EP2922983A1 - Chromium-chromium oxide coatings applied to steel substrates for packaging applications and a method for producing said coatings - Google Patents
Chromium-chromium oxide coatings applied to steel substrates for packaging applications and a method for producing said coatingsInfo
- Publication number
- EP2922983A1 EP2922983A1 EP13794902.0A EP13794902A EP2922983A1 EP 2922983 A1 EP2922983 A1 EP 2922983A1 EP 13794902 A EP13794902 A EP 13794902A EP 2922983 A1 EP2922983 A1 EP 2922983A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- chromium
- coating
- resins
- substrate
- thermoplastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 39
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 34
- 239000010959 steel Substances 0.000 title claims abstract description 34
- 238000004806 packaging method and process Methods 0.000 title claims abstract description 24
- 238000000576 coating method Methods 0.000 title claims description 86
- 238000004519 manufacturing process Methods 0.000 title description 10
- UOUJSJZBMCDAEU-UHFFFAOYSA-N chromium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+3].[Cr+3] UOUJSJZBMCDAEU-UHFFFAOYSA-N 0.000 title description 8
- 238000000034 method Methods 0.000 claims abstract description 47
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000011651 chromium Substances 0.000 claims abstract description 43
- 230000008569 process Effects 0.000 claims abstract description 35
- 229910000423 chromium oxide Inorganic materials 0.000 claims abstract description 23
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 19
- 239000011247 coating layer Substances 0.000 claims abstract description 16
- 238000011084 recovery Methods 0.000 claims abstract description 7
- 238000009713 electroplating Methods 0.000 claims abstract description 6
- 238000001953 recrystallisation Methods 0.000 claims abstract description 4
- 239000011248 coating agent Substances 0.000 claims description 70
- 239000010410 layer Substances 0.000 claims description 42
- 239000003792 electrolyte Substances 0.000 claims description 29
- 238000009792 diffusion process Methods 0.000 claims description 25
- 229920000642 polymer Polymers 0.000 claims description 20
- 229920001169 thermoplastic Polymers 0.000 claims description 19
- -1 alkali metal cation Chemical class 0.000 claims description 14
- 238000007254 oxidation reaction Methods 0.000 claims description 14
- 239000004416 thermosoftening plastic Substances 0.000 claims description 14
- 229920005989 resin Polymers 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 10
- 238000007747 plating Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 230000003647 oxidation Effects 0.000 claims description 9
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 6
- 239000002738 chelating agent Substances 0.000 claims description 6
- 229920001577 copolymer Polymers 0.000 claims description 6
- 230000002708 enhancing effect Effects 0.000 claims description 6
- 229920000728 polyester Polymers 0.000 claims description 6
- 229920000178 Acrylic resin Polymers 0.000 claims description 5
- 239000004925 Acrylic resin Substances 0.000 claims description 5
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 5
- 229920000098 polyolefin Polymers 0.000 claims description 5
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 5
- 239000004800 polyvinyl chloride Substances 0.000 claims description 5
- 229920001187 thermosetting polymer Polymers 0.000 claims description 5
- 239000004952 Polyamide Substances 0.000 claims description 4
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 4
- 229920000554 ionomer Polymers 0.000 claims description 4
- 238000003475 lamination Methods 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 4
- 229920000515 polycarbonate Polymers 0.000 claims description 4
- 229920000570 polyether Polymers 0.000 claims description 4
- 239000002356 single layer Substances 0.000 claims description 4
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 4
- 229920005992 thermoplastic resin Polymers 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 2
- 239000002585 base Substances 0.000 claims description 2
- 125000002091 cationic group Chemical group 0.000 claims description 2
- 150000001845 chromium compounds Chemical class 0.000 claims description 2
- 238000001125 extrusion Methods 0.000 claims description 2
- 239000004094 surface-active agent Substances 0.000 claims description 2
- 239000005028 tinplate Substances 0.000 description 44
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 32
- 239000005029 tin-free steel Substances 0.000 description 30
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 24
- 239000000463 material Substances 0.000 description 20
- 238000004659 sterilization and disinfection Methods 0.000 description 18
- 238000012360 testing method Methods 0.000 description 16
- 238000005260 corrosion Methods 0.000 description 15
- 230000007797 corrosion Effects 0.000 description 15
- 238000004070 electrodeposition Methods 0.000 description 15
- 239000007789 gas Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 14
- 229910001887 tin oxide Inorganic materials 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 11
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 9
- 239000005864 Sulphur Substances 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 239000004922 lacquer Substances 0.000 description 9
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 8
- 229910000029 sodium carbonate Inorganic materials 0.000 description 8
- 238000010186 staining Methods 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- BFGKITSFLPAWGI-UHFFFAOYSA-N chromium(3+) Chemical compound [Cr+3] BFGKITSFLPAWGI-UHFFFAOYSA-N 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 239000001117 sulphuric acid Substances 0.000 description 6
- 235000011149 sulphuric acid Nutrition 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229920002799 BoPET Polymers 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000011696 chromium(III) sulphate Substances 0.000 description 4
- 235000015217 chromium(III) sulphate Nutrition 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 239000010411 electrocatalyst Substances 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000001103 potassium chloride Substances 0.000 description 4
- 235000011164 potassium chloride Nutrition 0.000 description 4
- WFIZEGIEIOHZCP-UHFFFAOYSA-M potassium formate Chemical compound [K+].[O-]C=O WFIZEGIEIOHZCP-UHFFFAOYSA-M 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000012925 reference material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000006172 buffering agent Substances 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 239000002659 electrodeposit Substances 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 150000002739 metals Chemical group 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical class ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910019923 CrOx Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004608 Heat Stabiliser Substances 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920003189 Nylon 4,6 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- VQWFNAGFNGABOH-UHFFFAOYSA-K chromium(iii) hydroxide Chemical class [OH-].[OH-].[OH-].[Cr+3] VQWFNAGFNGABOH-UHFFFAOYSA-K 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000003869 coulometry Methods 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- PDXRQENMIVHKPI-UHFFFAOYSA-N cyclohexane-1,1-diol Chemical compound OC1(O)CCCCC1 PDXRQENMIVHKPI-UHFFFAOYSA-N 0.000 description 1
- VEIOBOXBGYWJIT-UHFFFAOYSA-N cyclohexane;methanol Chemical compound OC.OC.C1CCCCC1 VEIOBOXBGYWJIT-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- HDERJYVLTPVNRI-UHFFFAOYSA-N ethene;ethenyl acetate Chemical class C=C.CC(=O)OC=C HDERJYVLTPVNRI-UHFFFAOYSA-N 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical class C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 description 1
- 229920006228 ethylene acrylate copolymer Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- ZYCMDWDFIQDPLP-UHFFFAOYSA-N hbr bromine Chemical compound Br.Br ZYCMDWDFIQDPLP-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- ZMCCBULBRKMZTH-UHFFFAOYSA-N molybdenum platinum Chemical compound [Mo].[Pt] ZMCCBULBRKMZTH-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- RJSRQTFBFAJJIL-UHFFFAOYSA-N niobium titanium Chemical compound [Ti].[Nb] RJSRQTFBFAJJIL-UHFFFAOYSA-N 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- CFQCIHVMOFOCGH-UHFFFAOYSA-N platinum ruthenium Chemical compound [Ru].[Pt] CFQCIHVMOFOCGH-UHFFFAOYSA-N 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/04—Electroplating: Baths therefor from solutions of chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/04—Electroplating: Baths therefor from solutions of chromium
- C25D3/06—Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/38—Chromatising
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/36—Pretreatment of metallic surfaces to be electroplated of iron or steel
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
- C25D7/0614—Strips or foils
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/08—Electrolytic coating other than with metals with inorganic materials by cathodic processes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/08—Electrolytic coating other than with metals with inorganic materials by cathodic processes
- C25D9/10—Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12556—Organic component
- Y10T428/12569—Synthetic resin
Definitions
- This invention relates to chromium-chromium oxide (Cr-CrOx) coatings applied to steel substrates for packaging applications and to a method for producing said coatings.
- Tin mill products include tinplate, Electrolytic Chromium Coated Steel (ECCS, also referred to as tin free steel or TFS), and blackplate, the uncoated steel.
- Packaging steels are normally provided as tinplate, or as ECCS onto which an organic coating can be applied. In case of tinplate this organic coating is usually a lacquer, whereas in case of ECCS increasingly polymer coatings such as PET or PP are used, such as in the case of Protact ® .
- Tinplate is characterised by its excellent corrosion resistance and weldability.
- Tinplate is supplied within a range of coating weights, normally between 1.0 and 11.2 g/m 2 , which are usually applied by electrolytic deposition. At present, most tinplate is post-treated with fluids containing hexavalent chromium,
- ECCS consists of a blackplate product which has been coated with a metallic chromium layer overlaid with a film of chromium oxide, both applied by electrolytic deposition.
- ECCS excels in adhesion to organic coatings and retention of coating integrity at temperatures exceeding the melting point of tin (232°C). In those cases tinplated material cannot be used. This is important for producing polymer coated packaging steel because during the thermoplastic coating application process the steel substrate may be heated to temperatures exceeding 232°C, with the actual maximum temperature values used being dependent on the type of thermoplastic coating applied.
- thermoplastic coatings such as polypropylene (PP) or polyester terephthalate (PET) to ECCS.
- ECCS can also be supplied within a range of coating weights for both the Cr and
- ECCS CrOx coating, typically ranging between 20 - 110 and 2 - 20 mg/m 2 respectively.
- ECCS can be delivered with equal coating specification for both sides of the steel strip, or with different coating weights per side, the latter being referred to as differentially coated strip.
- the production of ECCS currently involves the use of solutions on the basis of chromium in its hexavalent state, also known as hexavalent chromium or Cr(VI).
- Hexavalent chromium is nowadays considered a hazardous substance that is potentially harmful to the environment and constitutes a risk in terms of worker safety. There is therefore an incentive to develop alternative metal coatings that are able to replace conventional tinplate and ECCS, without the need to resort to the use of hexavalent chromium during manufacturing.
- a chromium metal - chromium oxide (Cr-CrOx) coating layer produced in a single plating step by using a trivalent chromium electroplating process.
- the packaging steel substrate is preferably provided in the form of a strip.
- the two-step vertical process uses a sulphuric acid free Cr(VI) electrolyte for applying the chrome oxide layer in the second step.
- Sulphuric acid is needed for a good efficiency in applying chrome metal and is therefore always used for the chrome metal plating step in these processes.
- the "one step vertical” and the “one step horizontal high current density (HCD) process” always have sulphate in the oxide layer because the chromium metal and chromium oxide are produced simultaneously in the same electrolyte (Boelen, thesis TU Delft 2009, page 8-9, ISBN 978-90-805661-5-6). In all cases the
- ECCS consists of a chromium oxide layer on top of the chromium metal.
- a coating layer comprising chromium metal and chromium oxide is deposited, and not by first depositing a chromium metal layer, and then providing a chromium oxide layer on top as a conversion layer.
- the Cr-CrOx layer should consist of a mixture of Cr-oxide and Cr-metal and the Cr-oxide should not be present as a distinct layer on the outermost surface, but mixed through the whole layer Cr-CrOx.
- the phrase single plating step is therefore not limited to mean that only one of these single plating steps is used.
- the packaging steel substrate is usually provided in the form of a strip of low carbon (LC), extra low carbon (ELC) or ultra low carbon (ULC) with a carbon content, expressed as weight percent, of between 0.05 and 0.15 (LC), between 0.02 and 0.05 (ELC) or below 0.02 (ULC) respectively. Alloying elements like manganese, aluminium, nitrogen, but sometimes also elements like boron, are added to improve the mechanical properties (see also e.g. EN 10 202, 10 205 and 10 239).
- the substrate consists of an interstitial-free low, extra-low or ultra-low carbon steel, such as a titanium stabilised, niobium stabilised or titanium-niobium stabilised interstitial-free steel.
- a chromium metal - chromium oxide (Cr-CrOx) coating produced from a trivalent chromium based electroplating process provides excellent adhesion to organic coatings.
- the chromium metal - chromium oxide (Cr-CrOx) coating produced from a trivalent chromium electrodeposition process has very similar adhesion properties compared to conventional ECCS produced via a hexavalent chromium electrodeposition process. By increasing the thickness of the Cr-CrOx coating layer the porosity of the coating is reduced and its corrosion resistance properties improve.
- the Cr-CrOx coating can be applied onto conventional, non-passivated, electrolytic, and optionally flowmelted, tinplate (ETP, Electrolytic Tinplate).
- ETP Electrolytic Tinplate
- the Cr-CrOx layer ensures that the growth of tin oxides is suppressed, i.e. it has a passivation function.
- the wet adhesion performance i.e. the organic coating adhesion after sterilisation, outperforms conventional hexavalent chromium passivated tinplate.
- the resistance to so-called sulphur staining i.e.
- the brown discolouration of tinplate due to contact with sulphur containing fill-goods can be fully suppressed by applying a sufficiently thick Cr-CrOx coating.
- the material according to the invention is therefore very suitable for replacement of hexavalent chromium passivated tinplate, optionally exceeding the technical performance limits of standard tinplate. From a process point of view, the fact that the Cr-CrOx coating layer is applied in a single process step means that two process steps are combined, which is beneficial in terms of process economy and in terms of environmental impact.
- the Cr-CrOx coating can also be applied directly onto the
- blackplate packaging steel substrate without prior application of a tin coating, i.e. directly applied onto the bare steel surface.
- a tin coating i.e. directly applied onto the bare steel surface.
- Merriam Webster blackplate is defined as sheet steel that has not yet been made into tin plate by being coated with tin or that is used uncoated where the protection afforded by tin is unnecessary. It was found that the dry adhesion levels to organic coatings for both thermoset lacquers and thermoplastic coatings, of this material can approach those normally associated with the use of ECCS.
- the material according to the invention can be used to directly replace ECCS for applications that require a moderate corrosion resistance.
- the Cr-CrOx coating layer applied onto non-passivated tinplate contains at least 20 mg Cr/m 2 , to create a tin oxide passivating effect. This thickness is adequate for many purposes.
- the Cr-CrOx coating layer applied onto non-passivated tinplate contains at least 40 mg Cr/m 2 , preferably at least 60 Cr/m 2 , to create a tin oxide passivating effect and to prevent or eliminate sulphur staining.
- a layer of 20 mg Cr/m 2 was found to be too thin. Starting at thicknesses of about 40 mg Cr/m 2 the sulphur staining is already much reduced, whereas at a layer thickness of of at least about 60 mg Cr/m 2 sulphur staining is practically eliminated.
- a suitable maximum thickness was found to be 140 mg Cr/m 2 .
- the maximum thickness was found to be 140 mg Cr/m 2 .
- Cr-CrOx coating layer applied onto non-passivated tinplate contains at least 20 to 140 mg Cr/m 2 , more preferably at least 40 and/or at most 90 mg Cr/m 2 , and most preferably at least 60 and/or at most 80 mg Cr/m 2 .
- the major advantage besides the elimination of hexavalent chromium from manufacturing is the potential to create a product with superior sulphur staining resistance and improved corrosion resistance.
- the Cr-CrOx coating layer applied onto blackplate is at least
- the Cr-CrOx coating layer applied onto blackplate is at least 40 and more preferably at least 60 mg Cr/m 2 .
- a suitable maximum thickness was found to be 140 mg Cr/m 2 .
- the Cr-CrOx coating layer applied onto blackplate contains at least 20 to 140 mg Cr/m 2 , more preferably at least 40 mg Cr/m2, and most preferably at least 60 mg Cr/m 2 . In an embodiment a suitable maximum is 110 mg Cr/m 2 .
- the Cr-CrOx coated blackplate aims to replace ECCS.
- the major advantage besides the elimination of hexavalent chromium from manufacturing is the potential to create a product for applications for which the superior corrosion resistance properties of tinplate are not required.
- the fact that the Cr-CrOx coating layer is applied in a single process step means that two process steps are combined, which is beneficial in terms of process economy and in terms of environmental impact.
- the Cr-CrOx coating can also be applied to a cold-rolled and recovery annealed blackplate, or to a cold-rolled and recovery annealed electrolytic, and optionally flowmelted, tinplate. These substrates have a recovery annealed substrate, rather than the recystallised single reduced ETP or blackplate or the double reduced blackplate. The difference in microstructure of the substrate was not found to materially affect the Cr-CrOx coating.
- thermoplastic coatings can be used in combination with thermoplastic coatings, but also for applications where traditionally ECCS is used in combination with lacquers (i.e. for bakeware such as baking tins, or products with moderate corrosion resistance requirements) or as a substitute for conventional tinplate for applications where requirements in terms of corrosion resistance are moderate.
- lacquers i.e. for bakeware such as baking tins, or products with moderate corrosion resistance requirements
- the coated substrate is further provided with an organic coating, consisting of either a thermoset organic coating, or a thermoplastic single layer polymer coating, or a thermoplastic multi-layer polymer coating.
- the Cr-CrOx layer provides excellent adhesion to the organic coating similar to that achieved by using conventional ECCS.
- thermoplastic polymer coating is a polymer coating system comprising one or more layers comprising the use of thermoplastic resins such as polyesters or polyolefins, but can also include acrylic resins, polyamides, polyvinyl chloride, fluorocarbon resins, polycarbonates, styrene type resins, ABS resins, chlorinated polyethers, ionomers, urethane resins and functionalised polymers.
- thermoplastic resins such as polyesters or polyolefins, but can also include acrylic resins, polyamides, polyvinyl chloride, fluorocarbon resins, polycarbonates, styrene type resins, ABS resins, chlorinated polyethers, ionomers, urethane resins and functionalised polymers.
- Polyester is a polymer composed of dicarboxylic acid and glycol.
- suitable dicarboxylic acids include therephthalic acid, isophthalic acid, naphthalene dicarboxylic acid and cyclohexane dicarboxylic acid.
- suitable glycols include ethylene glycol, propane diol, butane diol, hexane diol, cyclohexane diol, cyclohexane dimethanol, neopentyl glycol etc. More than two kinds of dicarboxylic acid or glycol may be used together.
- Polyolefins include for example polymers or copolymers of ethylene, propylene,
- Acrylic resins include for example polymers or copolymers of acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester or acrylamide.
- Polyamide resins include for example so-called Nylon 6, Nylon 66, Nylon 46,
- Polyvinyl chloride includes homopolymers and copolymers, for example with ethylene or vinyl acetate.
- Fluorocarbon resins include for example tetrafluorinated polyethylene, trifluorinated monochlorinated polyethylene, hexafluorinated ethylene- propylene resin, polyvinyl fluoride and polyvinylidene fluoride.
- Functionalised polymers for instance by maleic anhydride grafting include for example modified polyethylenes, modified polypropylenes, modified ethylene acrylate copolymers and modified ethylene vinyl acetates.
- thermoplastic polymer coating systems have shown to provide excellent performance in can-making and use of the can, such as shelf-life.
- the invention is embodied in a process for producing a coated steel substrate for packaging applications, the process comprising the electro-deposition of a chromium metal - chromium oxide coating on the substrate with the electrolytic deposition on said substrate of said chromium metal - chromium oxide coating occurring in a single plating step from a plating solution comprising a trivalent chromium compound, an optional chelating agent, an optional conductivity enhancing salt, an optional depolarizer, an optional surfactant and to which an acid or base can be added to adjust the pH.
- the electro-deposition of the Cr-CrOx coating is achieved by using an electrolyte in which the chelating agent comprises a formic acid anion, the conductivity enhancing salt contains an alkali metal cation and the depolarizer comprises a bromide containing salt.
- the cationic species in the chelating agent, the conductivity enhancing salt and the depolarizer is potassium.
- the benefit of using potassium is that its presence in the electrolyte greatly enhances the electrical conductivity of the solution, more than any other alkali metal cation, thus delivering a maximum contribution to lowering of the cell voltage required to drive the electro-deposition process.
- the composition of the electrolyte used for the Cr-CrOx deposition was: 120 g/l basic chromium sulphate, 250 g/l potassium chloride, 15 g/l potassium bromide and 51.2 g/l potassium formate.
- the pH was adjusted to values between 2.3 and 2.8 measured at 25°C by the addition of sulphuric acid.
- the chromium containing coating is preferably deposited from the trivalent chromium based electrolyte at a bath temperature of between 40 and 70°C, preferably of at least 45°C and/or at most 60°C.
- the Cr-layer consists of a mixture of Cr-oxide and Cr-metal and that the Cr-oxide is not present as a distinct layer on the outermost surface, but is mixed through the whole layer. This is also indicated by the O-peak that is present in the whole Cr-layer. In all cases the Cr-CrOx layer has a shiny metallic appearance.
- the formation of Cr(IV) can be prevented by using one, more or only hydrogen gas diffusion anodes at which hydrogen gas (H 2 (g)) is oxidised.
- H + protons
- H 3 0 + hydronium ions
- the oxidation of H 2 (g) to H + (aq) prevents the occurrence of undesirable oxidation reactions, such as the formation of Cr(IV), which occur at a higher anodic overpotential when using an anode at which water (H 2 0) is oxidised to oxygen (0 2 (g)).
- H 2 (g) is oxidised at the gas diffusion anode to
- the electrode potential is measured against the standard hydrogen electrode.
- the standard hydrogen electrode (abbreviated SHE), is a redox electrode which forms the basis of the thermodynamic scale of oxidation-reduction potentials.
- the anode operating (non-zero current) potential needed to generate a specific anodic current is determined by the activation overpotential (i.e. the potential difference required for driving the electrode reaction) and the concentration overpotential (i.e. the potential difference required to compensate for concentration gradients of electro-active species at the electrode).
- no depolariser is added to the electrolyte.
- a hydrogen gas diffusion anode is used then the addition of a depolariser to the electrolyte is no longer needed.
- the use of a hydrogen gas diffusion anode has the added advantage that the use of a chloride containing electrolyte becomes possible without the risk of chlorine formation. This chlorine gas is potentially harmful to the environment and to the workers and is therefore undesirable. This means that in the case of a Cr(III) electrolyte the electrolyte could be partly or entirely based on chlorides.
- the advantage of using a chloride based electrolyte is that the conductivity of the electrolyte is much higher compared to a sulphate only based electrolyte, which leads to a lower cell voltage that is required to run the electrodeposition, which results in a lower energy consumption.
- a hydrogen gas diffusion anode is a porous anode containing a three-phase interface of hydrogen gas, the electrolyte fluid and a solid electrocatalyst (e.g. platinum) that has been applied to the electrically conducting porous matrix (e.g. porous carbon or a porous metal foam).
- the main advantage of using such a porous electrode is that it provides a very large internal surface area for reaction contained in a small volume combined with a greatly reduced diffusion path length from the gas-liquid interface to the reactive sites.
- This design the mass transfer rate of hydrogen is greatly enhanced, while the true local current density is reduced at a given overall electrode current density, resulting in a lower electrode potential.
- a gas diffusion anode assembly to be used in the proposed electrodeposition method typically comprises the use of the following functional components (see Fig . 5) : a gas feeding chamber 1, a current collector 2 and a gas diffusion anode, which consists of an hydrophobic porous gas diffusion transport layer 3 combined with an hydrophilic reaction layer 4 (see Fig. 5).
- the latter is made up of a network of micropores that are (partly) drowned with liquid electrolyte.
- the reaction layer is provided with a proton exchange membrane on the outside 5, like a Nafion ® membrane, to prevent the diffusion of chemical species (like anions or large neutral molecules) present in the bulk liquid electrolyte inside the gas diffusion anode, as these compounds can potentially poison the electrocatalyst sites, causing degradation in electrocatalytic activity.
- a proton exchange membrane on the outside 5, like a Nafion ® membrane, to prevent the diffusion of chemical species (like anions or large neutral molecules) present in the bulk liquid electrolyte inside the gas diffusion anode, as these compounds can potentially poison the electrocatalyst sites, causing degradation in electrocatalytic activity.
- the main function of the gas feeding chamber is to supply hydrogen gas evenly to the hydrophobic backside of the hydrogen gas diffusion anode.
- the gas feeding chamber needs two connections: one to feed hydrogen gas and one to enable purging of a small amount of hydrogen gas to prevent the build-up of gas phase contaminations potentially present in trace amounts in the hydrogen gas supplied.
- the gas feeding chamber often contains a channel type structure to ensure that hydrogen gas is distributed evenly over the hydrophobic backside.
- the electrical current collector 2 is (usually) attached to the hydrophobic backside 3 of the hydrogen gas diffusion anode to enable the transport of the electrical current generated inside the anode to a rectifier (not shown in Fig. 5).
- This current collector plate must be designed in such a way to enable the hydrogen gas to contact the backside of the hydrogen gas diffusion anode so it can be transported to the reactive side inside the gas diffusion anode. Usually this is accomplished by using an electrically conductive plate with a large number of holes, a mesh or an expanded metal sheet made from e.g. titanium.
- gas feeding channels and electrical current collector can also be combined into a single component, which is then pressed against the hydrophobic back-side of the gas diffusion anode.
- the hydrogen gas diffuses through the hydrophobic backside of the hydrogen gas diffusion anode it comes into contact with the electrolyte, which is present in the hydrophilic part of the anode, i.e. the reaction layer (see Fig. 5, right hand side).
- the hydrogen gas dissolves into the electrolyte and is transported by diffusion to the electrocatalytic active sites of the hydrogen gas diffusion anode.
- platinum is used as electrocatalyst, but also other materials like platinum- ruthenium or platinum-molybdenum alloys can be used.
- the dissolved hydrogen is oxidised : the electrons that are generated are transported through the conductive matrix of the gas diffusion anode (usually a carbon matrix) to the current collector 2, while the hydronium ions (H + ) diffuse through the proton exchange membrane into the electrolyte.
- the coated substrate is further provided on one or both sides with an organic coating, consisting of a thermosetting organic coating by a lacquering step, or a thermoplastic single layer, or a thermoplastic multi-layer polymer by a film lamination step or a direct extrusion step.
- an organic coating consisting of a thermosetting organic coating by a lacquering step, or a thermoplastic single layer, or a thermoplastic multi-layer polymer by a film lamination step or a direct extrusion step.
- thermoplastic polymer coating is a polymer coating system comprising one or more layers comprising the use of thermoplastic resins such as polyesters or polyolefins, but can also include acrylic resins, polyamides, polyvinyl chloride, fluorocarbon resins, polycarbonates, styrene type resins, ABS resins, chlorinated polyethers, ionomers, urethane resins and functionalised polymers; and/or copolymers thereof; and/or blends thereof.
- thermoplastic resins such as polyesters or polyolefins, but can also include acrylic resins, polyamides, polyvinyl chloride, fluorocarbon resins, polycarbonates, styrene type resins, ABS resins, chlorinated polyethers, ionomers, urethane resins and functionalised polymers; and/or copolymers thereof; and/or blends thereof.
- the substrate is cleaned prior to Cr-CrOx electrodeposition by dipping the substrate in a sodium carbonate solution containing between 1 to 50 g/l of Na 2 C0 3 at a temperature of between 35 and 65°C, and wherein the cathodic current density of between 0.5 and 2 A/dm 2 is applied for a period of between 0.5 and 5 seconds.
- the sodium carbonate solution containing at least 2 and/or at most 5 g/l of Na 2 C0 3 .
- Example 1 Sheets of conventional, non-passivated, flow melted tinplate
- the samples were dipped into a trivalent chromium electrolyte kept at 50°C composed of: 120 g/l of basic chromium sulphate, 250 g/l of potassium chloride, 15 g/l of potassium bromide and 51.2 g/l of potassium formate.
- the pH of this solution was adjusted to 2.3 measured at 25°C by adding sulphuric acid .
- a Cr-CrOx coating containing between 21 - 25 mg Cr/m 2 was deposited on the surface by applying a cathodic current density of 10 A/dm 2 for approximately 1 second, using a platinised titanium anode as counter electrode. The samples so produced showed a shiny metallic appearance.
- the tin oxide layer is reduced by a controlled small cathodic current in a 0.1% solution of hydrobromic acid (HBr) that is freed from oxygen by scrubbing with nitrogen.
- HBr hydrobromic acid
- the progress of the reduction of the oxide is followed by potential measurement and the charge passed for the complete reduction (expressed as Coulomb/m 2 or C/m 2 ) serves as a measure of the tin oxide layer thickness.
- the results for the sample according to Example 1 are presented in Table 1, including the performance of the reference material, which is the same tinplate material that was passivated using hexavalent chromium, i.e. so-called 311 passivated tinplate.
- Example 2 Sheets of conventional, non-passivated, flow melted tinplate
- the tinplate variant manufactured according to the invention performed consistently equal or better compared to the standard tinplate that is passivated using hexavalent chromium (i.e. the reference). Striking is the fact that no sulphur staining was found for the material according to the invention, which is difficult to achieve with conventional passivated tinplate and notoriously difficult to achieve with alternative passivations for tinplate that are free of hexavalent chromium.
- Example 3 A coil of blackplate (common steel grade and temper), not containing any metal coating, was treated in a processing line running at a line speed of 20 m/min.
- the processing sequence started with alkaline cleaning of the steel by running the strip for approximately 10 seconds through a solution containing 30 ml/1 of a commercial cleaner (Percy P3) and 40 g/l of NaOH, which was kept at 60 °C. During cleaning of the strip an anodic current density of 1.3 A/dm 2 was applied. After rinsing with de-ionised water, the steel strip was passed through an acid solution for approximately 10 seconds, to activate the surface.
- the acid solution consisted of 50 g/l H 2 S0 4 , which was kept at 25
- the steel strip was passed into an electroplating tank containing the trivalent chromium based electrolyte kept at 50°C.
- This electrolyte consisted of: 120 g/l of basic chromium sulphate, 250 g/l of potassium chloride, 15 g/l of potassium bromide and 51.2 g/l of potassium formate.
- the pH of this solution was adjusted to 2.3 measured at 25 °C by adding sulphuric acid.
- the electroplating tank contained a set of anodes consisting of platinised titanium.
- the material so produced was passed through a coating line to apply a commercially available 20 micrometer thick PET film, through heat sealing. After film lamination, the coated strip was post-heated to temperatures above the melting point of PET, and subsequently quenched in water at room temperature, as per a usual processing method for the PET lamination of metals. The same procedure was followed for the manufacturing of reference material, using a commercially produced coil of ECCS.
- the DRD cans were subsequently filled with different media, closed and exposed to a sterilisation treatment. Some cans were processed that contained a scratch made on the can wall, to simulate and observe the effect of incidental coating damage. An overview of the type of sterilisation tests done is presented in Table 4.
- the performance ranking is on a scale from 0 to 5, with 0 being an excellent performance and 5 a very bad performance.
- Example 4 A coil of blackplate (common steel grade and temper), not containing any metal coating, was treated in a processing line identical to that described in the previous example to apply a Cr-CrOx coating.
- Fig. 1 and 2 show typical SEM images, which show the deposition of very fine grains of chromium metal-chromium oxide onto the surface.
- Figure 1 relates to a tinplate substrate and figure 2 relates to a blackplate substrate.
- Figure 3 shows an overview of various packaging applications. On the X-axis are packaging steel grades, and on the Y-axis a typical thickness range is shown for these applications for which the packaging steel substrate according to the invention could be used.
- Figure 4 shows where the current is plotted against the anode potential in SHE and Figure 5 shows a schematic drawing of a gas diffusion anode.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Laminated Bodies (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RS20190375A RS58504B1 (en) | 2012-11-21 | 2013-11-21 | Chromium-chromium oxide coatings applied to steel substrates for packaging applications and a method for producing said coatings |
EP13794902.0A EP2922983B1 (en) | 2012-11-21 | 2013-11-21 | Chromium-chromium oxide coatings applied to steel substrates for packaging applications and a method for producing said coatings |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12193623 | 2012-11-21 | ||
EP12195261 | 2012-12-03 | ||
PCT/EP2013/074339 WO2014079910A1 (en) | 2012-11-21 | 2013-11-21 | Chromium-chromium oxide coatings applied to steel substrates for packaging applications and a method for producing said coatings |
EP13794902.0A EP2922983B1 (en) | 2012-11-21 | 2013-11-21 | Chromium-chromium oxide coatings applied to steel substrates for packaging applications and a method for producing said coatings |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2922983A1 true EP2922983A1 (en) | 2015-09-30 |
EP2922983B1 EP2922983B1 (en) | 2019-02-20 |
Family
ID=49622838
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13798613.9A Active EP2922984B1 (en) | 2012-11-21 | 2013-11-21 | Method for producing chromium-chromium oxide coatings applied to steel substrates for packaging applications |
EP13794902.0A Active EP2922983B1 (en) | 2012-11-21 | 2013-11-21 | Chromium-chromium oxide coatings applied to steel substrates for packaging applications and a method for producing said coatings |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13798613.9A Active EP2922984B1 (en) | 2012-11-21 | 2013-11-21 | Method for producing chromium-chromium oxide coatings applied to steel substrates for packaging applications |
Country Status (13)
Country | Link |
---|---|
US (2) | US20150337448A1 (en) |
EP (2) | EP2922984B1 (en) |
JP (2) | JP6407879B2 (en) |
KR (2) | KR20150085038A (en) |
CN (2) | CN105102685A (en) |
BR (2) | BR112015011731B1 (en) |
CA (2) | CA2892114C (en) |
ES (2) | ES2716565T3 (en) |
MX (2) | MX2015006287A (en) |
RS (2) | RS58504B1 (en) |
RU (2) | RU2660478C2 (en) |
WO (3) | WO2014079911A2 (en) |
ZA (2) | ZA201503508B (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10000861B2 (en) | 2012-03-30 | 2018-06-19 | Tata Steel Ijmuiden Bv | Coated substrate for packaging applications and a method for producing said coated substrate |
US20160138178A1 (en) * | 2013-06-20 | 2016-05-19 | Tata Steel Ijmuiden B.V. | Method for manufacturing chromium-chromium oxide coated substrates |
JP2017001312A (en) * | 2015-06-11 | 2017-01-05 | 吉田 英夫 | Work film formation structure and work film formation method |
EP3439869B1 (en) | 2016-04-04 | 2023-09-06 | Tata Steel IJmuiden B.V. | Process for producing a polymer-coated metal strip and a polymer-coated metal strip produced thereby |
WO2018087135A1 (en) * | 2016-11-14 | 2018-05-17 | Tata Steel Ijmuiden B.V. | Method for electroplating an uncoated steel strip with a plating layer |
JP6593574B1 (en) | 2018-02-09 | 2019-10-23 | 日本製鉄株式会社 | Steel plate for container and method for producing steel plate for container |
KR102300979B1 (en) | 2018-10-19 | 2021-09-10 | 아토테크더치랜드게엠베하 | Method for electrolytically passivating the surface of silver, silver alloy, gold, or gold alloy |
DE102018132074A1 (en) | 2018-12-13 | 2020-06-18 | thysenkrupp AG | Process for producing a metal strip coated with a coating of chromium and chromium oxide based on an electrolyte solution with a trivalent chromium compound |
DE102018132075A1 (en) | 2018-12-13 | 2020-06-18 | thysenkrupp AG | Process for producing a metal strip coated with a coating of chromium and chromium oxide based on an electrolyte solution with a trivalent chromium compound |
JP7520025B2 (en) * | 2019-02-25 | 2024-07-22 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ | Method for electrolytic deposition of chromium oxide layer |
MX2021010226A (en) * | 2019-02-25 | 2021-09-21 | Tata Steel Ijmuiden Bv | METHOD FOR MANUFACTURING TINPLATE COATED WITH CHROME OXIDE. |
DE102019109354A1 (en) * | 2019-04-09 | 2020-10-15 | Thyssenkrupp Rasselstein Gmbh | Process for passivating the surface of a black plate or a tin plate and an electrolysis system for carrying out the process |
DE102019109356A1 (en) | 2019-04-09 | 2020-10-15 | Thyssenkrupp Rasselstein Gmbh | Process for the production of a metal strip coated with a coating of chromium and chromium oxide based on an electrolyte solution with a trivalent chromium compound and an electrolysis system for carrying out the process |
CN110339205B (en) * | 2019-08-19 | 2021-08-24 | 山东德信生物科技有限公司 | Application of hydrogen-rich water composition in inhibiting hexavalent chromium-induced endoplasmic reticulum stress and autophagy in DF-1 cells |
US11906203B2 (en) * | 2019-09-27 | 2024-02-20 | Ademco Inc. | Water heater control system with powered anode rod |
CN112446130A (en) * | 2020-10-15 | 2021-03-05 | 宝钢日铁汽车板有限公司 | Strip steel deviation simulation system of continuous hot galvanizing unit annealing furnace and control method |
KR20230093036A (en) | 2020-12-21 | 2023-06-26 | 제이에프이 스틸 가부시키가이샤 | Surface-treated steel sheet and its manufacturing method |
KR20230093037A (en) | 2020-12-21 | 2023-06-26 | 제이에프이 스틸 가부시키가이샤 | Surface-treated steel sheet and its manufacturing method |
DE102021125696A1 (en) * | 2021-10-04 | 2023-04-06 | Thyssenkrupp Rasselstein Gmbh | Process for passivating the surface of a tinplate and an electrolysis system for carrying out the process |
KR20240141805A (en) | 2022-04-08 | 2024-09-27 | 제이에프이 스틸 가부시키가이샤 | Surface-treated steel plate and its manufacturing method |
WO2023195251A1 (en) | 2022-04-08 | 2023-10-12 | Jfeスチール株式会社 | Surface-treated steel sheet and method for producing same |
CN118974327A (en) | 2022-04-08 | 2024-11-15 | 杰富意钢铁株式会社 | Surface treated steel sheet and method for manufacturing the same |
JP7401033B1 (en) * | 2022-07-19 | 2023-12-19 | Jfeスチール株式会社 | Surface treated steel sheet and its manufacturing method |
WO2025004426A1 (en) * | 2023-06-30 | 2025-01-02 | Jfeスチール株式会社 | Surface-treated steel sheet and manufacturing method therefor |
JP7552960B1 (en) | 2023-06-30 | 2024-09-18 | Jfeスチール株式会社 | Surface-treated steel sheet and its manufacturing method |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1129959A (en) * | 1914-04-06 | 1915-03-02 | Western Electric Co | System for amplifying electric waves. |
US2206131A (en) * | 1937-02-02 | 1940-07-02 | E J Lavino & Co | Process for making corrected magnesia refractories |
US3232854A (en) * | 1959-06-05 | 1966-02-01 | Diamond Alkali Co | Chromium plating |
US3567599A (en) * | 1967-06-21 | 1971-03-02 | Inland Steel Co | Electrochemical treatment of ferrous metal |
GB1258021A (en) * | 1969-01-13 | 1971-12-22 | ||
AU2348470A (en) | 1969-12-29 | 1972-07-06 | International Lead Zinc Research Organization | Aqueous chromium plating baths |
US3642586A (en) * | 1970-05-12 | 1972-02-15 | Republic Steel Corp | Anodic treatment for stainless steel |
JPS5230461B2 (en) * | 1972-01-14 | 1977-08-08 | Nippon Kokan Kk | |
JPS4893550A (en) * | 1972-03-10 | 1973-12-04 | ||
GB1455580A (en) * | 1973-12-13 | 1976-11-17 | Albright & Wilson | Electrodeposition of chromium |
GB1580137A (en) * | 1977-05-24 | 1980-11-26 | Bnf Metals Tech Centre | Electrolytic deposition of protective chromite-containing coatings |
US4167460A (en) * | 1978-04-03 | 1979-09-11 | Oxy Metal Industries Corporation | Trivalent chromium plating bath composition and process |
GB1602404A (en) | 1978-04-06 | 1981-11-11 | Ibm | Electroplating of chromium |
FR2465011A1 (en) * | 1979-09-06 | 1981-03-20 | Carnaud Sa | MATERIAL CONSISTING OF A PROTECTED STEEL SHEET, METHOD FOR MANUFACTURING SAME, AND APPLICATIONS THEREOF, IN PARTICULAR TO PRESERVE BOXES |
US4461680A (en) | 1983-12-30 | 1984-07-24 | The United States Of America As Represented By The Secretary Of Commerce | Process and bath for electroplating nickel-chromium alloys |
JPS60208494A (en) * | 1984-03-31 | 1985-10-21 | Kawasaki Steel Corp | Surface-treated steel sheet for seam welding can having excellent weldability |
JPS60258499A (en) * | 1984-06-04 | 1985-12-20 | Kawasaki Steel Corp | Manufacture of surface-treated steel plate for resistance welding |
US4690735A (en) * | 1986-02-04 | 1987-09-01 | University Of Florida | Electrolytic bath compositions and method for electrodeposition of amorphous chromium |
IT1216808B (en) * | 1987-05-13 | 1990-03-14 | Sviluppo Materiali Spa | CONTINUOUS ELECTRODEPOSITION PROCESS OF METALLIC CHROME AND CHROMIUM OXIDE ON METAL SURFACES |
NL8801511A (en) * | 1988-06-14 | 1990-01-02 | Hoogovens Groep Bv | METHOD FOR ELECTROLYTICALLY COATING A METAL SUBSTRATE WITH A METAL COATING COAT. |
SU1652380A1 (en) * | 1988-11-04 | 1991-05-30 | Центральный научно-исследовательский институт черной металлургии им.И.П.Бардина | Method of treatment of tin-plate for can containers |
JPH03202489A (en) * | 1989-12-29 | 1991-09-04 | Nkk Corp | Manganese and manganese alloy plating method |
SU1816808A1 (en) * | 1990-05-31 | 1993-05-23 | Tsnii Chernoj Metallurg | Method of sheet iron working |
JP2606451B2 (en) * | 1990-12-28 | 1997-05-07 | 東洋製罐株式会社 | Deep drawn can and method for producing the same |
NL9100353A (en) * | 1991-02-27 | 1992-09-16 | Hoogovens Groep Bv | PROCESS FOR ELECTROLYTICALLY COATING STEEL BELT WITH A SINK-CONTAINING USE USING AN INSOLUBLE ANODE. |
JPH089795B2 (en) * | 1991-08-13 | 1996-01-31 | 新日本製鐵株式会社 | Thin chromium-plated steel sheet with excellent lubricity |
US5294326A (en) * | 1991-12-30 | 1994-03-15 | Elf Atochem North America, Inc. | Functional plating from solutions containing trivalent chromium ion |
JPH07173695A (en) * | 1993-12-17 | 1995-07-11 | Nkk Corp | Electroplating device using gas diffusion electrode |
US6004448A (en) * | 1995-06-06 | 1999-12-21 | Atotech Usa, Inc. | Deposition of chromium oxides from a trivalent chromium solution containing a complexing agent for a buffer |
JPH1136099A (en) * | 1997-07-16 | 1999-02-09 | Kizai Kk | Plating device and plating method thereby |
JP2001070921A (en) | 1999-06-29 | 2001-03-21 | Sanyo Electric Co Ltd | Garbage disposer |
CN1141420C (en) * | 2001-02-27 | 2004-03-10 | 中山中粤马口铁工业有限公司 | A method for electroplating chrome on the surface of a thin steel plate |
JP2005029809A (en) * | 2003-07-07 | 2005-02-03 | Nippon Steel Corp | Surface-treated steel sheet for vessel superior in weldability and resistance to content |
JP2005213580A (en) * | 2004-01-29 | 2005-08-11 | Jfe Steel Kk | Production method of tin plated steel plate |
US20060116285A1 (en) * | 2004-11-29 | 2006-06-01 | De Nora Elettrodi S.P.A. | Platinum alloy carbon-supported catalysts |
KR100716016B1 (en) * | 2006-05-19 | 2007-05-11 | 하가전자 주식회사 | Power circuit for electronic wall switch |
US20080169199A1 (en) * | 2007-01-17 | 2008-07-17 | Chang Gung University | Trivalent chromium electroplating solution and an electroplating process with the solution |
RU2406790C2 (en) * | 2008-08-28 | 2010-12-20 | Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") | Procedure for treatment of electrical leaded rolled metal |
US7780840B2 (en) | 2008-10-30 | 2010-08-24 | Trevor Pearson | Process for plating chromium from a trivalent chromium plating bath |
CN101643924B (en) * | 2009-08-28 | 2011-07-27 | 广州市二轻工业科学技术研究所 | Full-sulfate trivalent-chromium solution for plating thick chromium and plating method |
CN101781781A (en) * | 2010-01-19 | 2010-07-21 | 上海应用技术学院 | Method of pulse chromium plating with trivalent chromium |
PL2705176T3 (en) * | 2011-05-03 | 2016-10-31 | Electroplating bath and method for producing dark chromium layers |
-
2013
- 2013-11-21 CA CA2892114A patent/CA2892114C/en active Active
- 2013-11-21 JP JP2015543420A patent/JP6407879B2/en active Active
- 2013-11-21 ES ES13794902T patent/ES2716565T3/en active Active
- 2013-11-21 BR BR112015011731-7A patent/BR112015011731B1/en active IP Right Grant
- 2013-11-21 BR BR112015011465-2A patent/BR112015011465B1/en active IP Right Grant
- 2013-11-21 RU RU2015124017A patent/RU2660478C2/en active
- 2013-11-21 US US14/646,274 patent/US20150337448A1/en not_active Abandoned
- 2013-11-21 WO PCT/EP2013/074341 patent/WO2014079911A2/en active Application Filing
- 2013-11-21 CN CN201380068653.7A patent/CN105102685A/en active Pending
- 2013-11-21 WO PCT/EP2013/074339 patent/WO2014079910A1/en active Application Filing
- 2013-11-21 KR KR1020157015785A patent/KR20150085038A/en not_active Application Discontinuation
- 2013-11-21 EP EP13798613.9A patent/EP2922984B1/en active Active
- 2013-11-21 MX MX2015006287A patent/MX2015006287A/en unknown
- 2013-11-21 RS RS20190375A patent/RS58504B1/en unknown
- 2013-11-21 JP JP2015543421A patent/JP6407880B2/en active Active
- 2013-11-21 US US14/646,238 patent/US20150329981A1/en not_active Abandoned
- 2013-11-21 RS RS20190020A patent/RS58266B1/en unknown
- 2013-11-21 KR KR1020157016480A patent/KR20150088288A/en not_active Application Discontinuation
- 2013-11-21 CA CA2891605A patent/CA2891605C/en active Active
- 2013-11-21 MX MX2015006372A patent/MX2015006372A/en unknown
- 2013-11-21 RU RU2015123743A patent/RU2655405C2/en active
- 2013-11-21 EP EP13794902.0A patent/EP2922983B1/en active Active
- 2013-11-21 ES ES13798613T patent/ES2703595T3/en active Active
- 2013-11-21 WO PCT/EP2013/074337 patent/WO2014079909A1/en active Application Filing
- 2013-11-21 CN CN201380068666.4A patent/CN104919091A/en active Pending
-
2015
- 2015-05-19 ZA ZA2015/03508A patent/ZA201503508B/en unknown
- 2015-06-09 ZA ZA2015/04168A patent/ZA201504168B/en unknown
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2891605C (en) | Chromium-chromium oxide coatings applied to steel substrates for packaging applications and a method for producing said coatings | |
CA2869032C (en) | Coated substrate for packaging applications and a method for producing said coated substrate | |
JP5692080B2 (en) | Manufacturing method of steel plate for container material with less environmental impact | |
CA3064669C (en) | Electrodeposition of a chromium-chromium oxide coating from a trivalent chromium solution | |
JP5091803B2 (en) | Steel plate for container material with less environmental impact, laminated steel plate for container material with less environmental impact using this, and pre-coated steel plate for container material | |
CA3130835A1 (en) | Method for manufacturing chromium oxide coated tinplate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150622 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170915 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25D 7/06 20060101ALI20180705BHEP Ipc: C25D 3/06 20060101AFI20180705BHEP Ipc: C25D 5/36 20060101ALI20180705BHEP Ipc: C25D 5/48 20060101ALI20180705BHEP Ipc: C25D 9/10 20060101ALI20180705BHEP Ipc: C25D 9/08 20060101ALI20180705BHEP Ipc: C25D 5/34 20060101ALI20180705BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180912 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20181030 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013051048 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1098305 Country of ref document: AT Kind code of ref document: T Effective date: 20190315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2716565 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190613 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190520 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190620 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190521 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190620 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190520 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1098305 Country of ref document: AT Kind code of ref document: T Effective date: 20190220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013051048 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 |
|
26N | No opposition filed |
Effective date: 20191121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191121 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190220 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20241126 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241127 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20241127 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241127 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241128 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20241031 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241122 Year of fee payment: 12 Ref country code: ES Payment date: 20241202 Year of fee payment: 12 Ref country code: RS Payment date: 20241104 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20241111 Year of fee payment: 12 |