EP2824216B1 - Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system - Google Patents
Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system Download PDFInfo
- Publication number
- EP2824216B1 EP2824216B1 EP14162799.2A EP14162799A EP2824216B1 EP 2824216 B1 EP2824216 B1 EP 2824216B1 EP 14162799 A EP14162799 A EP 14162799A EP 2824216 B1 EP2824216 B1 EP 2824216B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flat steel
- steel product
- burners
- flameless
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 130
- 239000010959 steel Substances 0.000 title claims description 130
- 238000000034 method Methods 0.000 title claims description 33
- 238000003618 dip coating Methods 0.000 title claims description 21
- 230000001681 protective effect Effects 0.000 title claims description 3
- 238000004519 manufacturing process Methods 0.000 title claims 3
- 239000011248 coating agent Substances 0.000 title description 8
- 238000000576 coating method Methods 0.000 title description 8
- 229910052751 metal Inorganic materials 0.000 title description 6
- 239000002184 metal Substances 0.000 title description 6
- 239000007789 gas Substances 0.000 claims description 83
- 229910052760 oxygen Inorganic materials 0.000 claims description 59
- 239000001301 oxygen Substances 0.000 claims description 56
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 55
- 238000000137 annealing Methods 0.000 claims description 37
- 239000000446 fuel Substances 0.000 claims description 30
- 239000010410 layer Substances 0.000 claims description 15
- 238000009826 distribution Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000011261 inert gas Substances 0.000 claims description 10
- 239000011241 protective layer Substances 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000009434 installation Methods 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 238000001953 recrystallisation Methods 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 230000001603 reducing effect Effects 0.000 claims description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims 2
- 239000003546 flue gas Substances 0.000 claims 2
- 230000000295 complement effect Effects 0.000 claims 1
- 239000000047 product Substances 0.000 description 80
- 230000003647 oxidation Effects 0.000 description 24
- 238000007254 oxidation reaction Methods 0.000 description 24
- 239000002737 fuel gas Substances 0.000 description 12
- 238000005275 alloying Methods 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 8
- 239000011572 manganese Substances 0.000 description 8
- 239000011651 chromium Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 241001156002 Anthonomus pomorum Species 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000009966 trimming Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 241001474791 Proboscis Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910002064 alloy oxide Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/68—Temporary coatings or embedding materials applied before or during heat treatment
- C21D1/70—Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/561—Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0038—Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0222—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
- C23C8/16—Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
- C23C8/18—Oxidising of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/28—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/30—Details, accessories or equipment specially adapted for furnaces of these types
- F27B9/36—Arrangements of heating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D99/00—Subject matter not provided for in other groups of this subclass
- F27D99/0001—Heating elements or systems
- F27D99/0033—Heating elements or systems using burners
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0478—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
Definitions
- the invention relates to a process for producing a flat steel product provided by hot dip coating with a metallic protective layer, in particular a high-strength steel flat product having a tensile strength of at least 500 MPa or a high-strength steel flat product having a tensile strength of at least 1000 MPa.
- the invention further relates to a DFF-type continuous furnace for a hot-dip coating apparatus having a pre-oxidation section in which a flat steel product to be coated is exposed to an oxidizing atmosphere to form a covering FeO layer on the surface of the flat steel product, with burners arranged in the pre-oxidation section are operated with excess oxygen, and wherein at least one of the burner is associated with the top of the flat steel product and at least one of the other burner of the underside of the flat steel product.
- High-strength and high-strength flat steel products are in demand due to their advantageous combination of strength and formability in increasing quantities. This applies in particular to sheet metal applications in automotive body construction.
- the outstanding mechanical properties of such flat steel products are based on a multiphase microstructure of the material, possibly supported by induced plasticity of austenitic phase components (TRIP, TWIP or SIP effect).
- TRIP austenitic phase components
- the flat steel products in question usually have appreciable contents of certain alloying elements, typically manganese (Mn), aluminum (Al), silicon (Si). or chromium (Cr) count.
- Mn manganese
- Al aluminum
- Si silicon
- Cr chromium
- Various methods of applying a metallic protective layer are known. These include electrolytic deposition and hot dip coating. In addition to an electrolytically produced processing, the hot dipping refinement has established itself as an economically and ecologically particularly favorable process. In hot-dip coating, the flat steel product to be coated is immersed in a molten metal bath.
- Hot dip refinement proves to be particularly cost-effective if a flat-rolled steel semi-finished product delivered in the hard-rolled state is subjected to the process steps of purification, recrystallization annealing, hot dip coating, cooling, optional thermal, mechanical or chemical aftertreatment and coiling.
- the annealing treatment can be used to activate the steel surface.
- an N 2 -H 2 -Glühgasatmosphotre typically with unavoidable traces of H 2 O and O 2 is usually maintained in the continuous flow in the annealing furnace.
- the presence of oxygen in the annealing atmosphere has the disadvantage that the oxygen-affine alloying elements (for example Mn, Al, Si, Cr,...) Contained in the particular steel flat product to be treated form selectively passive, non-wettable oxides on the steel surface, thereby improving the coating quality or adhesion on the steel substrate can be sustainably worsened. Therefore, various attempts have been made to carry out the annealing of high and high strength steels of the type in question so that the selective oxidation of the steel surface is largely suppressed.
- the oxygen-affine alloying elements for example Mn, Al, Si, Cr,
- a first method of this kind is from the DE 10 2006 039 307 B3 known.
- the hot-dip coated steel flat product is bright annealed under particularly reductive atmosphere conditions (low H 2 O / H 2 ratio of the annealing atmosphere and high annealing temperature).
- Another possibility of preparation of a hot-rolled flat steel product in the course of an annealing treatment is that preoxidations are carried out in a continuous annealing zone used for the annealing within a DFF type ("Direct Fired Furnace") preheating zone.
- a DFF furnace flames emitted by gas burners act directly on the flat steel product to be treated.
- the oxidation potential of the atmosphere surrounding the steel flat product is adjusted in such a way that a covering FeO layer forms on the surfaces of the flat steel product.
- This FeO layer inhibits the selective oxidation of the oxygen-affine alloying elements of the flat steel product.
- the FeO layer is completely reduced back to metallic iron back.
- a method approach of this kind has long been from the DE 25 22 485 A1 known.
- the advantage of preheating the flat steel product in a preheating furnace designed in DFF design consists in addition to the above-mentioned effects that can be achieved particularly high heating rates of the steel strip, which significantly reduces the duration of the annealing cycle and thus coupled with the output of a corresponding continuous furnace Can significantly increase hot dip coating plant.
- the object of the invention was to provide a continuous furnace or a method of the type mentioned above, in a large-scale hot dip coating plant as uniform as possible pre-oxidation of steel strip, the significant alloying parts of oxygen-affine alloying elements (Mn , Al, Si, Cr, ...), can achieve over the bandwidth. As a result, an improvement of the wetting image and the coating adhesion over the entire width of the steel strip to be achieved.
- the inventive method is characterized in that as a burner in the pre-oxidation of the preheating furnace flameless burner be used, by means of which fuel, preferably fuel gas, and oxygen-containing gas are introduced separately from each other at a flow rate of at least 60 m / s in the preheating furnace, wherein in addition to at least one of the top of the flat steel product associated flameless burner and at least one of the underside of the flat steel product associated flameless burner per at least one gas line for supplying at least one additional gas stream is provided, by means of which the fuel and the oxygen-containing gas are additionally mixed, and wherein the additional gas stream is directed obliquely to the plane of the flat steel product introduced into the preheating furnace.
- a uniformly thick oxide layer is reliably produced on the steel strip by the method according to the invention, advantageously, relatively thin pre-oxidation layers of less than 1 ⁇ m, preferably less than 0.3 ⁇ m, in particular less than 0.2 ⁇ m, can be realized.
- the quality of subsequent hot dip coating in the subsequent process can be significantly improved because of the intermediate reduction step, a clean, free of unwanted alloy oxides band surface is achieved, which has a very good wettability and thus avoids coating defects in the form of uncoated sites or at least significantly reduced.
- An advantageous embodiment of the method according to the invention is characterized in that the flameless burners are operated with an oxygen excess of at least 1.1, preferably at least 1.2, more preferably at least 1.3.
- the oxide layer with uniform layer thickness is very reliable, with the nitrogen oxide emissions decrease from a lambda value of about 1.05 with increasing oxygen excess.
- a further advantageous embodiment of the method according to the invention is characterized in that at least two, preferably at least three flameless burners the top of the flat steel product and at least two, preferably at least three flameless burners are assigned to the bottom of the flat steel product, wherein the top of the flat steel product associated flameless burner in Passing direction of the flat steel product offset to be arranged on the underside of the flat steel product associated flameless burners.
- This embodiment favors the setting of a homogeneous as possible oxidizing furnace atmosphere, in particular homogeneous temperature distribution.
- This embodiment also favors the setting of a most homogeneous oxidizing furnace atmosphere.
- a further advantageous embodiment of the method according to the invention is that the oxygen-containing gas is introduced preheated in the preheating furnace.
- the oxygen-containing gas typically air
- the oxygen-containing gas is preheated for this purpose, for example, by means of at least one heat exchanger, which is coupled to the annealing furnace, the cooling device following the annealing furnace and / or the molten bath vessel.
- a further advantageous embodiment of the method according to the invention provides that the oxygen-containing gas and / or the fuel inert gas, for example, exhaust gas is added.
- the dimensions of the combustion cloud and in particular the combustion temperature can be influenced in a targeted manner.
- inert gas and / or exhaust gas preferably preheated inert gas and / or heated exhaust gas for the additional gas flow is used, by means of which the fuel and the oxygen-containing gas are additionally mixed.
- a further advantageous embodiment of the method according to the invention is characterized in that the dew point of the annealing atmosphere over the entire path of the steel flat product through the annealing furnace between -40 ° C and + 25 ° C is maintained by losses or irregularities by supplying moisture by means of at least one moistening device the distribution of the humidity of the atmosphere can be compensated.
- the dew point is on the one hand -40 ° C or more to minimize the driving force of the external oxidation of the alloying elements (eg Mn, Al, Si, Cr).
- the dew point of a maximum of + 25 ° C a unwanted oxidation of iron avoided.
- the continuous furnace according to the invention is characterized in that at least some of the burners in the pre-oxidation section are designed as flameless burners, by means of which fuel, preferably fuel gas, and oxygen-containing gas can be introduced separately into the preheating furnace at a flow rate of at least 60 m / s at least one flameless burner associated with the upper side of the flat steel product and at least one gas line for supplying at least one additional gas stream are provided adjacent to at least one underside of the flat steel product, the end of the respective gas line being oriented in such a way that the additional emerging therefrom Gas flow crosses or tangent to the emerging from the flameless burner fuel flow and / or oxygen-containing gas stream.
- the continuous furnace according to the invention offers the advantages already mentioned above in connection with the method according to the invention.
- hot dip coating plant A has in the conveying direction F of present as steel strip to be coated flat steel product S in direct connection consecutively one for preheating the Stahlflach exercisings S provided DFI booster 1, connected to its input 2 to the DFI booster preheating furnace 3, in which a pre-oxidation section 4 is formed, an annealing furnace 6, which is connected to a transition region 7 to the output 8 of the preheating furnace 3, connected to the output 9 of the annealing furnace 6 cooling zone 10, connected to the cooling zone 10 proboscis 11, to the output 12 of the cooling zone 10 is connected and immersed with its free end in a melt bath 13, a arranged in the melt bath 13 first deflecting means 14, a means 15 for adjusting the thickness of the on the Flat steel product S in the molten bath 13 applied metallic coating and a second deflecting 16 on.
- the preheating furnace 3 is of the DFF type (Direct Fired Furnace). In it, distributed over the conveyor line of the flat steel product S or at least in the pre-oxidation section 4 a plurality of flameless burners 17 are arranged. In these burners, the fuel (B), preferably fuel gas, and oxygen-containing gas (L), typically air is introduced unmixed or largely unmixed at high flow rate in the preheating furnace 3 (see. Fig. 3 ).
- the inflow rate of the fuel B and the oxygen-containing gas L is at least 60 m / s, preferably at least 120 m / s.
- the essential difference to conventional burners in flame operation is the intensive internal recirculation of the exhaust gases AG in the furnace chamber and their mixing with the combustion air or the oxygen-containing gas L (see. Fig. 3 ).
- the fuel B oxidizes in the entire furnace chamber volume.
- a very homogeneous temperature distribution arises over the entire width of the flat steel product S.
- the flameless burners 17 are operated in a superstoichiometric range, i. with a lambda value greater than 1, creating an oxidizing furnace atmosphere.
- a lambda value of at least 1.05, particularly preferably at least 1.1, in particular at least 1.2 or at least 1.3 is set.
- FIG Fig. 2 The structure of a flameless burner 17 for use in a continuous furnace (preheating furnace) 3 of the DFF type for a hot-dip coating machine is shown in FIG Fig. 2 shown.
- the burner 17 has a pipe section 17.1 with an elongated gas nozzle 17.2.
- the pipe section 17.1 is provided with a connecting flange 17.3 and connected via a fuel gas line, not shown, to a fuel gas supply, also not shown.
- the burner 17 has a hollow chamber 17.4 for supplying oxygen-containing gas, preferably air, which surrounds a longitudinal section of the pipe section 17.1 with the fuel gas nozzle 17.2.
- the hollow chamber 17.4 is provided with a connecting flange 17.5 and connected via a supply line, not shown, to a likewise not shown oxygen or air supply.
- the gas nozzle 17.2 opens with a central opening 17.6 and a coaxial annular opening (ring nozzle) 17.7 in the preheating furnace 3. Further, in the furnace chamber facing end face of the burner 17, an annular nozzle or more arranged on a common pitch circle, preferably evenly spaced from each other Nozzles 17.8 provided for the supply of oxygen or air.
- the oxygen or air nozzles 17.8 are designed so that the oxygen or air jets emerging therefrom cross the fuel gas stream leaving the gas nozzle.
- the burner 17 On its front side, the burner 17 is also provided with a nozzle stone 17.9.
- the nozzle block 17.9 has a channel 17.10, into which the nozzles 17.2, 17.6, 17.7, 17.8 open.
- the nozzle block 17.9 is provided with a pilot burner 17.11, which is received in a smaller, branched off from the channel 17.10 transverse channel 17.12. 17.
- the nozzle block 17.9 has a plurality of jet pipes (so-called jet pipes) 17.13 for the supply of oxygen-containing gas, which are connected to the hollow chamber 17.4 and whose longitudinal axes extend substantially parallel to the fuel inflow direction defined by the fuel gas nozzle 17.2.
- each of the flameless burners 17 has three or more of these jet pipes 17, 13 equally spaced on a channel 17.10 surrounding pitch are arranged.
- the nozzle block 17.9 is inserted in a form-fitting manner in a burner block 3.1 having a passage opening.
- the burner block 3.1 is provided with a gas line 5 for supplying an additional gas flow ZG.
- the end opening into the preheating furnace 3 (jet pipe) of the gas line 5 is oriented such that the additional gas flow ZG the fuel stream B emerging from the flameless burner 17 and oxygen-containing gas stream L crosses or tangent.
- the burner air L required for the combustion or the oxygen supplied for the combustion is preferably preheated.
- the respective flameless burner 17 may be preceded by a device (not shown here) for heating the oxygen-containing gas or the burner air L.
- the fuel gas supply line can also be provided with a device (not shown here) for heating the fuel gas B.
- the additional jet pipe 5 or the gas line connected thereto for supplying the at least one additional gas stream ZG can be preceded by a device (not shown here) for heating the additional gas stream.
- an inert gas or exhaust pipe is connected to the connected to the respective connecting flange 17.3 or 17.5 supply line (feed), which is provided with a metering valve (control valve).
- the flameless burners 17 are preferably integrated in at least one of the side walls 3.2, 3.3 of the preheating furnace 3, wherein at least two, preferably at least three flameless burners 17 the top of the flat steel product S and at least two, preferably at least three flameless burners 17 associated with the bottom of the flat steel product S. are.
- the flameless burners 17 are preferably arranged offset from one another (cf. Fig. 1 ).
- the flameless burners assigned to the upper side of the flat steel product S can be arranged offset in the direction of passage of the flat steel product S to the flameless burners associated with the underside of the flat steel product S.
- jet pipes (jet pipes) 17.13 which are arranged with respect to the Brenngaseinströmstrahl and the channel 17.10 at a distance, and is injected via the additionally oxygen-containing gas L, preferably oxygen or air in the fuel gas stream B, already a homogenization the fuel gas distribution causes.
- oxygen-containing gas L preferably oxygen or air in the fuel gas stream B
- gas line 5 is preferably introduced inert gas and / or exhaust gas in the pre-oxidation.
- This additional gas flow ZG crosses or touches the fuel flow.
- FIGS. 3 and 4 shown schematically.
- Fig. 4 is the above the flat steel product S arranged flameless burner 17, which is arranged in the side wall 3.2 of the preheating furnace 3, combined with a jet pipe 5.
- This jet tube 5 is above or (not shown here) preferably laterally adjacent to the flameless one Burner 17 is arranged and in each case aligned so that the emerging therefrom additional gas flow ZG crossed by the flameless burner 17 introduced fuel flow B or tangent. Furthermore, the flameless burner 17 arranged below the flat steel product S, which is arranged in the side wall 3.3 of the preheating furnace, is also combined with a jet pipe 5. This jet pipe 5 is arranged below or (not shown here) preferably laterally next to the flameless burner 17 and in each case aligned so that the additional gas flow ZG emerging therefrom crosses or touches the fuel flow B introduced by means of the flameless burner 17. This combination of flameless burner 17 and jet pipe 5 delimits the transition to the flameless zone in the preheating furnace.
- a device not shown in detail for the targeted feeding of oxygen or air is provided in the transition region 7.
- the purpose of this feed is the setting of hydrogen, which possibly passes in the transition region 7 as a result of flowing in the annealing furnace 6 from the outlet 9 in the direction of its inlet gas flow G.
- a suction device 24 is arranged in the region of the entrance of the annealing furnace 6, which sucks the reaching to the entrance of the annealing gas flow G.
- two moistening devices 25, 26 Adjacent to the outlet 9 of the annealing furnace 6, two moistening devices 25, 26 are arranged, one of which is assigned to one of the upper side and the other of the underside of the flat steel product S to be coated.
- the moistening devices 25, 26 are designed as slotted or perforated tubes oriented transversely to the conveying direction F of the flat steel product S and connected to a supply line 27, via which the moistening devices 25, 26 with steam or a moistened carrier gas, such as N 2 or N 2 /. H 2 , to be supplied.
- the cooling zone 10 may be designed so that the cooled to the respective bath inlet temperature flat steel product S before its entry into the trunk 11 yet in the cooling zone 10 undergoes an overaging treatment at the bath inlet temperature.
- the flat steel product S is deflected at the first deflection device 14 in the vertical direction and passes through the device 15 for adjusting the thickness of the metallic protective layer. Subsequently, the steel flat product S provided with the metallic protective layer is deflected again in the horizontal conveying direction F at the second deflection device 16 and, if appropriate, subjected to further treatment steps in plant parts not shown here.
- a hot-dip coated flat steel product according to the invention is excellently suited for further processing by means of one-stage, two-stage or multi-stage cold or hot forming into a high-strength / high-strength sheet metal component.
- a sheet metal component continues to be distinguished by its particular resistance to environmental influences.
- the use of a hot-dip coated steel flat product according to the invention thus not only raises lightweight potential, but also prolongs the product life.
- the method according to the invention achieves a very homogeneous pre-oxidation of a steel strip to be provided with a metallic protective layer by hot-dip coating, over the entire bandwidth in a large-scale DFF preheating furnace. This results in an improvement of the wetting pattern and the coating adhesion over the entire width of the flat steel product. Coating defects at the strip edges can thus be avoided even with relatively wide insert strips.
- Another advantage lies in the optimized combustion, which differs significantly characterized by reduced pollutant emissions and reduced fuel consumption.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts, insbesondere eines hochfesten Stahlflachprodukts mit einer Zugfestigkeit von mindestens 500 MPa oder eines höchstfesten Stahlflachprodukts mit einer Zugfestigkeit von mindestens 1000 MPa. Ferner betrifft die Erfindung einen Durchlaufofen vom DFF-Typ für eine Schmelztauchbeschichtungsanlage, mit einem Voroxidationsabschnitt, in welchem ein zu beschichtendes Stahlflachprodukt einer oxidierenden Atmosphäre ausgesetzt wird, um auf der Oberfläche des Stahlflachprodukts eine deckende FeO-Schicht zu bilden, wobei in dem Voroxidationsabschnitt Brenner angeordnet sind, die mit Sauerstoffüberschuss betrieben werden, und wobei mindestens einer der Brenner der Oberseite des Stahlflachproduktes und mindestens ein anderer der Brenner der Unterseite des Stahlflachproduktes zugeordnet ist. Wenn im Folgenden von Stahlflachprodukten die Rede ist, dann sind damit jegliche kalt- oder warmgewalzte Stahlbänder gemeint.The invention relates to a process for producing a flat steel product provided by hot dip coating with a metallic protective layer, in particular a high-strength steel flat product having a tensile strength of at least 500 MPa or a high-strength steel flat product having a tensile strength of at least 1000 MPa. The invention further relates to a DFF-type continuous furnace for a hot-dip coating apparatus having a pre-oxidation section in which a flat steel product to be coated is exposed to an oxidizing atmosphere to form a covering FeO layer on the surface of the flat steel product, with burners arranged in the pre-oxidation section are operated with excess oxygen, and wherein at least one of the burner is associated with the top of the flat steel product and at least one of the other burner of the underside of the flat steel product. When referring to flat steel products in the following, this means any cold or hot rolled steel strip.
Hochfeste sowie höchstfeste Stahlflachprodukte werden aufgrund ihrer vorteilhaften Kombination aus Festigkeit und Umformbarkeit in zunehmender Menge nachgefragt. Dies gilt insbesondere für Blechanwendungen im automobilen Karosseriebau. Dabei beruhen die herausragenden mechanischen Eigenschaften solcher Stahlflachprodukte auf einer mehrphasigen Mikrostruktur des Werkstoffs, ggf. unterstützt durch induzierte Plastizität austenitischer Phasenanteile (TRIP-, TWIP- oder SIP-Effekt). Um eine solch komplexe Mikrostruktur zu erhalten, weisen die hier in Rede stehenden Stahlflachprodukte üblicherweise nennenswerte Gehalte an bestimmten Legierungselementen auf, zu denen typischerweise Mangan (Mn), Aluminium (Al), Silizium (Si) oder Chrom (Cr) zählen. Eine Oberflächenveredelung in Form einer metallischen Schutzschicht erhöht dabei nicht nur die Beständigkeit der Stahlflachprodukte gegen Korrosion und damit einhergehend deren Produktlebensdauer, sondern verbessert auch ihre optische Anmutung.High-strength and high-strength flat steel products are in demand due to their advantageous combination of strength and formability in increasing quantities. This applies in particular to sheet metal applications in automotive body construction. The outstanding mechanical properties of such flat steel products are based on a multiphase microstructure of the material, possibly supported by induced plasticity of austenitic phase components (TRIP, TWIP or SIP effect). In order to obtain such a complex microstructure, the flat steel products in question usually have appreciable contents of certain alloying elements, typically manganese (Mn), aluminum (Al), silicon (Si). or chromium (Cr) count. A surface finish in the form of a metallic protective layer not only increases the resistance of the steel flat products to corrosion and, consequently, their product lifetime, but also improves their visual appearance.
Es sind verschiedene Verfahren zum Auftragen einer metallischen Schutzschicht bekannt. Hierzu zählen die elektrolytische Abscheidung und die Schmelztauchbeschichtung. Neben einer elektrolytisch erzeugten Veredelung hat sich die Schmelztauchveredelung als ökonomisch und ökologisch besonders günstiges Verfahren etabliert. Beim Schmelztauchbeschichten wird das zu beschichtende Stahlflachprodukt in ein metallisches Schmelzbad eingetaucht.Various methods of applying a metallic protective layer are known. These include electrolytic deposition and hot dip coating. In addition to an electrolytically produced processing, the hot dipping refinement has established itself as an economically and ecologically particularly favorable process. In hot-dip coating, the flat steel product to be coated is immersed in a molten metal bath.
Als besonders kosteneffektiv erweist sich die Schmelztauchveredelung dann, wenn ein im walzharten Zustand angeliefertes Stahlflachprodukt-Vormaterial in einem kontinuierlichen Durchlauf den Verfahrensschritten Reinigung, Rekristallisationsglühen, Schmelztauchbeschichten, Abkühlen, optionales thermisches, mechanisches oder chemisches Nachbehandeln und Aufhaspeln zu einem Coil unterzogen wird.Hot dip refinement proves to be particularly cost-effective if a flat-rolled steel semi-finished product delivered in the hard-rolled state is subjected to the process steps of purification, recrystallization annealing, hot dip coating, cooling, optional thermal, mechanical or chemical aftertreatment and coiling.
Die dabei durchgeführte Glühbehandlung kann zur Aktivierung der Stahloberfläche genutzt werden. Dazu wird üblicherweise in dem im kontinuierlichen Durchlauf durchlaufenen Glühofen eine N2-H2-Glühgasatmosphäre mit typischerweise unvermeidbaren Spuren an H2O und O2 aufrechterhalten.The annealing treatment can be used to activate the steel surface. For this purpose, an N 2 -H 2 -Glühgasatmosphäre typically with unavoidable traces of H 2 O and O 2 is usually maintained in the continuous flow in the annealing furnace.
Die Anwesenheit von Sauerstoff in der Glühatmosphäre hat den Nachteil, dass die im jeweils zu behandelnden Stahlflachprodukt enthaltenen sauerstoffaffinen Legierungselemente (z.B. Mn, Al, Si, Cr, ...) selektiv passive, nicht-benetzbare Oxide auf der Stahloberfläche bilden, wodurch die Überzugsqualität oder -haftung auf dem Stahlsubstrat nachhaltig verschlechtert werden kann. Es sind daher verschiedene Versuche unternommen worden, die Glühbehandlung von hoch- und höchstfesten Stählen der hier in Rede stehenden Art so durchzuführen, dass die selektive Oxidation der Stahloberfläche weitestgehend unterdrückt wird.The presence of oxygen in the annealing atmosphere has the disadvantage that the oxygen-affine alloying elements (for example Mn, Al, Si, Cr,...) Contained in the particular steel flat product to be treated form selectively passive, non-wettable oxides on the steel surface, thereby improving the coating quality or adhesion on the steel substrate can be sustainably worsened. Therefore, various attempts have been made to carry out the annealing of high and high strength steels of the type in question so that the selective oxidation of the steel surface is largely suppressed.
Ein erstes Verfahren dieser Art ist aus der
In der
Eine andere Möglichkeit der im Zuge einer Glühbehandlung durchgeführten Vorbereitung eines Stahlflachprodukts für das Schmelztauchbeschichten besteht darin, dass in einem für das Glühen eingesetzten Durchlaufglühofens innerhalb einer Vorwärmzone nach DFF-Bauart ("DFF" = Direct Fired Furnace) Voroxidationen durchgeführt werden. Bei einem DFF-Ofen wirken von Gasbrennern ausgebrachte Flammen direkt auf das zu behandelnde Stahlflachprodukt ein. Indem die Brenner mit O2-Überschuss (Vertrimmung zu einer Luftzahl λ > 1) betrieben werden, wird das Oxidationspotenzial der das Stahlflachprodukt umgebenden Atmosphäre so eingestellt, dass sich auf den Oberflächen des Stahlflachprodukts gezielt eine deckende FeO-Schicht bildet. Diese FeO-Schicht unterbindet die selektive Oxidation der sauerstoffaffinen Legierungselemente des Stahlflachprodukts. In einem anschließend in einer Haltezone durchgeführten zweiten Glühschritt wird die FeO-Schicht wieder vollständig zu metallischem Eisen zurück reduziert.Another possibility of preparation of a hot-rolled flat steel product in the course of an annealing treatment is that preoxidations are carried out in a continuous annealing zone used for the annealing within a DFF type ("Direct Fired Furnace") preheating zone. In a DFF furnace, flames emitted by gas burners act directly on the flat steel product to be treated. By operating the burners with an O 2 excess (balanced to an air ratio λ> 1), the oxidation potential of the atmosphere surrounding the steel flat product is adjusted in such a way that a covering FeO layer forms on the surfaces of the flat steel product. This FeO layer inhibits the selective oxidation of the oxygen-affine alloying elements of the flat steel product. In a subsequent one Holding zone carried out second annealing step, the FeO layer is completely reduced back to metallic iron back.
Ein Verfahrensansatz dieser Art ist seit langem aus der
Durch die in der Regel an den Längsseiten des Vorwärmofens angeordneten Brenner wird jedoch hinsichtlich des Sauerstoffgehaltes und der Temperaturverteilung keine gleichmäßige Ofenatmosphäre erreicht. In der Praxis hat sich gezeigt, dass der Sauerstoffgehalt über die Ofen- bzw. Bandbreite abnimmt. Des Weiteren wurde eine ungleichmäßige Temperaturverteilung über die Bandbreite festgestellt, wodurch es zu einer unterschiedlich starken Oxidationsneigung und auch zur Überhitzung der Bandränder kommen kann. Zur Vergleichmäßigung der Temperatur- und Sauerstoffverteilung ist im Stand der Technik unter anderem eine Vertrimmung der DFF-Brennerflammen bekannt (siehe
Des Weiteren ist aus der
Eine sehr gleichmäßige Voroxidation aufgrund des direkten Bandkontakts zu einer Hüllflamme erlaubt ein so genannter "DFI-Booster" ("DFI" - Direct Flame Impingement), wie er in der
Aus der
Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, einen Durchlaufofen bzw. ein Verfahren der eingangs genannten Art anzugeben, mit dem sich in einer großtechnischen Schmelztauchbeschichtungsanlage eine möglichst gleichmäßige Voroxidation von Stahlband, das nennenswerte Legierungsanteile an sauerstoffaffinen Legierungselementen (Mn, Al, Si, Cr,...) aufweist, über die Bandbreite erzielen lässt. Dadurch soll eine Verbesserung des Benetzungsbildes und der Überzugshaftung über die komplette Breite des Stahlbandes erreicht werden.Against the background of the prior art described above, the object of the invention was to provide a continuous furnace or a method of the type mentioned above, in a large-scale hot dip coating plant as uniform as possible pre-oxidation of steel strip, the significant alloying parts of oxygen-affine alloying elements (Mn , Al, Si, Cr, ...), can achieve over the bandwidth. As a result, an improvement of the wetting image and the coating adhesion over the entire width of the steel strip to be achieved.
Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 1 bzw. durch einen Durchlaufofen mit den Merkmalen des Anspruchs 7. Bevorzugte und vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sowie des erfindungsgemäßen Durchlaufofens sind in den Unteransprüchen angegeben.This object is achieved by a method having the features of claim 1 or by a continuous furnace with the features of
Ein erfindungsgemäßes Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts umfasst demnach mindestens folgende Arbeitsschritte:
- a) Bereitstellen eines kalt- oder warmgewalzten Stahlflachprodukts, das neben Fe und unvermeidbaren Verunreinigungen (in Gew.-%) bis zu 35,0 % Mn, bis zu 10,0 % Al, bis zu 10,0 % Si, bis zu 5,0 % Cr, bis zu 2,0 % Ni, jeweils bis zu 0,5 % an Ti, V, Nb, Mo, jeweils bis zu 0,1 % S, P und N, bis zu 1,0 % C sowie optional 0,0005 - 0,01 % B enthält;
- b) Aufheizen des Stahlflachprodukts, vorzugsweise auf eine Temperatur im Bereich von 600 - 1000°C innerhalb einer Aufheizzeit von 5 - 60 Sekunden, in einem Vorwärmofen des DFF-Typs, in welchem ein Voroxidationsabschnitt ausgebildet ist und in welchem das Stahlflachprodukt einer oxidierenden Atmosphäre ausgesetzt wird, um auf der Oberfläche des Stahlflachprodukts eine deckende FeO-Schicht zu bilden, wobei in dem Voroxidationsabschnitt Brenner angeordnet sind, die mit Sauerstoffüberschuss betrieben werden, und wobei mindestens einer der Brenner der Oberseite des Stahlflachproduktes und mindestens ein anderer der Brenner der Unterseite des Stahlflachproduktes zugeordnet ist;
- c) rekristallisierendes Glühen des Stahlflachprodukts in einem Glühofen, der im Anschluss an den Vorwärmofen durchlaufen wird, um eine Rekristallisierung des Stahlflachprodukts zu bewirken, wobei in dem Glühofen eine gegenüber FeO reduzierend wirkende Glühatmosphäre herrscht;
- d) Abkühlen des Stahlflachprodukts auf eine Badeintrittstemperatur im Bereich von 430 bis 800°C in einer Schutzgasatmosphäre;
- e) Einleiten des Stahlflachprodukts in ein Schmelzenbad, dessen Temperatur im Bereich von 420 bis 780°C liegt; und
- f) Durchleiten des Stahlflachprodukts durch das Schmelzenbad und Einstellen der Dicke der auf dem aus dem Schmelzenbad austretenden Stahlflachprodukt vorhandenen metallischen Schutzschicht.
- a) providing a cold or hot rolled flat steel product, which in addition to Fe and unavoidable impurities (in wt .-%) up to 35.0% Mn, up to 10.0% Al, up to 10.0% Si, up to 5 , 0% Cr, up to 2.0% Ni, up to 0.5% each of Ti, V, Nb, Mo, up to 0.1% S, P and N, up to 1.0% C, respectively optionally contains 0.0005 - 0.01% B;
- b) heating the flat steel product, preferably to a temperature in the range of 600-1000 ° C within a heating time of 5-60 seconds, in a preheating furnace of the DFF type in which a pre-oxidation section is formed and in which the flat steel product is exposed to an oxidizing atmosphere to form a covering FeO layer on the surface of the flat steel product, wherein burners are operated in the Voroxidationsabschnitt operated with excess oxygen, and wherein at least one of the burner of the upper side of the flat steel product and at least one other of the burner of the underside of the flat steel product assigned;
- c) recrystallizing annealing of the flat steel product in an annealing furnace, which is passed after the preheating furnace to cause a recrystallization of the steel flat product, wherein in the annealing furnace there is a refractory to FeO reducing annealing atmosphere prevails;
- d) cooling the steel flat product to a bath inlet temperature in the range of 430 to 800 ° C in a protective gas atmosphere;
- e) introducing the steel flat product into a melt bath whose temperature is in the range of 420 to 780 ° C; and
- f) passing the flat steel product through the melt bath and adjusting the thickness of the metallic protective layer present on the steel flat product leaving the melt bath.
Zudem ist das erfindungsgemäße Verfahren dadurch gekennzeichnet, dass als Brenner in dem Voroxidationsabschnitt des Vorwärmofens flammenlose Brenner verwendet werden, mittels denen Brennstoff, vorzugsweise Brenngas, und sauerstoffhaltiges Gas getrennt voneinander mit einer Strömungsgeschwindigkeit von mindestens 60 m/s in den Vorwärmofen eingebracht werden, wobei neben mindestens einem der der Oberseite des Stahlflachprodukts zugeordneten flammenlosen Brenner und neben mindestens einem der Unterseite des Stahlflachprodukts zugeordneten flammenlosen Brenner je mindestens eine Gasleitung zur Zufuhr mindestens eines zusätzlichen Gasstroms vorgesehen ist, mittels dem der Brennstoff und das sauerstoffhaltige Gas ergänzend vermischt werden, und wobei der zusätzliche Gasstrom schräg auf die Ebene des Stahlflachprodukts gerichtet in den Vorwärmofen eingebracht wird.In addition, the inventive method is characterized in that as a burner in the pre-oxidation of the preheating furnace flameless burner be used, by means of which fuel, preferably fuel gas, and oxygen-containing gas are introduced separately from each other at a flow rate of at least 60 m / s in the preheating furnace, wherein in addition to at least one of the top of the flat steel product associated flameless burner and at least one of the underside of the flat steel product associated flameless burner per at least one gas line for supplying at least one additional gas stream is provided, by means of which the fuel and the oxygen-containing gas are additionally mixed, and wherein the additional gas stream is directed obliquely to the plane of the flat steel product introduced into the preheating furnace.
Durch die erfindungsgemäße Verwendung von flammenlosen Brennern in Kombination mit je mindestens einer Gasleitung zur Zufuhr eines zusätzlichen Gasstroms, mittels dem der Brennstoff und das sauerstoffhaltige Gas ergänzend vermischt werden, wird eine sehr homogene Temperatur- und Sauerstoffverteilung über die gesamte Breite des zu beschichtenden Stahlbandes erzielt. Hierdurch wird auch eine lokale Überhitzung der Feuerfestauskleidung des Vorwärmofens vermieden. In Verbindung mit dem überstöchimetrischem Betrieb des Vorwärmofens wird eine gleichmäßig oxidierende Ofenatmosphäre geschaffen, die auf dem zu beschichtenden, sauerstoffaffine Legierungselemente enthaltenden Stahlband eine gleichmäßig dicke Oxidschicht erzeugt. Da durch das erfindungsgemäße Verfahren in zuverlässiger Weise eine gleichmäßig dicke Oxidschicht auf dem Stahlband erzeugt wird, können tendenziell vorteilhafte, relativ dünne Voroxidationsschichten von kleiner 1 µm, vorzugsweise kleiner 0,3 µm, insbesondere kleiner 0,2 µm realisiert werden.The inventive use of flameless burners in combination with at least one gas line for supplying an additional gas stream, by means of which the fuel and the oxygen-containing gas are additionally mixed, a very homogeneous temperature and oxygen distribution over the entire width of the steel strip to be coated is achieved. As a result, a local overheating of the refractory lining of the preheating furnace is avoided. In conjunction with the superstoichimetric operation of the preheat furnace, a uniformly oxidizing furnace atmosphere is created which produces a uniformly thick oxide layer on the steel strip containing oxygen affinity alloying elements to be coated. Since a uniformly thick oxide layer is reliably produced on the steel strip by the method according to the invention, advantageously, relatively thin pre-oxidation layers of less than 1 μm, preferably less than 0.3 μm, in particular less than 0.2 μm, can be realized.
Die Qualität der im weiteren Verfahrensablauf folgenden Schmelztauchbeschichtung kann aufgrund der optimierten Voroxidation erheblich verbessert werden, da hierdurch nach dem zwischengeschalteten Reduktionsschritt eine saubere, von unerwünschten Legierungsoxiden freie Bandoberfläche erreicht wird, welche eine sehr gute Benetzbarkeit aufweist und somit Beschichtungsfehler in Form von unbeschichteten Stellen vermeidet oder zumindest deutlich reduziert.The quality of subsequent hot dip coating in the subsequent process can be significantly improved because of the intermediate reduction step, a clean, free of unwanted alloy oxides band surface is achieved, which has a very good wettability and thus avoids coating defects in the form of uncoated sites or at least significantly reduced.
Eine vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass die flammenlosen Brenner mit einem Sauerstoffüberschuss von mindestens 1,1, vorzugsweise mindestens 1,2, besonders bevorzugt mindestens 1,3 betrieben werden. In Versuchen wurde festgestellt, dass sich in diesem Fall die Oxidschicht mit gleichmäßiger Schichtdicke sehr zuverlässig ausbildet, wobei die Stickstoffoxidemissionen ab einem Lambda-Wert von ca. 1,05 mit zunehmendem Sauerstoffüberschuss abnehmen.An advantageous embodiment of the method according to the invention is characterized in that the flameless burners are operated with an oxygen excess of at least 1.1, preferably at least 1.2, more preferably at least 1.3. In experiments, it was found that in this case, the oxide layer with uniform layer thickness is very reliable, with the nitrogen oxide emissions decrease from a lambda value of about 1.05 with increasing oxygen excess.
Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass mindestens zwei, vorzugsweise mindestens drei flammenlose Brenner der Oberseite des Stahlflachprodukts und mindestens zwei, vorzugsweise mindestens drei flammenlose Brenner der Unterseite des Stahlflachprodukts zugeordnet werden, wobei die der Oberseite des Stahlflachprodukts zugeordneten flammenlosen Brenner in Durchlaufrichtung des Stahlflachprodukts versetzt zu den der Unterseite des Stahlflachprodukts zugeordneten flammenlosen Brennern angeordnet werden. Diese Ausgestaltung begünstigt die Einstellung einer möglichst homogenen oxidierenden Ofenatmosphäre, insbesondere homogenen Temperaturverteilung.A further advantageous embodiment of the method according to the invention is characterized in that at least two, preferably at least three flameless burners the top of the flat steel product and at least two, preferably at least three flameless burners are assigned to the bottom of the flat steel product, wherein the top of the flat steel product associated flameless burner in Passing direction of the flat steel product offset to be arranged on the underside of the flat steel product associated flameless burners. This embodiment favors the setting of a homogeneous as possible oxidizing furnace atmosphere, in particular homogeneous temperature distribution.
Nach einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens werden mindestens zwei, vorzugsweise mindestens drei flammenlose Brenner der Oberseite des Stahlflachprodukts und mindestens zwei, vorzugsweise mindestens drei flammenlose Brenner der Unterseite des Stahlflachprodukts zugeordnet, wobei die der Oberseite des Stahlflachprodukts zugeordneten flammenlosen Brenner in einer Seitenwand des Vorwärmofens integriert sind, während die der Unterseite des Stahlflachprodukts zugeordneten flammenlosen Brennern in der gegenüberliegenden Seitenwand des Vorwärmofens integriert sind. Auch diese Ausgestaltung begünstigt die Einstellung einer möglichst homogenen oxidierenden Ofenatmosphäre.According to a further advantageous embodiment of the method according to the invention at least two, preferably at least three flameless burner the top of the flat steel product and at least two, preferably at least three flameless burners the underside of the Stahlflachprodukts assigned, wherein the top of the flat steel product associated flameless burner in a side wall of the preheating furnace integrated, while the underside of the flat steel product associated flameless burners are integrated in the opposite side wall of the preheating furnace. This embodiment also favors the setting of a most homogeneous oxidizing furnace atmosphere.
Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens besteht darin, dass das sauerstoffhaltige Gas vorgewärmt in den Vorwärmofen eingebracht wird. Hierdurch lässt sich der Brennstoff besser nutzen bzw. der Brennstoffverbrauch reduzieren. Das sauerstoffhaltige Gas, typischerweise Luft, wird hierzu beispielsweise mittels mindestens eines Wärmetauschers vorgewärmt, der mit dem Glühofen, der auf den Glühofen folgenden Abkühleinrichtung und/oder dem Schmelzbadgefäß gekoppelt ist.A further advantageous embodiment of the method according to the invention is that the oxygen-containing gas is introduced preheated in the preheating furnace. This makes it possible to better use the fuel and reduce fuel consumption. The oxygen-containing gas, typically air, is preheated for this purpose, for example, by means of at least one heat exchanger, which is coupled to the annealing furnace, the cooling device following the annealing furnace and / or the molten bath vessel.
Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass dem sauerstoffhaltigen Gas und/oder dem Brennstoff Inertgas, beispielsweise Abgas zugegeben wird. Hierdurch lassen sich die Abmessungen der Verbrennungswolke und insbesondere die Verbrennungstemperatur gezielt beeinflussen.A further advantageous embodiment of the method according to the invention provides that the oxygen-containing gas and / or the fuel inert gas, for example, exhaust gas is added. As a result, the dimensions of the combustion cloud and in particular the combustion temperature can be influenced in a targeted manner.
Zur Erzielung einer optimalen Voroxidation des Stahlflachprodukts (Stahlbandes) bei möglichst niedrigen Emissionswerten, insbesondere niedrigen NOx-Emissionen, ist es ferner günstig, wenn nach einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens Inertgas und/oder Abgas, vorzugsweise vorgewärmtes Inertgas und/oder erwärmtes Abgas für den zusätzlichen Gasstrom verwendet wird, mittels dem der Brennstoff und das sauerstoffhaltige Gas ergänzend vermischt werden.In order to achieve optimal pre-oxidation of the flat steel product (steel strip) with the lowest possible emission values, in particular low NO x emissions, it is also advantageous if, according to a further embodiment of the method, inert gas and / or exhaust gas, preferably preheated inert gas and / or heated exhaust gas for the additional gas flow is used, by means of which the fuel and the oxygen-containing gas are additionally mixed.
Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass der Taupunkt der Glühatmosphäre über den gesamten Weg des Stahlflachprodukts durch den Glühofen zwischen -40°C und +25°C gehalten wird, indem durch Zufuhr von Feuchtigkeit mittels mindestens einer Befeuchtungseinrichtung Verluste oder Unregelmäßigkeiten der Verteilung der Feuchtigkeit der Atmosphäre ausgeglichen werden. Der Taupunkt beträgt einerseits -40°C oder mehr, um die Triebkraft der externen Oxidation der Legierungselemente (z.B. Mn, Al, Si, Cr) zu minimieren. Andererseits wird durch den Taupunkt von maximal +25°C eine ungewollte Oxidation von Eisen vermieden. Diese Ausgestaltung trägt somit dazu bei, dass die Oberfläche des Stahlflachprodukts bei Eintritt in das Schmelztauschbad weitestgehend frei von störenden Oxiden ist.A further advantageous embodiment of the method according to the invention is characterized in that the dew point of the annealing atmosphere over the entire path of the steel flat product through the annealing furnace between -40 ° C and + 25 ° C is maintained by losses or irregularities by supplying moisture by means of at least one moistening device the distribution of the humidity of the atmosphere can be compensated. The dew point is on the one hand -40 ° C or more to minimize the driving force of the external oxidation of the alloying elements (eg Mn, Al, Si, Cr). On the other hand, by the dew point of a maximum of + 25 ° C a unwanted oxidation of iron avoided. This embodiment thus contributes to the fact that the surface of the flat steel product is largely free of interfering oxides when entering the Schmelztauschbad.
Der erfindungsgemäße Durchlaufofen ist dementsprechend dadurch gekennzeichnet, dass zumindest einige der Brenner in dem Voroxidationsabschnitt als flammenlose Brenner ausgeführt sind, mittels denen Brennstoff, vorzugsweise Brenngas, und sauerstoffhaltiges Gas getrennt voneinander mit einer Strömungsgeschwindigkeit von mindestens 60 m/s in den Vorwärmofen einbringbar sind, wobei neben mindestens einem der der Oberseite des Stahlflachprodukts zugeordneten flammenlosen Brenner und neben mindestens einem der Unterseite des Stahlflachprodukts zugeordneten flammenlosen Brenner je mindestens eine Gasleitung zur Zufuhr mindestens eines zusätzlichen Gasstroms vorgesehen ist, wobei das Ende der jeweiligen Gasleitung derart ausgerichtet ist, dass der dort austretende zusätzliche Gasstrom den aus dem flammenlosen Brenner austretenden Brennstoffstrom und/oder sauerstoffhaltigen Gasstrom kreuzt oder tangiert.Accordingly, the continuous furnace according to the invention is characterized in that at least some of the burners in the pre-oxidation section are designed as flameless burners, by means of which fuel, preferably fuel gas, and oxygen-containing gas can be introduced separately into the preheating furnace at a flow rate of at least 60 m / s at least one flameless burner associated with the upper side of the flat steel product and at least one gas line for supplying at least one additional gas stream are provided adjacent to at least one underside of the flat steel product, the end of the respective gas line being oriented in such a way that the additional emerging therefrom Gas flow crosses or tangent to the emerging from the flameless burner fuel flow and / or oxygen-containing gas stream.
Der erfindungsgemäße Durchlaufofen bietet die Vorteile, die bereits oben in Zusammenhang mit dem erfindungsgemäßen Verfahren genannt sind.The continuous furnace according to the invention offers the advantages already mentioned above in connection with the method according to the invention.
Bei der Voroxidation in einem DFF-Vorwärmofen von Schmelztauchbeschichtungsanlagen besteht prinzipiell das Problem, dass durch Gasströmungen im Ofen eine ungünstig hohe Ansammlung von Sauerstoff in der dem Voroxidationsbereich vorgeschalteten Ofenzone auftritt, was zu einer negativen Beeinflussung der Beschichtung führen kann. Es hat sich gezeigt, dass sich diese Sauerstoffansammlung bei der Verwendung von flammenlosen Brennern deutlich reduzieren lässt, indem zusätzlich zu den Stoffströmen des flammenlosen Brenners ein weiterer Gasstrom über mindestens ein sogenanntes Jet-Rohr eingespeist wird. Dies gilt insbesondere in Bezug auf den ersten überstöchiometrisch betriebenen flammenlosen Brenner in der Voroxidationszone. Das Jet-Rohr ist hierbei in Bezug auf die Brennerdüse(n) so ausgerichtet, dass der weitere Gasstrom eine schraubengangartige Verwirbelung bewirkt. Hierzu ist das Jet-Rohr schräg zur Ausströmachse der Brennerdüse und auch geneigt gegenüber der Ebene des Stahlflachprodukts ausgerichtet.In the case of pre-oxidation in a DFF preheating furnace of hot dip coating systems, there is the problem in principle that unfavorably high accumulation of oxygen in the furnace zone upstream of the preoxidation zone occurs due to gas flows in the furnace, which can lead to a negative influence on the coating. It has been shown that this oxygen accumulation can be significantly reduced when using flameless burners, in that in addition to the material flows of the flameless burner another gas stream is fed via at least one so-called jet tube. This is especially true with respect to the first superstoichiometric flameless burner in the pre-oxidation zone. In this case, the jet tube is aligned with respect to the burner nozzle (s) so that the further gas flow is a spiral-like swirling causes. For this purpose, the jet pipe is oriented obliquely to the outflow axis of the burner nozzle and also inclined relative to the plane of the flat steel product.
Nachfolgend wird die Erfindung anhand einer Ausführungsbeispiele darstellenden Zeichnung näher erläutert. Es zeigen jeweils schematisch:
- Fig. 1
- eine zur Durchführung des erfindungsgemäßen Verfahrens geeignete Schmelztauchbeschichtungsanlage;
- Fig. 2
- einen in der Schmelztauchbeschichtungsanlage gemäß
Fig. 1 eingesetzten flammenlosen Brenner in Kombination mit einem Jet-Rohr, in einer Schnittansicht; - Fig. 3
- eine Prinzipdarstellung der Stoff- bzw. Gasströme an einem flammenlosen Brenner während des flammenlosen Betriebs; und
- Fig. 4
- einen Querschnitt durch einen Durchlaufofen (Vorwärmofen) der Schmelztauchbeschichtungsanlage gemäß
Fig. 1 im Bereich der mit Brennern gemäßFig. 2 ausgerüsteten Vorwärmzone.
- Fig. 1
- a suitable for performing the method according to the invention hot dip coating equipment;
- Fig. 2
- one in the hot dip coating plant according to
Fig. 1 flameless burner used in combination with a jet pipe, in a sectional view; - Fig. 3
- a schematic representation of the material or gas flows on a flameless burner during flameless operation; and
- Fig. 4
- a cross section through a continuous furnace (preheating furnace) of the hot dip coating plant according to
Fig. 1 in the area with burners according toFig. 2 equipped preheating zone.
Die in
Der Vorwärmofen 3 ist vom DFF-Typ (Direct Fired Furnace). In ihm sind über die Förderstrecke des Stahlflachprodukts S verteilt oder zumindest in dem Voroxidationsabschnitt 4 mehrere flammenlose Brenner 17 angeordnet. Bei diesen Brennern werden der Brennstoff (B), vorzugsweise Brenngas, und sauerstoffhaltiges Gas (L), typischerweise Luft unvermischt oder weitgehend unvermischt mit hoher Strömungsgeschwindigkeit in den Vorwärmofen 3 eingebracht (vgl.
Zur Voroxidation des Stahlflachprodukts S werden die flammenlosen Brenner 17 in einem überstöchiometrischen Bereich betrieben, d.h. mit einem Lambda-Wert größer 1, wodurch eine oxidierende Ofenatmosphäre erzeugt wird. Vorzugsweise wird dabei ein Lambda-Wert von mindestens 1,05, besonders bevorzugt von mindestens 1,1, insbesondere mindestens 1,2 oder mindestens 1,3 eingestellt.For pre-oxidation of the flat steel product S, the
Die Bildung thermischer Stickstoffoxide, die bei Brennern im Flammenbetrieb vor allem an der Flammengrenze mit ihren hohen Spitzentemperaturen stattfindet, wird bei den flammenlosen Brennern 17 weitgehend vermieden. Mit der gleichmäßigeren Temperaturverteilung sinken nicht nur die NOx-Emissionen, es lässt sich auch eine höhere mittlere Ofenraumtemperatur aufrechterhalten. Insbesondere sinken die NOx-Emissionen mit zunehmendem Lambda-Wert.The formation of thermal nitrogen oxides, which takes place in burners in flame operation, especially at the flame boundary with their high peak temperatures, is largely avoided in the
Der Aufbau eines flammenlosen Brenners 17 zum Einsatz in einem Durchlaufofen (Vorwärmofen) 3 vom DFF-Typ für eine Schmelztauchbeschichtungsanlage ist in
Die für die Verbrennung benötigte Brennerluft L bzw. der für die Verbrennung zugeführte Sauerstoff wird vorzugsweise vorgewärmt. Hierzu kann dem jeweiligen flammenlosen Brenner 17 eine (hier nicht gezeigte) Vorrichtung zur Erwärmung des sauerstoffhaltiges Gases bzw. der Brennerluft L vorgeschaltet sein. Ebenso kann auch die Brenngaszuleitung mit einer (hier nicht gezeigten) Vorrichtung zur Erwärmung des Brenngases B versehen sein. Ergänzend oder alternativ kann auch dem zusätzlichen Jet-Rohr 5 bzw. der daran angeschlossenen Gasleitung zur Zufuhr des mindestens einen zusätzlichen Gasstroms ZG eine (hier nicht gezeigte) Vorrichtung zur Erwärmung des zusätzlichen Gasstroms vorgeschaltet sein. Gegebenenfalls kann zusätzlich separat oder mit dem Brennstoff- und/oder Luft-/Sauerstoffstrom gemischt ein, vorzugsweise erwärmtes, Inertgas und/oder Abgas eingebracht werden. Hierzu ist an der an dem betreffenden Verbindungsflansch 17.3 oder 17.5 angeschlossenen Zufuhrleitung (Einspeisung) eine Inertgas- oder Abgasleitung (nicht gezeigt) angeschlossen, die mit einem Dosierventil (Regelventil) versehen ist.The burner air L required for the combustion or the oxygen supplied for the combustion is preferably preheated. For this purpose, the
Durch die getrennte Einbringung von Brennstoff B und Luft/Sauerstoff L mit hoher Geschwindigkeit erfolgt eine Mischung der Medien im Vorwärmofen 3 über die gesamte Breite des Stahlflachprodukts S. Zumindest das eingebrachte sauerstoffhaltige Gas und/oder das gegebenenfalls beigemischte Inertgas/Abgas werden auf eine Temperatur vorgewärmt, die nach Mischung der Medien im Voroxidationsofen eine ausreichende Reaktionsenergie (Zündtemperatur) ergibt, bei der die Verbrennung des Brennstoffs B erfolgt. Die Bildung einer sichtbaren Flamme wird auf diese Weise weitgehend vermieden. Es wird vielmehr eine "Verbrennungswolke" W über die gesamte Breite des Stahlbandes S bzw. Ofens 3 erzeugt.The separate introduction of fuel B and air / oxygen L at high speed, a mixture of media in the preheating
Die flammenlosen Brenner 17 sind vorzugsweise in mindestens einer der Seitenwände 3.2, 3.3 des Vorwärmofens 3 integriert, wobei mindestens zwei, vorzugsweise mindestens drei flammenlose Brenner 17 der Oberseite des Stahlflachprodukts S und mindestens zwei, vorzugsweise mindestens drei flammenlose Brenner 17 der Unterseite des Stahlflachprodukts S zugeordnet sind. Zur Vergleichmäßigung der Temperaturverteilung sowie der Sauerstoffverteilung sind die flammenlosen Brenner 17 vorzugsweise versetzt zueinander angeordnet (vgl.
Durch die Installation der Strahlrohrleitungen (Jet-Rohre) 17.13, die in Bezug auf den Brenngaseinströmstrahl und den Kanal 17.10 mit Abstand angeordnet sind, und über die zusätzlich sauerstoffhaltiges Gas L, vorzugsweise Sauerstoff oder Luft in den Brenngasstrom B eingeblasen wird, wird bereits eine Homogenisierung der Brenngasverteilung bewirkt. Über die in den Vorwärmofen 3 mündende Gasleitung 5 (Jet-Rohr 5) wird in die Voroxidationzone vorzugsweise Inert- und/oder Abgas eingebracht. Dieser zusätzliche Gasstrom ZG kreuzt oder tangiert den Brennstoffstrom. Dies ist in den
Am Übergangsbereich 7 zu dem Glühofen 6 ist eine hier nicht näher gezeigte Einrichtung zum gezielten Einspeisen von Sauerstoff oder Luft in den Übergangsbereich 7 vorgesehen. Zweck dieser Einspeisung ist die Abbindung von Wasserstoff, der möglicherweise in Folge der im Glühofen 6 von dessen Ausgang 9 in Richtung von dessen Eingang strömenden Gasströmung G in den Übergangsbereich 7 gelangt. Gleichzeitig ist im Bereich des Eingangs des Glühofens 6 eine Absaugeinrichtung 24 angeordnet, die die zum Eingang des Glühofens gelangende Gasströmung G absaugt.At the
Benachbart zum Ausgang 9 des Glühofens 6 sind zwei Befeuchtungseinrichtungen 25, 26 angeordnet, von denen die eine der Oberseite und die andere der Unterseite des zu beschichtenden Stahlflachprodukts S zugeordnet ist. Die Befeuchtungseinrichtungen 25, 26 sind als geschlitzte oder gelochte, quer zur Förderrichtung F des Stahlflachprodukts S ausgerichtete Rohre ausgebildet und an eine Versorgungsleitung 27 angeschlossen, über die die Befeuchtungseinrichtungen 25, 26 mit Dampf- oder einem befeuchteten Trägergas, wie N2 oder N2/H2, versorgt werden.Adjacent to the
Die Abkühlzone 10 kann so ausgelegt sein, dass das auf die jeweilige Badeintrittstemperatur abgekühlte Stahlflachprodukt S vor seinem Eintritt in den Rüssel 11 noch in der Abkühlzone 10 eine Überalterungsbehandlung bei der Badeintrittstemperatur durchläuft.The cooling
Im Schmelzenbad 13 wird das Stahlflachprodukt S an der ersten Umlenkeinrichtung 14 in vertikaler Richtung umgelenkt und durchläuft die Einrichtung 15 zur Einstellung der Dicke der metallischen Schutzschicht. Anschließend wird das mit der metallischen Schutzschicht versehene Stahlflachprodukt S an der zweiten Umlenkeinrichtung 16 wieder in die horizontale Förderrichtung F umgelenkt und gegebenenfalls weiteren Behandlungsschritten in hier nicht dargestellten Anlagenteilen unterzogen.In the
Ein nach dem erfindungsgemäßen Verfahren schmelztauchbeschichtetes Stahlflachprodukt eignet sich aufgrund seiner mechanischen Eigenschaften und seiner Oberflächeneigenschaften hervorragend, um mittels ein-, zwei- oder mehrstufiger Kalt- oder Warmumformung zu einem hoch-/ höchstfesten Blechbauteil weiterverarbeitet zu werden. Dies gilt vorrangig für Anwendungen der Automobilindustrie, aber auch für Apparate-, Maschinen- oder Hausgerätebau sowie die Bauindustrie. Neben den herausragenden mechanischen Bauteileigenschaften zeichnet sich ein solches Blechbauteil weiterhin durch besondere Widerstandsfähigkeit gegenüber Umwelteinflüssen aus. Die Anwendung eines erfindungsgemäß schmelztauchveredelten Stahlflachprodukts hebt somit nicht nur Leichtbaupotential, sondern verlängert auch die Produktlebensdauer.A hot-dip coated flat steel product according to the invention is excellently suited for further processing by means of one-stage, two-stage or multi-stage cold or hot forming into a high-strength / high-strength sheet metal component. This applies primarily to applications in the automotive industry, but also for apparatus, machine or household appliance construction as well as the construction industry. In addition to the outstanding mechanical component properties, such a sheet metal component continues to be distinguished by its particular resistance to environmental influences. The use of a hot-dip coated steel flat product according to the invention thus not only raises lightweight potential, but also prolongs the product life.
Zusammenfassend kann gesagt werden, dass durch das erfindungsgemäße Verfahren eine sehr homogene Voroxidation eines Stahlbandes, das durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehen werden soll, über die komplette Bandbreite in einem großtechnischen DFF-Vorwärmofen erzielt wird. Daraus resultiert eine Verbesserung des Benetzungsbildes und der Überzugshaftung über die komplette Breite des Stahlflachproduktes. Beschichtungsfehler an den Bandkanten können somit auch bei relativ breiten Einsatzbändern vermieden werden. Ein weiterer Vorteil liegt in der optimierten Verbrennung, die sich durch deutlich verringerte Schadstoffemissionen sowie einen reduzierten Brennstoffverbrauch auszeichnet.In summary, it can be said that the method according to the invention achieves a very homogeneous pre-oxidation of a steel strip to be provided with a metallic protective layer by hot-dip coating, over the entire bandwidth in a large-scale DFF preheating furnace. This results in an improvement of the wetting pattern and the coating adhesion over the entire width of the flat steel product. Coating defects at the strip edges can thus be avoided even with relatively wide insert strips. Another advantage lies in the optimized combustion, which differs significantly characterized by reduced pollutant emissions and reduced fuel consumption.
Claims (14)
- Method for producing a flat steel product (S) provided with a metallic protective layer by hot-dip coating, comprising the following production steps:a) providing a cold-rolled or hot-rolled flat steel product (S) which in addition to Fe and unavoidable impurities contains (in % wt.) up to 35.0 % Mn, up to 10.0 % Al, up to 10.0 % Si, up to 5 % Cr, up to 2.0 % Ni, up to 0.5 % of Ti, V, Nb, Mo respectively, up to 0.1 % S, P and N respectively, up to 1.0 % C and optionally 0.0005 - 0.01 % B;b) heating the flat steel product (S) in a DFF-type preheating furnace (3) in which a preoxidation section (4) is formed and in which the flat steel product (S) is exposed to an oxidising atmosphere, in order to form a covering FeO layer on the surface of the flat steel product, wherein burners are arranged in the preoxidation section which are operated with excess oxygen, and wherein at least one of the burners (17) is assigned to the upper side of the flat steel product and at least another of the burners (17) is assigned to the underside of the flat steel product;c) recrystallising annealing of the flat steel product (S) in an annealing furnace (6) which is passed through following the preheating furnace (3) in order to bring about a recrystallisation of the flat steel product, wherein an annealing atmosphere having a reducing effect with respect to the FeO prevails in the annealing furnace (6);d) cooling the flat steel product down to a bath entry temperature in the range from 430 °C to 800 °C in a protective gas atmosphere;e) introducing the flat steel product into a molten bath (13), the temperature of which is in the range from 420 °C to 780 °C; andf) passing the flat steel product through the molten bath (13) and setting the thickness of the metallic protective layer present on the flat steel product coming out of the molten bath, characterised in that flameless burners are used as burners (17) in the preoxidation section of the preheating furnace (3), by means of which fuel (B), preferably burnable gas, and oxygen-containing gas (L) are introduced into the preheating furnace (3) separately from one another at a flow rate of at least 60 m/s, wherein in addition to at least one of the flameless burners (17) assigned to the upper side of the flat steel product (S) and in addition to at least one flameless burner (17) assigned to the underside of the flat steel product (S), in each case at least one gas pipe (5) is provided for supplying at least one additional gas flow (ZG), by means of which the fuel (B) and the oxygen-containing gas (L) are mixed in a complementary manner, and wherein the additional gas flow (ZG) is introduced directed obliquely to the plane of the flat steel product (S) into the preheating furnace (3).
- Method according to Claim 1, characterised in that the flameless burners (17) are operated with an oxygen excess of at least 1.1, preferably at least 1.2, particularly preferably at least 1.3.
- Method according to Claim 1 or 2, characterised in that the oxygen-containing gas (L) is introduced preheated into the preheating furnace (3).
- Method according to any one of Claims 1 to 3, characterised in that inert gas is added to the oxygen-containing gas (L) and/or to the fuel (B).
- Method according to any one of Claims 1 to 4, characterised in that inert gas and/or flue gas, preferably preheated inert gas and/or heated flue gas, is used for the additional gas flow (ZG).
- Method according to any one of Claims 1 to 5, characterised in that the dew point of the annealing atmosphere is held between -40 °C and +25 °C over the entire passage of the flat steel product (S) through the annealing furnace (6) by balancing losses or irregularities in the distribution of the humidity in the atmosphere by supplying moisture by means of at least one humidifier (25, 26).
- DFF-type continuous furnace (3) for a hot-dip coating installation, having a preoxidation section (4), in which a flat steel product (S) to be coated is exposed to an oxidising atmosphere in order to form a covering FeO layer on the surface of the flat steel product, wherein burners (17) are arranged in the preoxidation section (4) which are operated with excess oxygen, and wherein at least one of the burners (17) is assigned to the upper side of the flat steel product (S) and at least another of the burners (17) is assigned to the underside of the flat steel product (S), characterised in that at least some of the burners (17) in the preoxidation section (4) are designed as flameless burners, by means of which fuel (B), preferably burnable gas, and oxygen-containing gas (L) can be introduced into the preheating furnace (3) separately from one another at a flow rate of at least 60 m/s, wherein in addition to at least one of the flameless burners (17) assigned to the upper side of the flat steel product (S) and in addition to at least one flameless burner (17) assigned to the underside of the flat steel product (S), in each case at least one gas pipe (5) is provided for supplying at least one additional gas flow (ZG), wherein the end of the respective gas pipe (5) is aligned in such a way that the additional gas flow (ZG) escaping there crosses or is tangent to the fuel flow (B) and/or oxygen-containing gas flow (L) escaping from the flameless burner (17).
- Continuous furnace according to Claim 7, characterised in that at least two, preferably at least three, flameless burners (17) are assigned to the upper side of the flat steel product (S) and at least two, preferably at least three, flameless burners (17) are assigned to the underside of the flat steel product (S), wherein the flameless burners (17) assigned to the upper side of the flat steel product (S) are offset in the direction of passage (F) of the flat steel product (S) in relation to the flameless burners (17) assigned to the underside of the flat steel product (S).
- Continuous furnace according to Claim 7 or 8, characterised in that at least two, preferably at least three, flameless burners (17) are assigned to the upper side of the flat steel product (S) and at least two, preferably at least three, flameless burners (17) are assigned to the underside of the flat steel product (S), wherein the flameless burners (17) assigned to the upper side of the flat steel product (S) are integrated in a side wall (3.2) of the preheating furnace (3), while the flameless burners assigned to the underside of the flat steel product are integrated in the opposite side wall (3.3) of the preheating furnace (3).
- Continuous furnace according to any one of Claims 7 to 9, characterised in that a device for heating the oxygen-containing gas (L) is connected upstream of the respective flameless burner (17).
- Continuous furnace according to any one of Claims 7 to 10, characterised in that a device for heating the gas flow (ZG) is connected upstream of the gas pipe (5) for supplying the at least one additional gas flow (ZG).
- Continuous furnace according to any one of Claims 7 to 11, characterised in that the respective flameless burner (17) has at least one fuel nozzle (17.2) which is encompassed by a ring nozzle or a plurality of nozzles (17.8), which are arranged on a common pitch circle and are uniformly spaced apart from one another, for supplying oxygen-containing gas (L).
- Continuous furnace according to Claim12, characterised in that the respective flameless burner (17) is provided with a plurality of jet pipes (17.13) for supplying oxygen-containing gas (L), the longitudinal axes of which run essentially parallel to the fuel inflow direction defined by the fuel nozzle (17.2).
- Continuous furnace according to Claim 12 or 13, characterised in that the respective flameless burner (17)) is provided with at least three jet pipes (17.13) for supplying oxygen-containing gas (L) which are arranged uniformly spaced apart from one another on a common pitch circle.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013105378.5A DE102013105378B3 (en) | 2013-05-24 | 2013-05-24 | Process for the preparation of a hot-dip coated flat steel product and continuous furnace for a hot-dip coating machine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2824216A1 EP2824216A1 (en) | 2015-01-14 |
EP2824216B1 true EP2824216B1 (en) | 2019-05-15 |
Family
ID=50442358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14162799.2A Active EP2824216B1 (en) | 2013-05-24 | 2014-03-31 | Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2824216B1 (en) |
DE (1) | DE102013105378B3 (en) |
ES (1) | ES2738118T3 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016100648B4 (en) * | 2015-12-23 | 2018-04-12 | Benteler Automobiltechnik Gmbh | A heat treatment furnace and method for heat treating a precoated sheet steel plate and method of making a motor vehicle component |
KR101836714B1 (en) * | 2016-10-12 | 2018-03-09 | 현대자동차주식회사 | High manganese steel |
DE102018102624A1 (en) * | 2018-02-06 | 2019-08-08 | Salzgitter Flachstahl Gmbh | Process for producing a steel strip with improved adhesion of metallic hot-dip coatings |
DE102019108457B4 (en) | 2019-04-01 | 2021-02-04 | Salzgitter Flachstahl Gmbh | Process for the production of a steel strip with improved adhesion of metallic hot-dip coatings |
DE102019108459B4 (en) | 2019-04-01 | 2021-02-18 | Salzgitter Flachstahl Gmbh | Process for the production of a steel strip with improved adhesion of metallic hot-dip coatings |
IT202000013285A1 (en) * | 2020-06-04 | 2021-12-04 | Danieli Off Mecc | PROCEDURE AND APPARATUS FOR HEATING STEEL PRODUCTS |
CN111549307A (en) * | 2020-06-15 | 2020-08-18 | 华菱安赛乐米塔尔汽车板有限公司 | Production process of hot-dip aluminum-plated silicon steel plate |
CN111780106B (en) * | 2020-06-30 | 2022-07-12 | 武汉钢铁有限公司 | Flameless burner of steel rolling heating furnace and application thereof |
CN116323985A (en) * | 2020-09-23 | 2023-06-23 | 法孚斯坦因公司 | Direct flame preheating section for continuous metal strip processing lines |
FR3114324B1 (en) * | 2020-09-23 | 2022-12-16 | Fives Stein | DIRECT FLAME PREHEATING SECTION FOR CONTINUOUS METAL STRIP TREATMENT LINE |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1985664U (en) * | 1968-01-20 | 1968-05-22 | Hubertus Wessel | BURNER WITH FLAMELESS COMBUSTION. |
US3925579A (en) | 1974-05-24 | 1975-12-09 | Armco Steel Corp | Method of coating low alloy steels |
JP3255765B2 (en) * | 1993-07-14 | 2002-02-12 | 川崎製鉄株式会社 | Method for producing high-strength hot-dip or alloyed hot-dip galvanized steel sheet |
JP4718782B2 (en) | 2003-02-06 | 2011-07-06 | 新日本製鐵株式会社 | Alloyed hot-dip galvanized steel sheet and method for producing the same |
DE102004059566B3 (en) * | 2004-12-09 | 2006-08-03 | Thyssenkrupp Steel Ag | Process for hot dip coating a strip of high strength steel |
CN102260842B (en) | 2004-12-21 | 2013-12-25 | 株式会社神户制钢所 | Method and facility for hot dip zinc plating |
RU2387734C2 (en) | 2005-10-14 | 2010-04-27 | Ниппон Стил Корпорейшн | Method of continuous annealing and application of coating by means of hot dipping method, and system for continuous annealing and application of coating by means of hot dipping method of silica-bearing steel plate |
DE102006005063A1 (en) | 2006-02-03 | 2007-08-09 | Linde Ag | Process for the heat treatment of steel strip |
BE1017086A3 (en) * | 2006-03-29 | 2008-02-05 | Ct Rech Metallurgiques Asbl | PROCESS FOR THE RECLAIMING AND CONTINUOUS PREPARATION OF A HIGH STRENGTH STEEL BAND FOR ITS GALVANIZATION AT TEMPERATURE. |
CN101501235B (en) | 2006-04-26 | 2012-07-04 | 蒂森克虏伯钢铁股份公司 | Hot dip coating process for a steel plate product made of high strengthheavy-duty steel |
DE102006039307B3 (en) | 2006-08-22 | 2008-02-21 | Thyssenkrupp Steel Ag | Process for coating a 6-30 wt.% Mn-containing hot or cold rolled steel strip with a metallic protective layer |
FR2920439B1 (en) * | 2007-09-03 | 2009-11-13 | Siemens Vai Metals Tech Sas | METHOD AND DEVICE FOR THE CONTROLLED OXIDATION / REDUCTION OF THE SURFACE OF A CONTINUOUSLY STRAY STEEL BAND IN A RADIANT TUBE OVEN FOR ITS GALVANIZATION |
DE102010037254B4 (en) * | 2010-08-31 | 2012-05-24 | Thyssenkrupp Steel Europe Ag | Process for hot dip coating a flat steel product |
DE102011051731B4 (en) | 2011-07-11 | 2013-01-24 | Thyssenkrupp Steel Europe Ag | Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer |
-
2013
- 2013-05-24 DE DE102013105378.5A patent/DE102013105378B3/en active Active
-
2014
- 2014-03-31 EP EP14162799.2A patent/EP2824216B1/en active Active
- 2014-03-31 ES ES14162799T patent/ES2738118T3/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2824216A1 (en) | 2015-01-14 |
ES2738118T3 (en) | 2020-01-20 |
DE102013105378B3 (en) | 2014-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2824216B1 (en) | Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system | |
EP2732062B1 (en) | Method for producing a flat steel product which is provided with a metallic protective layer by means of hot dip coating | |
EP2010690B1 (en) | Hot dip coating process for a steel plate product made of high strengthheavy-duty steel | |
EP2795218B1 (en) | Nozzle device for a furnace for heat-treating a flat steel product, and furnace equipped with such a nozzle device | |
EP3172345B1 (en) | Method for heating up steel sheets | |
EP2611946B1 (en) | Method for hot-dip coating a flat steel product | |
DE102012101018B3 (en) | Process for hot dip coating a flat steel product | |
EP1819840B1 (en) | Method for hot dip coating a strip of heavy-duty steel | |
EP2513346B1 (en) | Method for producing an easily deformable flat steel product | |
EP2707516A1 (en) | Device and method for treating a steel sheet product in a continuous manner | |
DE69712636T2 (en) | METHOD FOR PRODUCING FERRITIC, STAINLESS STEEL FECrAl STEEL TAPES | |
EP3511430A1 (en) | Method for a continuous heat treatment of a steel strip, and installation for dip coating a steel strip | |
EP2818571B1 (en) | Diffusion of aluminium-silicon into a steel sheet web | |
EP3159419A1 (en) | Method of fabrication of roll formed partly hardened profiles | |
DE60130823T2 (en) | Improvements in the preheating of metal strips, especially in galvanizing or annealing plants | |
WO2020079200A1 (en) | Method for producing a heat-formable flat steel product | |
DE102016011047A1 (en) | Flexible heat treatment plant for metallic strip in horizontal construction | |
DE2516621C2 (en) | Method of fire metallizing a small diameter steel pipe | |
DE102015001438A1 (en) | Flexible heat treatment plant for metallic strip | |
EP0959145B1 (en) | Method and apparatus for carrying out the heating of a galvannealed process | |
DE3231981C2 (en) | Process for the production of coated, high-strength, low-alloy steel | |
DE3039424C2 (en) | Burner-heated continuous furnace | |
DE102016222993A1 (en) | Process for producing a coated steel component | |
DE102005046198A1 (en) | Burner for industrial oven or furnace has annealed head fabricated in aluminum-coated cobalt alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
17P | Request for examination filed |
Effective date: 20140331 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
R17P | Request for examination filed (corrected) |
Effective date: 20150625 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170302 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: C23C0008180000 Ipc: C23C0028000000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 28/00 20060101AFI20180907BHEP Ipc: C23C 2/40 20060101ALI20180907BHEP Ipc: C23C 8/80 20060101ALI20180907BHEP Ipc: C21D 1/70 20060101ALI20180907BHEP Ipc: C21D 9/56 20060101ALI20180907BHEP Ipc: C23C 8/18 20060101ALI20180907BHEP Ipc: C21D 1/74 20060101ALI20180907BHEP Ipc: F27D 99/00 20100101ALI20180907BHEP Ipc: F27B 9/28 20060101ALI20180907BHEP Ipc: C23C 2/02 20060101ALI20180907BHEP Ipc: C21D 6/00 20060101ALI20180907BHEP Ipc: F27B 9/36 20060101ALI20180907BHEP |
|
INTG | Intention to grant announced |
Effective date: 20181012 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WESTERFELD, ANDREAS Inventor name: RUTHENBERG, MANUELA Inventor name: BREHM, OLIVER Inventor name: MACHEREY, FRIEDHELM Inventor name: HOEGNER, WERNER Inventor name: PETERS, MICHAEL Inventor name: BLUMENAU, MARC |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: PETERS, MICHAEL Inventor name: BREHM, OLIVER Inventor name: WESTERFELD, ANDREAS Inventor name: NORDEN, MARTIN Inventor name: HOEGNER, WERNER Inventor name: RUTHENBERG, MANUELA Inventor name: MACHEREY, FRIEDHELM Inventor name: BLUMENAU, MARC |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 |
|
INTC | Intention to grant announced (deleted) | ||
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190124 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BREHM, OLIVER Inventor name: NORDEN, MARTIN Inventor name: WESTERFELD, ANDREAS Inventor name: HOEGNER, WERNER Inventor name: RUTHENBERG, MANUELA Inventor name: PETERS, MICHAEL Inventor name: MACHEREY, FRIEDHELM Inventor name: BLUMENAU, MARC |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: RUTHENBERG, MANUELA Inventor name: HOEGNER, WERNER Inventor name: PETERS, MICHAEL Inventor name: WESTERFELD, ANDREAS Inventor name: NORDEN, MARTIN Inventor name: BLUMENAU, MARC Inventor name: BREHM, OLIVER Inventor name: MACHEREY, FRIEDHELM |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190915 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190815 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190816 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190815 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2738118 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
26N | No opposition filed |
Effective date: 20200218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190915 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20230328 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20230314 Year of fee payment: 10 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240320 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240321 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240320 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240329 Year of fee payment: 11 Ref country code: FR Payment date: 20240328 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240426 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240331 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |