EP3088743B1 - Side-channel vacuum pump stage with a stripper that is slanted on the suction side - Google Patents
Side-channel vacuum pump stage with a stripper that is slanted on the suction side Download PDFInfo
- Publication number
- EP3088743B1 EP3088743B1 EP16171251.8A EP16171251A EP3088743B1 EP 3088743 B1 EP3088743 B1 EP 3088743B1 EP 16171251 A EP16171251 A EP 16171251A EP 3088743 B1 EP3088743 B1 EP 3088743B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- side channel
- rotor
- channel
- pump
- interrupter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/16—Centrifugal pumps for displacing without appreciable compression
- F04D17/168—Pumps specially adapted to produce a vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D23/00—Other rotary non-positive-displacement pumps
- F04D23/008—Regenerative pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/403—Casings; Connections of working fluid especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/68—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
- F04D29/681—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/516—Surface roughness
Definitions
- the invention relates to a vacuum pump stage.
- the prior art includes vacuum pump stages of threaded pumps, which essentially consist of two parts, namely a stator and a rotor rotating in the stator. Multi-start threads are attached to the outside diameter of the rotor and to the inside diameter of the stator.
- Side channel pumps that is to say pumps which have at least one vacuum pump stage in the form of a side channel pump stage
- These can be easily combined with turbomolecular pumps or other molecular pumps, for example.
- the rotor parts of both pumps can be accommodated on a shaft, so that both form a structural unit.
- the side channel pump stages usually have an impeller, that is to say a rotor, which has blades running around its edge in a channel.
- a further embodiment relates to a vacuum pump stage with an inlet, an outlet and a channel, which has two side walls and a channel bottom, wherein a rotor with a rotor section is immersed in the channel and a pumping action is achieved by the interaction of the rotor section and channel, and with a between Inlet and outlet arranged breaker.
- Vacuum pumps or vacuum pumping stations composed of vacuum pumps are used to generate such vacuum conditions.
- Vacuum pump stages are used in the vacuum pumps according to different operating principles, which are adapted to different pressure ranges in order to compress gas from the desired final vacuum to the atmosphere.
- Blades circulate in a channel and promote a vortex-like gas flow between the inlet and outlet.
- the gas flow follows the blades as it circulates and is used on a wiper or breaker detached and fed to the outlet.
- Such side channel pump stages are for example in the DE 10 2009 021 642 A1 and the DE 10 2010 019 940 A1 disclosed.
- State of the art ( DE 33 17 868 A1 ) belongs to a friction pump, in which at least some of the pump-active surfaces have surface areas with different roughness, such that the roughness of the surface areas facing away from the conveying direction is greater than the roughness of the surface areas facing towards the conveying direction.
- This friction pump which belongs to the prior art, can be further improved with regard to the pumping effect.
- the state of the art ( DE 39 32 288 A1 ) a turbo vacuum pump with a side channel pump stage.
- This side channel pump stage has an inlet oriented in the radial direction.
- a bevel of the interrupter provided between the inlet and the outlet is arranged on an inner radius of the side channel of the inlet.
- This vacuum pump which belongs to the state of the art, can be further improved with regard to avoiding turbulence of the inflowing gas.
- the invention relates to a vacuum pump stage in which an interrupter is arranged between the inlet and the outlet.
- State of the art belongs to a side channel compressor, which has an inlet, an outlet and a rotor, and a channel, the rotor being immersed in the channel with a rotor section and a pumping effect being achieved by the interaction of the rotor section and channel.
- the rotor usually dips into the channel with rotor blades arranged on the rotor.
- An interrupter is arranged between the inlet and the outlet. The interrupter encloses the rotor on all sides and, as is known from practice, abruptly in the vicinity of the Outlet where the side channel ends, as well as near the inlet where the side channel begins.
- the interrupter is designed in such a way that the rotor blades are increasingly enclosed in a uniform manner or are released again in a uniformly decreasing manner.
- the respective rotor blade is thus gradually and continuously enclosed by the interrupter, or continuously released again.
- This does not result in an abrupt, but a continuous and even stripping of the compressed gas components from the respective rotor blades.
- This measure is implemented at the beginning as well as at the end of the breaker, that is, at the inlet and at the outlet.
- the formation of disturbing sound components in the interrupter area is suppressed and gas congestion at the pressure port is reduced. This leads to an increase in efficiency.
- This embodiment which belongs to the prior art, has the disadvantage that the efficiency has not yet been fully exhausted.
- EP 1 541 871 A1 includes a side channel pump stage with rotor elements and stator elements attached to a shaft, which are connected to the fixed parts of the pump. Concentric channels are incorporated in the stator element. The blades of the rotor disc engage in these channels and, during rotation, promote the gas. There are barriers in the channels, which have the effect that the gas is not continuously conveyed in a circle, but rather leaves the channels and is conveyed into the channels adjacent in the axial direction.
- This side channel pump stage which belongs to the prior art, can be improved in terms of its performance.
- the state of the art ( EP 0 767 308 A1 ) a side channel compressor with at least one side channel formed in the compressor housing and an interrupter separating the suction and pressure side, the boundary sides of which extend in the radial direction with respect to the side channel have a course deviating from the axial direction of the compressor, in which the boundary sides of the interrupter over their full radial height are provided with an at least approximately heart-shaped incision, and in which the incisions provided on the suction and pressure sides point towards one another with their tips.
- This side channel compressor which belongs to the prior art, can also be further improved in terms of performance.
- State of the art also includes a ring compressor, in which an interrupter is provided between an inlet and an outlet opening of the side channel.
- a pocket-shaped nozzle is provided on the interrupter. The gas in the blade cells, which is transported via the interrupter, enters this and relaxes in the nozzle.
- This ring compressor which belongs to the prior art, can also be further improved in terms of performance.
- the state of the art also includes ( DE 103 34 950 A1 ) a side channel blower and a Method of operating a side channel blower.
- This side channel compressor which belongs to the prior art, has an impeller with blades arranged on the circumference of the impeller.
- This side channel compressor which belongs to the prior art, can be further improved with regard to the pump performance.
- the technical problem on which the invention is based is to provide an improved vacuum pump stage for side channel pumps which are used in molecular and viscous pressure ranges in order to achieve an increase in performance of the pump.
- the vacuum pump stage according to the invention is defined by claim 1.
- the rotor has a base body and rotor blades arranged on the base body.
- the rotor is arranged in the side channel pumping stage in such a way that two axial sealing surfaces of the side channel pumping stage are assigned to the base body of the rotor. These axial sealing surfaces expand into the so-called side channel in which the rotor blades rotate.
- the interrupter interrupts the side channel between the inlet and outlet.
- the bevel of the interrupter according to the invention on the side facing the inlet advantageously has a depth which is greater than the depth of the axial sealing surface of the pump stage, seen in the axial direction of the pump stage. This means that the bevel is designed to run into the side channel.
- the bevel has an opening angle ⁇ of the bevel that is formed between the at least one bevel and a central axis, and that one with the opening angle ⁇ corresponding supplementary angle ⁇ corresponds to a blade angle ⁇ of the rotor blades.
- the compressed gas flows out of the blades into the side channel in all directions.
- the formation of the vortex flow is not favored, but rather adversely affected.
- the gas only flows in the direction in which the bevel is arranged, since the channel surrounds the rotor blades on the other sides. In the side channel, the gas flows into this area in the area of the bevel and is sucked in by the rotor blades on the sides and expelled again on the side opposite the bevel.
- a vortex flow is formed immediately after the rotor blades emerge from the interrupter, which has a very advantageous effect on the compression and the pumping speed.
- the effect of the vortex flow is optimized by the formation of the complementary angle ⁇ and thus the opening angle ⁇ of the bevel, analogous to the angle of attack of the rotor blades.
- the gas can even reach a supersonic speed at the outlet of the interrupter.
- the interrupter shape according to the invention acts like a Laval nozzle.
- the gas in the blades expands towards the bevel and becomes cooled.
- the gas pressure at the inlet and in particular the gas pressure in the rotor blades decrease. This favors gas intake on the sides of the rotor blades. Due to the ordered gas flow above the rotor blades due to the shape of the interrupter according to the invention, a rapid formation of an ordered vortex flow is achieved immediately after the interrupter. This in turn leads to an increase in the pumping speed and an increase in the compression of the pump.
- the interrupter has the bevel only at the inlet.
- the interrupter at the outlet area has the abrupt end known from the prior art.
- the interrupter has a length d 1 which corresponds to at least one blade length.
- interrupter is meant the area that has a reduced cross section compared to the channel.
- the at least one bevel has a length d 2 which corresponds to at least one or two blade lengths. This also ensures optimal pumping speed and optimal compression.
- the invention optionally provides that the at least one bevel is linear is trained. This optimally favors the formation of the vortex flow.
- the channel has a round or angular cross section or an angular cross section with rounded corners.
- the chamfer towards the inlet is advantageous in order to optimize the pump performance.
- the channel has at least one side wall and the at least one side wall of the channel is curved. This design of the side channel is particularly advantageous.
- the bevel is formed in the radial direction of the vacuum pump stage during the transition into the side channel over the entire width of the channel. This also has a positive influence on the formation of the vortex flow.
- Another advantageous embodiment which is however not part of the invention, provides that the bevel in the radial direction of the vacuum pump stage has only a part of the entire width of the channel during the transition into the side channel.
- the bevel has a maximum depth that corresponds to the axial depth of the channel. This embodiment allows a good formation of the vortex flow.
- the bevel has a maximum depth up to an axial sealing surface of the rotor disk in the area without blades. This embodiment also allows a sufficient formation of the vortex flow.
- Fig. 1 shows a vacuum pump with a housing 1 and three pump units 14, 16, 18.
- the housing 1 is provided with a gas inlet opening 2 and a gas outlet opening 4.
- the pump units consist of rotating and stationary gas-producing components.
- the rotating components are mounted one behind the other on a shaft 6 in the axial direction.
- the operation of the shaft 6 includes a drive system 8 and bearing elements 10 and 12.
- the fixed components are firmly connected to the housing 1.
- a pump unit 14 facing the gas inlet opening is designed as a turbomolecular pump.
- the pump unit 16 following in the direction of the gas flow consists of several sub-units 16a, 16b, 16c. These each have one or more molecular pump stages of the Gaede type, hereinafter referred to as Gaede stages.
- the Gaede stages are connected in parallel within the subunits.
- the subunits themselves are connected in series. This means that connecting elements 34a for subunit 16a, or 34b for subunit 16b, connect the input sides and on the other side the output sides of the Gaede stages in such a way that a parallel gas flow in the individual subunits is made possible.
- the subunits are connected by connecting elements 36a, 36b and 36c such that the output side of one subunit is connected to the input side of the following subunit.
- the pump unit 18 facing the gas outlet opening is designed as a multi-stage side channel pump. In the Fig. 1 The pump shown is only shown as an example.
- the invention relates to all vacuum pumps in which side channel pump stages are provided.
- grooves are arranged in the surface of thread grooves and / or that grooves are arranged in the surfaces of stators and / or rotors.
- These grooves can have a structure as in Fig. 2 shown.
- the 2 to 6 show possible structures that are evenly mounted in a surface 41, for example a thread groove of a side channel or on a rotor.
- Fig. 2 shows a structure with grooves 40 which have a rounded bottom.
- the grooves 40 are arcuate.
- Fig. 3 shows a trapezoidal structure with a tapered cross section while
- Fig. 4 shows a triangular structure with a tapered cross-section.
- Fig. 5 a rectangular structure is shown.
- Fig. 6 again shows a triangular structure, which has an asymmetrical configuration.
- the depth of the grooves 40 can vary from 1 ⁇ m to 100 ⁇ m.
- the groove width or the distance between the individual grooves 40 can vary from 1 ⁇ m to 1 mm.
- the grooves 40 can be machined into the surface 41 along the direction of flow, transverse to the direction of flow and at an angle to the direction of flow of the gas.
- the grooves 40 can also be created with a grindstone in a surface 41.
- the grooves 40 have an irregular structure.
- the rough surface should have a roughness of 0.1 ⁇ m to 100 ⁇ m, preferably from 2 ⁇ m to 100 ⁇ m.
- standing air forms in the grooves 40, so that the gas friction on the surface 41 is reduced.
- the sliding of gas layers is influenced by this effect.
- boundary layer forces By influencing these so-called boundary layer forces, a sliding of the gases on the surface of the pump-active surfaces is promoted. This increases the speed of the circulation flow and the intensity of the energy exchange between the pump-active surfaces of the rotor and stator. This leads to increased compression, reduced power consumption and increased pumping speed.
- a thread groove 50 of a thread pump is shown.
- the thread groove 50 which is arranged, for example, in a stator 51, as well as the adjacent surfaces of the thread groove 50, are coated with a coating 52, which reduces the friction and improves the sliding properties of the surface compared to an uncoated surface, for example a metal surface, for example aluminum or stainless steel. This measure also reduces the gas friction on the channel surface, which gives rise to the advantages mentioned above.
- Fig. 9 shows a vacuum pump 100 with a gas inlet 102 and a gas outlet 103 and a housing 101.
- the housing 101 is constructed from four housing parts 120, 121, 122, 123, which accommodate the components of the vacuum pump 100.
- Gas entering the vacuum pump 100 through the gas inlet 102 first reaches a molecular stage 105.
- This has an inner stator 505, which is provided with an inner thread groove 507, and an outer stator 506, which is provided with an outer thread groove 508.
- a cylinder 502 with a smooth surface is provided between the inner stator and the outer stator and is connected to the rotor 500.
- the molecular stage 105 is thus designed as a Holweck stage. In the Fig. 9 Holweck stage shown is constructed symmetrically with a second cylinder 502 'surrounded by stator components and therefore works in two stages.
- the rotor is connected to a shaft 108 which is rotatably mounted in roller bearings 110 and 111.
- roller bearings 110 and 111 passive and active magnetic bearings can also be used.
- At least one permanent magnet 113 is arranged on the shaft 108, which interacts with a stationary coil 112 and forms a drive 107 together with the latter.
- the roller bearing 110, the drive 107 and the molecular stage 105 are arranged in the housing parts 120, 121.
- the shaft 108 passes through the housing part 122, which contains a side channel pump stage 104.
- the side channel pump stage 104 is formed by a side channel 401 and an impeller 400, at least one blade 402 being arranged on the impeller 400, which rotates in the side channel by the rotation of the shaft 108 and thus generates the pumping action.
- Gas passes through a transfer channel 124 from the molecular stage 105 into the side channel stage 104 and is expelled through a further transfer channel 125.
- the gas passes through the transfer channel 125 into a forevacuum stage 106 likewise designed as a side channel pump stage, the geometry of the blades 602 arranged on the impeller 600 and rotating in the side channel 601 deviating from the geometry of the blades 402 here. From this pump stage 106, the gas from the vacuum pump 100 is expelled through the gas outlet 103.
- Fig. 10 shows a section through the housing part 122 along the line II of Fig. 9 ,
- the impeller 400 is seated on the shaft 108. This has an edge 403, on which blades 402 are evenly distributed along the circumference.
- the side channel 401 surrounds the impeller, the side channel essentially radially surrounding the blade area of the impeller in the radial direction. Only a part of the circumference is close to the impeller.
- This section forms an interrupter 404, which separates the suction and discharge sides from one another, and at which the gas stream which forms in the side channel and follows the rotation of the impeller is detached therefrom and transferred to the transfer channel 125.
- the side channel 401 has a channel base 420 and two side walls 421, 422.
- the side walls 421, 422 are curved. That is, they have a concave shape.
- the blades 402 of the impeller or rotor 400 protrude completely into the side channel 401.
- a radius R S 1 of a blade base 423 is the same size as the radius R S 1 radially in the direction of the Shaft arranged boundary surface 424 of the side channel 401.
- the pumping performance of the side channel pump stage is significantly improved by the curved side surfaces 421, 422.
- the web between the blades is advantageously made as small as possible (not shown).
- the bucket volume filled with gas should be as large as possible.
- Improvements in the vacuum data are also achieved by an optimized setting of the side channel radius R S 3 (80% to 120% of the rotor width) and the distance between two centers of the side channel semicircles d S 1 (20% to 120% of the rotor width).
- the optimal radius R S 3 and distance d S 1 depend on the circumferential speed of the rotor disk and on the blade size.
- the dimensions R R 1 , R R 3 , d R 1 , blade height h and blade angle ⁇ are predetermined.
- the dimension R S 1 is predetermined by the lower blade edge of the rotor disk.
- ⁇ denotes the axial gap between the rotor and the stator disk.
- the axial gap ⁇ can preferably be from 0.01 mm to 0.5 mm. Small axial gaps on the exhaust side and large axial gaps on the intake side make sense. If a labyrinth seal is used on the axial surface between the rotor and stator disks, the axial gap can be more than 0.5 mm.
- the guide values for the axial gaps can be selected as follows: ⁇ ⁇ 0.3 mm For p 2 ⁇ 10 mbar ⁇ ⁇ 0.2 mm For 10 mbar ⁇ p 2 ⁇ 100 mbar ⁇ ⁇ 0.15 mm For p 2 > 100 mbar
- Fig. 12 is a comparison of side channels rectangular in cross section and side channels with two side walls semi-circular in cross section with V-shaped rotor blades at 800 Hz and 1000 Hz rotational frequency in comparison.
- Curves 716, 717, 718, 719 represent the course of the compression as a function of the pressure.
- the lower two curves 718, 719 refer to a rotational frequency of 800 Hz.
- a side channel with semicircular side walls has a higher compression (curve 718) on as a prior art cross-sectionally rectangular channel (curve 719).
- the two upper curves 716, 717 relate to a rotational frequency of 1000 Hz.
- the upper curve 716 represents the compression as a function of the pressure for a side channel with side walls which are semicircular in cross section.
- the compression due to the design of the side channel shown here is significantly increased compared to a side channel with a rectangular cross section (curve 717). It can be spotted, that the side channels with two side walls that are semicircular in cross section have a significantly better compression.
- Fig. 13 the dependence of the compression factor on the axial gap is shown. Like the legend in Fig. 13 As can be seen above, axial gaps between 0.15 mm and 0.4 mm have been recorded. The compression factor k 0 is greater, the smaller the axial gap.
- rotor disks of a multi-stage side channel pump with the same blade size have the same speed, but can have different peripheral speeds depending on the rotor disk diameter R R 1 . For this reason, rotor disks with different diameters R R 1 and the same blade size should have side channels with different radii R S 3 and distances d S 1 .
- the compression factor is given as a function of the outlet pressure p 2 , rotational frequency f and side channel diameter R S 3 .
- the compression factor is shown as a function of the outlet pressure p 2 , rotational frequency f, distance d S 1 .
- Fig. 16 shows the impeller 400 with the blades 402.
- the blades 402 are V-shaped.
- the blade base has a projection in the area of a central plane 425 of the impeller 400, which protrudes from the edges 426, 427 of the blade base and tapers to the central plane 425.
- the impeller 400 rotates in the direction of arrow A.
- Fig. 17 shows the impeller 400 according to FIG Fig. 16 in side view in the direction of arrow B.
- the impeller 400 carries the V-shaped blades 402.
- the blades have a blade base 423.
- a projection 428 protrudes above the blade base 423.
- An optimal blade height is 60% to 100% of the rotor disc width.
- An optimal side channel radius depends on the circumferential speed of the rotor disk 400 and can be from 80% to 120% of the rotor disk width.
- the distance d S 1 also depends on the peripheral speed of the rotor disk and can be from 20% to 120% of the rotor disk width.
- the optimal number of blades or the optimal distance between the blades does not depend on the speed.
- the optimal distance between the blades is proportional to the blade size and also depends on the side channel size. It is from 50% to 100% of the rotor disk width, the optimal distance between the blades is less than or equal to 55% for small side channels (side channel area is not greater than 2.5 times the blade area) and is greater than or equal to 85% for large side channels (side channel area not less than 5 times the blade area).
- the optimal number of blades becomes smaller as the side channels increase, or the optimal distance between blades increases.
- the side channel area A SK and the blade area A Sch can be calculated using equations 4 to 7.
- the web width of the blades should be as small as possible.
- the minimum web width is limited by the manufacturing accuracy and the material strength of the rotor disc.
- the 18 to 20 show further design options of a side channel.
- the side channel 401 is generally circular.
- the side channel 401 does not have a flat side channel bottom, but rather an overall circular cross section.
- the side channel 401 is also circular. However, the radius of the side channel 401 is smaller than in FIG Fig. 18 shown.
- the side channel 401 has concave side walls 421, 422.
- the channel floor 420 is flat.
- the side channel cross-sectional diameter is advantageously constant over the entire circumference of the side channel.
- the side channel cross-sectional diameter may decrease from an inlet 124 to an outlet 125.
- Fig. 9 are the entrance 124 and the outlet 125 arranged diametrically opposite.
- an arrangement in a side channel pump stage, as shown in FIG Fig. 10 has been drawn in dashed lines.
- An inlet 124 ' is drawn here. With this configuration, it is possible for the side channel cross-sectional diameter to decrease from the inlet 124 ′ to the outlet 125. This reduction can take place linearly with the circumferential angle. It can also represent another function of the circumferential angle.
- a side channel surface having a center line 126 of the side passage as a function of radius and ⁇ from the angle.
- the reduction in the side channel area can, as in Fig. 21a shown, done from above. It can also be done from below, as shown Fig. 21b shown. However, it can also be done from above and from below, as shown Fig. 21c shown.
- the side channel diameter can also be reduced from one or both sides along the side channel from inlet 124 'to outlet 125. The inlet 124 'is in Fig. 10 shown.
- Fig. 22 shows a further embodiment of a side channel 401.
- the side channel 401 has side walls 421, 422 which are designed in the form of a circular section.
- the channel floor 420 is also not shown flat in this exemplary embodiment, but consists of two circular sections with a radius R S 3 .
- Fig. 23 shows a further embodiment of an embodiment of the side channel 401.
- the side channel 401 has curved side surfaces 421, 422 and one not flat channel floor 420 on.
- the curved side surfaces 421, 422 do not correspond to circular sections in this case.
- a breaker 404 is in Fig. 10 shown.
- the breaker is in the side channel pumping stage 104 Fig. 9 arranged.
- the figure description of the Fig. 9 and 10 are fully transferable to the present invention.
- FIG. 24 shows a prior art breaker 404 having an inlet 701 and an outlet 702.
- the interrupter 404 as well as the inlet 701 and the outlet 702 are part of a stator 700.
- the upper illustration in FIG Fig. 24 shows a side view of the interrupter 404.
- the lower illustration shows a top view of the interrupter 404.
- a rotor 703 is shown in dashed lines in the upper illustration.
- the rotor 703 rotates at a rotational speed v.
- the interrupter 404 belonging to the prior art has a region d 1 in which the interrupter 404 completely surrounds the rotor 703.
- a side channel 704 ends abruptly. There are disturbing sound components and a gas jam at the pressure port 702.
- Fig. 25 10 shows the breaker 404 located in the stator 700.
- An inlet 701 and an outlet 702 are arranged in the stator 700 for the side channel 704.
- a rotor 703 rotates in the stator at a speed v.
- the interrupter 404 has a region over a length d 1 , in which the rotor 703 is completely enclosed by the interrupter 404.
- the interrupter In an area over a length d 2 , the interrupter has a bevel 705.
- the side channel 701 expands continuously to its total width outside the area d 2 .
- Rotor blades 706 are arranged on the rotor 703, shown only schematically.
- the length d 1 of the breaker is greater than a blade length.
- the length d 2 of the bevel 705 is also longer than a blade length.
- the channel 701 may have a shape as shown in FIG Fig. 11 for channel 401 is shown.
- the rotor 400 is delimited by a sealing surface 707 of the stator. This sealing surface 707 is arranged in the blade-free area of the rotor 400.
- the interrupter 404 is shown with the bevel 705.
- the bevel 705 tapers in the direction of the region d 2 of the interrupter 404 in which the interrupter 404 completely surrounds the rotor 703.
- An angle ⁇ indicates the opening angle of the bevel 705.
- An angle ⁇ is a complementary angle to the angle ⁇ , that is, the sum of the angles ⁇ and ⁇ together results in 180 °.
- the angle ⁇ corresponds to a blade angle of the rotor blades 706 of the rotor 703, as in FIG Fig. 26 shown.
- FIG. 26 A rotor blade 706 is shown in section and the angle of attack ⁇ . D is the blade height.
- Fig. 27 represents a further embodiment.
- the interrupter 404 which is formed in the stator 700, has the bevel 705.
- An additional bevel 706 is provided in the direction of the side channel 704. This additional bevel, which has a length d 3 , results in an even higher compression and a higher pumping speed.
- Fig. 28 the compression of a side channel pump stage is shown.
- the curves show on the one hand the values for a standard breaker and on the other hand for a breaker shape according to Fig. 25 , It can be seen that the compression is clearly in accordance with the breaker shape Fig. 25 is increased.
- Fig. 29 the pumping speed of a side channel pump stage is shown.
- Fig. 25 used breaker shape leads to a higher pumping speed than a breaker shape belonging to the prior art.
- Fig. 30 corresponds to the invention and shows the stator disk 700 with a side channel 704 and an outlet 702.
- the interrupter 404 borders with a surface 708 while maintaining a narrow gap (not shown) on blades of the rotor, which is also not shown here.
- the interrupter has the bevel 705, which widens in the direction of the channel 704.
- a sealing surface 707 has a lower level than a surface 709 of the stator 700, which results in the edge or surface 708.
- the bevel 705 firstly represents a radial opening of the interrupter 404 and also an axial depression of the sealing surface 707.
- the stator 700 has a bore 710 for the passage of a shaft of the rotor (not shown).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Non-Positive Displacement Air Blowers (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
Die Erfindung betrifft eine Vakuumpumpstufe.The invention relates to a vacuum pump stage.
Zum Stand der Technik gehören Vakuumpumpstufen von Gewindepumpen, die im Wesentlichen aus zwei Teilen bestehen, nämlich aus einem Stator und einem in dem Stator rotierenden Rotor. Auf dem Außendurchmesser des Rotors und auf dem Innendurchmesser des Stators sind mehrgängige Gewinde angebracht.The prior art includes vacuum pump stages of threaded pumps, which essentially consist of two parts, namely a stator and a rotor rotating in the stator. Multi-start threads are attached to the outside diameter of the rotor and to the inside diameter of the stator.
Seitenkanalpumpen, das heißt, Pumpen, die wenigstens eine Vakuumpumpstufe in Form einer Seitenkanalpumpstufe aufweisen, können in mehrstufiger Bauweise im hohen Druckbereich bis hin zum Atmosphärendruck eingesetzt werden. Diese lassen sich beispielsweise gut mit Turbomolekularpumpen oder auch anderen Molekularpumpen kombinieren. Die Rotorteile beider Pumpen können auf einer Welle untergebracht werden, so dass beide eine Baueinheit bilden. Die Seitenkanalpumpstufen weisen üblicherweise ein Laufrad, das heißt, einen Rotor auf, welcher an seinem Rand in einem Kanal umlaufende Schaufeln aufweist.Side channel pumps, that is to say pumps which have at least one vacuum pump stage in the form of a side channel pump stage, can be used in a multi-stage construction in the high pressure range up to atmospheric pressure. These can be easily combined with turbomolecular pumps or other molecular pumps, for example. The rotor parts of both pumps can be accommodated on a shaft, so that both form a structural unit. The side channel pump stages usually have an impeller, that is to say a rotor, which has blades running around its edge in a channel.
Um eine hinreichend gute Pumpleistung bei den aus der Praxis bekannten Pumpen zu erzielen, sind in der Regel mehrere Stufen und aufwändig gestaltete Laufräder beispielsweise der Seitenkanalpumpstufe notwendig.In order to achieve a sufficiently good pump performance in the pumps known from practice, several stages and elaborately designed impellers, for example the side channel pump stage, are generally necessary.
Eine weitere Ausführungsform betrifft eine Vakuumpumpstufe mit einem Einlass, einem Auslass und einem Kanal, der zwei Seitenwände und einen Kanalboden aufweist, wobei ein Rotor mit einem Rotorabschnitt in den Kanal eintaucht und durch Zusammenwirken von Rotorabschnitt und Kanal eine Pumpwirkung erreicht wird, und mit einem zwischen Einlass und Auslass angeordnetem Unterbrecher.A further embodiment relates to a vacuum pump stage with an inlet, an outlet and a channel, which has two side walls and a channel bottom, wherein a rotor with a rotor section is immersed in the channel and a pumping action is achieved by the interaction of the rotor section and channel, and with a between Inlet and outlet arranged breaker.
Viele industrielle Prozesse laufen unter Vakuumbedingungen im molekularen Strömungsbereich ab. Zur Erzeugung solcher Vakuumbedingungen werden Vakuumpumpen oder aus Vakuumpumpen zusammengesetzte Vakuumpumpstände eingesetzt. In den Vakuumpumpen kommen Vakuumpumpstufen nach unterschiedlichen Wirkprinzipien zum Einsatz, die unterschiedlichen Druckbereichen angepasst sind, um Gas vom gewünschten Endvakuum bis zur Atmosphäre zu verdichten.Many industrial processes run under vacuum conditions in the molecular flow range. Vacuum pumps or vacuum pumping stations composed of vacuum pumps are used to generate such vacuum conditions. Vacuum pump stages are used in the vacuum pumps according to different operating principles, which are adapted to different pressure ranges in order to compress gas from the desired final vacuum to the atmosphere.
Gegen Atmosphäre verdichtend werden beispielsweise Seitenkanalpumpstufen eingesetzt. In diesen laufen Schaufeln in einem Kanal um und fördern einen wirbelartigen Gasstrom zwischen Ein- und Auslass. Der Gasstrom folgt den Schaufeln beim Umlauf und wird an einem so genannten Abstreifer oder Unterbrecher abgelöst und dem Auslass zugeführt.Side channel pumping stages are used to compress the atmosphere. In these, blades circulate in a channel and promote a vortex-like gas flow between the inlet and outlet. The gas flow follows the blades as it circulates and is used on a wiper or breaker detached and fed to the outlet.
Um eine hinreichend gute Pumpleistung zu erzielen, sind in der Regel mehrere Stufen und aufwändig gestaltete Laufräder der Seitenkanalpumpstufe notwendig. Der zu betreibende Aufwand wird beispielsweise an der Vielzahl von Schaufeln ersichtlich, die zumindest bei kleinen Stückzahlen aufwändig aus Vollmaterial herausgearbeitet werden müssen.In order to achieve a sufficiently good pump performance, several stages and elaborately designed impellers of the side channel pump stage are usually necessary. The effort to be made is evident, for example, from the large number of blades which, at least in the case of small quantities, have to be elaborately worked out of solid material.
Derartige Seitenkanalpumpstufen sind beispielsweise in der
Diese zum Stand der Technik gehörenden Seitenkanalpumpstufen können noch hinsichtlich ihrer Pumpleistung verbessert werden.These side channel pump stages belonging to the prior art can still be improved with regard to their pumping performance.
Zum Stand der Technik (
Diese zum Stand der Technik gehörende Reibungspumpe kann hinsichtlich der Pumpwirkung noch weiter verbessert werden.This friction pump, which belongs to the prior art, can be further improved with regard to the pumping effect.
Weiterhin gehört zum Stand der Technik (
Darüber hinaus gehört zum Stand der Technik (
Weiterhin gehört zum Stand der Technik (
Die Erfindung betrifft eine Vakuumpumpstufe, bei der zwischen dem Einlass und dem Auslass ein Unterbrecher angeordnet ist.The invention relates to a vacuum pump stage in which an interrupter is arranged between the inlet and the outlet.
Zum Stand der Technik (
Gemäß dem Stand der Technik (
Zum Stand der Technik (
Weiterhin gehört zum Stand der Technik (
Darüber hinaus gehört zum Stand der Technik (
Zum Stand der Technik (
Weiterhin gehören zum Stand der Technik (
Das der Erfindung zugrunde liegende technische Problem besteht darin, eine verbesserte Vakuumpumpstufe für Seitenkanalpumpen anzugeben, die in molekularen und viskosen Druckbereichen genutzt werden, um eine Leistungssteigerung der Pumpe zu erzielen.The technical problem on which the invention is based is to provide an improved vacuum pump stage for side channel pumps which are used in molecular and viscous pressure ranges in order to achieve an increase in performance of the pump.
Das technische Problem wird durch eine Vakuumpumpstufe mit den Merkmalen gemäß Anspruch 1 gelöst.The technical problem is solved by a vacuum pump stage with the features according to
Die erfindungsgemäße Vakuumpumpstufe wird von Anspruch 1 definiert.The vacuum pump stage according to the invention is defined by
Der Rotor weist einen Grundkörper und an dem Grundkörper angeordnete Rotorschaufeln auf. Der Rotor ist in der Seitenkanalpumpstufe derart angeordnet, dass dem Grundkörper des Rotors zwei axiale Dichtflächen der Seitenkanalpumpstufe zugeordnet sind. Diese axialen Dichtflächen erweitern sich zu dem sogenannten Seitenkanal, in dem die Schaufeln des Rotors umlaufen. Der Unterbrecher unterbricht den Seitenkanal zwischen Einlass und Auslass. Die erfindungsgemäße Abschrägung des Unterbrechers an der dem Einlass zugewandten Seite weist vorteilhaft eine Tiefe auf, die größer ist als die Tiefe der axialen Dichtfläche der Pumpstufe in axialer Richtung der Pumpstufe gesehen. Das bedeutet, dass die Abschrägung in den Seitenkanal hineinlaufend ausgebildet ist.The rotor has a base body and rotor blades arranged on the base body. The rotor is arranged in the side channel pumping stage in such a way that two axial sealing surfaces of the side channel pumping stage are assigned to the base body of the rotor. These axial sealing surfaces expand into the so-called side channel in which the rotor blades rotate. The interrupter interrupts the side channel between the inlet and outlet. The bevel of the interrupter according to the invention on the side facing the inlet advantageously has a depth which is greater than the depth of the axial sealing surface of the pump stage, seen in the axial direction of the pump stage. This means that the bevel is designed to run into the side channel.
Vorteilhaft ist es, wenn die Abschrägung im Bereich des Unterbrechers lediglich am Einlass vorgesehen ist. Hierdurch erhöht sich der Wirkungsgrad der Pumpstufe gegenüber dem Stand der Technik, bei dem die Abschrägung zusätzlich im Bereich des Auslasses angeordnet ist.It is advantageous if the bevel in the area of the interrupter is only provided at the inlet. This increases the efficiency of the pump stage compared to the state of the Technology in which the bevel is additionally arranged in the area of the outlet.
Gemäß einer besonders vorteilhaften Ausführungsform, die jedoch nicht Teil der Erfindung ist, ist vorgesehen, dass die Abschrägung einen Öffnungswinkel β der Abschrägung aufweist, der zwischen der wenigstens einen Abschrägung und einer Mittelachse ausgebildet ist, und dass ein mit dem Öffnungswinkel β korrespondierender Ergänzungswinkel α einem Schaufelwinkel α der Rotorschaufeln entspricht.According to a particularly advantageous embodiment, which is not part of the invention, it is provided that the bevel has an opening angle β of the bevel that is formed between the at least one bevel and a central axis, and that one with the opening angle β corresponding supplementary angle α corresponds to a blade angle α of the rotor blades.
Dieses stellt eine weitere wesentliche Neuerung zum Stand der Technik dar. Durch diese Maßnahme wird erreicht, dass die Wirbelströmung sich gleich nach dem Einlass, das heißt unmittelbar nach dem Austritt aus dem Unterbrecher, bildet, und nicht erst später im Seitenkanal.This represents a further significant innovation to the prior art. This measure ensures that the vortex flow is formed immediately after the inlet, that is to say immediately after the outlet from the interrupter, and not only later in the side channel.
Wenn die Rotorschaufeln einen Standardunterbrecher verlassen, der einen abrupten Beginn des Seitenkanales aufweist, dann strömt das komprimierte Gas aus den Schaufeln in den Seitenkanal in alle Richtungen. Hierdurch wird die Ausbildung der Wirbelströmung nicht begünstigt, sondern nachteilig beeinflusst. In einem erfindungsgemäß ausgestalteten Unterbrecher strömt das Gas erst lediglich in die Richtung, in die die Abschrägung angeordnet ist, da an den anderen Seiten der Kanal die Rotorschaufeln umschließt. In dem Seitenkanal strömt das Gas im Bereich der Abschrägung in diesen Bereich und wird von den Rotorschaufeln an den Seiten angesaugt und auf der der Abschrägung gegenüberliegenden Seite wieder ausgestoßen. Hierdurch wird gleich nach dem Austritt der Rotorschaufeln aus dem Unterbrecher eine Wirbelströmung ausgebildet, was sich sehr vorteilhaft auf die Kompression und das Saugvermögen auswirkt. Durch die Ausbildung des Komplementärwinkels β und damit des Öffnungswinkels α der Abschrägung analog zu dem Anstellwinkel der Rotorschaufeln wird der Effekt der Wirbelströmung optimiert.When the rotor blades leave a standard breaker that has an abrupt start of the side channel, the compressed gas flows out of the blades into the side channel in all directions. As a result, the formation of the vortex flow is not favored, but rather adversely affected. In an interrupter designed according to the invention, the gas only flows in the direction in which the bevel is arranged, since the channel surrounds the rotor blades on the other sides. In the side channel, the gas flows into this area in the area of the bevel and is sucked in by the rotor blades on the sides and expelled again on the side opposite the bevel. As a result, a vortex flow is formed immediately after the rotor blades emerge from the interrupter, which has a very advantageous effect on the compression and the pumping speed. The effect of the vortex flow is optimized by the formation of the complementary angle β and thus the opening angle α of the bevel, analogous to the angle of attack of the rotor blades.
Am Auslass des Unterbrechers kann das Gas sogar eine Überschallgeschwindigkeit erreichen. Die erfindungsgemäße Unterbrecherform wirkt wie eine Laval-Düse. Das Gas in den Schaufeln expandiert in Richtung der Abschrägung und wird abgekühlt. Der Gasdruck am Einlass und insbesondere der Gasdruck in den Rotorschaufeln sinkt ab. Dies begünstigt die Gasansaugung an den Seiten der Rotorschaufeln. Durch die geordnete Gasströmung oberhalb der Rotorschaufeln wegen der erfindungsgemäßen Unterbrecherform wird eine schnelle Bildung einer geordneten Wirbelströmung unmittelbar nach dem Unterbrecher erreicht. Dieses führt wiederum zu einer Erhöhung des Saugvermögens und einer Erhöhung der Kompression der Pumpe.The gas can even reach a supersonic speed at the outlet of the interrupter. The interrupter shape according to the invention acts like a Laval nozzle. The gas in the blades expands towards the bevel and becomes cooled. The gas pressure at the inlet and in particular the gas pressure in the rotor blades decrease. This favors gas intake on the sides of the rotor blades. Due to the ordered gas flow above the rotor blades due to the shape of the interrupter according to the invention, a rapid formation of an ordered vortex flow is achieved immediately after the interrupter. This in turn leads to an increase in the pumping speed and an increase in the compression of the pump.
Gemäß einer besonders bevorzugten Ausführungsform, die jedoch nicht Teil der Erfindung ist, weist der Unterbrecher lediglich am Einlass die Abschrägung auf. Das bedeutet, dass der Unterbrecher am Auslassbereich das aus dem Stand der Technik bekannte, abrupte Ende aufweist. Für die Erhöhung des Saugvermögens und der Kompression der Pumpe ist es ausreichend, beziehungsweise sogar förderlich, den Kanal lediglich am Einlassbereich abzuschrägen.According to a particularly preferred embodiment, which, however, is not part of the invention, the interrupter has the bevel only at the inlet. This means that the interrupter at the outlet area has the abrupt end known from the prior art. To increase the pumping speed and the compression of the pump, it is sufficient or even beneficial to only bevel the channel at the inlet area.
Gemäß einer weiteren vorteilhaften Ausführungsform, die jedoch nicht Teil der Erfindung ist, weist der Unterbrecher eine Länge d 1 auf, die mindestens einer Schaufellänge entspricht. Mit Unterbrecher ist der Bereich gemeint, der gegenüber dem Kanal einen reduzierten Querschnitt aufweist.According to a further advantageous embodiment, which, however, is not part of the invention, the interrupter has a length d 1 which corresponds to at least one blade length. By interrupter is meant the area that has a reduced cross section compared to the channel.
Es hat sich als besonders vorteilhaft herausgestellt, dass die wenigstens eine Abschrägung eine Länge d 2 aufweist, die mindestens einer oder zwei Schaufellängen entspricht. Auch hierdurch werden ein optimales Saugvermögen und eine optimale Kompression erzielt.It has turned out to be particularly advantageous that the at least one bevel has a length d 2 which corresponds to at least one or two blade lengths. This also ensures optimal pumping speed and optimal compression.
Die Erfindung sieht optional vor, dass die wenigstens eine Abschrägung linear ausgebildet ist. Hierdurch wird die Ausbildung der Wirbelströmung optimal begünstigt.The invention optionally provides that the at least one bevel is linear is trained. This optimally favors the formation of the vortex flow.
Eine weitere vorteilhafte Ausführungsform, die jedoch nicht Teil der Erfindung ist, sieht vor, dass der Kanal einen runden oder eckigen Querschnitt oder einen eckigen Querschnitt mit abgerundeten Ecken aufweist. Bei beiden Querschnittsformen ist die Abschrägung in Richtung Einlass vorteilhaft, um die Pumpenleistung zu optimieren.Another advantageous embodiment, which is not part of the invention, provides that the channel has a round or angular cross section or an angular cross section with rounded corners. With both cross-sectional shapes, the chamfer towards the inlet is advantageous in order to optimize the pump performance.
Gemäß einer weiteren vorteilhaften Ausführungsform, die jedoch nicht Teil der Erfindung ist, weist der Kanal wenigstens eine Seitenwand auf und die wenigstens eine Seitenwand des Kanales ist gekrümmt ausgebildet. Diese Ausbildung des Seitenkanales ist besonders vorteilhaft.According to a further advantageous embodiment, which is not part of the invention, the channel has at least one side wall and the at least one side wall of the channel is curved. This design of the side channel is particularly advantageous.
Gemäß einer weiteren vorteilhaften Ausbildung, die jedoch nicht Teil der Erfindung ist, ist die Abschrägung in radialer Richtung der Vakuumpumpstufe beim Übergang in den Seitenkanal über die gesamte Breite des Kanales ausgebildet. Auch hierdurch wird die Ausbildung der Wirbelströmung positiv beeinflusst.According to a further advantageous embodiment, which, however, is not part of the invention, the bevel is formed in the radial direction of the vacuum pump stage during the transition into the side channel over the entire width of the channel. This also has a positive influence on the formation of the vortex flow.
Eine andere vorteilhafte Ausführungsform, die jedoch nicht Teil der Erfindung ist, sieht vor, dass die Abschrägung in radialer Richtung der Vakuumpumpstufe beim Übergang in den Seitenkanal lediglich einen Teil der gesamten Breite des Kanales aufweist.Another advantageous embodiment, which is however not part of the invention, provides that the bevel in the radial direction of the vacuum pump stage has only a part of the entire width of the channel during the transition into the side channel.
Gemäß einer weiteren vorteilhaften Ausbildung, die jedoch nicht Teil der Erfindung ist, weist die Abschrägung eine maximale Tiefe auf, die der axialen Tiefe des Kanales entspricht. Diese Ausführungsform gestattet eine gute Ausbildung der Wirbelströmung.According to a further advantageous embodiment, which is not part of the invention, the bevel has a maximum depth that corresponds to the axial depth of the channel. This embodiment allows a good formation of the vortex flow.
Gemäß einer anderen vorteilhaften, Ausführungsform, die jedoch nicht Teil der Erfindung ist, weist die Abschrägung eine maximale Tiefe bis zu einer axialen Dichtfläche der Rotorscheibe im schaufellosen Bereich auf. Auch diese Ausführungsform gestattet schon eine hinreichende Ausbildung der Wirbelströmung.According to another advantageous embodiment, which, however, is not part of the invention, the bevel has a maximum depth up to an axial sealing surface of the rotor disk in the area without blades. This embodiment also allows a sufficient formation of the vortex flow.
Weitere Merkmale und Vorteile ergeben sich anhand der zugehörigen Zeichnung, in der mehrere Ausführungsbeispiele einer Vakuumpumpstufe nur beispielhaft dargestellt sind, und wobei die Erfindung in
- Fig. 1
- einen Längsschnitt durch eine Vakuumpumpe mit Seitenkanalpumpstufen;
- Fig. 2
- eine schematische Darstellung einer bogenförmigen Rillenstruktur im Querschnitt oder Längsschnitt;
- Fig. 3
- eine schematische Darstellung einer trapezförmigen Rillenstruktur im Querschnitt oder Längsschnitt;
- Fig. 4
- eine schematische Darstellung einer dreieckförmigen Rillenstruktur im Querschnitt oder Längsschnitt;
- Fig. 5
- eine schematische Darstellung einer rechteckförmigen Rillenstruktur im Querschnitt oder Längsschnitt;
- Fig. 6
- eine schematische Darstellung einer dreieckförmigen Rillenstruktur im Querschnitt oder Längsschnitt;
- Fig. 7
- einen Querschnitt oder Längsschnitt durch eine unregelmäßige Rillenstruktur;
- Fig. 8
- eine beschichtete Gewindenut im Querschnitt;
- Fig. 9
- einen Längsschnitt durch eine Vakuumpumpe mit einer Seitenkanalpumpstufe;
- Fig. 10
- einen Schnitt quer zur Wellenachse durch die Seitenkanalpumpstufe gemäß
Fig. 9 entlang der Linie I-I; - Fig. 11
- einen Teilquerschnitt durch einen Seitenkanal;
- Fig. 12
- eine Darstellung eines Vergleiches der Kompressionen von rechteckigen und kreisförmigen Seitenkanälen mit V-förmigen Rotorschaufeln bei 800 Hz und 1000 Hz Drehfrequenz;
- Fig. 13
- eine Darstellung der Abhängigkeit des Kompressionsfaktors vom Axialspalt zwischen Rotor und Statorscheiben bei 217 m/s Rotorumfangsgeschwindigkeit;
- Fig. 14a
- eine Darstellung des Kompressionsfaktors in Abhängigkeit von Auslassdruck p 2 , Drehfrequenz f und Seitenkanaldurchmesser R S3 bei 1000 Hz;
- Fig. 14b
- eine Darstellung des Kompressionsfaktors in Abhängigkeit von Auslassdruck p 2 , Drehfrequenz f und Seitenkanaldurchmesser R S3 bei 800 Hz;
- Fig. 15a
- eine Darstellung des Kompressionsfaktors in Abhängigkeit von Auslassdruck p 2 , Drehfrequenz f und Abstand d s1 bei 1000 Hz;
- Fig. 15b
- eine Darstellung des Kompressionsfaktors in Abhängigkeit von Auslassdruck p 2 , Drehfrequenz f und Abstand d s1 bei 800 Hz;
- Fig. 16
- eine Draufsicht auf eine Rotorscheibe mit V-förmigen Schaufeln;
- Fig. 17
- eine Seitenansicht der Rotorscheibe gemäß
Fig. 16 ; - Fig. 18
- ein geändertes Ausführungsbeispiel eines Querschnittes eines Seitenkanales;
- Fig. 19
- ein geändertes Ausführungsbeispiel eines Querschnittes eines Seitenkanales;
- Fig. 20
- ein geändertes Ausführungsbeispiel eines Querschnittes eines Seitenkanales;
- Fig. 21a
- eine Darstellung der Verringerung der Seitenkanalfläche von oben;
- Fig. 21b
- eine Darstellung der Verringerung der Seitenkanalfläche von unten;
- Fig. 21c
- eine Darstellung der Verringerung der Seitenkanalfläche von oben und von unten;
- Fig. 22
- ein geändertes Ausführungsbeispiel;
- Fig. 23
- ein geändertes Ausführungsbeispiel;
- Fig. 24
- einen zum Stand der Technik gehörenden Unterbrecher in Seitenansicht und in Draufsicht (schematisch);
- Fig. 25
- einen Unterbrecher in Seitenansicht und in Draufsicht (schematisch) ;
- Fig. 26
- eine Rotorschaufel in Seitenansicht zur Darstellung des Anstellwinkels a;
- Fig. 27
- ein geändertes Ausführungsbeispiel;
- Fig. 28
- eine Darstellung einer Kompression einer Seitenkanalstufe mit Standardunterbrecher und mit einem hier gezeigten Unterbrecher;
- Fig. 29
- eine Darstellung des Saugvermögens einer Seitenkanalstufe mit Standardunterbrecher und mit einem hier gezeigten Unterbrecher;
- Fig. 30
- eine Statorscheibe mit einem erfindungsgemäßen Unterbrecher in axialer Draufsicht.
- Fig. 1
- a longitudinal section through a vacuum pump with side channel pump stages;
- Fig. 2
- a schematic representation of an arcuate groove structure in cross section or longitudinal section;
- Fig. 3
- a schematic representation of a trapezoidal groove structure in cross section or longitudinal section;
- Fig. 4
- a schematic representation of a triangular groove structure in cross section or longitudinal section;
- Fig. 5
- a schematic representation of a rectangular groove structure in cross section or longitudinal section;
- Fig. 6
- a schematic representation of a triangular groove structure in cross section or longitudinal section;
- Fig. 7
- a cross section or longitudinal section through an irregular groove structure;
- Fig. 8
- a coated thread groove in cross section;
- Fig. 9
- a longitudinal section through a vacuum pump with a side channel pump stage;
- Fig. 10
- a section transverse to the shaft axis through the side channel pump stage
Fig. 9 along line II; - Fig. 11
- a partial cross section through a side channel;
- Fig. 12
- a representation of a comparison of the compressions of rectangular and circular side channels with V-shaped rotor blades at 800 Hz and 1000 Hz rotational frequency;
- Fig. 13
- a representation of the dependence of the compression factor on the axial gap between the rotor and stator disks at 217 m / s rotor peripheral speed;
- 14a
- a representation of the compression factor as a function of outlet pressure p 2 , rotational frequency f and side channel diameter R S 3 at 1000 Hz;
- 14b
- a representation of the compression factor as a function of outlet pressure p 2 , rotational frequency f and side channel diameter R S 3 at 800 Hz;
- 15a
- a representation of the compression factor as a function of outlet pressure p 2 , rotational frequency f and distance d s 1 at 1000 Hz;
- 15b
- a representation of the compression factor as a function of outlet pressure p 2 , rotational frequency f and distance d s 1 at 800 Hz;
- Fig. 16
- a plan view of a rotor disk with V-shaped blades;
- Fig. 17
- a side view of the rotor disk according
Fig. 16 ; - Fig. 18
- a modified embodiment of a cross section of a side channel;
- Fig. 19
- a modified embodiment of a cross section of a side channel;
- Fig. 20
- a modified embodiment of a cross section of a side channel;
- Fig. 21a
- a representation of the reduction of the side channel area from above;
- Fig. 21b
- a representation of the reduction of the side channel area from below;
- Fig. 21c
- a representation of the reduction of the side channel area from above and from below;
- Fig. 22
- a modified embodiment;
- Fig. 23
- a modified embodiment;
- Fig. 24
- a breaker belonging to the prior art in side view and in plan view (schematic);
- Fig. 25
- a breaker in side view and in plan view (schematic);
- Fig. 26
- a rotor blade in side view to show the angle of attack a;
- Fig. 27
- a modified embodiment;
- Fig. 28
- a representation of a compression of a side channel stage with standard breaker and with a breaker shown here;
- Fig. 29
- a representation of the pumping speed of a side channel stage with standard breaker and with a breaker shown here;
- Fig. 30
- a stator with an interrupter according to the invention in axial plan view.
Eine der Gaseintrittsöffnung zugewandte Pumpeinheit 14 ist als Turbomolekularpumpe ausgebildet. Die in Richtung Gasströmung folgende Pumpeinheit 16 besteht aus mehreren Untereinheiten 16a, 16b, 16c. Diese weisen jeweils eine oder mehrere Molekularpumpstufen nach der Bauart von Gaede, im Folgenden Gaede-Stufen genannt, auf. Innerhalb der Untereinheiten sind die Gaede-Stufen parallel geschaltet. Die Untereinheiten selbst sind in Reihe geschaltet. Dies bedeutet, dass Verbindungselemente 34a für die Untereinheit 16a, beziehungsweise 34b für die Untereinheit 16b, die Eingangsseiten und auf der anderen Seite die Ausgangsseiten der Gaede-Stufen so zusammenschließen, dass eine parallele Gasführung in den einzelnen Untereinheiten ermöglicht wird. Die Untereinheiten sind durch Verbindungselemente 36a, 36b und 36c so zusammengeschlossen, dass jeweils die Ausgangsseite der einen Untereinheit mit der Eingangsseite der folgenden Untereinheit verbunden ist. Die der Gasauslassöffnung zugewandte Pumpeinheit 18 ist als mehrstufige Seitenkanalpumpe ausgebildet. Die in
Die Erfindung bezieht sich auf sämtliche Vakuumpumpen, in denen Seitenkanalpumpstufen vorgesehen sind.The invention relates to all vacuum pumps in which side channel pump stages are provided.
Es ist beispielsweise vorgesehen, dass in der Oberfläche von Gewindenuten Rillen angeordnet sind und/oder dass in den Oberflächen von Statoren und/oder Rotoren Rillen angeordnet sind.It is provided, for example, that grooves are arranged in the surface of thread grooves and / or that grooves are arranged in the surfaces of stators and / or rotors.
Diese Rillen können eine Struktur, wie in
Die
Die Tiefe der Rillen 40 kann von 1 um bis 100 µm variieren. Die Rillenbreite, beziehungsweise der Abstand zwischen den einzelnen Rillen 40 kann von 1 µm bis 1 mm variieren. Die Rillen 40 können entlang der Strömungsrichtung, quer zu der Strömungsrichtung und unter einem Winkel zu der Strömungsrichtung des Gases in die Oberfläche 41 eingearbeitet werden.The depth of the
Wie in
Gemäß
Durch den Gaseinlass 102 in die Vakuumpumpe 100 eintretendes Gas gelangt zunächst in eine Molekularstufe 105. Diese besitzt einen Innenstator 505, der mit einer inneren Gewindenut 507 versehen ist, und einen Außenstator 506, der mit einer äußeren Gewindenut 508 versehen ist. Zwischen Innenstator und Außenstator ist ein Zylinder 502 mit glatter Oberfläche vorgesehen, der mit dem Rotor 500 verbunden ist. Die Molekularstufe 105 ist somit als Holweckstufe gestaltet. Die in
Der Rotor ist mit einer Welle 108 verbunden, die in Wälzlagern 110 und 111 drehbar gelagert ist. Anstelle der Wälzlager 110, 111 können auch passive und aktive Magnetlager zum Einsatz kommen. An der Welle 108 ist wenigstens ein Permanentmagnet 113 angeordnet, der mit einer stehenden Spule 112 zusammenwirkt und zusammen mit dieser einen Antrieb 107 bildet. Das Wälzlager 110, der Antrieb 107 und die Molekularstufe 105 sind in den Gehäuseteilen 120, 121 angeordnet.The rotor is connected to a
Die Welle 108 durchsetzt das Gehäuseteil 122, welches eine Seitenkanalpumpstufe 104 beinhaltet. Die Seitenkanalpumpstufe 104 wird von einem Seitenkanal 401 und einem Laufrad 400 gebildet, wobei am Laufrad 400 wenigstens eine Schaufel 402 angeordnet ist, die in dem Seitenkanal durch die Drehung der Welle 108 umläuft und so die Pumpwirkung erzeugt. Gas gelangt durch einen Übergabekanal 124 aus der Molekularstufe 105 in die Seitenkanalstufe 104 hinein und wird durch einen weiteren Übergabekanal 125 ausgestoßen.The
Von der Seitenkanalpumpstufe 104 gelangt das Gas durch den Übergabekanal 125 in eine Vorvakuumstufe 106. Diese ist ebenfalls als Seitenkanalpumpstufe gestaltet, wobei hier die Geometrie der am Laufrad 600 angeordneten und im Seitenkanal 601 umlaufenden Schaufeln 602 von der Geometrie der Schaufeln 402 abweicht. Aus dieser Pumpstufe 106 wird das Gas aus der Vakuumpumpe 100 durch den Gasauslass 103 ausgestoßen.From the side
Zwischen den Laufrädern 400 und 600 und den Gehäuseteilen 121, 122 und 123 befinden sich enge Spalte. Diese erlauben ein freies Drehen des betreffenden Laufrades, sind jedoch so eng gestaltet, dass keine störenden Gasströmungen auftreten.There are narrow gaps between the
Wie in
Das bedeutet, dass die Schaufeln 402 vollständig in den Seitenkanal 401 eintauchen.This means that the
Durch die gekrümmt ausgebildeten Seitenflächen 421, 422 wird die Pumpleistung der Seitenkanalpumpstufe deutlich verbessert. Vorteilhaft ist der Steg zwischen den Schaufeln möglichst gering ausgebildet (nicht dargestellt). Das mit Gas gefüllte Schaufelvolumen soll möglichst groß sein.The pumping performance of the side channel pump stage is significantly improved by the curved side surfaces 421, 422. The web between the blades is advantageously made as small as possible (not shown). The bucket volume filled with gas should be as large as possible.
Durch diese Maßnahmen werden die vakuumtechnischen Eigenschaften der Pumpe erheblich verbessert.These measures significantly improve the vacuum properties of the pump.
Verbesserungen der vakuumtechnischen Daten werden auch durch eine optimierte Einstellung des Seitenkanalradius R S3 (80 % bis 120 % der Rotorbreite) und dem Abstand zwischen zwei Zentren der Seitenkanalhalbkreise d S1 (20 % bis 120 % der Rotorbreite) erreicht. Der optimale Radius R S3 und Abstand d S1 hängen von der Umfangsgeschwindigkeit der Rotorscheibe und von der Schaufelgröße ab. Die Maße R R1 , R R3 , d R1, Schaufelhöhe h und Schaufelwinkel α sind vorgegeben. Das Maß R S2 kann mit folgenden drei Gleichungen berechnet werden:
Das Maß R S1 ist durch den unteren Schaufelrand der Rotorscheibe vorgegeben.The dimension R S 1 is predetermined by the lower blade edge of the rotor disk.
Δ bezeichnet den Axialspalt zwischen Rotor und Statorscheibe. Der Axialspalt Δ kann vorzugsweise von 0,01 mm bis 0,5 mm betragen. Kleine Axialspalte sind an der Ausstoßseite und große Axialspalte an der Ansaugseite sinnvoll. Wenn auf der Axialfläche zwischen Rotor und Statorscheiben eine Labyrinthdichtung verwendet wird, kann der Axialspalt mehr als 0,5 mm betragen. Die Richtwerte für die Axialspalte können folgendermaßen gewählt sein:
In
In
Unterschiedliche Rotorscheiben einer mehrstufigen Seitenkanalpumpe mit gleicher Schaufelgröße haben gleiche Drehzahl, können aber abhängig vom Rotorscheibendurchmesser R R1 unterschiedliche Umfangsgeschwindigkeiten haben. Aus diesem Grund sollen Rotorscheiben mit unterschiedlichen Durchmessern R R1 und gleicher Schaufelgröße Seitenkanäle mit unterschiedlichen Radien R S3 und Abständen d S1 haben.Different rotor disks of a multi-stage side channel pump with the same blade size have the same speed, but can have different peripheral speeds depending on the rotor disk diameter R R 1 . For this reason, rotor disks with different diameters R R 1 and the same blade size should have side channels with different radii R S 3 and distances d S 1 .
Messungen haben gezeigt, dass mit steigender Drehzahl und demzufolge steigender Umfangsgeschwindigkeit von Rotorscheiben der optimale Seitenkanalradius R S3 und der Abstand d S1 zunehmen. Als optimal wird die Seitenkanalgröße mit dem besten Kompressionsfaktor bezeichnet. Das Saugvermögen und die Leistungsaufnahme steigen proportional zur Seitenkanalfläche.Measurements have shown that the optimal side channel radius R S 3 and the distance d S 1 increase with increasing speed and consequently increasing peripheral speed of rotor disks. The side channel size with the best compression factor is said to be optimal. The pumping speed and power consumption increase proportionally to the side channel area.
In den
Für eine Rotorscheibe mit einem Radius R R1 = 69 mm, Breite d R1 = 5 mm und Schaufelhöhe R R1 - R S1 = 4 mm beträgt der optimale Seitenkanalradius bei einer Drehzahl f = 800 Hz und einer Umfangsgeschwindigkeit V = 173 m/sec gleich R S3 optimal = 5 mm. Für eine Drehzahl f = 1000 Hz und eine Umfangsgeschwindigkeit V = 217 m/sec beträgt der optimale Seitenkanalradius R S3 optimal = 5,3 mm. Mit steigender Drehzahl f und Umfangsgeschwindigkeit V wird der optimale Seitenkanalradius weiter zunehmen, beziehungsweise mit fallender Drehfrequenz und Umfangsgeschwindigkeit abnehmen.In the
For a rotor disc with a radius R R 1 = 69 mm, width d R 1 = 5 mm and blade height R R 1 - R S 1 = 4 mm, the optimum side channel radius at a speed f = 800 Hz and a peripheral speed V = 173 m / sec equal to R S 3 optimal = 5 mm. For a speed f = 1000 Hz and a peripheral speed V = 217 m / sec, the optimal side channel radius R S 3 is optimal = 5.3 mm. With increasing speed f and peripheral speed V, the optimal side channel radius will continue to increase, or decrease with decreasing rotational frequency and peripheral speed.
In den
Der optimale Abstand d S1 beträgt bei einer Drehzahl von f = 800 Hz je nach Druckbereich entweder d S1 = 1,2 mm oder d S1 = 3,6 mm. Wenn die Drehzahl f bis auf 1000 Hz ansteigt, wird der optimale Abstand je nach Druckbereich entweder d S1 = 3,6 mm oder d S1 = 4,8 mm. Es ist eine Tendenz zur Steigerung des optimalen Abstandes d S1 mit steigender Drehzahl f zu erkennen.The optimal distance d S 1 at a speed of f = 800 Hz, depending on the pressure range, is either d S 1 = 1.2 mm or d S 1 = 3.6 mm. If the speed f increases up to 1000 Hz, the optimal distance, depending on the pressure range, will be either d S 1 = 3.6 mm or d S 1 = 4.8 mm. A tendency to increase the optimal distance d S 1 with increasing speed f can be seen.
Die oben genannten Abhängigkeiten gelten nur für Rotorscheiben mit V-förmigen Schaufeln, wie sie in
Im Allgemeinen sollen bei der Auslegung von Seitenkanalpumpen folgende Konstruktionsrichtlinien eingehalten werden. Eine optimale Schaufelhöhe beträgt 60 % bis 100 % der Rotorscheibenbreite. Ein optimaler Seitenkanalradius hängt von der Umfangsgeschwindigkeit der Rotorscheibe 400 ab und kann von 80 % bis 120 % der Rotorscheibenbreite betragen. Der Abstand d S1 hängt auch von der Umfangsgeschwindigkeit der Rotorscheibe ab und kann von 20 % bis 120 % der Rotorscheibenbreite betragen.In general, the following design guidelines should be observed when designing side channel pumps. An optimal blade height is 60% to 100% of the rotor disc width. An optimal side channel radius depends on the circumferential speed of the
Die optimale Schaufelzahl oder der optimale Abstand zwischen den Schaufeln hängt nicht von der Drehzahl ab. Der optimale Abstand zwischen den Schaufeln ist proportional zur Schaufelgröße und ist auch von der Seitenkanalgröße abhängig. Er beträgt von 5o % bis 100 % der Rotorscheibenbreite, der optimale Abstand zwischen den Schaufeln ist kleiner gleich 55 % für kleine Seitenkanäle (Seitenkanalfläche nicht größer als das 2,5-fache der Schaufelfläche) und ist größer gleich 85 % für große Seitenkanäle (Seitenkanalfläche nicht kleiner als das 5-fache der Schaufelfläche). Die optimale Schaufelzahl wird also bei größer werdenden Seitenkanälen geringer, beziehungsweise der optimale Abstand zwischen Schaufeln wird größer. Die Seitenkanalfläche ASK und die Schaufelfläche ASch können mit den Gleichungen 4 bis 7 berechnet werden.
Die Stegbreite der Schaufeln soll möglichst klein sein. Die minimale Stegbreite ist durch die Fertigungsgenauigkeit und durch die Materialfestigkeit der Rotorscheibe beschränkt.The web width of the blades should be as small as possible. The minimum web width is limited by the manufacturing accuracy and the material strength of the rotor disc.
Die
Gemäß
Gemäß
Bei den Ausführungsformen der Seitenkanäle der
In den
Die Verringerung der Seitenkanalfläche kann, wie in
Ein Unterbrecher 404 ist in
Wie der
Der Kanal 701 kann eine Form aufweisen, wie sie in
Im unteren Teil der
In
In
Gemäß
Der Stator 700 weist eine Bohrung 710 für den Durchgriff einer Welle des Rotors (nicht dargestellt) auf.The
- 11
- Gehäusecasing
- 22
- GaseintrittsöffnungGas inlet opening
- 44
- Gasauslassöffnunggas outlet
- 66
- Wellewave
- 88th
- Antriebssystemdrive system
- 1010
- Lagerelementbearing element
- 1212
- Lagerelementbearing element
- 1414
- Pumpeinheitpump unit
- 1616
- Pumpeinheitpump unit
- 16a16a
- PumpuntereinheitPump subunit
- 16b16b
- PumpuntereinheitPump subunit
- 16c16c
- PumpuntereinheitPump subunit
- 1818
- Pumpeinheitpump unit
- 3232
- Verbindungskanäleconnecting channels
- 34a34a
- Verbindungselementefasteners
- 34b34b
- Verbindungselementefasteners
- 36a36a
- Verbindungselementefasteners
- 36b36b
- Verbindungselementefasteners
- 36c36c
- Verbindungselementefasteners
- 3838
- Verbindungskanäleconnecting channels
- 4040
- Rillegroove
- 4141
- Oberflächesurface
- 4242
- Verbindungsleitungconnecting line
- 5050
- Gewindenutthread groove
- 5151
- Statorstator
- 5252
- Beschichtungcoating
- 100100
- Vakuumpumpevacuum pump
- 101101
- Gehäusecasing
- 102102
- Gaseinlassgas inlet
- 103103
- Gasauslassgas outlet
- 104104
- SeitenkanalpumpstufeSide channel pump stage
- 105105
- Molekularstufemolecular level
- 106106
- Vorvakuumstufefore-vacuum
- 107107
- Antriebdrive
- 108108
- Wellewave
- 110110
- Wälzlagerroller bearing
- 111111
- Wälzlagerroller bearing
- 112112
- SpuleKitchen sink
- 113113
- Permanentmagnetpermanent magnet
- 120120
- Gehäuseteilehousing parts
- 121121
- Gehäuseteilehousing parts
- 122122
- Gehäuseteilehousing parts
- 123123
- Gehäuseteilehousing parts
- 124124
- Einlass/ÜbergabekanalIntake / transfer channel
- 125125
- Auslass/ÜbergabekanalOutlet / transfer channel
- 126126
- Mittelliniecenter line
- 400400
- Laufrad/RotorImpeller / rotor
- 401401
- Seitenkanalside channel
- 402402
- Schaufelshovel
- 403403
- Randedge
- 404404
- Unterbrecherbreaker
- 420420
- Kanalbodenchannel bottom
- 421421
- Seitenwand des SeitenkanalesSide wall of the side channel
- 422422
- Seitenwand des SeitenkanalesSide wall of the side channel
- 423423
- Schaufelgrundblade base
- 424424
- Begrenzungsfläche des SeitenkanalesBoundary surface of the side channel
- 425425
- Mittelebenemidplane
- 426426
- Rand des Laufrades/RotorsEdge of the impeller / rotor
- 427427
- Rand des Laufrades/RotorsEdge of the impeller / rotor
- 428428
- ÜberstandGot over
- 500500
- Rotorrotor
- 502502
- Zylindercylinder
- 505505
- Innenstatorinternal stator
- 506506
- Außenstatorouter stator
- 507507
- Gewindenutthread groove
- 508508
- Gewindenutthread groove
- 600600
- LaufradWheel
- 601601
- Seitenkanalside channel
- 602602
- Schaufelshovel
- 700700
- Statorstator
- 701701
- Einlassinlet
- 702702
- Auslassoutlet
- 703703
- Rotorrotor
- 704704
- Seitenkanalside channel
- 705705
- Abschrägungbevel
- 706706
- Abschrägungbevel
- 707707
- axiale Dichtfläche der Rotorscheibeaxial sealing surface of the rotor disc
- 708708
- Flächearea
- 709709
- Flächearea
- 710710
- Bohrungdrilling
- 711711
- KurveCurve
- 712712
- KurveCurve
- 713713
- KurveCurve
- 714714
- KurveCurve
- 715715
- BereichArea
- 716716
- KurveCurve
- 717717
- KurveCurve
- 718718
- KurveCurve
- 719719
- KurveCurve
- d1 d 1
- Längelength
- d2 d 2
- Längelength
- vv
- Geschwindigkeitspeed
- αα
- Anstellwinkel Rotorschaufel und ErgänzungswinkelAngle of attack rotor blade and additional angle
- ββ
-
Öffnungswinkel Abschrägung 705
Opening angle bevel 705 - AA
- Pfeilearrows
- BB
- Pfeilearrows
- RR
- Winkelangle
- ϕφ
- Radiusradius
Claims (2)
- A vacuum pump stage with an inlet (701), an outlet (702), a rotor (703) and a channel (704), wherein a portion of the rotor (703) extends into the channel (704) and a pumping action is achieved by the interaction of the rotor portion and the channel (704), in which rotor blades are arranged on the rotor (703), and the stage comprising a stripper (404) arranged between the inlet (701) and the outlet (702), wherein the stripper (404) has a bevel (705) which is on a side facing the inlet (701) and which runs into the side channel (704), wherein the bevel (705) is arranged on an outer radius of the side channel (704),
characterised in that
the bevel (705) extends up to a side of the stripper facing the outlet (702). - A vacuum pump stage according to claim 1, characterised in that the bevel is configured to be linear.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013108482.6A DE102013108482A1 (en) | 2013-08-06 | 2013-08-06 | Vacuum pump stage |
EP14176840.8A EP2835536B1 (en) | 2013-08-06 | 2014-07-14 | Vacuum pump stage with special surface roughness yielding a lower gas friction |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14176840.8A Division EP2835536B1 (en) | 2013-08-06 | 2014-07-14 | Vacuum pump stage with special surface roughness yielding a lower gas friction |
EP14176840.8A Division-Into EP2835536B1 (en) | 2013-08-06 | 2014-07-14 | Vacuum pump stage with special surface roughness yielding a lower gas friction |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3088743A1 EP3088743A1 (en) | 2016-11-02 |
EP3088743B1 true EP3088743B1 (en) | 2019-12-25 |
Family
ID=51176220
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14176840.8A Active EP2835536B1 (en) | 2013-08-06 | 2014-07-14 | Vacuum pump stage with special surface roughness yielding a lower gas friction |
EP16171240.1A Active EP3104014B1 (en) | 2013-08-06 | 2014-07-14 | Side-channel vacuum pump stage with a channel cross-section that features a particular curvature |
EP16171251.8A Active EP3088743B1 (en) | 2013-08-06 | 2014-07-14 | Side-channel vacuum pump stage with a stripper that is slanted on the suction side |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14176840.8A Active EP2835536B1 (en) | 2013-08-06 | 2014-07-14 | Vacuum pump stage with special surface roughness yielding a lower gas friction |
EP16171240.1A Active EP3104014B1 (en) | 2013-08-06 | 2014-07-14 | Side-channel vacuum pump stage with a channel cross-section that features a particular curvature |
Country Status (2)
Country | Link |
---|---|
EP (3) | EP2835536B1 (en) |
DE (1) | DE102013108482A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014109004A1 (en) * | 2014-06-26 | 2015-12-31 | Pfeiffer Vacuum Gmbh | Siegbahn stage |
DE102017121777A1 (en) * | 2017-09-20 | 2019-03-21 | Lutz Pumpen Gmbh | Modified side channel pump and method for operating such |
WO2020081422A1 (en) * | 2018-10-15 | 2020-04-23 | The Regents Of The University Of Michigan | Optimizing pumping of variable viscosities via microtextured miniaturized tesla pump |
EP3594498B1 (en) | 2019-11-06 | 2022-01-05 | Pfeiffer Vacuum Gmbh | System with a recirculation device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1428251A1 (en) * | 1963-03-09 | 1969-01-23 | Siemens Ag | Ring blower based on the side channel principle |
DE3029507A1 (en) * | 1980-08-04 | 1982-03-04 | Röhrnbacher, Emmerich, 7507 Pfinztal | Spiral flow type fan - has forward curved blades and stator passages profiled for quiet running and high pressure |
SU1758246A1 (en) * | 1990-02-15 | 1992-08-30 | Научно-исследовательский институт энергетического машиностроения МГТУ им.Н.Э.Баумана | Two-stage vortex machine |
DE10334950A1 (en) * | 2003-07-31 | 2004-12-09 | Nash_Elmo Industries Gmbh | Side channel compressor use for compressing fluid, has suction and pressure supports arranged on side channel housing in such way that enables flow path formed by side channels to move in supports without any deviation |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE643732C (en) * | 1934-05-26 | 1937-04-15 | Siemens Schuckertwerke Akt Ges | Self-priming centrifugal pump with liquid seal |
DE691098C (en) * | 1937-03-19 | 1940-05-16 | Siemens Schuckertwerke Akt Ges | Impeller for a impeller pump with a fluid seal |
US3917431A (en) * | 1973-09-18 | 1975-11-04 | Dresser Ind | Multi-stage regenerative fluid pump |
FR2282548A1 (en) * | 1974-08-08 | 1976-03-19 | Liber Jean Claude | Blade for rotary fluid press. machine - is relieved on surface subject to depression to give centrifugal flow |
US4325672A (en) * | 1978-12-15 | 1982-04-20 | The Utile Engineering Company Limited | Regenerative turbo machine |
SE444350B (en) * | 1981-02-10 | 1986-04-07 | Dustcontrol Ab | SIDE CHANNEL PUMP WITH OPEN SPEED WHEEL |
DE3317868A1 (en) | 1983-05-17 | 1984-11-22 | Leybold-Heraeus GmbH, 5000 Köln | FRICTION PUMP |
JPH07111195B2 (en) * | 1986-12-09 | 1995-11-29 | ダイキン工業株式会社 | Compound vacuum pump |
DE3728154C2 (en) * | 1987-08-24 | 1996-04-18 | Balzers Pfeiffer Gmbh | Multi-stage molecular pump |
JPH01267390A (en) | 1988-04-18 | 1989-10-25 | Daikin Ind Ltd | Vortex vacuum pump |
DE3823514A1 (en) * | 1988-07-12 | 1990-01-18 | Kayser Herold Uwe | Side-channel machine |
US5020969A (en) * | 1988-09-28 | 1991-06-04 | Hitachi, Ltd. | Turbo vacuum pump |
DE3932288A1 (en) | 1989-09-28 | 1991-04-11 | Markus Heinermann | Bicycle crank for hill climbing - has adaptor plate to take small dia. crank wheels |
IT1241431B (en) * | 1990-03-09 | 1994-01-17 | Varian Spa | PERFECTED TURBOMOLECULAR PUMP. |
JPH05133388A (en) * | 1991-11-08 | 1993-05-28 | Daikin Ind Ltd | Dry vacuum pump |
EP0567874B1 (en) * | 1992-04-27 | 1995-09-06 | Gebrüder Becker GmbH & Co. | Flow machine for gas compression |
US5358373A (en) * | 1992-04-29 | 1994-10-25 | Varian Associates, Inc. | High performance turbomolecular vacuum pumps |
JPH0886298A (en) * | 1994-09-19 | 1996-04-02 | Hitachi Ltd | Dry turbo vacuum pump |
DE59604530D1 (en) * | 1995-10-06 | 2000-04-06 | Siemens Ag | Side channel blower |
GB9609281D0 (en) * | 1996-05-03 | 1996-07-10 | Boc Group Plc | Improved vacuum pumps |
US5819524A (en) * | 1996-10-16 | 1998-10-13 | Capstone Turbine Corporation | Gaseous fuel compression and control system and method |
US5709528A (en) * | 1996-12-19 | 1998-01-20 | Varian Associates, Inc. | Turbomolecular vacuum pumps with low susceptiblity to particulate buildup |
JP3638818B2 (en) * | 1999-05-20 | 2005-04-13 | 愛三工業株式会社 | Wesco type pump |
DE10012666A1 (en) * | 2000-03-15 | 2001-09-20 | Fhp Motors Gmbh | Pump, in particular circulation pump for household machines such as washing machines and / or dishwashers |
DE10108631B4 (en) * | 2001-02-22 | 2005-06-30 | Nash-Elmo Industries Gmbh | Vacuum pump system and method for generating a final vacuum |
DE202004010821U1 (en) * | 2003-07-23 | 2004-12-23 | The Boc Group Plc, Windlesham | vacuum component |
GB0327149D0 (en) | 2003-11-21 | 2003-12-24 | Boc Group Plc | Vacuum pumping arrangement |
DE10357546A1 (en) * | 2003-12-10 | 2005-07-07 | Pfeiffer Vacuum Gmbh | Side channel pump stage |
JP4252507B2 (en) * | 2004-07-09 | 2009-04-08 | 愛三工業株式会社 | Fuel pump |
DE102005008388A1 (en) * | 2005-02-24 | 2006-08-31 | Gebr. Becker Gmbh & Co Kg | Impeller wheel for side channel machine, e.g. compressors and vacuum pumps, has at least one guide rib between adjacent blades extending inwards into cross-sectional region(s) of radial outer edging of flow chamber |
US7445422B2 (en) * | 2005-05-12 | 2008-11-04 | Varian, Inc. | Hybrid turbomolecular vacuum pumps |
JP5084403B2 (en) * | 2007-09-04 | 2012-11-28 | 株式会社大阪真空機器製作所 | Molecular pump |
DE102007053016A1 (en) * | 2007-11-05 | 2009-05-07 | Gardner Denver Deutschland Gmbh | Side Channel Blowers |
DE102009008792A1 (en) * | 2009-02-13 | 2010-08-19 | Continental Automotive Gmbh | Fuel pump and method of manufacturing a fuel pump |
DE102009021642B4 (en) * | 2009-05-16 | 2021-07-22 | Pfeiffer Vacuum Gmbh | Vacuum pump |
DE102009021620B4 (en) * | 2009-05-16 | 2021-07-29 | Pfeiffer Vacuum Gmbh | Vacuum pump |
DE102009028646A1 (en) * | 2009-08-19 | 2011-02-24 | Robert Bosch Gmbh | delivery unit |
DE102010019940B4 (en) | 2010-05-08 | 2021-09-23 | Pfeiffer Vacuum Gmbh | Vacuum pumping stage |
-
2013
- 2013-08-06 DE DE102013108482.6A patent/DE102013108482A1/en not_active Withdrawn
-
2014
- 2014-07-14 EP EP14176840.8A patent/EP2835536B1/en active Active
- 2014-07-14 EP EP16171240.1A patent/EP3104014B1/en active Active
- 2014-07-14 EP EP16171251.8A patent/EP3088743B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1428251A1 (en) * | 1963-03-09 | 1969-01-23 | Siemens Ag | Ring blower based on the side channel principle |
DE3029507A1 (en) * | 1980-08-04 | 1982-03-04 | Röhrnbacher, Emmerich, 7507 Pfinztal | Spiral flow type fan - has forward curved blades and stator passages profiled for quiet running and high pressure |
SU1758246A1 (en) * | 1990-02-15 | 1992-08-30 | Научно-исследовательский институт энергетического машиностроения МГТУ им.Н.Э.Баумана | Two-stage vortex machine |
DE10334950A1 (en) * | 2003-07-31 | 2004-12-09 | Nash_Elmo Industries Gmbh | Side channel compressor use for compressing fluid, has suction and pressure supports arranged on side channel housing in such way that enables flow path formed by side channels to move in supports without any deviation |
Also Published As
Publication number | Publication date |
---|---|
EP3088743A1 (en) | 2016-11-02 |
EP3104014A1 (en) | 2016-12-14 |
DE102013108482A1 (en) | 2015-02-12 |
EP2835536A3 (en) | 2015-05-06 |
EP2835536A2 (en) | 2015-02-11 |
EP3104014B1 (en) | 2021-09-29 |
EP2835536B1 (en) | 2018-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10020878C2 (en) | Fans, in particular for ventilating electronic devices | |
DE102010046870B4 (en) | Side channel blower, in particular secondary air blower for an internal combustion engine | |
EP2003292B1 (en) | Fluid working machine having blade shroud with overhang | |
DE1817430A1 (en) | Regenerative compressor | |
EP2514975B1 (en) | Flow engine | |
EP3088743B1 (en) | Side-channel vacuum pump stage with a stripper that is slanted on the suction side | |
EP2933497B1 (en) | Vacuum pump | |
DE69625917T2 (en) | RADIAL FAN WHEEL | |
DE102012003680A1 (en) | vacuum pump | |
EP4088038B1 (en) | Discharge section of a compressor, compressor comprising such a discharge section and turbocharger comprising said compressor | |
EP1706645B1 (en) | Multi-stage friction vacuum pump | |
EP3032107B1 (en) | Turbomolecular pump | |
EP2863063A2 (en) | Vacuum pump | |
WO2009143920A1 (en) | Radial fan | |
DE102019101277A1 (en) | Axial fan assembly for vehicles | |
DE102015113821B4 (en) | Vacuum pump | |
DE102007005384A1 (en) | Turbomachine and rotor blade of a turbomachine | |
EP3724511B1 (en) | Diagonal fan wheel with increased strength | |
WO2003031823A1 (en) | Axially discharging friction vacuum pump | |
EP2385257B1 (en) | Vacuum pump stage | |
EP1582750B1 (en) | Casing and radial blower having a casing and an impeller | |
WO2004015272A1 (en) | Evacuating device | |
DE102005012815A1 (en) | Radial blower housing, e.g. for automotive applications, has a flow duct whose size increases radially in a direction between the input wall and the rear side wall | |
EP3792451B1 (en) | Compressor stage with variable stator blade tilt | |
DE9422236U1 (en) | Pump for liquids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160525 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2835536 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180706 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190801 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2835536 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1217421 Country of ref document: AT Kind code of ref document: T Effective date: 20200115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014013348 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200326 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200425 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014013348 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
26N | No opposition filed |
Effective date: 20200928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200714 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200714 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1217421 Country of ref document: AT Kind code of ref document: T Effective date: 20200714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20230612 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230726 Year of fee payment: 10 Ref country code: GB Payment date: 20230613 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230622 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502014013348 Country of ref document: DE |