, and preferably 100 ⁇ or less. In this patent specification, the average particle size of the polishing abrasive particles indicates the median diameter measured using a laser diffraction / scattering type particle size distribution measuring device LA-920 (manufactured by Horiba Ltd. (Kyoto City, Kyoto-fu)).
  • the quantity of polishing abrasive particles in the abrasive material may be, for example, 0.5 mass or more, preferably 1 mass % or more, and more preferably 2 mass or more of the total mass of the abrasive material. Also, the quantity of polishing abrasive particles in the abrasive material may be, for example, 60 mass % or less, preferably 30 mass % or less, and more preferably 10 mass % or less of the total mass of the abrasive material.
  • the abrasive particles may be, for example, diamond abrasive particles, aluminum oxide particles, cerium oxide particles, cubic boron nitride (cBN) particles, and so on, and of these preferably diamond abrasive particles are used.
  • the average particle size of the abrasive particles is, for example,
  • the average particle size of the abrasive particles is, for example, 100 ⁇ or less, and preferably 50 ⁇ or less.
  • the average particle size of the abrasive particles indicates the median diameter measured using a laser diffraction / scattering type particle size distribution measuring device LA-920 (manufactured by Horiba Ltd. (Kyoto City, Kyoto-fu)).
  • the quantity of abrasive particles in the polishing abrasive particles relative to the total volume of the polishing abrasive particles may be, for example, 20 vol or more, and preferably 30 vol % or more.
  • the quantity of abrasive particles in the polishing abrasive particles relative to the total volume of the polishing abrasive particles may be, for example, 80 vol % or less, and preferably 70 vol % or less.
  • the quantity of glass matrix in the polishing abrasive particles relative to the total volume of the polishing abrasive particles may be, for example, 20 vol or more, and preferably 30 vol % or more.
  • the quantity of glass matrix in the polishing abrasive particles relative to the total volume of the polishing abrasive particles may be, for example, 80 vol % or less, and preferably 70 vol % or less.
  • the binder resin is formed from a binder precursor.
  • the binder precursor contains a resin in an uncured or unpolymerized state, and when the abrading portions 15 are fabricated, the resin in the binder precursor is polymerized or cured, forming the binder resin.
  • the binder precursor may be, for example, a photocurable resin or a thermosetting resin, and of these, preferably a photocurable resin is used.
  • an acrylic resin or the like can be used as the
  • thermosetting resin for example an epoxy resin, phenol resin, or the like can be used as the thermosetting resin.
  • the filler is used to control the rate of erosion of the abrading portions 15.
  • the abrasive material includes a filler (hereafter referred to as the "first filler") that fractures or drops off when abrading the surface of the glass substrates and forms substantially spherical crown shaped recesses in the top face 16 of the abrading portions 15.
  • the filler in other words, the substantially spherical filler
  • the substantially spherical filler capable of forming the substantially spherical crown shaped recesses due to fracture or dropping off
  • the wear of the abrading portions 15 is reduced, and by forming recesses in the top face 16 that contacts the object to be abraded, the contact area between the object to be abraded and the abrading portions 15 is reduced, so an effective load on the portion being abraded is applied and sufficient abrasion capability is ensured.
  • the first filler is selected from glass balloons and glass beads, from the viewpoint of exhibiting the above effect more significantly. If the first filler is glass balloons or glass beads, when abrading the surface of glass substrates, effective fracture or dropping out occurs on the top face 16 of the abrading portions 15, and substantially spherical crown shaped recesses are effectively formed.
  • Glass balloons are hollow particles made from glass, and fine glass hollow powder may also be used.
  • glass balloons with a compressive strength of 1 or more can be preferably used as the glass balloons.
  • Glass balloons having this compressive strength do not easily fracture during the process of manufacturing the abrasive pads, so it is possible to more reliably obtain the effect as described above.
  • the true density of the glass balloons may be, for example, 0.1 g/cm 3 or more, and preferably 0.2 g/cm 3 or more.
  • the true density of the glass balloons may be, for example, 1 g/cm 3 or less, and preferably 0.6 g/cm 3 or less.
  • the average particle size of the glass balloons is, for example, from
  • the average particle size of the glass balloons indicates the median diameter measured by laser diffraction / scattering type particle size distribution measuring device Partica LA-950 V2 (manufactured by Horiba Ltd. (Kyoto City, Kyoto-fu)).
  • the median diameter of the glass balloon is the particle diameter at which, when the glass balloons are divided into two according to particle diameter, the glass balloons having a smaller particle diameter and the glass balloons having a larger diameter have equal volume.
  • the average particle size of the glass balloons is 40 ⁇ or more, and more preferably 50 ⁇ or more. If the average particle size of the glass balloons is 40 ⁇ or more, the ratio G of the amount of wear of the abrading portions A (cm 3 ) to the amount of abrasion of the object to be abraded B (cm 3 ) (the G ratio, B/A) is significantly increased, and it is possible to obtain an abrasive pad that can exhibit good abrasion capability over a long period of time. Also, the average particle size of the glass balloons may be 70 ⁇ or less, and preferably 65 ⁇ or less.
  • Glass beads are solid particles made from glass, and the average particle size of glass beads is, for example, from 5 to 100 ⁇ .
  • the average particle size of the glass beads indicates the median diameter measured by laser diffraction / scattering type particle size distribution measuring device Partica LA-950 V2 (manufactured by Horiba Ltd. (Kyoto City, Kyoto-fu)).
  • the median diameter of the glass beads refers the particle diameter at which, when the glass beads are divided into two according to particle diameter, the glass beads having a smaller particle diameter and the glass beads having a larger diameter have equal volume.
  • the average particle size of the glass beads is 5 ⁇ or more, and more preferably 10 ⁇ or more. If the average particle size of the glass beads is 10 ⁇ or more, the ratio G of the amount of wear of the abrading portions A (cm 3 ) to the amount of abrasion of the object to be abraded B (cm 3 ), (the G ratio, B/A) is significantly increased, and it is possible to obtain an abrasive pad that can exhibit good abrasion capability over a long period of time. Also, the average particle size of the glass beads may be 100 ⁇ or less, and preferably 50 ⁇ or less.
  • the true density of the glass beads may be, for example, 1.5 g/cm or more, and preferably 2 g/cm 3 or more. Also, the true density of the glass beads may be, for example, 4 g/cm 3 or less, and preferably 3.5 g/cm 3 or less.
  • the abrasive material may include a commonly known filler (hereafter referred to as "second filler").
  • Examples of the second filler include, for example: metal carbonates
  • silica glass fibers, and the like
  • silicates talc, clay (montmorillonite), feldspar, mica, calcium silicate, calcium metasilicate, sodium aluminosilicate, sodium silicate, lithium silicate, potassium silicate, and the like
  • metal sulfates calcium sulfate, barium sulfate, sodium sulfate, aluminum sodium sulfate, aluminum sulfate, and the like
  • gypsum vermiculite, wood flour, aluminum trihydrate, carbon black, metal oxides (calcium oxide (lime), aluminum oxide, tin oxide (e.g.
  • thermoplastic particles polycarbonate, polyetherimide, polyester, polyethylene, polysulfone, polystyrene, acrylonitrile -butadiene- styrene block copolymer, polypropylene, acetal polymers, polyurethanes, nylon particles); thermosetting particles (phenolic bubbles, phenolic beads, polyurethane foam particles, and the like); and the like.
  • halide salts can be used as the second filler.
  • halide salts include sodium chloride, potassium cryolite, sodium cryolite, ammonium cryolite, potassium tetrafluoroborate, sodium tetrafluoroborate, silicon fluorides, potassium chloride, and magnesium chloride.
  • a metal filler can be used, for example, tin, lead, bismuth, cobalt, antimony, cadmium, iron, and titanium.
  • sulfur, organic sulfur compounds, graphite, and metal sulfides can be used.
  • the quantity of filler in the abrasive material is 10 vol % or more, and more preferably is 20 vol % or more relative to the total volume of the abrasive material. If the quantity of the filler is 10 vol % or more, structural changes of the abrading portions 15 due to curing shrinkage of the binder resin are sufficiently minimized. Also, preferably the quantity of filler in the abrasive material is 70 vol % or less, and more preferably is 50 vol % or less relative to the total volume of the abrasive material. If the quantity of filler exceeds 70 vol , it may be difficult to form the abrading portions 15.
  • the first filler can be used on its own as the filler, or the first filler and the second filler can be used in combination.
  • the quantity of the first filler relative to the total quantity of filler in the abrasive material may be, for example, 10 vol % or more, preferably 20 vol % or more, and more preferably 30 vol % or more.
  • the quantities of first filler and second filler can be adjusted as appropriate in accordance with the ratio of both the desired quantity of wear of the abrading portions 15 per unit time and the quantity of abrasion of the object to be abraded per unit time (the G ratio) or the like.
  • the first filler when the first filler is selected from glass balloons and glass beads, when the content of the first filler is large, both the quantity of wear of the abrading portions 15 per unit time and the quantity of abrasion of the object to be abraded per unit time tend to become small, but the rate of reduction of wear is larger, so the ratio of the two (the G ratio) tends to increase.
  • the quantity of abrasion of the object to be abraded per unit of quantity of the abrading portion increases, but the abrading time to achieve a specific quantity of abrasion tends to increase.
  • the quantity of abrasion of the object to be abraded per unit time is increased by increasing the quantity of filler, but at the same time the quantity of wear of the abrading portions 15 per unit time tends to increase.
  • the abrasive pad 1 by adjusting the proportions of the first filler and the second filler so that it is possible to achieve the desired quantity of wear of the abrading portions 15 per unit time and the quantity of abrasion of the object to be abraded per unit time, in other words, in order to achieve the desired abrasion ratio (G ratio) and abrasion time.
  • the abrasive layer 12 is configured having a plurality of pillar shaped abrading portions 15.
  • the abrading portion 15 has a top face 16, and the abrading surface of the abrasive pad is formed by each of the top faces 16 of the plurality of abrading portions 15.
  • the abrading portions 15 are arranged in a matrix shape on the base material layer 11 such that the density is from 3 to 7 per 1 cm 2 , for example.
  • Each abrading portion 15 has an approximately cuboid shape and an approximately square shape in plan view.
  • the area of the top face 16 of the abrading portion 15 may be, for example, 4 mm 2 or more, and preferably 5 mm 2 or more. Also, the area of the top face 16 is, for example, 100 mm 2 or less, and preferably 50 mm 2 or less. In the abrading portion 15 having the top face 16 within this ideal range of area, it is possible to more significantly obtain the effect of reducing the quantity of wear due to the recesses formed by the first filler having an average particle size within the above ideal range.
  • the height of the abrading portions 15 there is no particular limitation on the height of the abrading portions 15, but it can be 20% or more, or it can be 30% or more of the length of the short side on the bottom surface of the abrading portion 15. Also, there is no particular limitation on the upper limit to the height of the abrading portions 15, but in order to ensure sufficient strength in the sliding direction of the abrading portions 15, preferably the upper limit is 270% or less, and the height may be 150% or less.
  • the height of the abrading portions 15 can be, for example, 0.01 mm or more, or can be 1 mm or more. Also, the height of the abrading portion may be 10 mm or less, or it may be 7 mm or less.
  • the three-dimensional shape of the abrading portions 15 should be a pillar shape having a top face.
  • FIGS. 4A to 4E are perspective views illustrating modified examples of the abrading portions 15.
  • the abrading portion 15a which is one of the modified examples has an approximately triangular pillar shape, and the top face 16a thereof has an approximately triangular shape.
  • the abrading portion 15b which is one of the modified examples has an approximately hexagonal pillar shape, and the top face 16b thereof has an approximately hexagonal shape.
  • the abrading portion 15c which is one of the modified examples has an approximately circular pillar shape, and the top face 16c thereof has an approximately circular shape.
  • the abrading portion 15d which is one of the modified examples has an approximately rectangular parallelepiped pillar shape, and the top face 16d thereof has an approximately rectangular shape.
  • the abrading portion 15e which is one of the modified examples has an approximately square frustum of a pyramid shape, and the top face 16e thereof has an approximately square shape.
  • the abrasive layer 12 may have one of these modified examples as the abrading portions 15, and may have a plurality of these modified examples.
  • the three-dimensional shape of the abrading portions 15 can be selected as appropriate in accordance with the form of abrading.
  • Adjacent abrading portions 15 are partitioned from each other by grooves 17 provided at predetermined intervals on the base material layer 11.
  • the width of the groove 17 is, for example, appropriately selected from within a range of about 0.5 mm to 5 mm. If the width of the groove 17 is too narrow, there is a possibility that the flexibility of the abrasive pad 1 will be reduced.
  • the bottom face of the groove is may formed on the based material layer 11 and the abrading portion 15 may be settled independently each other on the base material layer 11. As the abrading portion 15 is settled independently each other on the base material layer 11, the abrasive pad which has not only the rigid abrading portion 15 but also has a flexible performance as whole is gotten.
  • Transfer methods for example, can be used as the method of forming the abrasive layer 12 having the abrading portions 15 as described above.
  • a transfer mold with a three-dimensional shape corresponding to the abrading portions 15, for example, is produced, and the transfer mold is filled with a slurry that includes the polishing abrasive particles, the filler, and the binder precursor as precursors of the abrasive material that forms the abrading portions 15.
  • a film that will form the base material layer 11 is laminated onto the transfer mold filled with the slurry.
  • the slurry is cured through photoirradiation or the like, and when the film is peeled from the transfer mold, an abrasive pad 1 having the abrasive layer 12 formed on the base material layer 11 is obtained.
  • an adhesive layer made from adhesive is provided on the surface of the film that will become the base material layer 11 on the side where the abrading portions 15 are formed, and after the film is peeled from the transfer mold, the adhesive layer is cured so that the film and the abrading portions 15 can be firmly bonded.
  • FIGS. 5A and 5B illustrate methods of abrading a glass substrate using the abrasive pad 1.
  • FIG. 5A illustrates an example of one-sided abrading, illustrating the abrading method for abrading one side of the object to be abraded (glass substrate) PI.
  • the abrasive pad 1 is fixed to a surface of a grinder (surface plate) 22 via an elastic body layer 21.
  • the grinder 22 is rotated while introducing a grinding fluid between the object to be abraded PI and the abrasive pad 1, and the surface of the object to be abraded PI is abraded while applying a load.
  • a retainer 23 that holds the object to be abraded PI may also be rotated in the same direction as the grinder 22 or in an opposite direction thereof.
  • FIG. 5B illustrates an example of two-sided abrading, illustrating the abrading method for abrading both sides of the object to be abraded (glass substrate) P2 at the same time.
  • the respective abrasive pads 1 are secured to the surface of top and bottom grinders 24 with an elastic body layer 21 interposed between each abrasive pad 1 and grinder 24, and the object to be abraded P2 that is held by a retainer 25 is set between the grinders 24.
  • the grinders 24 are rotated while supplying grinding fluid between the object to be abraded P2 and the abrasive pads 1, and both surfaces of the object to be abraded p2 are abraded while a load is applied. At this time, rotation of the grinders 24 in mutually opposite directions is preferred.
  • attachment of the abrasive pads 1 to the grinders 22 and 24 can be done using, for example, a pressure sensitive type adhesive.
  • a pressure sensitive type adhesive examples include latex crepe, rosin, polyacrylate ester, acrylic polymers, polybutyl acrylate, polyacrylate esters, vinyl ethers (e.g. polyvinyl n-butyl ether), alkyd adhesives, rubber adhesives (e.g. natural rubber, synthetic rubber, and chlorinated rubber), and mixtures thereof.
  • the elastic body layer (flexible layer) 21 can be used as the elastic body layer (flexible layer) 21.
  • the elastic body layer 21 may also be provided in advance on a second surface side (opposite surface side of the abrasive layer 12) of the base material layer 11 in the abrasive pad 1.
  • the flexible layer 21 does not necessarily have to be provided, and the abrasive pad 1 may be directly attached to the grinders 22 and 24.
  • grinding fluids include water-based solutions containing one or more types of the following: amines, mineral oil, kerosene, mineral spirits, water-soluble emulsions, polyethyleneimine, ethylene glycol,
  • the grinding fluid may also contain corrosion inhibitors, bactericides, stabilizers, surfactants, emulsifiers, or the like.
  • the method of manufacturing the abrasive pad can be determined by providing the first filler in a blending proportion determined based on the quantity of wear of the abrading portions per unit time and the quantity of abrasion of the object to be abraded per unit time. Also, in one aspect of the present invention, the life of the abrasive pad can be extended by the method of replacing the filler of the abrasive pad with the first filler as described above.
  • abrasive pad samples were produced by a method that includes the following processes (1) through (6).
  • the curable diamond slurry in the above process (1) includes polishing abrasive particles, filler, and binder precursor, and the composition thereof was as described in the item "Slurry composition” in Table 1 below. Also, primer N200 (a mixed solution that includes 1 to 5 mass each of polymethylene
  • polyphenylene isocyanate and chlorinated rubber manufactured by Sumitomo 3M Limited, Shinagawa-ku, Tokyo
  • the curable diamond slurry was cured by ultraviolet light irradiation in process (3).
  • the abrading portions were cured by oven curing at 90°C for 36 hours. Also, in process (6), the EAA was melted by heating to 130°C for two hours, and the abrading portions and the PET film were joined by cooling to room
  • a glass substrate was prepared as the object to be abraded by processing to a 150 mm diameter.
  • Grinding fluid 5% aqueous solution of alkaline water soluble grinding fluid
  • Rate of dropping grinding fluid 42 cc/minute
  • Test duration 20 minutes x 4 times
  • G ratio Total quantity of abrasion of the glass substrate (cm 3 ) / total quantity of wear of the abrading portions (cm 3 ).
  • Abrasive pad samples were produced by the above method using the curable diamond slurry with the slurry composition shown in Table 1, and the abrasive pad samples obtained were subjected to abrasion tests by the method as described above.
  • Glass balloons 1 (3MTM Glass Bubbles S22 (Sumitomo 3M Limited, Shinagawa-ku, Tokyo)) with average an particle size of 35 ⁇ , compressive strength of 2.8 MPa, true density of 0.22, and relative permittivity of 1.4 (indicated in the table as "GB1") were used as the filler.
  • the results of the abrasion tests are as listed in Table 2.
  • Abrasive pad samples were produced the same as for Working Example 1 except that instead of glass balloons 1, glass balloons 2 to 5 (indicated as “GB2", “GB3”, “GB4", “GB5" in the table) were used as the filler, and abrasion tests were carried out on the abrasive pad samples obtained.
  • the compound amount of the glass balloons was adjusted so that the content of filler in the abrading portions (volume %) was the same as for Working Example 1.
  • the results of the abrasion tests are as listed in Table 2.
  • Abrasive pad samples were produced the same as for Working Example 1 except that the following glass beads 1 (indicated as "GDI" in the table) were used instead of the glass balloons 1 as the filler, and abrasion tests were carried out on the abrasive pads obtained.
  • the compound amount of the glass beads was adjusted so that the content of filler in the abrading portions (volume %) was the same as for Working Example 1.
  • the results of the abrasion tests are as listed in Table 2.
  • Comparative Example 1 Comparative Example 1. Also, the G ratio of Working Examples 2 through 6 which had a predetermined average particle size was increased compared with Comparative Example 1, so it can be seen that more efficient abrasion work is enabled.
  • Abrasive pad samples were produced by the above method using the curable diamond slurry with the slurry composition shown in Table 3, and the abrasive pad samples obtained were subjected to abrasion tests by the method as described above.
  • Glass balloons 5 (GB5) and wollastonite (Wl) were used as the filler.
  • the compound amount of the filler was adjusted so that the content of filler (GB5 and Wl) in the abrading portions (volume %) was the same in all Working Examples 7 through 11.
  • the compound amount of the glass balloons 5 expressed as the quantity of glass balloons 5 as a percentage of the total volume of the filler was adjusted to 25 vol % (Working Example 7), 35 vol % (Working Example 8), 50 vol % (Working Example 9), 75 vol % (Working Example 10), and 100 vol % (Working Example 11).
  • the results of the abrasion tests are as listed in Table 4.
  • Abrasive pad samples were produced by the above method using the curable diamond slurry with the slurry composition shown in Table 3, and the abrasive pad samples obtained were subjected to abrasion tests by the method as described above.
  • Wollastonite (Wl) was used as the filler.
  • the compound amount of the filler was adjusted so that the content of filler in the abrading portions (volume %) was the same as for Working Examples 7 through 11.
  • the results of the abrasion tests are as listed in Table 4.
  • Abrasive pad samples were produced by the above method using the curable diamond slurry with the slurry composition shown in Table 5, and the abrasive pad samples obtained were subjected to abrasion tests by the method as described above.
  • Glass balloons 4 (GB4) and wollastonite (Wl) were used as the filler.
  • the compound amount of the filler was adjusted so that the content of filler (GB4 and Wl) in the abrading portions (volume %) was the same in all Working Examples 12 through 16.
  • the compound amount of the glass balloons 4 expressed as the quantity of glass balloons 4 as a percentage of the total volume of the filler was adjusted to 25 vol % (Working Example 12), 45 vol (Working Example 13), 50 vol % (Working Example 14), 75 vol % (Working Example 15), and 100 vol % (Working Example 16).
  • the results of the abrasion tests are as listed in Table 6.
  • Abrasive pad samples were produced by the above method using the curable diamond slurry with the slurry composition shown in Table 7, and the abrasive pad samples obtained were subjected to abrasion tests by the method as described above.
  • Glass balloons 2 (GB2) and wollastonite (Wl) were used as the filler.
  • the compound amount of the filler was adjusted so that the content of filler (GB2 and Wl) in the abrading portions (volume %) was the same in all Working Examples 17 through 20.
  • the compound amount of the glass balloons 2 expressed as the quantity of glass balloons 2 as a percentage of the total volume of the filler was adjusted to 25 vol % (Working Example 17), 50 vol % (Working Example 18), 75 vol % (Working Example 19), and 100 vol % (Working Example 20).
  • the results of the abrasion tests are as listed in Table 8.
  • Abrasive pad samples were produced by the above method using the curable diamond slurry with the slurry composition shown in Table 7, and the abrasive pad samples obtained were subjected to abrasion tests by the method as described above.
  • Wollastonite (Wl) was used as the filler.
  • the compound amount of the filler was adjusted so that the content of filler in the abrading portions (volume %) was the same as for Working Examples 17 through 20.
  • the results of the abrasion tests are as listed in Table 8.
  • FIGS. 6A to 6D illustrate the results of observation using a scanning electron microscope (SEM) of the abrading portion top face of samples of abrasive pad produced in the working examples and comparative example, after the abrasion test.
  • FIG. 6A illustrates the results for the abrasive pad sample of Working Example 4
  • FIG. 6B illustrates the results for the abrasive pad sample of Working Example 5
  • FIG. 6C illustrates the results for the abrasive pad sample of Working Example 6
  • FIG. 6D illustrates the results for the abrasive pad sample of Comparative Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Problem: To provide an abrasive pad and abrading method using same that are capable of extending the life of the abrasive pad when applied to abrading the surface of glass substrates, and that can ensure abrading capability that is appropriate for abrading the surface of glass substrates. Resolution Means: An abrasive pad used for abrading the surface of a glass substrate, that includes a base material layer, and an abrasive layer provided on one side of the base material layer, the abrasive layer including a plurality of pillar shaped abrading portions arranged separated from each other on the base material layer, the abrading portions being made from abrasive material that includes polishing abrasive particles, a filler, and a binder resin, the polishing abrasive particles including abrasive particles and a glass matrix, and the filler including a first filler that fractures or drops out when the surface is being abraded, forming approximately spherical crown shaped recesses in the top face of the abrading portions.

Description

ABRASIVE PAD AND GLASS SUBSTRATE ABRADING METHOD
FIELD OF THE INVENTION
[0001] The present invention relates to an abrasive pad and a glass substrate abrading method.
BACKGROUND ART
[0002] The abrasive article disclosed in, for example, Patent Document 1 is a conventional abrasive pad. This abrasive article is configured from an abrasive material provided on one side of a backing member with a rectangular or other shape. Also, in the abrasive article disclosed in Patent Document 2, pointed protruding portions are formed on the base portion of the abrasive layer formed with abrasive material.
PRIOR ART DOCUMENTS
[0003] Patent Document 1: Japanese Unexamined Patent Application
Publication (translation of PCT application) No. 2002-542057A
Patent Document 2: U.S. Unexamined Patent Application
Publication No. US2011/0053460, Specification
SUMMARY OF THE INVENTION
Problems to be Solved by the Invention
[0004] In order to improve the productivity of abrading glass substrates for industrial use, it is necessary to extend the life of abrasive articles. A conceivable measure to extend the useful life of an abrasive article is to increase the height of the protruding portions of the abrasive layer to increase the volume of the abrasive layer. However, increasing the height of the protruding portions may lead to the protruding portions becoming prone to collapsing due to the load during abrading. Also, the quantity of abrasive material required to form the protruding portion increases, which has the problem that the cost advantages are reduced.
[0005] Reducing the amount of abrasion of the abrasive layer is also conceivable in order to extend the life of the abrasive article. The amount of abrasion of the abrasive layer can conceivably be reduced by, for example, reducing the hardness of the abrasive layer to more easily release uneven load during abrasion. However, if the hardness of the abrasive layer is reduced, the amount of abrasion of the object to be abraded is significantly reduced, and it may not be possible to achieve sufficient abrasion. Means to Solve the Problem
[0006] One aspect of the present invention relates to an abrasive pad used to abrade the surface of glass substrates, and includes a base material layer, and an abrasive layer provided on one side of the base material layer. In this aspect, the abrasive layer includes a plurality of pillar shaped abrading portions arranged separated from each other on the base material layer, the abrading portions are made from abrasive material that includes polishing abrasive particles, a filler, and a binder resin, the polishing abrasive particles include abrasive particles and a glass matrix, and the filler includes a first filler that fractures or drops out when the surface is being abraded, forming approximately spherical crown shaped recesses in the top face of the abrading portions.
[0007] According to this aspect, it is possible to extend the life of the abrasive pad when applied to abrading the surface of glass substrates, and ensure abrading capability that is appropriate for abrading the surface of glass substrates.
[0008] Also, another aspect of the present invention is a glass substrate abrading method using the above abrasive pad, that includes: securing a second surface side of the base material layer on a surface plate and bringing the abrasive layer into contact with an object to be abraded; and relatively rubbing the abrasive pad and the object to be abraded while introducing grinding fluid between the object to be abraded and the abrasive layer.
[0009] In the glass substrate abrading method according to this aspect, it is possible to stably carry out abrasion of the surface of the glass substrates over a long period of time because the above abrasive pads are used.
EFFECT OF THE INVENTION
[0010] According to the present invention, it is possible to extend the life of the abrasive pad when applied to abrading the surface of glass substrates, and ensure abrading capability that is appropriate for abrading the surface of glass substrates.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] FIG. 1 is a perspective view illustrating an abrasive pad according to an embodiment of the present invention.
FIG. 2 is an enlarged perspective view illustrating the main parts of the abrasive pad illustrated in FIG. 1.
FIG. 3 is an enlarged side view illustrating the main parts of the abrasive pad illustrated in FIG. 1.
FIGS. 4A to 4E are perspective views illustrating modified examples of an abrading portion. FIGS. 5 A and 5B are side views illustrating abrading methods of an object to be abraded using the abrasive pad illustrated in FIG. 1.
FIGS. 6A-6D illustrate the results of observation of the abrading portion top face of samples of abrasive pads produced in the working examples and comparative examples, after the abrasion test, using a scanning electron microscope (SEM).
DETAILED DESCRIPTION
[0012] In the following, preferred embodiments of an abrasive pad and glass substrate abrading method according to the present invention are described in detail while referencing the figures.
[0013] FIG. 1 is a perspective view illustrating an abrasive pad according to an embodiment of the present invention. Moreover, FIG. 2 is an enlarged perspective view illustrating the main parts of the abrasive pad illustrated in FIG. 1, and FIG. 3 is an enlarged side view thereof. As illustrated in FIGS. 1 through 3, an abrasive pad 1 includes a base material layer 11 that is a support member for the pad, and an abrasive layer 12 provided on one side of the base material layer 11. Also, the abrasive layer 12 includes a plurality of pillar shaped abrading portions 15 arranged separated from each other on the base material layer 11.
[0014] Overall, the abrasive pad 1 has a disk shape with, for example, a diameter of from 30 mm to 1,500 mm. The shape of the abrasive pad according to the present invention is not limited to this, and the shape can be changed as appropriate in accordance with the abrading conditions, the abrading device, and so on.
[0015] The base material layer 11, for example, is configured with a thickness of around 1 mm so that the abrasive pad 1 has a certain amount of strength and flexibility. Also, the base material layer is configured from, for example, a base material 13 and an adhesive layer 14.
[0016] The base material 13 can be configured from, for example, polymer film, paper, vulcanized fiber, nonwoven fabric, woven fabric, and so on. Of these, preferably polymer film is used, and the polymer film can be, for example, polyethylene terephthalate film, polyester film, copolyester film, polyimide film, polyamide film, and so on.
[0017] The adhesive layer 14 is a layer that joins the base material 13 and the abrading portions 15 to provide an integrated abrasive pad. The adhesive layer 14 can be formed from, for example, hot melt adhesive, thermosetting adhesive, or the like. The hot melt adhesive can be, for example, a hot melt adhesive that includes a thermoplastic resin such as ethylene acrylic acid copolymer (EAA), ethylene vinyl acetate copolymer (EVA), and so on. Also, the thermosetting adhesive can be, for example, a thermosetting adhesive that includes a thermosetting resin such as epoxy resin, phenol resin, urea resin, and so on and a curing agent.
[0018] The abrading portions 15 are arranged on the base material layer 11 separated from each other, and are configured from abrasive materials including polishing abrasive particles, filler, and binder resin.
[0019] The polishing abrasive particles include abrasive particles and a glass matrix that are dispersed within the abrading portions 15 and retained by the binder resin. Also, in the polishing abrasive particles, the abrasive particles are retained dispersed within the glass matrix.
[0020] The average particle size of the polishing abrasive particles may be, for example, 10 μιη or more, and preferably 25 μιη or more. Also, the average particle size of the polishing abrasive particles may be, for example, 200 μιη or less, and preferably 100 μιη or less. In this patent specification, the average particle size of the polishing abrasive particles indicates the median diameter measured using a laser diffraction / scattering type particle size distribution measuring device LA-920 (manufactured by Horiba Ltd. (Kyoto City, Kyoto-fu)).
[0021] The quantity of polishing abrasive particles in the abrasive material may be, for example, 0.5 mass or more, preferably 1 mass % or more, and more preferably 2 mass or more of the total mass of the abrasive material. Also, the quantity of polishing abrasive particles in the abrasive material may be, for example, 60 mass % or less, preferably 30 mass % or less, and more preferably 10 mass % or less of the total mass of the abrasive material.
[0022] The abrasive particles may be, for example, diamond abrasive particles, aluminum oxide particles, cerium oxide particles, cubic boron nitride (cBN) particles, and so on, and of these preferably diamond abrasive particles are used.
[0023] The average particle size of the abrasive particles is, for example,
0.5 μιη or more, and preferably 2 μιη or more. Also, the average particle size of the abrasive particles is, for example, 100 μιη or less, and preferably 50 μιη or less. In this patent specification, the average particle size of the abrasive particles indicates the median diameter measured using a laser diffraction / scattering type particle size distribution measuring device LA-920 (manufactured by Horiba Ltd. (Kyoto City, Kyoto-fu)).
[0024] The quantity of abrasive particles in the polishing abrasive particles relative to the total volume of the polishing abrasive particles may be, for example, 20 vol or more, and preferably 30 vol % or more. The quantity of abrasive particles in the polishing abrasive particles relative to the total volume of the polishing abrasive particles may be, for example, 80 vol % or less, and preferably 70 vol % or less. [0025] The quantity of glass matrix in the polishing abrasive particles relative to the total volume of the polishing abrasive particles may be, for example, 20 vol or more, and preferably 30 vol % or more. The quantity of glass matrix in the polishing abrasive particles relative to the total volume of the polishing abrasive particles may be, for example, 80 vol % or less, and preferably 70 vol % or less.
[0026] The binder resin is formed from a binder precursor. The binder precursor contains a resin in an uncured or unpolymerized state, and when the abrading portions 15 are fabricated, the resin in the binder precursor is polymerized or cured, forming the binder resin. The binder precursor may be, for example, a photocurable resin or a thermosetting resin, and of these, preferably a photocurable resin is used. For example, an acrylic resin or the like can be used as the
photocurable resin, and for example an epoxy resin, phenol resin, or the like can be used as the thermosetting resin.
[0027] The filler is used to control the rate of erosion of the abrading portions 15. In present embodiment, the abrasive material includes a filler (hereafter referred to as the "first filler") that fractures or drops off when abrading the surface of the glass substrates and forms substantially spherical crown shaped recesses in the top face 16 of the abrading portions 15.
[0028] In the present embodiment, by forming substantially spherical crown shaped recesses in the top face 16, it is considered that it is possible to extend the life of the abrasive pad while maintaining the abrasion capability appropriate for abrading the surfaces of glass substrates. The reason for this is not necessarily clear, but it is considered that by using the filler (in other words, the substantially spherical filler) capable of forming the substantially spherical crown shaped recesses due to fracture or dropping off, the wear of the abrading portions 15 is reduced, and by forming recesses in the top face 16 that contacts the object to be abraded, the contact area between the object to be abraded and the abrading portions 15 is reduced, so an effective load on the portion being abraded is applied and sufficient abrasion capability is ensured.
[0029] Preferably, the first filler is selected from glass balloons and glass beads, from the viewpoint of exhibiting the above effect more significantly. If the first filler is glass balloons or glass beads, when abrading the surface of glass substrates, effective fracture or dropping out occurs on the top face 16 of the abrading portions 15, and substantially spherical crown shaped recesses are effectively formed.
[0030] Glass balloons are hollow particles made from glass, and fine glass hollow powder may also be used.
[0031] For example, glass balloons with a compressive strength of 1 or more can be preferably used as the glass balloons. Glass balloons having this compressive strength do not easily fracture during the process of manufacturing the abrasive pads, so it is possible to more reliably obtain the effect as described above.
[0032] The true density of the glass balloons may be, for example, 0.1 g/cm3 or more, and preferably 0.2 g/cm3 or more. The true density of the glass balloons may be, for example, 1 g/cm3 or less, and preferably 0.6 g/cm3 or less.
[0033] The average particle size of the glass balloons is, for example, from
10 to 70 μιη. Here, the average particle size of the glass balloons indicates the median diameter measured by laser diffraction / scattering type particle size distribution measuring device Partica LA-950 V2 (manufactured by Horiba Ltd. (Kyoto City, Kyoto-fu)). The median diameter of the glass balloon is the particle diameter at which, when the glass balloons are divided into two according to particle diameter, the glass balloons having a smaller particle diameter and the glass balloons having a larger diameter have equal volume.
[0034] In order to obtain abrading portions 15 with low wear and particularly excellent abrading capability, preferably, the average particle size of the glass balloons is 40 μιη or more, and more preferably 50 μιη or more. If the average particle size of the glass balloons is 40 μιη or more, the ratio G of the amount of wear of the abrading portions A (cm3) to the amount of abrasion of the object to be abraded B (cm3) (the G ratio, B/A) is significantly increased, and it is possible to obtain an abrasive pad that can exhibit good abrasion capability over a long period of time. Also, the average particle size of the glass balloons may be 70 μιη or less, and preferably 65 μιη or less.
[0035] Glass beads are solid particles made from glass, and the average particle size of glass beads is, for example, from 5 to 100 μιη. Here, the average particle size of the glass beads indicates the median diameter measured by laser diffraction / scattering type particle size distribution measuring device Partica LA-950 V2 (manufactured by Horiba Ltd. (Kyoto City, Kyoto-fu)). The median diameter of the glass beads refers the particle diameter at which, when the glass beads are divided into two according to particle diameter, the glass beads having a smaller particle diameter and the glass beads having a larger diameter have equal volume.
[0036] In order to obtain abrading portions 15 with low wear and particularly excellent abrading capability, preferably the average particle size of the glass beads is 5 μιη or more, and more preferably 10 μιη or more. If the average particle size of the glass beads is 10 μιη or more, the ratio G of the amount of wear of the abrading portions A (cm3) to the amount of abrasion of the object to be abraded B (cm3), (the G ratio, B/A) is significantly increased, and it is possible to obtain an abrasive pad that can exhibit good abrasion capability over a long period of time. Also, the average particle size of the glass beads may be 100 μιη or less, and preferably 50 μιη or less.
[0037] The true density of the glass beads may be, for example, 1.5 g/cm or more, and preferably 2 g/cm3 or more. Also, the true density of the glass beads may be, for example, 4 g/cm3 or less, and preferably 3.5 g/cm3 or less.
[0038] In the present embodiment, apart from the first filler, the abrasive material may include a commonly known filler (hereafter referred to as "second filler").
[0039] Examples of the second filler include, for example: metal carbonates
(e.g. calcium carbonate (chalk, calcite, marl, travertine, marble, and limestone), calcium magnesium carbonate, sodium carbonate, magnesium carbonate, and the like); silica (glass fibers, and the like); silicates (talc, clay (montmorillonite), feldspar, mica, calcium silicate, calcium metasilicate, sodium aluminosilicate, sodium silicate, lithium silicate, potassium silicate, and the like); metal sulfates (calcium sulfate, barium sulfate, sodium sulfate, aluminum sodium sulfate, aluminum sulfate, and the like), gypsum, vermiculite, wood flour, aluminum trihydrate, carbon black, metal oxides (calcium oxide (lime), aluminum oxide, tin oxide (e.g. stannic oxide), titanium dioxide, and the like), and metal sulfites (calcium sulfite, and the like); thermoplastic particles (polycarbonate, polyetherimide, polyester, polyethylene, polysulfone, polystyrene, acrylonitrile -butadiene- styrene block copolymer, polypropylene, acetal polymers, polyurethanes, nylon particles); thermosetting particles (phenolic bubbles, phenolic beads, polyurethane foam particles, and the like); and the like.
[0040] Also, halide salts can be used as the second filler. Examples of halide salts include sodium chloride, potassium cryolite, sodium cryolite, ammonium cryolite, potassium tetrafluoroborate, sodium tetrafluoroborate, silicon fluorides, potassium chloride, and magnesium chloride. Also, a metal filler can be used, for example, tin, lead, bismuth, cobalt, antimony, cadmium, iron, and titanium. Also, sulfur, organic sulfur compounds, graphite, and metal sulfides can be used.
[0041] Preferably, the quantity of filler in the abrasive material is 10 vol % or more, and more preferably is 20 vol % or more relative to the total volume of the abrasive material. If the quantity of the filler is 10 vol % or more, structural changes of the abrading portions 15 due to curing shrinkage of the binder resin are sufficiently minimized. Also, preferably the quantity of filler in the abrasive material is 70 vol % or less, and more preferably is 50 vol % or less relative to the total volume of the abrasive material. If the quantity of filler exceeds 70 vol , it may be difficult to form the abrading portions 15.
[0042] In the present embodiment, the first filler can be used on its own as the filler, or the first filler and the second filler can be used in combination. [0043] The quantity of the first filler relative to the total quantity of filler in the abrasive material may be, for example, 10 vol % or more, preferably 20 vol % or more, and more preferably 30 vol % or more. The quantities of first filler and second filler can be adjusted as appropriate in accordance with the ratio of both the desired quantity of wear of the abrading portions 15 per unit time and the quantity of abrasion of the object to be abraded per unit time (the G ratio) or the like.
[0044] For example, when the first filler is selected from glass balloons and glass beads, when the content of the first filler is large, both the quantity of wear of the abrading portions 15 per unit time and the quantity of abrasion of the object to be abraded per unit time tend to become small, but the rate of reduction of wear is larger, so the ratio of the two (the G ratio) tends to increase. In other words, due to the first filler, the quantity of abrasion of the object to be abraded per unit of quantity of the abrading portion increases, but the abrading time to achieve a specific quantity of abrasion tends to increase. On the other hand, if for example, a silicate mineral is used as the filler, the quantity of abrasion of the object to be abraded per unit time is increased by increasing the quantity of filler, but at the same time the quantity of wear of the abrading portions 15 per unit time tends to increase.
[0045] Therefore, by using glass balloons and/or glass beads as the first filler, and using a silicate mineral as the second filler, it is possible to increase the quantity of abrasion per unit time while maintaining the abrasion ratio (in other words the G ratio) per unit time of the abrading portions to a certain extent, so it is possible to reduce the abrasion time.
[0046] In other words, in the present embodiment, it is possible to manufacture the abrasive pad 1 by adjusting the proportions of the first filler and the second filler so that it is possible to achieve the desired quantity of wear of the abrading portions 15 per unit time and the quantity of abrasion of the object to be abraded per unit time, in other words, in order to achieve the desired abrasion ratio (G ratio) and abrasion time.
[0047] Next, the structure of the abrading portions 15 that form the abrasive layer 12 is explained.
[0048] As illustrated in FIGS. 2 and 3, the abrasive layer 12 is configured having a plurality of pillar shaped abrading portions 15. The abrading portion 15 has a top face 16, and the abrading surface of the abrasive pad is formed by each of the top faces 16 of the plurality of abrading portions 15.
[0049] The abrading portions 15 are arranged in a matrix shape on the base material layer 11 such that the density is from 3 to 7 per 1 cm2, for example. Each abrading portion 15 has an approximately cuboid shape and an approximately square shape in plan view. [0050] The area of the top face 16 of the abrading portion 15 may be, for example, 4 mm2 or more, and preferably 5 mm2 or more. Also, the area of the top face 16 is, for example, 100 mm2 or less, and preferably 50 mm2 or less. In the abrading portion 15 having the top face 16 within this ideal range of area, it is possible to more significantly obtain the effect of reducing the quantity of wear due to the recesses formed by the first filler having an average particle size within the above ideal range.
[0051] There is no particular limitation on the height of the abrading portions 15, but it can be 20% or more, or it can be 30% or more of the length of the short side on the bottom surface of the abrading portion 15. Also, there is no particular limitation on the upper limit to the height of the abrading portions 15, but in order to ensure sufficient strength in the sliding direction of the abrading portions 15, preferably the upper limit is 270% or less, and the height may be 150% or less.
[0052] Specifically, the height of the abrading portions 15 can be, for example, 0.01 mm or more, or can be 1 mm or more. Also, the height of the abrading portion may be 10 mm or less, or it may be 7 mm or less.
[0053] The three-dimensional shape of the abrading portions 15 should be a pillar shape having a top face. FIGS. 4A to 4E are perspective views illustrating modified examples of the abrading portions 15. The abrading portion 15a which is one of the modified examples has an approximately triangular pillar shape, and the top face 16a thereof has an approximately triangular shape. Also the abrading portion 15b which is one of the modified examples has an approximately hexagonal pillar shape, and the top face 16b thereof has an approximately hexagonal shape. Also the abrading portion 15c which is one of the modified examples has an approximately circular pillar shape, and the top face 16c thereof has an approximately circular shape. Also the abrading portion 15d which is one of the modified examples has an approximately rectangular parallelepiped pillar shape, and the top face 16d thereof has an approximately rectangular shape. Also the abrading portion 15e which is one of the modified examples has an approximately square frustum of a pyramid shape, and the top face 16e thereof has an approximately square shape. The abrasive layer 12 may have one of these modified examples as the abrading portions 15, and may have a plurality of these modified examples. The three-dimensional shape of the abrading portions 15 can be selected as appropriate in accordance with the form of abrading.
[0054] Adjacent abrading portions 15 are partitioned from each other by grooves 17 provided at predetermined intervals on the base material layer 11. The width of the groove 17 is, for example, appropriately selected from within a range of about 0.5 mm to 5 mm. If the width of the groove 17 is too narrow, there is a possibility that the flexibility of the abrasive pad 1 will be reduced. Moreover, it is also conceivable that abrading scraps, which are generated when abrading an object to be abraded, could easily clog the groove 17, resulting in a drop in abrading efficiency On the other hand, if the width of the groove 17 is too wide, the area of the top faces 16 of the abrading portions 15 per unit area of the abrading surface of the abrasive layer 12 will be reduced, so the load applied per unit area of the top face 16 will increase, the abrading portions 15 will easily wear, and as a result, the life of the abrasive pad 1 may be reduced. Accordingly, by establishing the width of the groove 17 within the above range, the abrading efficiency of the abrasive pad 1 can be maintained and the useful life thereof can be ensured. Concerning the abrasive pad, the bottom face of the groove is may formed on the based material layer 11 and the abrading portion 15 may be settled independently each other on the base material layer 11. As the abrading portion 15 is settled independently each other on the base material layer 11, the abrasive pad which has not only the rigid abrading portion 15 but also has a flexible performance as whole is gotten.
[0055] Transfer methods, for example, can be used as the method of forming the abrasive layer 12 having the abrading portions 15 as described above. In the transfer method, a transfer mold with a three-dimensional shape corresponding to the abrading portions 15, for example, is produced, and the transfer mold is filled with a slurry that includes the polishing abrasive particles, the filler, and the binder precursor as precursors of the abrasive material that forms the abrading portions 15. Next, a film that will form the base material layer 11 is laminated onto the transfer mold filled with the slurry. Next, the slurry is cured through photoirradiation or the like, and when the film is peeled from the transfer mold, an abrasive pad 1 having the abrasive layer 12 formed on the base material layer 11 is obtained.
[0056] Also, in the method as described above, an adhesive layer made from adhesive is provided on the surface of the film that will become the base material layer 11 on the side where the abrading portions 15 are formed, and after the film is peeled from the transfer mold, the adhesive layer is cured so that the film and the abrading portions 15 can be firmly bonded.
[0057] FIGS. 5A and 5B illustrate methods of abrading a glass substrate using the abrasive pad 1. FIG. 5A illustrates an example of one-sided abrading, illustrating the abrading method for abrading one side of the object to be abraded (glass substrate) PI. In this example, the abrasive pad 1 is fixed to a surface of a grinder (surface plate) 22 via an elastic body layer 21. The grinder 22 is rotated while introducing a grinding fluid between the object to be abraded PI and the abrasive pad 1, and the surface of the object to be abraded PI is abraded while applying a load. A retainer 23 that holds the object to be abraded PI may also be rotated in the same direction as the grinder 22 or in an opposite direction thereof.
[0058] FIG. 5B illustrates an example of two-sided abrading, illustrating the abrading method for abrading both sides of the object to be abraded (glass substrate) P2 at the same time. In this example, the respective abrasive pads 1 are secured to the surface of top and bottom grinders 24 with an elastic body layer 21 interposed between each abrasive pad 1 and grinder 24, and the object to be abraded P2 that is held by a retainer 25 is set between the grinders 24. The grinders 24 are rotated while supplying grinding fluid between the object to be abraded P2 and the abrasive pads 1, and both surfaces of the object to be abraded p2 are abraded while a load is applied. At this time, rotation of the grinders 24 in mutually opposite directions is preferred.
[0059] In the above examples, attachment of the abrasive pads 1 to the grinders 22 and 24 can be done using, for example, a pressure sensitive type adhesive. Examples of such an adhesive include latex crepe, rosin, polyacrylate ester, acrylic polymers, polybutyl acrylate, polyacrylate esters, vinyl ethers (e.g. polyvinyl n-butyl ether), alkyd adhesives, rubber adhesives (e.g. natural rubber, synthetic rubber, and chlorinated rubber), and mixtures thereof.
[0060] Also, for example, polyurethane foam, rubber, elastomer, rubber foam, or the like can be used as the elastic body layer (flexible layer) 21. By interposing this type of elastic body layer 21, the tracking capability of the shape of the abrasive pad 1 with regards to the grinders 22 and 24 can be improved. Note that the elastic body layer 21 may also be provided in advance on a second surface side (opposite surface side of the abrasive layer 12) of the base material layer 11 in the abrasive pad 1. Moreover, the flexible layer 21 does not necessarily have to be provided, and the abrasive pad 1 may be directly attached to the grinders 22 and 24.
[0061] Examples of grinding fluids include water-based solutions containing one or more types of the following: amines, mineral oil, kerosene, mineral spirits, water-soluble emulsions, polyethyleneimine, ethylene glycol,
monoethanolamine, diethanolamine, triethanolamine, propylene glycol, amine borate, boric acid, amine carboxylate, pine oil, indole, thioamine salt, amides, hexahydro- 1,3,5-triethyltriazine, carboxylic acid, sodium 2-mercaptobenzothiazole,
isopropanolamine, triethylenediamine tetraacetic acid, propylene glycol methyl ether, benzotriazole, sodium 2-pyridinethiol-l -oxide, and hexylene glycol. The grinding fluid may also contain corrosion inhibitors, bactericides, stabilizers, surfactants, emulsifiers, or the like.
[0062] In abrading the object to be abraded P as described above, on the top faces 16 of the abrading portions 15 that form the abrading surface of the abrasive layer 12 of the abrasive pad 1, the first filler fractures and drops off due to the load during abrasion, and the substantially spherical crown shaped recesses are formed. In this way, in the above method, wear of the abrading portions 15 is reduced, and it is possible to stably abrade the objects to be abraded P over a long period of time.
[0063] A preferred embodiment of the present invention was described above, but the present invention is not limited to the abovementioned embodiment.
[0064] For example, in one aspect of the present invention, the method of manufacturing the abrasive pad can be determined by providing the first filler in a blending proportion determined based on the quantity of wear of the abrading portions per unit time and the quantity of abrasion of the object to be abraded per unit time. Also, in one aspect of the present invention, the life of the abrasive pad can be extended by the method of replacing the filler of the abrasive pad with the first filler as described above.
EXAMPLE
[0065] The present invention is described more specifically below using working examples, but the present invention is not limited to the working examples.
[0066] For the working examples and the comparative examples, abrasive pad samples were produced by a method that includes the following processes (1) through (6).
(1) Filling a polypropylene transfer mold with a curable diamond slurry;
(2) Applying a primer on an ethylene- acrylic acid (EAA) copolymer layer that was provided on one side of a polyethylene terephthalate (PET) film, and laminating it onto the transfer mold;
(3) Curing the curable diamond slurry;
(4) Peeling the transfer mold, to obtain a PET film on which a plurality of abrading portions are formed;
(5) Curing the formed abrading portions; and
(6) Melting the EAA at or above the EAA softening temperature, to firmly bond the abrading portions and the PET film.
[0067] The curable diamond slurry in the above process (1) includes polishing abrasive particles, filler, and binder precursor, and the composition thereof was as described in the item "Slurry composition" in Table 1 below. Also, primer N200 (a mixed solution that includes 1 to 5 mass each of polymethylene
polyphenylene isocyanate and chlorinated rubber (manufactured by Sumitomo 3M Limited, Shinagawa-ku, Tokyo)) was used as the primer in process (2). Also, the curable diamond slurry was cured by ultraviolet light irradiation in process (3).
Also, in process (5), the abrading portions were cured by oven curing at 90°C for 36 hours. Also, in process (6), the EAA was melted by heating to 130°C for two hours, and the abrading portions and the PET film were joined by cooling to room
temperature.
[0068] Also, abrasion tests were performed on the abrasive pad samples produced by a method that included the following processes (a) through (e).
(a) The abrasive pad samples were bonded to a polycarbonate board of a thickness of 0.8 mm using a pressure sensitive adhesive, and 100 mm diameter circular disks were produced.
(b) A glass substrate was prepared as the object to be abraded by processing to a 150 mm diameter.
(c) The object to be abraded was bonded to an abrasion surface plate with wax.
(d) Abrasion tests were carried out using an abrasion device EcoMet 250 (manufactured by Buehler) under the following conditions.
Rotation speed of upper surface plate: 60 rpm
Rotation speed of lower surface plate: 450 rpm
Load: 120 N
Grinding fluid: 5% aqueous solution of alkaline water soluble grinding fluid
Rate of dropping grinding fluid: 42 cc/minute
Test duration: 20 minutes x 4 times
(e) After the test, the G ratio was calculated from the following equation.
G ratio = Total quantity of abrasion of the glass substrate (cm3) / total quantity of wear of the abrading portions (cm3).
[0069] Working Example 1
Abrasive pad samples were produced by the above method using the curable diamond slurry with the slurry composition shown in Table 1, and the abrasive pad samples obtained were subjected to abrasion tests by the method as described above. Glass balloons 1 (3M™ Glass Bubbles S22 (Sumitomo 3M Limited, Shinagawa-ku, Tokyo)) with average an particle size of 35 μιη, compressive strength of 2.8 MPa, true density of 0.22, and relative permittivity of 1.4 (indicated in the table as "GB1") were used as the filler. The results of the abrasion tests are as listed in Table 2.
[0070] In the table, "SR368D" indicates acrylic resin (Sartomer USA, LLC,
West Chester, Pennsylvania), "Solsperse 32000" indicates dispersing agent (Lubrizol Japan Limited, Meguro-ku, Tokyo), "IR819" indicates photoinitiator (BASF), and "PWA3" indicates plate-like crystal alumina (Fujimi Incorporated, Kiyosu City, Aichi Prefecture). Also, "agglomerate" in the table indicates polishing abrasive particles in which diamond abrasive particles are dispersed in a glass matrix. [0071] Working Examples 2 through 5
Abrasive pad samples were produced the same as for Working Example 1 except that instead of glass balloons 1, glass balloons 2 to 5 (indicated as "GB2", "GB3", "GB4", "GB5" in the table) were used as the filler, and abrasion tests were carried out on the abrasive pad samples obtained. The compound amount of the glass balloons was adjusted so that the content of filler in the abrading portions (volume %) was the same as for Working Example 1. The results of the abrasion tests are as listed in Table 2.
Glass balloons 2 (GB2): 3M™ Glass Bubbles S38 (Sumitomo 3M Limited, Shinagawa-ku, Tokyo), median diameter 40 μιη, compressive strength 28.0 MPa, true density 0.38, relative permittivity 1.6
Glass balloons 3 (GB3): 3M™ Glass Bubbles K37 (Sumitomo 3M Limited, Shinagawa-ku, Tokyo), median diameter 45 μιη, compressive strength 21.0 MPa, true density 0.37, relative permittivity 1.6
Glass balloons 4 (GB4): 3M™ Glass Bubbles K25 (Sumitomo 3M Limited, Shinagawa-ku, Tokyo), median diameter 55 μιη, compressive strength 5.2 MPa, true density 0.25, relative permittivity 1.4
Glass balloons 5 (GB5): 3M™ Glass Bubbles K20 (Sumitomo 3M Limited, Shinagawa-ku, Tokyo), median diameter 60 μιη, compressive strength 3.5 MPa, true density 0.15, relative permittivity 1.3
[0072] Working Example 6
Abrasive pad samples were produced the same as for Working Example 1 except that the following glass beads 1 (indicated as "GDI" in the table) were used instead of the glass balloons 1 as the filler, and abrasion tests were carried out on the abrasive pads obtained. The compound amount of the glass beads was adjusted so that the content of filler in the abrading portions (volume %) was the same as for Working Example 1. The results of the abrasion tests are as listed in Table 2.
Glass beads 1 (GDI): Average particle size 10 μιη, true density 2.4
[0073] Comparative Example 1
Abrasive pad samples were produced in the same manner as Working Example 1, except that instead of using glass balloons 1 as the filler, wollastonite (needle-shaped filler, average particle size 9 μιη, true density 2.9, Mohs hardness 4.5) (indicated as "Wl" in the table) was used, and the abrasion test was carried out on the abrasive pads obtained. The compound amount of the wollastonite was adjusted so that the content of filler in the abrading portions (volume %) was the same as for Working Example 1. The results of the abrasion tests are as listed in Table 2. [0074] Table 1
[0075] Table 2
[0076] As shown in Table 2, the quantity of wear of the abrading portions was significantly reduced in Working Examples 1 through 6 compared with
Comparative Example 1. Also, the G ratio of Working Examples 2 through 6 which had a predetermined average particle size was increased compared with Comparative Example 1, so it can be seen that more efficient abrasion work is enabled.
[0077] Working Examples 7 through 11
Abrasive pad samples were produced by the above method using the curable diamond slurry with the slurry composition shown in Table 3, and the abrasive pad samples obtained were subjected to abrasion tests by the method as described above. Glass balloons 5 (GB5) and wollastonite (Wl) were used as the filler. The compound amount of the filler was adjusted so that the content of filler (GB5 and Wl) in the abrading portions (volume %) was the same in all Working Examples 7 through 11. Also, the compound amount of the glass balloons 5 expressed as the quantity of glass balloons 5 as a percentage of the total volume of the filler (indicated as GB percentage) was adjusted to 25 vol % (Working Example 7), 35 vol % (Working Example 8), 50 vol % (Working Example 9), 75 vol % (Working Example 10), and 100 vol % (Working Example 11). The results of the abrasion tests are as listed in Table 4.
[0078] Comparative Example 2
Abrasive pad samples were produced by the above method using the curable diamond slurry with the slurry composition shown in Table 3, and the abrasive pad samples obtained were subjected to abrasion tests by the method as described above. Wollastonite (Wl) was used as the filler. Also, the compound amount of the filler was adjusted so that the content of filler in the abrading portions (volume %) was the same as for Working Examples 7 through 11. The results of the abrasion tests are as listed in Table 4.
[0079] Table 3
[0080] Table 4
[0081] Working Examples 12 through 16
Abrasive pad samples were produced by the above method using the curable diamond slurry with the slurry composition shown in Table 5, and the abrasive pad samples obtained were subjected to abrasion tests by the method as described above. Glass balloons 4 (GB4) and wollastonite (Wl) were used as the filler. The compound amount of the filler was adjusted so that the content of filler (GB4 and Wl) in the abrading portions (volume %) was the same in all Working Examples 12 through 16. Also, the compound amount of the glass balloons 4 expressed as the quantity of glass balloons 4 as a percentage of the total volume of the filler (indicated as GB percentage in the table) was adjusted to 25 vol % (Working Example 12), 45 vol (Working Example 13), 50 vol % (Working Example 14), 75 vol % (Working Example 15), and 100 vol % (Working Example 16). The results of the abrasion tests are as listed in Table 6.
[0082] Comparative Example 3
Abrasive pad samples were produced by the above method using the curable diamond slurry with the slurry composition shown in Table 5, and the abrasive pad samples obtained were subjected to abrasion tests by the method as described above. Wollastonite (Wl) was used as the filler. Also, the compound amount of the filler was adjusted so that the content of filler in the abrading portions (volume %) was the same as for Working Examples 12 through 16. The results of the abrasion tests are as listed in Table 6. [0083] Table 5
[0084] Table 6
[0085] Examples 17 through 20
Abrasive pad samples were produced by the above method using the curable diamond slurry with the slurry composition shown in Table 7, and the abrasive pad samples obtained were subjected to abrasion tests by the method as described above. Glass balloons 2 (GB2) and wollastonite (Wl) were used as the filler. The compound amount of the filler was adjusted so that the content of filler (GB2 and Wl) in the abrading portions (volume %) was the same in all Working Examples 17 through 20. Also, the compound amount of the glass balloons 2 expressed as the quantity of glass balloons 2 as a percentage of the total volume of the filler (indicated as "GB percentage" in the table) was adjusted to 25 vol % (Working Example 17), 50 vol % (Working Example 18), 75 vol % (Working Example 19), and 100 vol % (Working Example 20). The results of the abrasion tests are as listed in Table 8.
[0086] Comparative Example 4
Abrasive pad samples were produced by the above method using the curable diamond slurry with the slurry composition shown in Table 7, and the abrasive pad samples obtained were subjected to abrasion tests by the method as described above. Wollastonite (Wl) was used as the filler. Also, the compound amount of the filler was adjusted so that the content of filler in the abrading portions (volume %) was the same as for Working Examples 17 through 20. The results of the abrasion tests are as listed in Table 8.
[0087] Table 7
[0089] FIGS. 6A to 6D illustrate the results of observation using a scanning electron microscope (SEM) of the abrading portion top face of samples of abrasive pad produced in the working examples and comparative example, after the abrasion test. FIG. 6A illustrates the results for the abrasive pad sample of Working Example 4, FIG. 6B illustrates the results for the abrasive pad sample of Working Example 5, FIG. 6C illustrates the results for the abrasive pad sample of Working Example 6, and FIG. 6D illustrates the results for the abrasive pad sample of Comparative Example 1.
[0090] In the SEM images illustrated in FIGS. 6A and 6B, the substantially spherical crown shaped recesses formed by the glass balloons fracturing or dropping out was seen. In the SEM image illustrated in FIG. 6C, the substantially spherical crown shaped recesses formed by the glass beads dropping out was seen. On the other hand, in the SEM image illustrated in FIG. 6D, this type of recess was not seen.
Reference Numerals
[0091]
1 .. . Abrasive pad
11 . .. Base material layer
12 . .. Abrasive layer
13 . .. Base material
14 . .. Adhesive layer
15 . .. Abrading portion
16 . .. Top face
17 . .. Groove
21 . .. Elastic body layer
22, 24 ... Grinder
23, 25 ... Retainer

Claims

What is Claimed is:
1. An abrasive pad used for abrading the surface of a glass substrate, comprising:
a base material layer; and an abrasive layer provided on one side of the base material layer,
the abrasive layer including a plurality of pillar shaped abrading portions arranged separated from each other on the base material layer,
the abrading portions being made from abrasive material that includes polishing abrasive particles, a filler, and a binder resin,
the polishing abrasive particles including abrasive particles and a glass matrix, and
the filler including a first filler that fractures or drops out when the surface is being abraded, forming substantially spherical crown shaped recesses in the top face of the abrading portions.
2. The abrasive pad according to claim 1, wherein the first filler includes glass balloons with an average particle size of 40 μιη or larger.
3. The abrasive pad according to claim 1 or 2, wherein the first filler includes glass beads with an average particle size of 10 μιη or larger.
4. The abrasive pad according to any one of claims 1 to 3, wherein the filler includes a second filler made from a silicate mineral.
5. The abrasive pad according to any one of claims 1 to 4, wherein the abrading portions have top faces of 4 to 100 mm2.
6. The abrasive pad according to any one of claims 1 to 5, wherein a content of the filler as a percentage of the total volume of the abrasive material is from 10 to 50 vol%.
7. A glass substrate abrading method using the abrasive pad described in any one of claims 1 to 5, comprising:
securing a second surface side of the base material layer on a surface plate and bringing the abrasive layer into contact with an object to be abraded; and relatively rubbing the abrasive pad and the object to be abraded while introducing grinding fluid between the object to be abraded and the abrasive layer.
EP15764427.9A 2014-03-19 2015-03-17 Abrasive pad and glass substrate abrading method Withdrawn EP3120379A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014056538A JP6452295B2 (en) 2014-03-19 2014-03-19 Polishing pad and glass substrate polishing method
PCT/US2015/020859 WO2015142774A1 (en) 2014-03-19 2015-03-17 Abrasive pad and glass substrate abrading method

Publications (2)

Publication Number Publication Date
EP3120379A1 true EP3120379A1 (en) 2017-01-25
EP3120379A4 EP3120379A4 (en) 2017-11-01

Family

ID=54145183

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15764427.9A Withdrawn EP3120379A4 (en) 2014-03-19 2015-03-17 Abrasive pad and glass substrate abrading method

Country Status (6)

Country Link
US (1) US20170066099A1 (en)
EP (1) EP3120379A4 (en)
JP (1) JP6452295B2 (en)
KR (1) KR20160135269A (en)
CN (1) CN106104766A (en)
WO (1) WO2015142774A1 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6033886B2 (en) 2011-12-30 2016-11-30 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Shaped abrasive particles and method for forming the same
PL2797716T3 (en) 2011-12-30 2021-07-05 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
WO2013106602A1 (en) 2012-01-10 2013-07-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
CA2987793C (en) 2012-01-10 2019-11-05 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
EP3834988B1 (en) 2012-05-23 2023-11-08 Saint-Gobain Ceramics & Plastics Inc. Shaped abrasive particles and methods of forming same
EP2866977B8 (en) 2012-06-29 2023-01-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
KR101736085B1 (en) 2012-10-15 2017-05-16 생-고뱅 어브레이시브즈, 인코포레이티드 Abrasive particles having particular shapes and methods of forming such particles
CN105073343B (en) 2013-03-29 2017-11-03 圣戈班磨料磨具有限公司 Abrasive particle with given shape, the method for forming this particle and application thereof
CN105764653B (en) 2013-09-30 2020-09-11 圣戈本陶瓷及塑料股份有限公司 Shaped abrasive particles and methods of forming the same
EP3089851B1 (en) 2013-12-31 2019-02-06 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
MX394114B (en) 2014-04-14 2025-03-24 Saint Gobain Ceramics ABRASIVE ARTICLE INCLUDING SHAPED ABRASIVE PARTICLES.
KR101884178B1 (en) 2014-04-14 2018-08-02 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Abrasive article including shaped abrasive particles
WO2015184355A1 (en) 2014-05-30 2015-12-03 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
TWI634200B (en) 2015-03-31 2018-09-01 聖高拜磨料有限公司 Fixed abrasive article and method of forming same
EP3277459B1 (en) 2015-03-31 2023-08-16 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
CN115781499A (en) 2015-06-11 2023-03-14 圣戈本陶瓷及塑料股份有限公司 Abrasive articles comprising shaped abrasive particles
JP6754519B2 (en) * 2016-02-15 2020-09-16 国立研究開発法人海洋研究開発機構 Polishing method
JP6309161B2 (en) 2016-03-25 2018-04-11 バンドー化学株式会社 Abrasive
PL3455321T3 (en) 2016-05-10 2022-12-12 Saint-Gobain Ceramics&Plastics, Inc. Methods of forming abrasive particles
WO2017197002A1 (en) 2016-05-10 2017-11-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
CN105773458B (en) * 2016-05-16 2017-08-29 衢州学院 A kind of high solids content nanometer spherical silicon dioxide polishing film and preparation method thereof
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
USD859767S1 (en) * 2017-07-07 2019-09-10 Inland Diamond Products Company Flexible abrasive pad
USD873517S1 (en) * 2017-07-21 2020-01-21 3M Innovative Properties Company Floor scrubbing pad
USD866892S1 (en) * 2017-07-28 2019-11-12 3M Innovative Properties Company Scouring pad
KR102608901B1 (en) 2018-12-24 2023-12-01 삼성전자주식회사 Wafer Grinding Wheel
US20220212314A1 (en) * 2019-04-15 2022-07-07 Arizona Board Of Regents On Behalf Of The University Of Arizona Pitch layer pad for smoothing optical surfaces
JP3224896U (en) * 2019-11-13 2020-01-30 バンドー化学株式会社 Polishing pad
JP2021098250A (en) * 2019-12-20 2021-07-01 スリーエム イノベイティブ プロパティズ カンパニー Polishing sheet and polishing method
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
CN114846112A (en) 2019-12-27 2022-08-02 圣戈本陶瓷及塑料股份有限公司 Abrasive article and method of forming the same
CN113211336B (en) * 2021-03-31 2022-03-08 安徽禾臣新材料有限公司 Polishing pad for polishing corners of electronic display screen and production method thereof
CN114043380B (en) * 2021-11-18 2022-11-29 北京烁科精微电子装备有限公司 Grinding pad and grinding device with same
WO2023225356A1 (en) * 2022-05-20 2023-11-23 3M Innovative Properties Company Abrasive assembly with abrasive segments

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799939A (en) * 1987-02-26 1989-01-24 Minnesota Mining And Manufacturing Company Erodable agglomerates and abrasive products containing the same
JPS63234037A (en) * 1987-02-26 1988-09-29 ミネソタ マイニング アンド マニユフアクチユアリング カンパニー Polishing article and its production
US5078753A (en) * 1990-10-09 1992-01-07 Minnesota Mining And Manufacturing Company Coated abrasive containing erodable agglomerates
US6354929B1 (en) * 1998-02-19 2002-03-12 3M Innovative Properties Company Abrasive article and method of grinding glass
US6458018B1 (en) * 1999-04-23 2002-10-01 3M Innovative Properties Company Abrasive article suitable for abrading glass and glass ceramic workpieces
US6322427B1 (en) * 1999-04-30 2001-11-27 Applied Materials, Inc. Conditioning fixed abrasive articles
US6394888B1 (en) * 1999-05-28 2002-05-28 Saint-Gobain Abrasive Technology Company Abrasive tools for grinding electronic components
JP2001225273A (en) * 2000-02-15 2001-08-21 Xebec Technology Co Ltd Polishing/grinding material
KR100733948B1 (en) * 2000-04-28 2007-07-02 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Abrasive Products and Methods for Glass Grinding
US8545583B2 (en) * 2000-11-17 2013-10-01 Wayne O. Duescher Method of forming a flexible abrasive sheet article
JP4530611B2 (en) * 2002-12-06 2010-08-25 株式会社ノリタケカンパニーリミテド Resinoid grinding wheel
US6951504B2 (en) * 2003-03-20 2005-10-04 3M Innovative Properties Company Abrasive article with agglomerates and method of use
US8002612B2 (en) * 2004-04-08 2011-08-23 3M Innovative Properties Company Attachment system for a sanding tool
US7618306B2 (en) * 2005-09-22 2009-11-17 3M Innovative Properties Company Conformable abrasive articles and methods of making and using the same
US8142891B2 (en) * 2008-12-17 2012-03-27 3M Innovative Properties Company Dish-shaped abrasive particles with a recessed surface
US8142532B2 (en) * 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with an opening
JP2012064295A (en) * 2009-11-10 2012-03-29 Showa Denko Kk Method for manufacturing glass substrate for magnetic recording medium
TWI544064B (en) * 2010-09-03 2016-08-01 聖高拜磨料有限公司 Bonded abrasive article and method of forming
WO2012138705A2 (en) * 2011-04-05 2012-10-11 Universal Photonics, Inc. A self-conditioning polishing pad and a method of making the same
JP6188286B2 (en) * 2012-07-13 2017-08-30 スリーエム イノベイティブ プロパティズ カンパニー Polishing pad and glass, ceramics, and metal material polishing method

Also Published As

Publication number Publication date
US20170066099A1 (en) 2017-03-09
CN106104766A (en) 2016-11-09
JP2015178155A (en) 2015-10-08
KR20160135269A (en) 2016-11-25
EP3120379A4 (en) 2017-11-01
WO2015142774A1 (en) 2015-09-24
JP6452295B2 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
US20170066099A1 (en) Abrasive pad and glass substrate abrading method
US9415480B2 (en) Abrasive pad and method for abrading glass, ceramic, and metal materials
CN109890564B (en) Shaped vitrified abrasive agglomerates with shaped abrasive particles, abrasive articles, and related methods
TW585900B (en) Abrasive article and method for grinding glass
US9138867B2 (en) Abrasive products and methods for finishing surfaces
TW526126B (en) Dual cured abrasive articles
EP2200780B1 (en) Abrasive products including active fillers
WO2007047558A1 (en) Abrasive article and method of modifying the surface of a workpiece
KR20060101791A (en) How to Grind Glass
WO2016019211A1 (en) Polishing solutions and methods of using same
US10456888B2 (en) Abrasive material and production method of abrasive material
JP4554942B2 (en) Anti-clogging treatment
KR20160015356A (en) Method of forming a recess in a substrate, abrasive wheel, and cover
EP1558427B1 (en) Abrasive articles and method of making and using the articles
CN108430701B (en) Grinding material
TW528659B (en) Anti-loading treatments
KR101990947B1 (en) Grinding material and production method of grinding material
JP2015147922A (en) Composite abrasive grain, method for manufacturing the same, polishing method and polishing device
KR101928085B1 (en) Abrasive article and manufacturing method thereof
KR20180136127A (en) Abrasive article and method for manufacturing thereof
JP2023124048A (en) Polishing pad and method for manufacturing the same

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20170929

RIC1 Information provided on ipc code assigned before grant

Ipc: B24D 18/00 20060101ALI20170925BHEP

Ipc: B24D 3/32 20060101ALI20170925BHEP

Ipc: H01L 21/304 20060101AFI20170925BHEP

Ipc: B24D 3/34 20060101ALI20170925BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: B24D 3/32 20060101ALI20181122BHEP

Ipc: H01L 21/304 20060101AFI20181122BHEP

Ipc: B24D 3/34 20060101ALI20181122BHEP

Ipc: B24D 18/00 20060101ALI20181122BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190110