[go: up one dir, main page]

EP3044501B1 - Lighting module for a vehicle - Google Patents

Lighting module for a vehicle Download PDF

Info

Publication number
EP3044501B1
EP3044501B1 EP14761993.6A EP14761993A EP3044501B1 EP 3044501 B1 EP3044501 B1 EP 3044501B1 EP 14761993 A EP14761993 A EP 14761993A EP 3044501 B1 EP3044501 B1 EP 3044501B1
Authority
EP
European Patent Office
Prior art keywords
laser
conversion device
light
radiation
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14761993.6A
Other languages
German (de)
French (fr)
Other versions
EP3044501A1 (en
Inventor
Pierre Albou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP3044501A1 publication Critical patent/EP3044501A1/en
Application granted granted Critical
Publication of EP3044501B1 publication Critical patent/EP3044501B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors

Definitions

  • the present invention relates to a lighting module intended to be arranged in a headlight of a motor vehicle and to a method for producing a lighting beam produced by this lighting module.
  • the invention also relates to a projector comprising such a lighting module.
  • Such a lighting module is known from the documents DE 10 2012 100 141 A1 and US 2011/0249460 A1 .
  • headlamps equip the front of motor vehicles and are capable of forming lighting beams which are capable of fulfilling different lighting functions taking into account traffic conditions, such as, for example, low beam, city lighting functions , road or anti-fog.
  • traffic conditions such as, for example, low beam, city lighting functions , road or anti-fog.
  • adaptive projectors which are capable of forming advanced lighting beams, also called adaptive whose dimensions, intensity and / or direction are adjusted to fulfill such functions.
  • These headlamps make it possible in particular to carry out the functions of directional lights, of adaptive high beams or without glare, comprising at least one zone for masking the beam in the zones where vehicles are crossed or followed.
  • Each projector is generally made up of several lighting modules making it possible to obtain sufficient light power in order to form a lighting beam. Each of these lighting modules then forms part of the lighting beam of the projector by being switched on or off separately from one another.
  • lighting module is meant an assembly comprising at least one light source and an optical projection or reflection system.
  • the light source is a laser source.
  • the module then includes a wavelength conversion device.
  • This laser light source of the lighting module is capable of emitting radiation towards a scanning system such as a micro-mirror mounted mobile around two orthogonal axes.
  • This radiation is then diverted by this scanning system to at least one wavelength conversion device which comprises a substrate made of reflective or transparent material on which a thin layer of phosphorescent material is deposited.
  • phosphorescent material is meant a material having a phosphorescent effect, generally comprising different chemical elements, but not necessarily containing phosphorus.
  • the conversion device thus being scanned by the scanning system, re-emits white light radiation towards an optical projection system and thus forms part of the lighting beam of the projector.
  • the modules of such a projector are controlled by a control unit which controls the activation of the laser light sources and the scanning systems for carrying out the various lighting functions of the projector.
  • such a projector generally produces a light beam which may have color differences due to the fact that each part of this beam is produced by each of these light modules and in particular because of the variability of the layers of phosphorescent material. from one module to another.
  • each lighting module equipping this projector is not very efficient compared to the nominal power of the laser sources: in fact, the rate of use of the laser power is low because during its use the laser is frequently under-watted to form a usual regulatory beam and avoid generating light points in the beam which would not meet the regulatory maximums. This is also necessary to avoid visual discomfort for the driver, linked to too strong lighting near the vehicle.
  • the object of the present invention is to remedy all or part of the various drawbacks mentioned above.
  • the subject of the invention is a lighting module for a motor vehicle headlight according to the features of claim 1.
  • the invention also relates to a headlight for a motor vehicle comprising a lighting module according to the invention, in particular a single lighting module according to the invention.
  • the last object of the invention is a method of producing a lighting beam comprising the features of claim 10.
  • the lighting module and therefore the projector which includes it are of a design cost and a small footprint.
  • this lighting module makes it possible to carry out all the lighting functions taking into account traffic conditions and the regulations in the matter, by comprising only a single wavelength conversion device and a single projection optical system.
  • the beam generated is homogeneous in color and a precise superposition of the different parts of the beam is carried out without requiring mechanical adjustment between modules of the same projector, since there is only one module left.
  • the lighting module according to this embodiment of the invention comprises first 1 and second 2 sources of light radiation.
  • first 1 and second 2 sources of light radiation are capable of emitting laser radiation L1, L2 towards a single conversion device 3 of common wavelength, which is then capable of transmitting this beam to an optical projection system 4.
  • this first light radiation source 1 comprises: a first laser light source 9 and a reflector 10.
  • a first laser light source 9 does not include optical focusing elements or other elements between the laser source and the reflector; the first laser light source 9 cooperates directly with the reflector 10.
  • optical elements may be provided to combine the laser rays from the different laser sources. These combination optical elements can for example be based on a mixture of the polarizations of the laser rays and / or a mixture of different wavelengths and / or a juxtaposition of the images of the laser sources.
  • the second light radiation source 2 comprises a second laser light source 6, a scanning system 7 and optical elements 8 for focusing. These optical focusing elements 8 are located between the second laser light source 6 and the scanning system 7. Thanks to the scanning system, the image from the conversion device is made dynamic and allows adaptive lighting beams to be produced.
  • the scanning system 7, the reflector 10 and the optical projection system 4 are located on the same side of the conversion device 3, that is to say that the conversion device 3 is used in reflection.
  • the first 9 and second 6 laser light sources are quasi-point light sources which consist of a laser diode emitting a visible beam whose wavelength is between 400 nanometers and 500 nanometers, and preferably close to 450 or 460 nanometers. These wavelengths correspond to colors ranging from blue to near ultraviolet, the latter color being rather situated towards wavelengths less than 400 nanometers.
  • This laser diode can be provided with a single cavity and have a power of between approximately 1 and 3.5 watts, preferably 1.6 watts or even 3 watts.
  • This laser diode comprises an output facet whose dimensions can be of the order of 14 ⁇ m by 1 ⁇ m. It is capable of emitting a beam of elliptical section whose vertical and horizontal light intensity distribution profiles are Gaussian.
  • the first source of light radiation 1 is said to be static because it allows a static image to be formed on the wavelength conversion device 3.
  • this first source of light radiation 1 may be quasi-static because it can be moved according to a low angular amplitude in particular and especially at low speed, in particular to ensure a range correction which corresponds to small slow and overall vertical movements to compensate for the vehicle load or its dynamic reaction to braking and acceleration.
  • the first source of light radiation 1 is static, with a reflector 10 mounted fixedly, it will be possible in conventional manner to carry out a range correction with mechanical means located outside the module and acting on the inclination of the whole module.
  • the reflector 10 is a static mirror, mounted fixed, or almost static, mounted in rotation about a horizontal axis in order to carry out the vertical range correction movements required.
  • quasi static is meant in the present application that it is driven by a movement of low amplitude and low speed, less than 15 ° .s -1 , preferably less than 10 ° .s -1 , advantageously less than 4 ° .s -1 .
  • the speed of oscillation around the horizontal axis of the reflector 10 is at least ten times lower, preferably twenty times lower, preferably at least fifty times lower.
  • the reflector 10 can be made of metal, for example an aluminum-based alloy or even be of aluminized glass on at least one face. It is small and can have the following dimensions: a height of about 1.5 to 6 mm, and a width of about 5.5 to 20 mm.
  • This reflector 10 can be mounted fixed relative to the first laser light source 9.
  • the reflector is almost static, that is to say that it can also be mounted mobile around a axis and controlled for example by a servomotor or piezoelectric shims to perform the range correction movements, as mentioned above.
  • This reflector 10 reflects laser radiation L1 coming from this first laser light source 9 towards the wavelength conversion device 3.
  • the scanning system 7 of the second light radiation source 2 relates, according to a preferred variant, to a micro-mirror which can be square in shape and each side of which can measure approximately 0.8 mm.
  • This micro-mirror is made mobile around two orthogonal axes, for example from a MEMS device (acronym "Micro Electro Mechanical Systems” meaning “Micro Electromechanical Systems”).
  • the scanning system can be constituted by the association of two micro-mirrors, each being movable around a single axis, the two axes being orthogonal.
  • This scanning system 7 reflects laser radiation L2 coming from the second laser light source 6 towards the wavelength conversion device 3. This radiation L2 can then be deflected in two directions by the scanning system 7.
  • the second laser light source 6 and the scanning system 7 can be included in a MOEMS (acronym for "Micro-Opto-Electro-Mechanical Systems", meaning “microoptoelectromechanical system”).
  • a MOEMS is an optical system comprising, in this case, at least one laser light source and a scanning system 7.
  • MOEMS are compact devices, reliable, simple to use and which allow high precision and great flexibility in redirecting L2 laser radiation to the conversion device 3.
  • the second light radiation source 2 comprises a single light source, it can however in an alternative comprise, for example, two laser light sources each emitting radiation towards the same scanning system 7. In alternatively, these two sources can each emit L2 radiation to separate scanning systems.
  • the lighting module can comprise three scanning systems 7 each equipped with one or more laser light sources.
  • the creation of the light beam in its upper part projected onto the road is thus optimized.
  • the first light radiation source 1 comprises a single laser source 9. In the context of the invention, it may include more than one source, for example two laser sources each emitting radiation laser towards the mirror 10, the rays of these two sources possibly being combined before reaching the mirror.
  • the wavelength conversion device 3 included in the lighting module comprises a substrate forming a reflective support 12 which is covered with a continuous layer 11 of a phosphorescent material.
  • This support 12 of the conversion device 3 is chosen from materials which are thermally good conductors. Such materials thus allow the support 12 to limit the degradation of the layer 11 of phosphorescent material by restricting the temperature rise of the conversion device 3 and of the layer 11.
  • the layer 11 of phosphorescent material is capable of re-emitting radiation 16 of white light. Indeed, when the first 1 and second 2 sources of light radiation respectively emit laser radiation L1, L2 monochromatic and coherent towards the conversion device 3, the latter receives this laser radiation L1, L2 and re-emits radiation 16 of white light which has a plurality of lengths of wave belonging to the visible light spectrum and between approximately 400 nanometers and 800 nanometers.
  • This emission of white light occurs, according to a Lambertian emission diagram, that is to say with uniform luminance in all directions.
  • the substrate of this conversion device 3 is made for example of metallic material, in particular aluminum.
  • This metallic material constituting the substrate has good characteristics and properties in terms of conduction and thermal resistance.
  • the substrate advantageously makes it possible to limit the temperature of the layer 11 of phosphorescent material, by promoting the dissipation of heat.
  • this substrate can be exposed to laser powers without decomposing, which can be, for example, of the order of 15 watts.
  • the conversion device 3 is therefore arranged in the lighting module so as to be able to receive laser radiation L1, L2 originating from the first source of light radiation 1 and from the second source of light radiation 2. This is therefore a conversion device 3 common to all of the laser light sources.
  • This conversion device 3 is located in the vicinity of the focal plane of the optical projection system 4 which then infinitely forms an image of the layer 11 of phosphorescent material, or more exactly of the points of this layer 11 which emit light in response to the laser excitation resulting from the laser radiation L1, L2 that they receive from the first 1 and second 2 sources of light radiation.
  • the optical projection system 4 forms an illumination beam 15 with the light radiation 16 emitted by the various points of the layer 11 of phosphorescent material illuminated by these laser radiations L1, L2.
  • the lighting beam 15 emerging from the lighting module is thus a direct function of the light rays emitted by the layer 11 of phosphorescent material, itself a function of the laser radiation L1, L2 absorbed by this layer 11.
  • the laser radiation L2 coming from the second light radiation source 2 forms an image to be projected by the optical projection system 4, by scanning while taking advantage of the retinal persistence and / or of the metastability of the phosphorescent material.
  • first 1 and second 2 sources of light radiation, the conversion device 3 and the projection optical system 4 are included in this single lighting module which equips a projector.
  • This lighting module also comprises a control unit 5 which is capable of controlling the first 1 and second 2 sources of light radiation as a function of the desired photometry of the lighting beam 15 produced by this lighting module.
  • the control unit 5 controls the scanning system 7 so that the laser radiation L2 successively scans all the zone points of the layer 11 of the phosphorescent material selected by this control unit 5.
  • the control unit 5 also controls the activation and the control of the power of the first 1 and second 2 laser light sources and, if necessary, the modulation of the intensity of the laser radiation L1, L2.
  • the points of the layer 11 of the phosphorescent material thus illuminated by the laser radiations L1, L2 emit light, with an intensity which is directly a function of the intensity of these laser radiations L1, L2 which illuminate these points, l 'emission taking place according to a Lambertian emission diagram.
  • this lighting module is capable of emitting a lighting beam 15.
  • This lighting beam 15 corresponds to the superposition of light beams resulting from the first 1 and second 2 sources of light radiation cooperating with the wavelength conversion device 3 and the optical projection system 4. This superposition can be partial or complete or only concern a fraction of the respective contours of these beams.
  • This lighting beam 15 can result from the superposition of at least two different light beams, here the first 14 and second 13 light beams, but also from the superposition of more than two beams.
  • the second source of light radiation 2 can emit beams produced by several sources of laser light cooperating with one or more scanning systems.
  • FIG. 2 To the figure 2 , is illustrated an example of a light beam 15 produced by the lighting module, known as a passing beam or code as appearing on a flat projection surface.
  • the planar projection surface is arranged facing the lighting module, perpendicular to the optical axis of the latter.
  • This low beam type lighting beam 15 results from the superposition of the first light beam 14 and the second light beam 13.
  • the first light beam 14 is produced by the first light radiation source 1.
  • This first beam 14 represented on the figure 3 , creates a horizontal cut-off line 18.
  • This horizontal cut-off line 18 is a limit lighting line above which it is prohibited to illuminate the road. In countries with right-hand traffic, this cut line is horizontal across the width of the road and on the left side of the road.
  • the first laser light source 9 is capable of emitting laser radiation L1 which is guided by the reflector 10 towards the upper part 23 of the conversion device 3, in the area located above the horizontal plane of the optical axis AO (shown in dotted lines), in order to concentrate the radiation exclusively under the horizontal cut-off line 18.
  • the conversion device 3 then re-emits radiation 16 of white light towards the optical projection system 4 which forms thus the first light beam 14.
  • the reflector 10 is calculated to produce this horizontal cut-off line 18 as well as a controlled energy distribution to produce this first light beam 14.
  • This first light beam 14 represents a portion of the lighting beam 15 which is common to all the lighting beams regulatory, including crossing or road, likely to be produced by the lighting module. This first light beam 14 generally corresponds to the lower part of the regulatory lighting beams.
  • These regulatory lighting beams correspond to approved lighting configurations which fulfill the various lighting functions taking into account traffic conditions, such as low beam, city, motorway, gantry or even fog, etc ...
  • this first light beam 14 fulfills a lighting function at the front of the vehicle on the ground up to approximately 0.5 to 1.5 degrees below the horizon.
  • the second light beam 13 achieves a non-flat cut, having a horizontal segment 19 which extends into an inclined portion 17 forming an angle of about 10 to 60 degrees upward relative to the horizontal.
  • the superposition of the second light beam 13 with the first light beam 14 has an overlap area 20 which has a high light intensity.
  • This overlap area 20 otherwise called “light spot”, or “hot spot” is, generally, located in the center of a halo of less intense light.
  • This zone 20 is here positioned substantially at the center of the lighting beam 15 in the axis of said beam 15. In a configuration where the headlamp is of the directional type, that is to say where the upper part of the beam (at above the cut-off line) is offset in the direction of the orientation of the front wheels of the vehicle, this zone 20 will undergo a displacement relative to the axis of the beam, according to the orientation to the left or to the right of the wheels.
  • the light beam 15 of the low beam type obtained has a non-flat cut-off line, essentially constituted a low horizontal part 21, followed by a step 17, consisting of an oblique segment at the projection of the optical axis, then a substantially horizontal high part 22.
  • a non-flat cut-off line essentially constituted a low horizontal part 21, followed by a step 17, consisting of an oblique segment at the projection of the optical axis, then a substantially horizontal high part 22.
  • the role of such a lighting beam 15 of the code type is to prevent the lighting of the vehicle from dazzling a driver in a vehicle in the opposite direction or the vehicle preceding it.
  • This example of a beam corresponding to a crossing light beam 15 is applicable to right-hand traffic. This example is of course directly transferable to left-hand traffic conditions.
  • the lighting beam 15 produced by the lighting module is homogeneous because in this embodiment, the first laser light source 9 has the same characteristics as the second laser light source 6 and the latter both emit radiation L1 , L2 to the same conversion device 3.
  • the lighting module is of course capable of producing other lighting functions in the same way taking into account traffic conditions and regulations in this area, in particular adaptive road beams or with anti-glare function.
  • the reflector 10 has a particular surface 24 which can be determined from the definition of the transformation by reflection on this surface 24 of a Gaussian elliptical beam coming from the first laser light source 9 whose intersection with the conversion device 3 forms an area delimited by a horizontal cut.
  • this area illuminated by the first laser light source 9 will then, from the conversion device 3, become a quasi-Lambertian white light source which is imaged endlessly by the projection optical system 4.
  • sections of the reflector 10 are then determined by a vertical plane and a horizontal plane passing through a source point corresponding to the first laser light source 9.
  • These vertical and horizontal sections of the reflector 10 are determined by imposing the direction of a ray emitted by the first laser light source 9 and reflected along these sections of the reflector 10 at a current point so that the point d impact of the reflected ray r of vector r on the conversion device 3 describes a horizontal line for the horizontal cut and a vertical line in the case of the vertical cut.
  • differential equations which are written in a canonical form.
  • These differential equations come from the law of reflection expressed in vector form.
  • minimization under constraints is then carried out to determine the position x of the current point P i, j . It is a question here of minimizing the distance from the point of impact P i on the device 3 for converting the reflected ray. r , compared to an ideal point of impact D there i ⁇ z i ⁇ considered whose coordinates are on vertical and horizontal sections.
  • This minimization is then subsequently carried out by this algorithm for all the impact points capable of being defined on the surface 24 of this reflector 10 by the first laser light source in order to produce the first light beam 14.
  • the method for determining the surface of the mirror 10 which has just been exposed in the case of a single laser source can be transposed to a configuration in which the laser sources of the first light source 1 are combined.
  • the center of the virtual laser source resulting from the combination of the rays will be taken as center O of the frame of reference.
  • the laser rays have a transverse section of the Gaussian elliptical type and therefore comprise a large and a small axis.
  • the laser sources are then placed so that either the plane of the large axes or that of the small axes are merged. If the rays do not overlap (for a width of 1 / e 2 ) then each laser beam is reflected on a dedicated portion of the mirror, calculated as detailed above (each source is considered individually). If there is a superposition of laser rays, then the mirror 10 will be of the cylindrical type, its cross section being calculated as detailed above for one of the laser sources and the laser sources of the first light source 1 are aligned along a line parallel to l axis of the mirror cylinder.
  • the present invention is not limited to the embodiments which have been explicitly described, but it includes the various variants and generalizations thereof contained in the field of claims below.
  • the scanning variations of the conversion system to obtain an advanced lighting function can then be generated by using a hiding device, for example rotary, which will create cut lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Description

La présente invention concerne un module d'éclairage destiné à être agencé dans un projecteur d'un véhicule automobile et un procédé de réalisation d'un faisceau d'éclairage produit par ce module d'éclairage.The present invention relates to a lighting module intended to be arranged in a headlight of a motor vehicle and to a method for producing a lighting beam produced by this lighting module.

L'invention concerne également un projecteur comprenant un tel module d'éclairage.The invention also relates to a projector comprising such a lighting module.

Un tel module d'éclairage est connu des documents DE 10 2012 100 141 A1 et US 2011/0249460 A1 .Such a lighting module is known from the documents DE 10 2012 100 141 A1 and US 2011/0249460 A1 .

Traditionnellement, des projecteurs équipent l'avant de véhicules automobile et sont aptes à former des faisceaux d'éclairage qui sont susceptibles de remplir différentes fonctions d'éclairage tenant compte des conditions de circulation, comme par exemple des fonctions de feu de croisement, de ville, de route ou encore d'anti-brouillard.
On connaît dans l'état de l'art des projecteurs dits adaptatifs qui sont aptes à former des faisceaux d'éclairage avancés, également dits adaptatifs dont les dimensions, l'intensité et/ou la direction sont ajustées pour remplir de telles fonctions. Ces projecteurs permettent notamment de réaliser des fonctions de feux directionnels, de feux de route adaptatifs ou sans éblouissement, comportant au moins une zone de masquage du faisceau dans les zones où sont situés des véhicules croisés ou suivis.
Traditionally, headlamps equip the front of motor vehicles and are capable of forming lighting beams which are capable of fulfilling different lighting functions taking into account traffic conditions, such as, for example, low beam, city lighting functions , road or anti-fog.
Known in the state of the art so-called adaptive projectors which are capable of forming advanced lighting beams, also called adaptive whose dimensions, intensity and / or direction are adjusted to fulfill such functions. These headlamps make it possible in particular to carry out the functions of directional lights, of adaptive high beams or without glare, comprising at least one zone for masking the beam in the zones where vehicles are crossed or followed.

Chaque projecteur est généralement constitué de plusieurs modules d'éclairage permettant d'obtenir une puissance lumineuse suffisante afin de former un faisceau d'éclairage. Chacun de ces modules d'éclairage forme alors une partie du faisceau d'éclairage du projecteur en étant allumé ou éteint séparément les uns par rapport aux autres.Each projector is generally made up of several lighting modules making it possible to obtain sufficient light power in order to form a lighting beam. Each of these lighting modules then forms part of the lighting beam of the projector by being switched on or off separately from one another.

On entend par module d'éclairage, un ensemble comprenant au moins une source de lumière et un système optique de projection ou de réflexion.
En particulier et dans le cadre de la présente invention, la source de lumière est une source laser. Le module comporte alors un dispositif de conversion de longueur d'ondes.
By lighting module is meant an assembly comprising at least one light source and an optical projection or reflection system.
In particular and in the context of the present invention, the light source is a laser source. The module then includes a wavelength conversion device.

Cette source de lumière laser du module d'éclairage est capable d'émettre un rayonnement en direction d'un système de balayage tel qu'un micro-miroir monté mobile autour de deux axes orthogonaux.This laser light source of the lighting module is capable of emitting radiation towards a scanning system such as a micro-mirror mounted mobile around two orthogonal axes.

Ce rayonnement est ensuite dévié par ce système de balayage vers au moins un dispositif de conversion de longueur d'onde qui comprend un substrat en matériau réfléchissant ou transparent sur lequel est déposée une couche mince de matériau phosphorescent.This radiation is then diverted by this scanning system to at least one wavelength conversion device which comprises a substrate made of reflective or transparent material on which a thin layer of phosphorescent material is deposited.

On notera dans le présent texte, on entend par « matériau phosphorescent » un matériau ayant un effet phosphorescent, comprenant généralement différents éléments chimiques, mais ne contenant pas nécessairement de phosphore.It will be noted in the present text, by “phosphorescent material” is meant a material having a phosphorescent effect, generally comprising different chemical elements, but not necessarily containing phosphorus.

Le dispositif de conversion, en étant ainsi balayé par le système de balayage, réémet un rayonnement de lumière blanche vers un système optique de projection et forme ainsi une partie du faisceau d'éclairage du projecteur.The conversion device, thus being scanned by the scanning system, re-emits white light radiation towards an optical projection system and thus forms part of the lighting beam of the projector.

Les modules d'un tel projecteur sont pilotés par une unité de commande qui contrôle l'activation des sources de lumière laser et les systèmes de balayage pour la réalisation des différentes fonctions d'éclairage du projecteur.The modules of such a projector are controlled by a control unit which controls the activation of the laser light sources and the scanning systems for carrying out the various lighting functions of the projector.

Cependant, un tel projecteur en comportant ainsi plusieurs modules d'éclairage est d'un encombrement conséquent.However, such a projector thus comprising several lighting modules is of a considerable size.

De plus, il est d'une conception coûteuse et complexe du fait notamment qu'il requiert un temps important de réglage et un paramétrage précis de ces modules d'éclairage pour la configuration des différentes fonctions d'éclairage.In addition, it is an expensive and complex design, in particular because it requires a long adjustment time and a precise configuration of these lighting modules for the configuration of the various lighting functions.

Du reste, un tel projecteur produit généralement un faisceau d'éclairage qui peut présenter des différences de couleurs du fait que chaque partie de ce faisceau est produite par chacun de ces modules d'éclairage et en raison notamment de la variabilité des couches de matériau phosphorescent d'un module à l'autre.Moreover, such a projector generally produces a light beam which may have color differences due to the fact that each part of this beam is produced by each of these light modules and in particular because of the variability of the layers of phosphorescent material. from one module to another.

En outre, chaque module d'éclairage équipant ce projecteur est peu efficace par rapport à la puissance nominale des sources laser : en effet, le taux d'utilisation de la puissance du laser est faible car pendant son utilisation le laser est fréquemment sous-watté pour former un faisceau usuel règlementaire et éviter de générer des points lumineux dans le faisceau qui ne respecteraient pas les maxima règlementaires. Cela est nécessaire en outre pour éviter une gêne visuelle pour le conducteur, liée à un éclairement trop fort à proximité du véhicule.In addition, each lighting module equipping this projector is not very efficient compared to the nominal power of the laser sources: in fact, the rate of use of the laser power is low because during its use the laser is frequently under-watted to form a usual regulatory beam and avoid generating light points in the beam which would not meet the regulatory maximums. This is also necessary to avoid visual discomfort for the driver, linked to too strong lighting near the vehicle.

La présente invention a pour objet de remédier en tout ou partie aux différents inconvénients cités précédemment.The object of the present invention is to remedy all or part of the various drawbacks mentioned above.

A cet égard, l'invention a pour objet un module d'éclairage pour projecteur de véhicule automobile selon les caractéristiques de la revendication 1.In this regard, the subject of the invention is a lighting module for a motor vehicle headlight according to the features of claim 1.

Selon d'autres caractéristiques avantageuses et non limitatives de l'invention :

  • la première source de rayonnement lumineux est agencée au-dessus d'un axe optique du système optique de projection ;
  • la au moins première source de lumière laser est positionnée au-dessus ou en retrait du dispositif de conversion de longueur d'onde ;
  • le réflecteur est positionné devant la au moins première source de lumière laser, au-dessus d'un axe optique du système optique de projection entre le dispositif de conversion de longueur d'onde et le système optique de projection ;
  • le réflecteur est un miroir réalisé en métal, notamment un alliage à base d'aluminium ;
  • la au moins première source de lumière laser est apte à émettre un rayonnement laser vers le réflecteur qui est apte à le diriger vers une partie supérieure de la surface du dispositif de conversion de longueur d'onde ;
  • la deuxième source de rayonnement lumineux, le réflecteur et le système optique de projection sont agencés du même côté du dispositif de conversion de longueur d'onde ;
  • les au moins première et deuxième sources de lumière laser sont des diodes laser, notamment des diodes laser présentant les mêmes caractéristiques.
According to other advantageous and non-limiting characteristics of the invention:
  • the first source of light radiation is arranged above an optical axis of the projection optical system;
  • the at least first laser light source is positioned above or behind the wavelength conversion device;
  • the reflector is positioned in front of the at least first laser light source, above an optical axis of the projection optical system between the wavelength conversion device and the projection optical system;
  • the reflector is a mirror made of metal, in particular an aluminum-based alloy;
  • the at least first laser light source is capable of emitting laser radiation towards the reflector which is capable of directing it towards an upper part of the surface of the wavelength conversion device;
  • the second source of light radiation, the reflector and the optical projection system are arranged on the same side of the wavelength conversion device;
  • the at least first and second laser light sources are laser diodes, in particular laser diodes having the same characteristics.

L'invention a également pour objet un projecteur pour véhicule automobile comportant un module d'éclairage selon l'invention, notamment un unique module d'éclairage selon l'invention.The invention also relates to a headlight for a motor vehicle comprising a lighting module according to the invention, in particular a single lighting module according to the invention.

L'invention a pour dernier objet un procédé de réalisation d'un faisceau d'éclairage comprenant les caractéristiques de la revendication 10.The last object of the invention is a method of producing a lighting beam comprising the features of claim 10.

Avantageusement, on comprend que le module d'éclairage et par conséquent le projecteur qui le comprend sont d'un coût de conception et d'un encombrement faible.Advantageously, it is understood that the lighting module and therefore the projector which includes it are of a design cost and a small footprint.

En effet, ce module d'éclairage permet de réaliser toutes les fonctions d'éclairage tenant compte des conditions de circulation et de la réglementation en la matière, en ne comprenant qu'un unique dispositif de conversion de longueur d'onde et qu'un seul système optique de projection. Ainsi et avantageusement, le faisceau généré est homogène en couleur et une superposition précise des différentes parties de faisceau est réalisée sans nécessiter de réglage mécanique entre modules d'un même projecteur, puisqu'il ne comporte plus qu'un seul module.Indeed, this lighting module makes it possible to carry out all the lighting functions taking into account traffic conditions and the regulations in the matter, by comprising only a single wavelength conversion device and a single projection optical system. Thus and advantageously, the beam generated is homogeneous in color and a precise superposition of the different parts of the beam is carried out without requiring mechanical adjustment between modules of the same projector, since there is only one module left.

D'autres avantages et caractéristiques de l'invention apparaîtront mieux à la lecture de la description d'un mode de réalisation préféré qui va suivre, en référence aux figures, réalisé à titre d'exemple indicatif et non limitatif :

  • la figure 1 est une vue schématique du module d'éclairage selon ce mode de réalisation de l'invention ;
  • la figure 2 est une vue schématique d'un faisceau d'éclairage produit par le module d'éclairage selon ce mode de réalisation de l'invention ;
  • la figure 3 est une représentation schématique d'un premier faisceau lumineux à coupure sensiblement horizontale du faisceau d'éclairage produit par le module d'éclairage selon ce mode de réalisation de l'invention ;
  • la figure 4 est une vue schématique d'une partie du module d'éclairage qui est apte à produire le premier faisceau lumineux du faisceau d'éclairage selon ce mode de réalisation de l'invention ;
  • la figure 5 est une représentation de la définition d'une coupe verticale du réflecteur selon ce mode de réalisation de l'invention, et
  • la figure 6 est une représentation de la définition d'une coupe horizontale du réflecteur selon ce mode de réalisation de l'invention.
Other advantages and characteristics of the invention will appear better on reading the description of a preferred embodiment which will follow, with reference to the figures, produced by way of indicative and nonlimiting example:
  • the figure 1 is a schematic view of the lighting module according to this embodiment of the invention;
  • the figure 2 is a schematic view of a lighting beam produced by the lighting module according to this embodiment of the invention;
  • the figure 3 is a schematic representation of a first light beam with substantially horizontal cut-off of the lighting beam produced by the lighting module according to this embodiment of the invention;
  • the figure 4 is a schematic view of a part of the lighting module which is capable of producing the first light beam of the lighting beam according to this embodiment of the invention;
  • the figure 5 is a representation of the definition of a vertical section of the reflector according to this embodiment of the invention, and
  • the figure 6 is a representation of the definition of a horizontal section of the reflector according to this embodiment of the invention.

En référence à la figure 1, le module d'éclairage selon ce mode de réalisation de l'invention comprend des première 1 et deuxième 2 sources de rayonnement lumineux.With reference to the figure 1 , the lighting module according to this embodiment of the invention comprises first 1 and second 2 sources of light radiation.

Ces première 1 et deuxième 2 sources de rayonnement lumineux sont aptes à émettre des rayonnements laser L1, L2 vers un seul dispositif de conversion 3 de longueur d'onde commun, qui est susceptible de transmettre ensuite ce faisceau vers un système optique de projection 4.These first 1 and second 2 sources of light radiation are capable of emitting laser radiation L1, L2 towards a single conversion device 3 of common wavelength, which is then capable of transmitting this beam to an optical projection system 4.

Selon l'invention, cette première source de rayonnement lumineux 1 comporte : une première source de lumière laser 9 et un réflecteur 10. Selon cette variante préférée avec une seule source de lumière laser 9, elle ne comporte pas d'éléments optiques de focalisation ou d'autre éléments entre la source laser et le réflecteur ; la première source de lumière laser 9 coopère directement avec le réflecteur 10. Dans une variante à plusieurs sources laser, non représentée, on pourra prévoir des éléments optiques pour combiner les rayons laser issus des différentes sources laser. Ces éléments optiques de combinaison peuvent par exemple être fondés sur un mélange des polarisations des rayons laser et/ou un mélange de longueurs d'ondes différentes et/ou une juxtaposition des images des sources laser.According to the invention, this first light radiation source 1 comprises: a first laser light source 9 and a reflector 10. According to this preferred variant with a single laser light source 9, it does not include optical focusing elements or other elements between the laser source and the reflector; the first laser light source 9 cooperates directly with the reflector 10. In a variant with several laser sources, not shown, optical elements may be provided to combine the laser rays from the different laser sources. These combination optical elements can for example be based on a mixture of the polarizations of the laser rays and / or a mixture of different wavelengths and / or a juxtaposition of the images of the laser sources.

Selon l'invention, la deuxième source de rayonnement lumineux 2 comprend une deuxième source de lumière laser 6, un système de balayage 7 et des éléments optiques 8 de focalisation. Ces éléments optiques 8 de focalisation sont localisés entre la deuxième source lumière laser 6 et le système de balayage 7. Grace au système à balayage, l'image issue du dispositif de conversion est rendue dynamique et permet de réaliser des faisceaux d'éclairage adaptatifs.According to the invention, the second light radiation source 2 comprises a second laser light source 6, a scanning system 7 and optical elements 8 for focusing. These optical focusing elements 8 are located between the second laser light source 6 and the scanning system 7. Thanks to the scanning system, the image from the conversion device is made dynamic and allows adaptive lighting beams to be produced.

Le système de balayage 7, le réflecteur 10 et le système optique de projection 4 sont situés d'un même côté du dispositif de conversion 3, c'est-à-dire que le dispositif de conversion 3 est utilisé en réflexion.The scanning system 7, the reflector 10 and the optical projection system 4 are located on the same side of the conversion device 3, that is to say that the conversion device 3 is used in reflection.

Les première 9 et deuxième 6 sources de lumière laser sont des sources de lumières quasi ponctuelles qui sont constituées d'une diode laser émettant un faisceau visible dont la longueur d'onde est comprise entre 400 nanomètres et 500 nanomètres, et de préférence voisine de 450 ou 460 nanomètres. Ces longueurs d'onde correspondent à des couleurs allant du bleu au proche ultraviolet, cette dernière couleur étant plutôt située vers les longueurs d'onde inférieures à 400 nanomètres.The first 9 and second 6 laser light sources are quasi-point light sources which consist of a laser diode emitting a visible beam whose wavelength is between 400 nanometers and 500 nanometers, and preferably close to 450 or 460 nanometers. These wavelengths correspond to colors ranging from blue to near ultraviolet, the latter color being rather situated towards wavelengths less than 400 nanometers.

Cette diode laser peut être pourvu d'une seule cavité et avoir une puissance comprise entre environ 1 et 3,5 watts, de préférence 1,6 watts ou encore 3 watts. Cette diode laser comprend une facette de sortie dont les dimensions peuvent être de l'ordre de 14 µm par 1 µm. Elle est apte à émettre un faisceau de section elliptique dont les profils de répartition d'intensité lumineuse verticale et horizontale sont gaussiens.This laser diode can be provided with a single cavity and have a power of between approximately 1 and 3.5 watts, preferably 1.6 watts or even 3 watts. This laser diode comprises an output facet whose dimensions can be of the order of 14 μm by 1 μm. It is capable of emitting a beam of elliptical section whose vertical and horizontal light intensity distribution profiles are Gaussian.

Avantageusement, la première source de rayonnement lumineux 1 est agencée sensiblement au-dessus de l'axe optique AO (en pointillés) du système optique de projection 4, avec :

  • la première source de lumière laser 9 qui peut être positionnée au-dessus et/ou en retrait par rapport au dispositif de conversion 3 de longueur d'onde, et
  • le réflecteur 10 qui est positionné devant la première source de lumière laser 9, au-dessus de l'axe optique du système optique de projection 4 entre le dispositif de conversion 3 et le système optique de projection 4.
En effet, comme cela sera détaillé plus loin en référence aux figures 2 et 3, la première source de rayonnement lumineux 1 sert à former la partie inférieure projetée sur la route du faisceau lumineux généré par le module. Cette partie de faisceau est commune aux différents types de faisceaux réglementaires projetés par le module et notamment au faisceau de feu de croisement et de feu de route.Advantageously, the first light radiation source 1 is arranged substantially above the optical axis AO (in dotted lines) of the optical projection system 4, with:
  • the first laser light source 9 which can be positioned above and / or set back relative to the wavelength conversion device 3, and
  • the reflector 10 which is positioned in front of the first laser light source 9, above the optical axis of the projection optical system 4 between the conversion device 3 and the projection optical system 4.
Indeed, as will be detailed later with reference to figures 2 and 3 , the first light radiation source 1 is used to form the lower part projected on the road of the light beam generated by the module. This part of the beam is common to the different types of regulatory beams projected by the module and in particular to the beam of low beam and high beam.

La première source de rayonnement lumineux 1 est dite statique car elle permet de former de manière statique une image sur le dispositif de conversion 3 de longueur d'onde. Toutefois, cette première source de rayonnement lumineux 1 pourra être quasi statique car elle peut être déplacée selon notamment une faible amplitude angulaire et surtout à faible vitesse, notamment pour assurer une correction de portée qui correspond à de petits mouvements verticaux lents et globaux pour compenser la charge du véhicule ou sa réaction dynamique au freinage et à l'accélération. Dans le cas où la première source de rayonnement lumineux 1 est statique, avec un réflecteur 10 monté fixe, on pourra réaliser de manière classique une correction de portée avec des moyens mécaniques situés à l'extérieur du module et agissant sur l'inclinaison de l'ensemble du module.The first source of light radiation 1 is said to be static because it allows a static image to be formed on the wavelength conversion device 3. However, this first source of light radiation 1 may be quasi-static because it can be moved according to a low angular amplitude in particular and especially at low speed, in particular to ensure a range correction which corresponds to small slow and overall vertical movements to compensate for the vehicle load or its dynamic reaction to braking and acceleration. In the case where the first source of light radiation 1 is static, with a reflector 10 mounted fixedly, it will be possible in conventional manner to carry out a range correction with mechanical means located outside the module and acting on the inclination of the whole module.

Selon l'invention, le réflecteur 10 est un miroir statique, monté fixe, ou quasi statique, monté en rotation autour d'un axe horizontal afin de réaliser les mouvements verticaux de correction de portée requis. Par quasi statique on entend dans la présente demande qu'il est animé d'un mouvement de faible amplitude et de faible vitesse, inférieur à 15°.s-1, de préférence inférieur à 10°.s-1, avantageusement inférieur à 4°.s-1.
Par rapport au système de balayage 7 associé à la seconde source de lumière laser 6, qui comporte au moins un micro-miroir mobile autour d'un axe horizontal, la vitesse d'oscillation autour de l'axe horizontal du réflecteur 10 est au moins dix fois plus faible, de préférence vingt fois plus faible, préférentiellement au moins cinquante fois plus faible.
According to the invention, the reflector 10 is a static mirror, mounted fixed, or almost static, mounted in rotation about a horizontal axis in order to carry out the vertical range correction movements required. By quasi static is meant in the present application that it is driven by a movement of low amplitude and low speed, less than 15 ° .s -1 , preferably less than 10 ° .s -1 , advantageously less than 4 ° .s -1 .
Compared to the scanning system 7 associated with the second laser light source 6, which comprises at least one micro-mirror movable around a horizontal axis, the speed of oscillation around the horizontal axis of the reflector 10 is at least ten times lower, preferably twenty times lower, preferably at least fifty times lower.

Le réflecteur 10 peut être réalisé en métal, par exemple en un alliage à base d'aluminium ou encore être en verre aluminé sur au moins une face.
Il est de petite dimension et peut avoir les dimensions suivantes : une hauteur d'environ 1,5 à 6 mm, et une largeur d'environ 5,5 à 20 mm.
The reflector 10 can be made of metal, for example an aluminum-based alloy or even be of aluminized glass on at least one face.
It is small and can have the following dimensions: a height of about 1.5 to 6 mm, and a width of about 5.5 to 20 mm.

Ce réflecteur 10 peut être monté fixe par rapport à la première source de lumière laser 9. Dans une variante d'exécution, le réflecteur est quasi statique, c'est-à-dire qu'il peut également être monté mobile autour d'un axe et piloté par exemple par un servomoteur ou des cales piézoélectriques pour réaliser les mouvements de correction de portée, comme mentionné plus haut.
Ce réflecteur 10 réfléchit un rayonnement laser L1 provenant de cette première source de lumière laser 9 vers le dispositif de conversion 3 de longueur d'onde.
This reflector 10 can be mounted fixed relative to the first laser light source 9. In an alternative embodiment, the reflector is almost static, that is to say that it can also be mounted mobile around a axis and controlled for example by a servomotor or piezoelectric shims to perform the range correction movements, as mentioned above.
This reflector 10 reflects laser radiation L1 coming from this first laser light source 9 towards the wavelength conversion device 3.

Le système de balayage 7 de la deuxième source de rayonnement lumineux 2 concerne selon une variante préférée un micro-miroir pouvant être de forme carrée et dont chaque côté peut mesurer environ 0,8mm. Ce micro-miroir est rendu mobile autour de deux axes orthogonaux à partir par exemple d'un dispositif MEMS (acronyme « Micro Electro Mechanical Systems » signifiant « Micro Systèmes Electromécaniques »). Selon une autre variante d'exécution, le système de balayage peut être constitué par l'association de deux micro-miroirs, chacun étant mobile autour d'un seul axe, les deux axes étant orthogonaux.The scanning system 7 of the second light radiation source 2 relates, according to a preferred variant, to a micro-mirror which can be square in shape and each side of which can measure approximately 0.8 mm. This micro-mirror is made mobile around two orthogonal axes, for example from a MEMS device (acronym "Micro Electro Mechanical Systems" meaning "Micro Electromechanical Systems"). According to another alternative embodiment, the scanning system can be constituted by the association of two micro-mirrors, each being movable around a single axis, the two axes being orthogonal.

Ce système de balayage 7 réfléchit un rayonnement laser L2 provenant de la deuxième source de lumière laser 6 vers le dispositif de conversion 3 de longueur d'onde. Ce rayonnement L2 peut alors être dévié selon deux directions par le système de balayage 7.This scanning system 7 reflects laser radiation L2 coming from the second laser light source 6 towards the wavelength conversion device 3. This radiation L2 can then be deflected in two directions by the scanning system 7.

Dans une variante, la deuxième source de lumière laser 6 et le système de balayage 7 peuvent être compris dans un MOEMS (acronyme de « Micro-Opto-Electro-Mechanical Systems », signifiant « système microoptoélectromécanique »). Un MOEMS est un système optique comprenant, dans le cas présent, au moins une source de lumière laser et un système de balayage 7. Les MOEMS sont des dispositifs compacts, fiables, simples à utiliser et qui permettent une grande précision et une grande flexibilité de redirection du rayonnement laser L2 vers le dispositif de conversion 3.Alternatively, the second laser light source 6 and the scanning system 7 can be included in a MOEMS (acronym for "Micro-Opto-Electro-Mechanical Systems", meaning "microoptoelectromechanical system"). A MOEMS is an optical system comprising, in this case, at least one laser light source and a scanning system 7. MOEMS are compact devices, reliable, simple to use and which allow high precision and great flexibility in redirecting L2 laser radiation to the conversion device 3.

Bien que dans le présent mode de réalisation, la deuxième source de rayonnement lumineux 2 comporte une unique source de lumière, elle peut cependant dans une alternative comprendre par exemple deux sources de lumière laser émettant chacune un rayonnement vers un même système de balayage 7. Dans une variante, ces deux sources peuvent émettre chacune un rayonnement L2 vers des systèmes de balayage distincts.Although in the present embodiment, the second light radiation source 2 comprises a single light source, it can however in an alternative comprise, for example, two laser light sources each emitting radiation towards the same scanning system 7. In alternatively, these two sources can each emit L2 radiation to separate scanning systems.

Par exemple, le module d'éclairage peut comprendre trois systèmes de balayage 7 équipés chacun d'une ou de plusieurs sources de lumière laser. La création du faisceau d'éclairage dans sa partie haute projetée sur la route est ainsi optimisée.
De même, dans le mode de réalisation décrit, la première source de rayonnement lumineux 1 comporte une unique source laser 9. Dans le cadre de l'invention, elle pourra comporter plus d'une source, par exemple deux sources laser émettant chacune un rayonnement laser vers le miroir 10, les rayons de ces deux sources pouvant le cas échéant être combinés avant d'atteindre le miroir.
For example, the lighting module can comprise three scanning systems 7 each equipped with one or more laser light sources. The creation of the light beam in its upper part projected onto the road is thus optimized.
Similarly, in the embodiment described, the first light radiation source 1 comprises a single laser source 9. In the context of the invention, it may include more than one source, for example two laser sources each emitting radiation laser towards the mirror 10, the rays of these two sources possibly being combined before reaching the mirror.

Le dispositif de conversion 3 de longueur d'onde compris dans le module d'éclairage comporte un substrat formant un support 12 réfléchissant qui est recouvert d'une couche 11 continue d'un matériau phosphorescent.The wavelength conversion device 3 included in the lighting module comprises a substrate forming a reflective support 12 which is covered with a continuous layer 11 of a phosphorescent material.

Ce support 12 du dispositif de conversion 3 est choisi parmi des matériaux qui sont thermiquement bons conducteurs. De tels matériaux permettent ainsi au support 12 de limiter la dégradation de la couche 11 de matériau phosphorescent en restreignant l'élévation de température du dispositif de conversion 3 et de la couche 11.This support 12 of the conversion device 3 is chosen from materials which are thermally good conductors. Such materials thus allow the support 12 to limit the degradation of the layer 11 of phosphorescent material by restricting the temperature rise of the conversion device 3 and of the layer 11.

La couche 11 en matériau phosphorescent est apte à réémettre un rayonnement 16 de lumière blanche. En effet, lorsque les première 1 et deuxième 2 sources de rayonnement lumineux émettent respectivement un rayonnement laser L1, L2 monochromatique et cohérent en direction du dispositif de conversion 3, ce dernier reçoit ce rayonnement laser L1, L2 et réémet un rayonnement 16 de lumière blanche qui comporte une pluralité de longueurs d'onde appartenant au spectre de la lumière visible et comprises entre environ 400 nanomètres et 800 nanomètres.The layer 11 of phosphorescent material is capable of re-emitting radiation 16 of white light. Indeed, when the first 1 and second 2 sources of light radiation respectively emit laser radiation L1, L2 monochromatic and coherent towards the conversion device 3, the latter receives this laser radiation L1, L2 and re-emits radiation 16 of white light which has a plurality of lengths of wave belonging to the visible light spectrum and between approximately 400 nanometers and 800 nanometers.

Cette émission de lumière blanche se produit, selon un diagramme d'émission lambertienne, c'est-à-dire avec une luminance uniforme dans toutes les directions.This emission of white light occurs, according to a Lambertian emission diagram, that is to say with uniform luminance in all directions.

Le substrat de ce dispositif de conversion 3 est réalisé par exemple en matière métallique, notamment en aluminium. Cette matière métallique constituant le substrat présente de bonne caractéristiques et propriétés en matière de conduction et de résistance thermique. Ainsi, le substrat permet avantageusement de limiter la température de la couche 11 en matériau phosphorescent, en favorisant la dissipation de chaleur.The substrate of this conversion device 3 is made for example of metallic material, in particular aluminum. This metallic material constituting the substrate has good characteristics and properties in terms of conduction and thermal resistance. Thus, the substrate advantageously makes it possible to limit the temperature of the layer 11 of phosphorescent material, by promoting the dissipation of heat.

De plus, ce substrat peut être exposé à des puissances lasers sans se décomposer, lesquelles peuvent être, par exemple, de l'ordre de 15 watts.In addition, this substrate can be exposed to laser powers without decomposing, which can be, for example, of the order of 15 watts.

Ainsi, le dispositif de conversion 3 est donc agencé dans le module d'éclairage de façon à pouvoir recevoir des rayonnements laser L1, L2 provenant de la première source de rayonnement lumineux 1 et de la deuxième source de rayonnement lumineux 2. Il s'agit donc d'un dispositif de conversion 3 commun à l'ensemble des sources de lumière laser.Thus, the conversion device 3 is therefore arranged in the lighting module so as to be able to receive laser radiation L1, L2 originating from the first source of light radiation 1 and from the second source of light radiation 2. This is therefore a conversion device 3 common to all of the laser light sources.

Ce dispositif de conversion 3 est situé au voisinage du plan focal du système optique de projection 4 qui forme alors à l'infini une image de la couche 11 de matériau phosphorescent, ou plus exactement des points de cette couche 11 qui émettent de la lumière en réponse à l'excitation laser résultant des rayonnements laser L1, L2 qu'ils reçoivent des première 1 et deuxième 2 sources de rayonnement lumineux.This conversion device 3 is located in the vicinity of the focal plane of the optical projection system 4 which then infinitely forms an image of the layer 11 of phosphorescent material, or more exactly of the points of this layer 11 which emit light in response to the laser excitation resulting from the laser radiation L1, L2 that they receive from the first 1 and second 2 sources of light radiation.

Plus précisément, le système optique de projection 4 forme un faisceau d'éclairage 15 avec le rayonnement de lumière 16 émis par les différents points de la couche 11 de matériau phosphorescent illuminés par ces rayonnements laser L1, L2.
Le faisceau d'éclairage 15 émergeant du module d'éclairage est ainsi directement fonction des rayons lumineux émis par la couche 11 de matériau phosphorescent, lui-même fonction des rayonnements laser L1, L2 absorbées par cette couche 11.
More specifically, the optical projection system 4 forms an illumination beam 15 with the light radiation 16 emitted by the various points of the layer 11 of phosphorescent material illuminated by these laser radiations L1, L2.
The lighting beam 15 emerging from the lighting module is thus a direct function of the light rays emitted by the layer 11 of phosphorescent material, itself a function of the laser radiation L1, L2 absorbed by this layer 11.

On notera que le rayonnement laser L2 provenant de la deuxième source de rayonnement lumineux 2 forme une image à projeter par le système optique de projection 4, par balayage en profitant de la persistance rétinienne et/ou de la métastabilité du matériau phosphorescent.It will be noted that the laser radiation L2 coming from the second light radiation source 2 forms an image to be projected by the optical projection system 4, by scanning while taking advantage of the retinal persistence and / or of the metastability of the phosphorescent material.

En outre, les première 1 et deuxième 2 sources de rayonnement lumineux, le dispositif de conversion 3 et le système optique de projection 4 sont compris dans cet unique module d'éclairage qui équipe un projecteur.In addition, the first 1 and second 2 sources of light radiation, the conversion device 3 and the projection optical system 4 are included in this single lighting module which equips a projector.

Dès lors, ces première 1 et deuxième 2 sources de rayonnement lumineux partagent les mêmes dispositif de conversion 3 et système optique de projection 4. Ainsi, l'encombrement du module d'éclairage mais également celui du projecteur dans lequel il est monté, s'en trouve fortement réduit.Therefore, these first 1 and second 2 sources of light radiation share the same conversion device 3 and optical projection system 4. Thus, the size of the lighting module but also that of the projector in which it is mounted, s' finds it greatly reduced.

Ce module d'éclairage comporte également, une unité de commande 5 qui est apte à piloter les première 1 et deuxième 2 sources de rayonnement lumineux en fonction de la photométrie désirée du faisceau d'éclairage 15 produit par ce module d'éclairage.
En particulier, l'unité de commande 5 pilote le système de balayage 7 pour que le rayonnement laser L2 balaye successivement tous les points de zones de la couche 11 du matériau phosphorescent sélectionnées par cette unité de commande 5. Ainsi, elle est apte à définir les zones de la couche 11 qu'il convient de balayer avec les rayonnements laser L2 de manière à former une image sur cette couche 11, une telle image étant constituée d'une succession de lignes formées chacune d'une succession de points plus ou moins lumineux.
L'unité de commande 5 pilote aussi l'activation et le contrôle de la puissance des première 1 et deuxième 2 sources de lumière laser et le cas échéant, la modulation de l'intensité des rayonnements laser L1, L2.
On notera que les points de la couche 11 du matériau phosphorescent ainsi éclairés par les rayonnements laser L1, L2 émettent de la lumière, avec une intensité qui est directement fonction de l'intensité de ces rayonnements laser L1, L2 qui éclairent ces points, l'émission s'effectuant selon un diagramme d'émission lambertienne.
This lighting module also comprises a control unit 5 which is capable of controlling the first 1 and second 2 sources of light radiation as a function of the desired photometry of the lighting beam 15 produced by this lighting module.
In particular, the control unit 5 controls the scanning system 7 so that the laser radiation L2 successively scans all the zone points of the layer 11 of the phosphorescent material selected by this control unit 5. Thus, it is able to define areas of the layer 11 which should be scanned with laser radiation L2 so as to form an image on this layer 11, such an image consisting of a succession of lines each formed of a succession of more or less bright points.
The control unit 5 also controls the activation and the control of the power of the first 1 and second 2 laser light sources and, if necessary, the modulation of the intensity of the laser radiation L1, L2.
It will be noted that the points of the layer 11 of the phosphorescent material thus illuminated by the laser radiations L1, L2 emit light, with an intensity which is directly a function of the intensity of these laser radiations L1, L2 which illuminate these points, l 'emission taking place according to a Lambertian emission diagram.

Selon l'invention, ce module d'éclairage est apte à émettre un faisceau d'éclairage 15.
Ce faisceau d'éclairage 15 correspond à la superposition de faisceaux lumineux résultant des première 1 et deuxième 2 sources de rayonnement lumineux coopérant avec le dispositif de conversion 3 de longueur d'onde et le système optique de projection 4. Cette superposition peut être partielle ou complète ou encore ne concerner qu'une fraction des contours respectifs de ces faisceaux.
Ce faisceau d'éclairage 15 peut résulter de la superposition d'au moins deux faisceaux lumineux différents, ici les premier 14 et deuxième 13 faisceaux lumineux, mais également de la superposition de plus de deux faisceaux. En effet, ainsi que nous l'avons déjà évoqué, la deuxième source de rayonnement lumineux 2 peut émettre des faisceaux produits par plusieurs sources de lumière laser coopérant avec un ou plusieurs systèmes de balayage.
According to the invention, this lighting module is capable of emitting a lighting beam 15.
This lighting beam 15 corresponds to the superposition of light beams resulting from the first 1 and second 2 sources of light radiation cooperating with the wavelength conversion device 3 and the optical projection system 4. This superposition can be partial or complete or only concern a fraction of the respective contours of these beams.
This lighting beam 15 can result from the superposition of at least two different light beams, here the first 14 and second 13 light beams, but also from the superposition of more than two beams. Indeed, as we have already mentioned, the second source of light radiation 2 can emit beams produced by several sources of laser light cooperating with one or more scanning systems.

A la figure 2, est illustré un exemple de faisceau d'éclairage 15 produit par le module d'éclairage, dit faisceau de croisement ou de code tel qu'apparaissant sur une surface plane de projection.
La surface plane de projection est disposée face au module d'éclairage, perpendiculairement à l'axe optique de ce dernier.
To the figure 2 , is illustrated an example of a light beam 15 produced by the lighting module, known as a passing beam or code as appearing on a flat projection surface.
The planar projection surface is arranged facing the lighting module, perpendicular to the optical axis of the latter.

Ce faisceau d'éclairage 15 de type feu de croisement résulte de la superposition du premier faisceau lumineux 14 et du deuxième faisceau lumineux 13.This low beam type lighting beam 15 results from the superposition of the first light beam 14 and the second light beam 13.

Le premier faisceau lumineux 14 est produit par la première source de rayonnement lumineux 1. Ce premier faisceau 14 représenté sur la figure 3, réalise une ligne de coupure horizontale 18. Cette ligne de coupure horizontale 18 est une ligne d'éclairage limite au-dessus de laquelle il est interdit d'éclairer la route. Dans les pays à circulation à droite, cette ligne de coupure est horizontale sur toute la largeur de la route et sur le bas-côté gauche de la route.The first light beam 14 is produced by the first light radiation source 1. This first beam 14 represented on the figure 3 , creates a horizontal cut-off line 18. This horizontal cut-off line 18 is a limit lighting line above which it is prohibited to illuminate the road. In countries with right-hand traffic, this cut line is horizontal across the width of the road and on the left side of the road.

A la figure 4 est représenté une partie du module d'éclairage illustré en figure 1. Dans cette partie du module d'éclairage, la première source de lumière laser 9 est apte à émettre un rayonnement laser L1 qui est guidé par le réflecteur 10 vers la partie supérieure 23 du dispositif de conversion 3, dans la zone située au-dessus du plan horizontal de l'axe optique AO (représenté en pointillés), afin de concentrer le rayonnement exclusivement sous la ligne de coupure horizontale 18. Le dispositif de conversion 3 réémet ensuite un rayonnement 16 de lumière blanche vers le système optique de projection 4 qui forme ainsi le premier faisceau lumineux 14.
En particulier, le réflecteur 10 est calculé pour réaliser cette ligne de coupure horizontale 18 ainsi qu'une répartition d'énergie maitrisée pour produire ce premier faisceau lumineux 14.
To the figure 4 a part of the lighting module illustrated in figure 1 . In this part of the lighting module, the first laser light source 9 is capable of emitting laser radiation L1 which is guided by the reflector 10 towards the upper part 23 of the conversion device 3, in the area located above the horizontal plane of the optical axis AO (shown in dotted lines), in order to concentrate the radiation exclusively under the horizontal cut-off line 18. The conversion device 3 then re-emits radiation 16 of white light towards the optical projection system 4 which forms thus the first light beam 14.
In particular, the reflector 10 is calculated to produce this horizontal cut-off line 18 as well as a controlled energy distribution to produce this first light beam 14.

Ce premier faisceau lumineux 14 représente une portion du faisceau d'éclairage 15 qui est commune à tous les faisceaux d'éclairage réglementaires, notamment de croisement ou route, susceptibles d'être produits par le module d'éclairage. Ce premier faisceau lumineux 14 correspond généralement à la partie basse des faisceaux d'éclairage réglementaires.This first light beam 14 represents a portion of the lighting beam 15 which is common to all the lighting beams regulatory, including crossing or road, likely to be produced by the lighting module. This first light beam 14 generally corresponds to the lower part of the regulatory lighting beams.

Ces faisceaux d'éclairage réglementaires correspondent aux configurations d'éclairages homologuées qui remplissent les différentes fonctions d'éclairage tenant compte des conditions de circulation, comme par exemple des fonctions de feu de croisement, de ville, d'autoroute, de portique ou encore de brouillard, etc...These regulatory lighting beams correspond to approved lighting configurations which fulfill the various lighting functions taking into account traffic conditions, such as low beam, city, motorway, gantry or even fog, etc ...

On notera que ce premier faisceau lumineux 14 rempli une fonction d'éclairage à l'avant du véhicule sur le sol jusqu'à environ 0,5 à 1,5 degrés en dessous de l'horizon.It will be noted that this first light beam 14 fulfills a lighting function at the front of the vehicle on the ground up to approximately 0.5 to 1.5 degrees below the horizon.

Le deuxième faisceau lumineux 13 réalise une coupure non plate, présentant un segment horizontal 19 qui se prolonge en une partie inclinée 17 formant un angle d'environ 10 à 60 degrés vers le haut par rapport à l'horizontale.The second light beam 13 achieves a non-flat cut, having a horizontal segment 19 which extends into an inclined portion 17 forming an angle of about 10 to 60 degrees upward relative to the horizontal.

La superposition du deuxième faisceau lumineux 13 avec le premier faisceau lumineux 14 présente une zone 20 de recouvrement qui présente une intensité lumineuse importante.
Cette zone 20 de recouvrement autrement appelée « spot lumineux », ou « point chaud » est, généralement, située au centre d'un halo de lumière moins intense. Cette zone 20 est ici positionnée sensiblement au centre du faisceau d'éclairage 15 dans l'axe dudit faisceau 15. Dans une configuration où le projecteur est du type directionnel, c'est-à-dire où la partie haute du faisceau (au-dessus de la ligne de coupure) est décalée dans la direction de l'orientation des roues avant du véhicule, cette zone 20 subira un déplacement par rapport à l'axe du faisceau, selon l'orientation à gauche ou à droite des roues.
The superposition of the second light beam 13 with the first light beam 14 has an overlap area 20 which has a high light intensity.
This overlap area 20 otherwise called "light spot", or "hot spot" is, generally, located in the center of a halo of less intense light. This zone 20 is here positioned substantially at the center of the lighting beam 15 in the axis of said beam 15. In a configuration where the headlamp is of the directional type, that is to say where the upper part of the beam (at above the cut-off line) is offset in the direction of the orientation of the front wheels of the vehicle, this zone 20 will undergo a displacement relative to the axis of the beam, according to the orientation to the left or to the right of the wheels.

Ainsi, le faisceau d'éclairage 15 du type feu de croisement obtenu présente une ligne de coupure non plate, essentiellement constituée d'une partie 21 horizontale basse, suivie d'un décrochement 17, consistant en un segment oblique au niveau de la projection de l'axe optique, puis d'une partie 22 sensiblement horizontale haute. Une telle configuration permet de ne pas éblouir les conducteurs croisés, à gauche dans l'exemple considéré, tout en assurant un éclairage optimal sur la droite de la route.Thus, the light beam 15 of the low beam type obtained has a non-flat cut-off line, essentially constituted a low horizontal part 21, followed by a step 17, consisting of an oblique segment at the projection of the optical axis, then a substantially horizontal high part 22. Such a configuration makes it possible not to dazzle the crossed conductors, on the left in the example considered, while ensuring optimal lighting on the right of the road.

Un tel faisceau d'éclairage 15 du type code a pour rôle d'éviter que l'éclairage du véhicule n'éblouisse un conducteur dans un véhicule en sens inverse ou le véhicule le précédant.The role of such a lighting beam 15 of the code type is to prevent the lighting of the vehicle from dazzling a driver in a vehicle in the opposite direction or the vehicle preceding it.

Cet exemple de faisceau correspondant à un faisceau d'éclairage 15 de croisement est applicable à la circulation à droite. Cet exemple est bien sur directement transposable à des conditions de circulation à gauche.This example of a beam corresponding to a crossing light beam 15 is applicable to right-hand traffic. This example is of course directly transferable to left-hand traffic conditions.

Le faisceau d'éclairage 15 produit par le module d'éclairage est homogène car dans ce mode de réalisation, la première source de lumière laser 9 présente les mêmes caractéristiques que la deuxième source de lumière laser 6 et ces dernières émettent toutes deux des rayonnements L1, L2 vers le même dispositif de conversion 3.The lighting beam 15 produced by the lighting module is homogeneous because in this embodiment, the first laser light source 9 has the same characteristics as the second laser light source 6 and the latter both emit radiation L1 , L2 to the same conversion device 3.

Le module d'éclairage est bien sûr apte à produire de la même façon d'autres fonctions d'éclairage tenant compte des conditions de circulation et de la réglementation en la matière, notamment des faisceaux route adaptatifs ou avec fonction anti-éblouissement.The lighting module is of course capable of producing other lighting functions in the same way taking into account traffic conditions and regulations in this area, in particular adaptive road beams or with anti-glare function.

On comprend bien que du fait de l'absence de système de balayage au niveau de la première source lumineuse, et de la nature statique ou quasi statique de la partie de faisceau générée par la première source lumineuse, le potentiel de la ou des source(s) laser de la première source lumineuse peut être exploité de manière optimale et le rendement du module est amélioré.It is well understood that due to the absence of a scanning system at the level of the first light source, and the static or quasi-static nature of the portion of beam generated by the first light source, the potential of the source (s) ( s) laser of the first light source can be optimally exploited and the efficiency of the module is improved.

Le réflecteur 10 présente une surface 24 particulière qui peut être déterminée à partir de la définition de la transformation par réflexion sur cette surface 24 d'un faisceau elliptique gaussien issu de la première source de lumière laser 9 dont l'intersection avec le dispositif de conversion 3 forme une zone délimitée par une coupure horizontale.The reflector 10 has a particular surface 24 which can be determined from the definition of the transformation by reflection on this surface 24 of a Gaussian elliptical beam coming from the first laser light source 9 whose intersection with the conversion device 3 forms an area delimited by a horizontal cut.

Ainsi que nous l'avons vu, cette zone éclairée par la première source de lumière laser 9 va ensuite à partir du dispositif de conversion 3 devenir une source lumineuse blanche quasi lambertienne qui est imagée à l'infini par le système optique de projection 4.As we have seen, this area illuminated by the first laser light source 9 will then, from the conversion device 3, become a quasi-Lambertian white light source which is imaged endlessly by the projection optical system 4.

On notera que du fait de la nature gaussienne du faisceau elliptique de la première source de lumière laser 9, il est possible de connaître par avance la répartition d'énergie résultant de ce faisceau sur le dispositif de conversion 3.It will be noted that due to the Gaussian nature of the elliptical beam of the first laser light source 9, it is possible to know in advance the energy distribution resulting from this beam on the conversion device 3.

Ainsi que l'illustrent les figures 5 et 6, on détermine alors des coupes du réflecteur 10 par un plan vertical et un plan horizontal passant par un point source correspondant à la première source de lumière laser 9.As illustrated by figures 5 and 6 , sections of the reflector 10 are then determined by a vertical plane and a horizontal plane passing through a source point corresponding to the first laser light source 9.

Ces coupes verticale et horizontale du réflecteur 10 sont déterminées en imposant la direction d'un rayon émis par la première source de lumière laser 9 et réfléchi le long de ces coupes du réflecteur 10 au niveau d'un point courant de sorte que le point d'impact du rayon réfléchi r de vecteur r sur le dispositif de conversion 3 décrive une ligne horizontale pour la coupe horizontale et une ligne verticale dans le cas de la coupe verticale.These vertical and horizontal sections of the reflector 10 are determined by imposing the direction of a ray emitted by the first laser light source 9 and reflected along these sections of the reflector 10 at a current point so that the point d impact of the reflected ray r of vector r on the conversion device 3 describes a horizontal line for the horizontal cut and a vertical line in the case of the vertical cut.

On précise que sur les figures 5 et 6, la base orthonormée du plan est ici définie par le repère en O, x, y et z, dont le centre O est placé sur la sortie de la première source de lumière laser 9 et plus précisément sur le centre de la facette de sortie de la diode.
On a également un vecteur i, représentant la direction du rayon incident sur le réflecteur 10 et un vecteur p perpendiculaire à i et on pose alors pour i et p :

  • pour la coupe horizontale i = { cos φ sin φ 0
    Figure imgb0001
    et p = { sin φ cos φ 0
    Figure imgb0002
  • pour la coupe verticale : i = { cos θ sin θ
    Figure imgb0003
    et p = { sin θ cos θ
    Figure imgb0004
La position du point courant est définie par M= ρ. i.It is specified that on the figures 5 and 6 , the orthonormal base of the plane is here defined by the reference frame in O, x, y and z, whose center O is placed on the output of the first laser light source 9 and more precisely on the center of the output facet of the diode.
We also have a vector i , representing the direction of the incident ray on the reflector 10 and a vector p perpendicular to i and then we ask for i and p :
  • for horizontal cutting i = { cos φ sin φ 0
    Figure imgb0001
    and p = { sin φ - cos φ 0
    Figure imgb0002
  • for vertical cutting: i = { cos θ sin θ
    Figure imgb0003
    and p = { sin θ - cos θ
    Figure imgb0004
The position of the current point is defined by M = ρ. i .

On impose alors la position du point d'impact C sur le dispositif de conversion 3 défini par c en fonction de l'angle θ projeté vertical ou l'angle ϕ projeté horizontal du rayon incident i sur le miroir 10, et alors, r = c ρ i c ρ i ,

Figure imgb0005
avec :

  • pour la coupe horizontale : c = D yi φ Zio
    Figure imgb0006
  • pour la coupe verticale : c = D Zi θ
    Figure imgb0007
    D étant la position du système de conversion 3 le long de l'axe optique par rapport à la position de la première source laser 9.
We then impose the position of the impact point C on the conversion device 3 defined by vs as a function of the vertical projected angle vertical or the horizontal projected angle horizontal of the incident ray i on mirror 10, and then, r = vs - ρ i vs - ρ i ,
Figure imgb0005
with:
  • for horizontal cutting: vs = D yi φ Zio
    Figure imgb0006
  • for vertical cutting: vs = D Zi θ
    Figure imgb0007
    D being the position of the conversion system 3 along the optical axis relative to the position of the first laser source 9.

Ainsi, les deux coupes recherchées sont alors solutions d'équations différentielles qui s'écrivent sous une forme canonique. Ces équations différentielles sont issues de la loi de la réflexion exprimée sous forme vectorielle.
Concernant la coupe horizontale, l'équation différentielle en ρ(ϕ) est : ρ = ρ r . p r . i 1

Figure imgb0008
S'agissant de la coupe verticale l'équation différentielle en ρ(θ) est : ρ r . i 1 = ρ r . p
Figure imgb0009
Ces équations différentielles peuvent être facilement résolues numériquement à partir de méthodes d'analyse numérique d'approximation de solutions d'équations différentielles comme par exemple la méthode de Runge-Kutta.Thus, the two sections sought are then solutions of differential equations which are written in a canonical form. These differential equations come from the law of reflection expressed in vector form.
Concerning the horizontal section, the differential equation in ρ (ϕ) is: ρ ' = ρ r . p r . i - 1
Figure imgb0008
Regarding the vertical section the differential equation in ρ (θ) is: ρ ' r . i - 1 = ρ r . p
Figure imgb0009
These differential equations can be easily solved numerically from methods of numerical analysis of approximation of solutions of differential equations such as for example the Runge-Kutta method.

On obtient alors les deux coupes horizontale et verticale du réflecteur 10 en mettant en œuvre une de ces méthodes, et en imposant les critères suivants :

  • pour assurer l'existence de la coupure horizontale : Zi(θ) ≥ Zi0 ;
    Zi(0) = Zi0 ; Zi(θ) doit être monotone et continue pour θ ≥ 0 ; Zi(θ) doit être monotone et continue pour θ≤0, et
  • pour que la surface obtenue corresponde à un réflecteur 10 matériellement réalisable : yi(ϕ) doit être monotone et croissante.
The two horizontal and vertical sections of the reflector 10 are then obtained by implementing one of these methods, and by imposing the following criteria:
  • to ensure the existence of the horizontal cut: Z i (θ) ≥ Z i0 ;
    Z i (0) = Z i0 ; Z i (θ) must be monotonic and continuous for θ ≥ 0; Z i (θ) must be monotonic and continuous for θ≤0, and
  • so that the surface obtained corresponds to a reflector 10 materially achievable: y i (ϕ) must be monotonous and increasing.

Une fois ces deux coupes du réflecteur 10 obtenues, il convient de déterminer le reste de la surface 24 du réflecteur 10, c'est-à-dire les points courant de cette surface 24 qui ne sont pas compris au niveau de ces coupes du réflecteur 10.
Pour ce faire, on utilise alors une méthode dite de différences finies qui permet une résolution point par point par optimisation sous contrainte.
Plus précisément, pour un point courant Pi,j si autour de la position de ce point Pi,j des points voisins Pi-1,j et Pi,j-1 sont connus, on peut approximer la normale N à la surface de ce point Pi,j par produit vectoriel avec les deux points voisins Pi-1,j et Pi,j-i.
Once these two sections of the reflector 10 have been obtained, it is necessary to determine the remainder of the surface 24 of the reflector 10, that is to say the current points of this surface 24 which are not included at the level of these sections of the reflector 10.
To do this, we use a so-called finite difference method which allows point-to-point resolution by optimization under stress.
More precisely, for a current point P i, j if around the position of this point P i, j of the neighboring points P i-1, j and P i, j-1 are known, we can approximate the normal NOT at the surface of this point P i, j by vector product with the two neighboring points P i-1, j and P i, ji .

Soit alors : P1+1,j P1,j P1,j-1 P1,j = N avec P i , j = x y j z i ; P i 1 , j = x y j z i 1 ; P i , j 1 = x y j 1 z i

Figure imgb0010
So then: P 1 + 1, j P 1, j P 1, d-1 P 1, d = NOT with P i , j = x there j z i ; P i - 1 , j = x there j z i - 1 ; P i , j - 1 = x there j - 1 z i
Figure imgb0010

On obtient alors : N = { Z i Z i 1 ( y j y j 1 Z i Z i 1 x x i , j 1 y j y j 1 x x i 1 , j

Figure imgb0011
We then obtain: NOT = { - Z i - Z i - 1 ( there j - there j - 1 Z i - Z i - 1 x - x i , j - 1 there j - there j - 1 x - x i - 1 , j
Figure imgb0011

Ces deux points voisins Pi-1,j et Pi,j-1 peuvent être des points compris sur les coupes verticale et horizontale et par la suite ils peuvent concerner des points qui auront été résolus par cette méthode de différences finies.These two neighboring points P i-1, j and P i, j-1 can be points understood on the vertical and horizontal sections and thereafter they can relate to points which will have been solved by this method of finite differences.

On notera que par ce point courant Pi,j passe un rayon incident émis par la première source de lumière laser 9, qui est défini par un vecteur incident suivant : op i , j op i , j

Figure imgb0012
It will be noted that through this current point P i, j passes an incident ray emitted by the first laser light source 9, which is defined by a following incident vector: op i , j op i , j
Figure imgb0012

On détermine ensuite le rayon réfléchi r du point courant Pi,j à partir de cette normale N avec : r = i 2 N . i N 2 N = r x r y r z

Figure imgb0013
(loi de la réflexion)We then determine the reflected ray r from the current point P i, j from this normal NOT with: r = i - 2 NOT . i NOT 2 NOT = r x r there r z
Figure imgb0013
(law of reflection)

On peut donc définir le point d'impact Pi, P i = x pi y pi z pi ,

Figure imgb0014
à partir du point courant Pi,j et du rayon réfléchi r et des coordonnées D y i φ z i θ
Figure imgb0015
d'un point d'impact idéal, lesquelles sont comprises sur les coupes verticale et horizontale, soit alors : P i = P i , j + μ r
Figure imgb0016
avec : P i = x pi y pi z pi ,
Figure imgb0017
P i , j = x y j z i
Figure imgb0018
et µ est la distance Pi,j, Pi.We can therefore define the point of impact P i , P i = x pi there pi z pi ,
Figure imgb0014
from the current point P i, j and the reflected ray r and coordinates D there i φ z i θ
Figure imgb0015
of an ideal point of impact, which are included on the vertical and horizontal sections, that is to say: P i = P i , j + μ r
Figure imgb0016
with: P i = x pi there pi z pi ,
Figure imgb0017
P i , j = x there j z i
Figure imgb0018
and µ is the distance P i, j , P i .

Les coordonnées du point d'impact P i = x pi y pi z pi

Figure imgb0019
sont alors égales à : x pi = x + μr x = D ;
Figure imgb0020
y pi = y j + μ r y = y j + D x r y r x car μ = D x r x
Figure imgb0021
Z pi = Z i + μ r z = Z i + D x r z r x car μ = D x r x
Figure imgb0022
The coordinates of the point of impact P i = x pi there pi z pi
Figure imgb0019
are then equal to: x pi = x + ÁR x = D ;
Figure imgb0020
there pi = there j + μ r there = there j + D - x r there r x because μ = D - x r x
Figure imgb0021
Z pi = Z i + μ r z = Z i + D - x r z r x because μ = D - x r x
Figure imgb0022

Par la suite, une minimisation sous contraintes est alors réalisée pour déterminer la position x du point courant Pi,j. Il s'agit ici de minimiser la distance du point d'impact Pi sur le dispositif de conversion 3 du rayon réfléchi r , par rapport à un point d'impact idéal D y i φ z i θ

Figure imgb0023
considéré dont les coordonnées sont sur des coupes verticale et horizontale.Thereafter, minimization under constraints is then carried out to determine the position x of the current point P i, j . It is a question here of minimizing the distance from the point of impact P i on the device 3 for converting the reflected ray. r , compared to an ideal point of impact D there i φ z i θ
Figure imgb0023
considered whose coordinates are on vertical and horizontal sections.

Soit y pi y i ϕ 2 + Z pi Z i θ 2

Figure imgb0024
Is there pi - there i φ 2 + Z pi - Z i θ 2
Figure imgb0024

Cette minimisation doit être réalisée avec les contraintes suivantes :

  • la coordonnée latérale ypi du point d'impact Pi ne doit pas être de signe opposé à la coordonnée latérale y(j) du point courant Pi,j pour ne pas changer de côté par rapport au plan vertical contenant l'axe optique et éviter ainsi de générer une ligne brillante au milieu du premier faisceau lumineux 14. On pose alors que : ypi y(j) ≥ 0 ;
  • la coordonnée verticale Zpi du point d'impact Pi doit être supérieure ou égale à Zi0 pour ne pas dépasser la ligne horizontale inférieure. On a Zpi ≥ Zi0.
This minimization must be carried out with the following constraints:
  • the lateral coordinate y pi of the point of impact P i must not be of opposite sign to the lateral coordinate y (j) of the current point P i, j so as not to change sides with respect to the vertical plane containing the optical axis and thus avoid generating a bright line in the middle of the first light beam 14. We then state that: y pi y (j) ≥ 0;
  • the vertical coordinate Z pi of the point of impact P i must be greater than or equal to Z i0 so as not to exceed the lower horizontal line. We have Z pi ≥ Z i0 .

Cette minimisation peut être effectuée à partir d'un algorithme de type « inner point » dont le fonctionnement est notamment décrit dans la publication scientifique ayant pour titre " An interior algorithm for nonlinear optimization that combines line search and trust région steps ", et dont les auteurs sont R.A. Waltz, J.L. Morales, J. Nocedal, et D. Orban. Cette publication est extraite de l'ouvrage intitulé « Mathematical Programming », Vol 107, No. 3, pages. 391-408, publié en 2006 .This minimization can be carried out using an "inner point" type algorithm, the operation of which is described in particular in the scientific publication entitled " An interior algorithm for nonlinear optimization that combines line search and trust region steps ", and whose authors are RA Waltz, JL Morales, J. Nocedal, and D. Orban. This publication is taken from the book" Mathematical Programming ", Vol 107, No. 3, pages 391-408, published in 2006 .

Cette minimisation est alors par la suite réalisée par cet algorithme pour tous les points d'impact susceptibles d'être définis sur la surface 24 de ce réflecteur 10 par la première source de lumière laser afin de produire le premier faisceau lumineux 14.This minimization is then subsequently carried out by this algorithm for all the impact points capable of being defined on the surface 24 of this reflector 10 by the first laser light source in order to produce the first light beam 14.

Ainsi, en définissant la transformation par réflexion sur le réflecteur du faisceau elliptique gaussien issu de la première source de lumière laser 9 vers le dispositif de conversion 3, il est alors possible de déterminer la surface 24 particulière de ce réflecteur 10.Thus, by defining the transformation by reflection on the reflector of the Gaussian elliptical beam coming from the first laser light source 9 towards the conversion device 3, it is then possible to determine the particular surface 24 of this reflector 10.

On comprend bien qu'en choisissant de manière adéquate les fonctions yi(ϕ) et Zi(θ), on détermine la répartition du flux lumineux dans la projection sur la route en fonction des spécifications de la photométrie désirée.It is clear that by choosing the functions y i (ϕ) and Z i (θ) adequately, the distribution of the light flux in the projection on the road is determined according to the specifications of the desired photometry.

La méthode de détermination de la surface du miroir 10 qui vient d'être exposée dans le cas d'une source laser unique est transposable à une configuration dans laquelle les sources laser de la première source lumineuse 1 sont combinées. Dans ce cas, on prendra comme centre O du référentiel le centre de la source laser virtuelle résultant de la combinaison des rayons.The method for determining the surface of the mirror 10 which has just been exposed in the case of a single laser source can be transposed to a configuration in which the laser sources of the first light source 1 are combined. In this case, the center of the virtual laser source resulting from the combination of the rays will be taken as center O of the frame of reference.

Avant d'aborder les autres configurations possibles, on rappellera que les rayons lasers ont une section transverse de type elliptique gaussien et comportent donc un grand et un petit axe.Before approaching the other possible configurations, it will be recalled that the laser rays have a transverse section of the Gaussian elliptical type and therefore comprise a large and a small axis.

Dans le cas où les rayons des sources laser ne sont pas combinés, les sources laser sont alors placées de sorte que soit le plan des grands axes soit celui des petits axes soient confondus.
Si les rayons ne se chevauchent pas (pour une largeur à 1/e2) alors chaque rayon laser se réfléchit sur une portion dédiée du miroir, calculée comme détaillé précédemment (chaque source est considérée individuellement).
S'il y a superposition des rayons laser, alors le miroir 10 sera de type cylindrique, sa section droite étant calculée comme détaillé précédemment pour une des sources laser et les sources laser de la première source lumineuse 1 sont alignées selon une droite parallèle à l'axe du cylindre du miroir.
In the case where the rays of the laser sources are not combined, the laser sources are then placed so that either the plane of the large axes or that of the small axes are merged.
If the rays do not overlap (for a width of 1 / e 2 ) then each laser beam is reflected on a dedicated portion of the mirror, calculated as detailed above (each source is considered individually).
If there is a superposition of laser rays, then the mirror 10 will be of the cylindrical type, its cross section being calculated as detailed above for one of the laser sources and the laser sources of the first light source 1 are aligned along a line parallel to l axis of the mirror cylinder.

La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations contenues dans le domaine des revendications ci-après. Les variations de balayage du système de conversion pour obtenir une fonction d'éclairage avancée pourront être alors générées en recourant à un dispositif de cache, par exemple rotatif, qui va créer des lignes de coupure.The present invention is not limited to the embodiments which have been explicitly described, but it includes the various variants and generalizations thereof contained in the field of claims below. The scanning variations of the conversion system to obtain an advanced lighting function can then be generated by using a hiding device, for example rotary, which will create cut lines.

Claims (10)

  1. Lighting module for a motor vehicle headlamp comprising first (1) and second (2) light radiation sources capable of emitting laser radiation (L1, L2) to a wavelength conversion device (3) which is capable of re-emitting light radiation (16) to an optical projection system (4) in order to produce an illumination beam (15), the module comprising a single wavelength conversion device (3) which is common to the laser radiation (L1, L2), characterised in that the first light radiation source (1) comprises at least a first laser light source (9) cooperating with a single reflector (10) which is a mirror mounted fixedly or mounted in rotation about a horizontal axis and driven with a movement of small amplitude and low speed, that is less than 15°.s-1, preferably less than 10°.s-1, preferably less than 4°.s-1, and the second light source (2) has at least one second laser light source (6) which cooperates with at least one scanning system (7) having at least one micromirror which is movable about a horizontal axis.
  2. Illumination module according to claim 1, characterised in that the first light radiation source (1) is arranged above an optical axis of the projection optical system (4).
  3. An illumination module according to any one of claims 1 to 2, characterized in that the first laser light source (9) is positioned above or recessed from the wavelength conversion device (3).
  4. An illumination module according to any one of claims 1 to 3, characterized in that the reflector (10) is positioned in front of the first laser light source (9) above an optical axis of the projection optical system (4) between the wavelength conversion device (3) and the projection optical system (4).
  5. Lighting module according to any one of claims 1 to 4, characterized in that the reflector (10) is a mirror made of metal, in particular an aluminium-based alloy.
  6. An illumination module according to any one of claims 1 to 5, characterized in that the first laser light source (9) is capable of emitting laser radiation (L1) to the reflector (10) which is capable of directing it towards an upper part (23) of the surface of the wavelength conversion device (3).
  7. An illumination module according to any one of claims 1 to 6, characterised in that the second light radiation source (2), the reflector (10) and the projection optical system (4) are arranged on the same side of the wavelength conversion device (3).
  8. Lighting module according to any one of claims 1 to 7, characterized in that the first (9) and second (6) laser light sources are laser diodes, in particular laser diodes having the same characteristics.
  9. Motor vehicle headlamp comprising a light module according to any of the preceding claims, in particular a single light module according to any of the preceding claims
  10. Method of producing an illumination beam (15) for a motor vehicle headlamp comprising the following steps :
    - formation of a first light beam (14) producing a first part which is the lower part projected onto the road of said lighting beam (15) by means of a first light radiation source (1) comprising at least one first laser light source (9) emitting laser radiation (L1) directed by a single reflector (10), which is a mirror mounted fixedly or mounted in rotation about a horizontal axis and driven with a movement of small amplitude and low speed, that is less than 15°.s-1, preferably less than 10°.s-1, preferably less than 4°.s-1, to a single wavelength conversion device (3), the wavelength conversion device (3) re-emitting light radiation to a projection optical system (4),
    - formation of a second light beam (13)) producing a second part of said illumination beam (15) by means of a second light radiation source (2) comprising at least one second laser light source (6) which cooperates with at least one scanning system (7) comprising at least one micromirror movable about a horizontal axis, the second laser light source (6) emitting laser radiation (L2) directed by the scanning system (7) to said single wavelength conversion device (3), the wavelength conversion device (3) re-emitting light radiation to the projection optical system (4), and
    - at least partial superimposition of the first (14) and second (13) light beams.
EP14761993.6A 2013-09-10 2014-09-10 Lighting module for a vehicle Active EP3044501B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1358709A FR3010486B1 (en) 2013-09-10 2013-09-10 LIGHTING MODULE FOR VEHICLE
FR1362276A FR3010487A1 (en) 2013-09-10 2013-12-09 LIGHTING MODULE FOR VEHICLE
PCT/EP2014/069270 WO2015036425A1 (en) 2013-09-10 2014-09-10 Lighting module for a vehicle

Publications (2)

Publication Number Publication Date
EP3044501A1 EP3044501A1 (en) 2016-07-20
EP3044501B1 true EP3044501B1 (en) 2020-02-19

Family

ID=49578469

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14761993.6A Active EP3044501B1 (en) 2013-09-10 2014-09-10 Lighting module for a vehicle

Country Status (3)

Country Link
EP (1) EP3044501B1 (en)
FR (2) FR3010486B1 (en)
WO (1) WO2015036425A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030017B1 (en) * 2014-12-10 2019-10-04 Valeo Vision LUMINOUS MODULE AND PROJECTOR PROVIDED WITH SUCH A MODULE.
JP6455710B2 (en) 2015-01-22 2019-01-23 スタンレー電気株式会社 Vehicle lighting
EP3279551A4 (en) * 2015-03-31 2018-12-26 Panasonic Intellectual Property Management Co., Ltd. Illumination device
FR3036772A1 (en) * 2015-05-29 2016-12-02 Valeo Vision PROJECTOR FOR MOTOR VEHICLE
JP6581002B2 (en) 2016-01-25 2019-09-25 スタンレー電気株式会社 Headlight device
DE102016210918A1 (en) * 2016-06-20 2017-12-21 Osram Gmbh Light source with laser Activated Remote Phosphor technology for a vehicle and lighting device with the light source
FR3054642B1 (en) * 2016-07-29 2020-07-17 Valeo Vision MOTOR VEHICLE PROJECTOR LIGHTING MODULE WITH VARIABLE OPENING BEAM
FR3061538B1 (en) * 2017-01-02 2019-05-24 Valeo Vision LIGHTING DEVICE FOR A VEHICLE COMBINING TWO LIGHT SOURCES
JP6981174B2 (en) * 2017-10-25 2021-12-15 トヨタ自動車株式会社 Vehicle headlight device
DE102018129216A1 (en) * 2018-11-20 2020-05-20 Automotive Lighting Reutlingen Gmbh Method for operating a motor vehicle headlight

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4047266B2 (en) * 2003-11-19 2008-02-13 株式会社小糸製作所 Lamp
JP5118564B2 (en) * 2008-06-24 2013-01-16 株式会社小糸製作所 Vehicle lighting
JP5577138B2 (en) * 2010-04-08 2014-08-20 スタンレー電気株式会社 Vehicle headlamp
JP5527058B2 (en) * 2010-07-06 2014-06-18 セイコーエプソン株式会社 Light source device and projector
JP5259791B2 (en) * 2010-10-29 2013-08-07 シャープ株式会社 Light emitting device, vehicle headlamp, lighting device, and vehicle
JP5656290B2 (en) * 2011-03-18 2015-01-21 スタンレー電気株式会社 Semiconductor light emitting device
DE102012100141A1 (en) * 2012-01-10 2013-07-11 Hella Kgaa Hueck & Co. Light module for headlight of vehicle, has deflection element that is arranged in optical path formed between beam source and converter element, so that deflection element is spatially arranged between converter and beam-forming elements
JP2014002839A (en) * 2012-06-15 2014-01-09 Ushio Inc Phosphor light source device
FR2993831B1 (en) * 2012-07-27 2015-07-03 Valeo Vision ADAPTIVE LIGHTING SYSTEM FOR MOTOR VEHICLE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3010487A1 (en) 2015-03-13
FR3010486B1 (en) 2018-01-05
FR3010486A1 (en) 2015-03-13
WO2015036425A1 (en) 2015-03-19
EP3044501A1 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
EP3044501B1 (en) Lighting module for a vehicle
FR3030017B1 (en) LUMINOUS MODULE AND PROJECTOR PROVIDED WITH SUCH A MODULE.
EP2690352B1 (en) Adaptive lighting system for an automobile
EP3342638B1 (en) Lighting device for a vehicle, combining two light sources
EP3210039B1 (en) Lighting and/or signalling system comprising telemetry means
EP3396241A1 (en) Light module with imaging optics optimised for a pixelated spatial modulator, intended for a motor vehicle
EP2837876B1 (en) Lighting and/or signalling system with improved shaping of scattered radiation
EP2867717B1 (en) Definition process for an aspherical lens and lighting module for a motor vehicle comprising such a lens
EP2813395A1 (en) Motor vehicle headlight including a laser light source and method for producing an illumination beam
EP3708905B1 (en) Lighting device imaging the mirrored image of a light collector
FR3003629A1 (en) MULTIFUNCTION LIGHTING SYSTEM
EP3276253B1 (en) Lighting module of a motor vehicle headlight with variable-opening beam
EP2976569B1 (en) Illuminating and/or signalling module for an automotive vehicle
EP2597360A1 (en) Light emitting device for a motor vehicle headlamp
EP2829790A2 (en) Lighting system associating white light and light of a different colour
EP3190335A1 (en) Luminous device provided with a curved wavelength conversion element, and headlight comprising such a luminous device
EP3505813B1 (en) Light module with scanning of light beam, in particular for a motor vehicle, provided with a reduced dimension focusing system, and lighting device for a motor vehicle comprising such a light module
EP3379143A1 (en) Light module with chromatism correction
FR3034058A1 (en) OPTICAL MODULE COMPRISING A LIGHTING AND / OR SIGNALING DEVICE FOR A MOTOR VEHICLE.
FR3075924B1 (en) BRIGHT BEAM SCANNING LIGHT MODULE, IN PARTICULAR FOR A MOTOR VEHICLE, EQUIPPED WITH A TWO-LENS FOCUSING SYSTEM, AND A LIGHTING DEVICE FOR A MOTOR VEHICLE
FR3063396A1 (en) SIGNALING DEVICE FOR A MOTOR VEHICLE, AND SIGNALING LIGHT EQUIPPED WITH SUCH A DEVICE
FR3047296A1 (en) METHOD FOR CONTROLLING THE EMISSION OF A BEAM FOR LIGHTING AND / OR SIGNALING OF A MOTOR VEHICLE
EP2944514A1 (en) Lighting system for a motor vehicle headlight comprising a plurality of lighting modules
FR3019267A1 (en) LONG RANGE LIGHTING SYSTEM FOR MOTOR VEHICLE
FR3036772A1 (en) PROJECTOR FOR MOTOR VEHICLE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014061222

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0041140000

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/675 20180101ALI20190719BHEP

Ipc: F21S 41/67 20180101ALI20190719BHEP

Ipc: F21S 41/663 20180101ALI20190719BHEP

Ipc: F21S 41/143 20180101ALI20190719BHEP

Ipc: F21S 41/16 20180101ALI20190719BHEP

Ipc: F21S 41/141 20180101ALI20190719BHEP

Ipc: F21S 41/14 20180101AFI20190719BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190913

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014061222

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1235378

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200519

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200619

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200519

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200712

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1235378

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014061222

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200910

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240912

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240923

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240916

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240925

Year of fee payment: 11