EP2611946B1 - Method for hot-dip coating a flat steel product - Google Patents
Method for hot-dip coating a flat steel product Download PDFInfo
- Publication number
- EP2611946B1 EP2611946B1 EP11745783.8A EP11745783A EP2611946B1 EP 2611946 B1 EP2611946 B1 EP 2611946B1 EP 11745783 A EP11745783 A EP 11745783A EP 2611946 B1 EP2611946 B1 EP 2611946B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- flat steel
- steel product
- atmosphere
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 111
- 239000010959 steel Substances 0.000 title claims description 111
- 238000000034 method Methods 0.000 title claims description 61
- 238000003618 dip coating Methods 0.000 title claims description 21
- 239000012298 atmosphere Substances 0.000 claims description 51
- 230000003647 oxidation Effects 0.000 claims description 32
- 238000007254 oxidation reaction Methods 0.000 claims description 32
- 238000010438 heat treatment Methods 0.000 claims description 29
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 25
- 238000000576 coating method Methods 0.000 claims description 22
- 239000011248 coating agent Substances 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 17
- 229910052742 iron Inorganic materials 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 238000000137 annealing Methods 0.000 claims description 9
- 229910001220 stainless steel Inorganic materials 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 230000007797 corrosion Effects 0.000 claims description 7
- 238000005260 corrosion Methods 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 238000005246 galvanizing Methods 0.000 claims description 4
- 239000011253 protective coating Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000000356 contaminant Substances 0.000 claims 7
- 229910052720 vanadium Inorganic materials 0.000 claims 1
- 239000011651 chromium Substances 0.000 description 29
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 16
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 239000010410 layer Substances 0.000 description 14
- 239000011701 zinc Substances 0.000 description 13
- 239000000155 melt Substances 0.000 description 12
- 239000012535 impurity Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 238000009736 wetting Methods 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 238000005269 aluminizing Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910000423 chromium oxide Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910016943 AlZn Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241001474791 Proboscis Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- VRAIHTAYLFXSJJ-UHFFFAOYSA-N alumane Chemical compound [AlH3].[AlH3] VRAIHTAYLFXSJJ-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0038—Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
- C23C2/004—Snouts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0222—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Definitions
- the invention relates to a process for hot dip coating a steel flat product made of a stainless steel containing more than 5% by weight and up to 30% by weight of Cr, with a metallic, corrosion protective protective coating.
- a steel flat product made of a stainless steel containing more than 5% by weight and up to 30% by weight of Cr, with a metallic, corrosion protective protective coating.
- flat steel products it means steel bands or sheets.
- Steels of the type in question here with a clear, more than 5 wt .-% lying and typically up to 30 wt .-% reaching chromium content are characterized by a particularly good chemical resistance and high corrosion resistance.
- This product property is based on the formation of a stable chromium oxide layer, which passivates the steel surface effectively against external influences even at higher temperatures. Therefore, steel grades with a Cr content> 10.5 wt .-% are also referred to as rust, heat and acid resistant (RHS) steels or short as stainless steels.
- RHS heat and acid resistant
- Other alloying elements such as nickel or molybdenum can support this passivation.
- the chemical passivity of the opaque chromium oxide layer proves to be problematic. This layer impedes both wetting and adhesion reactions when coated with a metallic coating. Therefore, the coating of steels with at least 5.0 wt .-% Cr is a special challenge.
- a more cost-effective alternative to electrolytic coating is the continuous hot dipping of steel strips.
- a steel strip after it has been recrystallized in a continuous furnace, is immersed briefly in a molten metal bath, which is typically based on zinc, aluminum or their alloys.
- the thus pretreated flat steel product can then be hot-dip-coated in the heated state in a melt bath containing at least 85% by weight of zinc and / or aluminum with the metallic coating.
- the hot-dip finishing of steels with more than 5% by weight Cr, in particular more than 10% by weight Cr basically two types of processes are known, each of which assumes that the steel strip to be coated can be prepared by an annealing treatment in such a way that an optimal coating result is achieved.
- the first type of process involves annealing under a strongly reducing atmosphere.
- a variant of this type of process is in each case in US 4,675,214 ( EP 0 246 418 B1 ) US 5,066,549 and US 4,883,723 described.
- This variant assumes that the flat steel product to be coated is heated in a non-oxidative atmosphere and then maintained at more than 677 ° C in a highly reductive atmosphere, the more than 95 vol .-% H2 / N2 for 6 steel , 0 - 14.5 wt .-% Cr.
- the coating then takes place in an aluminum or aluminum / silicon melt bath.
- a third variant of the first type of method is known from US 5,591,531 known. According to this variant, steel strips of up to 30% by weight Cr are subjected to bell annealing, in which an iron-rich surface layer is produced. The actual annealing should then take place according to one of the two variants of the first type of method explained above.
- the second known type of process is based on the application of the oxidation / reduction technique ("pre-oxidation").
- a first variant of this second type of process is in the JP 3111546 A described.
- a steel strip alloyed with 10.0-25.0% by weight Cr is oxidized in a direct-fired preheater at temperatures of 400-600 ° C.
- the resulting FeO layer is then reduced during a holding phase at 700-950 ° C under a reducing atmosphere.
- the treated steel strip is then subjected to a fire aluminizing.
- a steel strip containing 10.0-25.0% by weight of Cr is similarly flame-treated.
- the pre-oxidation also takes place during a direct heating up to a temperature between 550 - 750 ° C by regulating the ⁇ value to 0.9 - 1.5.
- the reduction of the FeO layer then takes place under a reducing atmosphere at a holding temperature which is about 800 ° C or up to max. 1050 ° C is enough.
- the first type of process can only be implemented with great effort in everyday operations at a hot-dip coating plant designed for conventionally alloyed steel.
- the necessary high annealing temperatures and the high H2 consumption cause significantly higher operating costs.
- the large-scale practice shows that a dew point ⁇ -40 ° C in the holding zone of the continuous furnace is not to comply with process reliability.
- the object of the invention to provide a method which allows it in a cost-effective and environmentally friendly manner, provided for particularly corrosive applications claimed steel flat products containing more than 5.0 wt .-% and up to 30 wt .-% chromium to be provided with a hot-dip coating.
- a supplied high-alloy steel flat product is first heat-treated in a continuous furnace in a process completed in a continuous successive sequence of operations and then immediately surface-finished in-line.
- a zinc, zinc / aluminum, zinc / magnesium, aluminum or aluminum / silicon hot-dip coating can be applied according to the invention.
- the process according to the invention for hot dip coating a flat steel product made of a stainless steel containing more than 5% by weight and up to 30% by weight of Cr, with a metallic, corrosion protective protective coating comprises for this purpose the steps specified in claim 1.
- a particularly good wetting and good adhesion of the hot-dip coating are thus reliably achieved even at high degrees of deformation by a targeted temperature and atmosphere control in the continuous furnace that a two-stage heating as a combination of rapid heating (first heating step - step a)) and a conventional heat-up (second heating stage - step b)) up to the holding temperature is performed.
- This procedure allows a particularly homogeneous and thus particularly effective pre-oxidation during the second heating stage, which is easy to control.
- a uniform on the flat steel product to be coated produces opaque FeO layer, which acts as a diffusion barrier of Cr oxidation.
- Optimum work results are obtained when the temperature of the flat steel product at the end of the heating phase (step a)) is in the range of 200-500 ° C.
- the heating phase (step a)) should preferably take only 1 to 5 seconds.
- the inventive rapid heating (step a)) with the help of a so-called "booster heater” perform, as they are for example in the DE 10 2006 005 063 A1 is described.
- the burner is operated with a fuel, in particular a fuel gas, and an oxygen-containing gas.
- the flat steel product to be heated is brought into direct contact with the flame generated by the burner, wherein the air ratio ⁇ is set within the flame as a function of the starting temperature and / or the target temperature.
- the temperature, atmosphere and ⁇ value of the booster flames are adjusted so that non-reactive or reducing thermodynamic conditions prevail over the metal / metal oxide equilibria of the alloying elements. Oxidation of the steel surface during the operation a) is mandatory to avoid.
- the heating atmosphere during step a) contains, in addition to N 2 and technically unavoidable impurities, optionally 1 to 50% by volume of H 2 .
- Both the heating atmosphere and the pre-oxidation atmosphere may contain, for example, H 2 O, CO or CO 2 as inevitable impurities due to production.
- the heating atmosphere maintained in operation a) should be free of oxygen, ie in its O 2 possibly present in technically unavoidable, ineffective amounts, the Voroxidationsatmospotrore in addition to N 2 and technically unavoidable impurities 0.1 - 3.0 vol .-% O 2 at a dew point of -20 ° C to +25 ° C to achieve the desired oxidation result.
- RTF Radiant Tube Furnace
- the steel flat product is thereby oxidized to avoid an external chromium oxide layer on the steel surface in an oxidation temperature range of 550 - 800 ° C, ideally at an oxidation temperature of 600 - 700 ° C, over a period which is typically 1-15 s.
- the predetermined N 2 / H 2 -Glühatmosphotre additionally be charged with 0.1 to 3.0 vol .-% O 2 , while in front of and behind the furnace area in each case a largely oxygen-free atmosphere is maintained.
- This oxidizing atmosphere can be specifically adjusted in a DFF system by setting a ⁇ -value> 1 in the respective furnace section.
- a furnace zone which is sealed off from the preceding and the subsequently passed through region can be formed, in which the oxygen-containing atmosphere exists.
- the pre-oxidation can also take place via an additional intermediate booster device.
- the thickness of this optimally opaque layer should be formed as homogeneously as possible over the surface of the flat steel product considered in each case in order to produce an effective Diffusion barrier to effect the external selective Cr oxidation.
- the dew point of the atmosphere maintained in the oxidation section of the furnace point may be between -20 to +25 ° C.
- step b) the steel flat product is further heated to the desired holding temperature of 750-950 ° C., starting from the heating temperature reached after step a), 100-600 ° C.
- the holding temperature can be limited to 750-850 ° C.
- step c) Upon reaching a holding temperature that is heated in two stages according to the invention and thereby preoxidized steel flat product maintained at the respective holding temperature for a sufficient duration (step c)).
- step c) the previously produced FeO layer is again reduced to metallic iron under a correspondingly adjusted holding atmosphere.
- the recent formation of external Cr oxides can be effectively avoided by promoting internal Cr oxidation.
- This can be achieved by keeping the dew point of the holding atmosphere at -30 to +25 ° C, in particular at more than -25 ° C.
- Such a dew point ensures such a high H 2 O / H 2 ratio that a sufficient amount of oxygen is available. Accordingly, optimum holding performance at the hold temperature results when the hold atmosphere during holding contains N 2 and technically unavoidable impurities 1.0-50.0 vol% H 2 and a dew point of -30 ° C to + 25 ° C has.
- the dew point of the holding atmosphere is at least -30 ° C, in particular in the range of -25 to 0 ° C, as mentioned, the external Cr oxidation is additionally inhibited.
- the duration of the holding phase will typically be 10-120 s in practice, with a holding time of 30-60 s having been found to be optimal in systems available today.
- the flat steel product is cooled to the respective melt bath temperature and over a per se known trunk structure in the respective melt bath passed (step e)). It has proved to be particularly advantageous for the wetting result when the trunk atmosphere has a dew point of -80 to -25 ° C, in particular less than -40 ° C, has.
- Such a deep dew point can be realized in practice by an additional N 2 - or H 2 feed directly into the trunk zone.
- the melt bath filled in a suitable melt bath vessel of a type known per se is subsequently passed through the steel flat product prepared in the manner according to the invention in a continuous pass, whereby in practice a immersion time of 0.5-10 s, in particular 1-3 s, has proved successful.
- the molten bath wets the steel surface and a chemical reaction between the metallic iron of the steel strip and the molten bath results in an intermetallic boundary layer, which ensures the good coating adhesion.
- the tape immersion and melt bath temperatures result depending on the Schmelzenbadzusammen arrangement.
- Table 1 shows typical temperature ranges for coatings on Zn (eg Zn, ZnAl, ZnMg or ZnMgAl coatings) and Al based (eg AlZn, AlSi coatings) the immersed the flat steel product in the respective melt bath, as well as the appropriate range of the temperature of the respective melt bath specified.
- Table 1 melting bath Strip immersion temperature melt temperature Zn-based 430-650 ° C 420-600 ° C Al-based 650-800 ° C 650-780 ° C
- the aging temperature can be set to 650 - 780 ° C to obtain further optimized adhesion of the coating.
- the coating thickness is adjusted by means of wiping nozzles and the resulting hot-dip-coated Cr-alloyed flat steel product is cooled.
- post-forming skin pass rolling
- passivation passivation
- lubrication lubrication and coiling of the flat steel product into a coil can be connected to the cooling.
- the flat steel product coated according to the invention is suitable for one-, two- or multi-stage cold or hot forming into one component.
- Advantages compared to conventional flat steel products and non-hot-dip coated Cr-alloyed flat steel products result in particular in the significantly improved corrosion resistance of components that are used in an environment with high corrosion potential. This proves to be particularly advantageous if there are elevated temperatures at the site in question.
- the stainless steel from which the flat steel product of the present invention is produced contains, in addition to iron and unavoidable impurities (in% by weight) Cr: 5.0-30.0%, Mn: less than 6.0%, Mo: less than 5.0%, Ni: up to 30.0%, Si: less than 2.0%, Cu: less than 2.0%, Ti: less than 1.0%, Nb: less than 1.0% , V: less than 0.5%, N: less than 0.2%, Al: less than 0.2%, C: less than 0.1%.
- Cr iron and unavoidable impurities
- Particularly suitable for the process according to the invention are steel sheets or strips which are produced from a steel based on the abovementioned alloy specification which contains (in% by weight) Cr: 10.0-13.0%, Ni: less than 3, 0%, Mn: less than 1.0%, Ti: less than 1.0%, C: less than 0.03%.
- melt baths suitable for this in addition to zinc and unavoidable optionally Contains traces of Si and Pb impurities (in wt.) 0.1 - 60.0% Al and up to 0.5% Fe.
- a galvanizing bath may be used, which in the manner of the prior art, in the EP 1 857 566 A1 , of the EP 2 055 799 A1 and the EP 1 693 477 A1 is respectively documented, the contents of which are included in the content of the present application.
- the melt bath may contain 0.1-8.0% Al, 0.2-8.0% Mg, ⁇ 2.0% Si, ⁇ 0.1% Pb, ⁇ 0.2% Ti, ⁇ 1% Ni, ⁇ 1% Cu, ⁇ 0.3% Co, ⁇ 0.5% Mn, ⁇ 0.1% Cr, ⁇ 0.5% Sr, ⁇ 3.0% Fe, ⁇ 0.1% B, ⁇ 0.1% Bi with the proviso that for the Al Al content% Al and the Mg content% Mg of the melt formed ratio% Al /% Mg applies:% Al /% Mg ⁇ 1. Regardless of the composition of the melt bath, optimum hot dip galvanizing results will be obtained when the melt bath temperature is 420-600 ° C.
- melt baths which, in addition to aluminum and unavoidable impurities (if present) containing traces of Zn, have up to 15% Si and up to 5% Fe.
- Optimum coating results are obtained when the melt bath temperature is 660 - 680 ° C.
- the immersion time during hot aluminizing is typically 0.5 to 10 s, in particular 1 to 3 s. The invention will be explained in more detail with reference to an embodiment.
- the FIGURE schematically shows a hot-dip coating plant 1 intended for the coating of a steel strip S according to the invention.
- the hot-dip finishing plant 1 comprises a booster zone 2, in which the steel strip S is heated rapidly from room temperature to a temperature of 100-600 ° C.
- the steel strip is kept under an oxygen-free atmosphere which, in addition to nitrogen, optionally contains up to 5% by volume of H 2 and whose dew point is kept at -20 ° C. to + 25 ° C. Heated rapidly to a strip temperature of 100-950 ° C. for 1 to 30 seconds (step a)).
- the steel strip S runs without interruption and without coming into contact with the ambient atmosphere U into a pre-oxidation zone 3.
- the steel strip is heated to a strip temperature of up to 950 ° C. under an atmosphere which is formed from nitrogen and up to 50% by volume of H 2 and 0.1-3% by volume of O 2 and whose dew point is. 15 ° C to +25 ° C is maintained.
- DFF firing devices are used as the heating means, their ⁇ value being set here> 1 in order to specifically oxidize the surface of the steel strip S.
- the steel strip S passes through a likewise shielded from the environment holding zone 4, in which the steel strip S is maintained at the previously achieved, lying in the range of 750 - 950 ° C belt temperature.
- the atmosphere in the holding zone 4 is next to nitrogen and unavoidable impurities from 1 to 50% by volume of H 2 in order to achieve a reduction of the steel strip S in addition to the recrystallization.
- the dew point of the holding zone atmosphere is kept between -30 ° C and +25 ° C.
- a cooling zone 5 Connected to the holding zone 4 is a cooling zone 5, in which the steel strip S is cooled under the unchanged holding zone atmosphere to the respective inlet temperature, with which it passes into the melt bath 5.
- a proboscis atmosphere is maintained, which consists either of nitrogen or of hydrogen or a mixture of these two gases.
- the dew point of the trunk atmosphere is kept at -80 ° C to -25 ° C.
- Table 2 shows the composition of a steel used for the production of the steel strip S (data in% by weight, remainder iron and unavoidable impurities).
- Table 2 Cr C Si Mn Not a word Ni Ti Nb Cu al 11.52 0,015 0.55 0.39 0.01 0.12 0.212 0.01 0.03 0.02
- Table 4 The assessments of the coating results for the six experiments V1-V6 are summarized in Table 4. It turns out that the samples coated according to the invention have optimum coating results coupled with an equally optimal behavior of the coating during the deformation of the respective sample into a component, whereas the samples not processed according to the invention do not achieve this property combination.
- Table 3 attempt initial state TB a) [° C] TB b) [° C] Atm b) [Vol .-%] TB c) [° C] Atm c) [Vol.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Coating With Molten Metal (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Schmelztauchbeschichten eines aus einem nicht rostenden Stahl, der mehr als 5 Gew.-%, und bis zu 30 Gew.-% Cr, enthält, hergestellten Stahlflachprodukts mit einem metallischen, vor Korrosion schützenden Schutzüberzug. Wenn hier von "Stahlflachprodukten" die Rede ist, so sind damit Stahlbänder oder -bleche gemeint.The invention relates to a process for hot dip coating a steel flat product made of a stainless steel containing more than 5% by weight and up to 30% by weight of Cr, with a metallic, corrosion protective protective coating. When it comes to "flat steel products", it means steel bands or sheets.
Stähle der hier in Rede stehenden Art mit einem deutlichen, über 5 Gew.-% liegenden und typischerweise bis zu 30 Gew.-% reichenden Chrom-Gehalt zeichnen sich durch eine besonders gute chemische Beständigkeit und hohen Korrosionswiderstand aus. Diese Produkteigenschaft basiert auf der Bildung einer stabilen Chromoxidschicht, welche die Stahloberfläche auch bei höheren Temperaturen wirksam gegen äußere Einflüsse passiviert. Daher werden Stahlgüten mit einem Cr-Anteil > 10,5 Gew.-% auch als rost-, hitze- und säurebeständige (RHS)-Stähle oder kurz als rostfreie Stähle bezeichnet. Weitere Legierungselemente wie Nickel oder Molybdän können diese Passivierung unterstützen.Steels of the type in question here with a clear, more than 5 wt .-% lying and typically up to 30 wt .-% reaching chromium content are characterized by a particularly good chemical resistance and high corrosion resistance. This product property is based on the formation of a stable chromium oxide layer, which passivates the steel surface effectively against external influences even at higher temperatures. Therefore, steel grades with a Cr content> 10.5 wt .-% are also referred to as rust, heat and acid resistant (RHS) steels or short as stainless steels. Other alloying elements such as nickel or molybdenum can support this passivation.
Trotz dieser hervorragenden spezifischen Werkstoffeigenschaften gegenüber Umwelteinflüssen kann der Einsatz von chromlegierten Stählen für besonders beanspruchte Komponenten oder Bauteile die Applizierung einer zusätzlichen Schutzbeschichtung technisch erforderlich und/oder wirtschaftlich sinnvoll machen.Despite these excellent specific material properties against environmental influences can the use of chromium-alloyed steels for particularly stressed components or components makes the application of an additional protective coating technically necessary and / or economically viable.
Problematisch erweist sich dabei die chemische Passivität der deckenden Chromoxidschicht. Durch diese Schicht wird sowohl die Benetzungs- als auch die Haftungsreaktion bei der Beschichtung mit einem metallischen Überzug behindert. Daher stellt die Beschichtung von Stählen mit mindestens 5,0 Gew.-% Cr eine besondere Herausforderung dar.The chemical passivity of the opaque chromium oxide layer proves to be problematic. This layer impedes both wetting and adhesion reactions when coated with a metallic coating. Therefore, the coating of steels with at least 5.0 wt .-% Cr is a special challenge.
Aus der
Als kostengünstigere Alternative zur elektrolytischen Beschichtung bietet sich das kontinuierliche Schmelztauchveredeln von Stahlbändern an. Bei diesem Verfahren wird ein Stahlband, nachdem es in einem Durchlaufofen rekristallisierend geglüht worden ist, kurzzeitig in ein metallisches Schmelzbad eingetaucht, das typischerweise auf Zink, Aluminium oder deren Legierungen basiert.A more cost-effective alternative to electrolytic coating is the continuous hot dipping of steel strips. In this method, a steel strip, after it has been recrystallized in a continuous furnace, is immersed briefly in a molten metal bath, which is typically based on zinc, aluminum or their alloys.
Die Schmelztauchveredelung legierter Stähle verlangt besondere Sorgfalt, da bei diesen Stählen während der Glühphase sauerstoffaffine Legierungsbestandteile selektiv an der Stahloberfläche oxidieren können. Erfolgt die selektive Oxidation extern, d. h. mit Sauerstoff der Umgebungsatmosphäre, muss mit Benetzungsstörungen und Haftungsmängel gerechnet werden.The hot-dip refinement of alloyed steels requires special care, since these steels can oxidize oxygen-affine alloy constituents selectively on the steel surface during the annealing phase. He follows the selective oxidation externally, ie with oxygen of the ambient atmosphere, must be calculated with wetting disorders and liability deficiencies.
Für hoch-/höchstfeste Mehrphasenstähle, welche einen vergleichsweise geringen, typischerweise 0,3 - 2,0 Gew.-% betragenden Cr-Legierungsanteil aufweisen, hat sich ein in der
Aus der
Für die Schmelztauchveredelung von Stählen mit mehr als 5 Gew.-% Cr, insbesondere mehr als 10 Gew.-% Cr, sind grundsätzlich zwei Verfahrenstypen bekannt, die jeweils davon ausgehen, dass das zu beschichtende Stahlband durch eine Glühbehandlung so vorbereitet werden kann, dass ein optimales Beschichtungsergebnis erzielt wird. Der erste Verfahrenstyp sieht ein Glühen unter stark reduzierender Atmosphäre vor.For the hot-dip finishing of steels with more than 5% by weight Cr, in particular more than 10% by weight Cr, basically two types of processes are known, each of which assumes that the steel strip to be coated can be prepared by an annealing treatment in such a way that an optimal coating result is achieved. The first type of process involves annealing under a strongly reducing atmosphere.
Eine Variante dieses Verfahrenstyps ist jeweils in der
Eine weitere Variante des ersten Verfahrenstyps ist aus der
Diese Stahlflachprodukte werden bis 650 °C ohne freien Sauerstoff aufgeheizt und anschließend bei 845 - 955 °C unter einer > 95 Vol.-% H2/ N2 enthaltenden Atmosphäre gehalten. Ergänzend soll im Rüssel, über den das jeweilige Stahlband aus dem Ofen in das Schmelzenbad geleitet wird, > 97 Vol.-% H2/N2 - Atmosphäre mit einem Taupunkt von < -29 °C herrschen.These flat steel products are heated to 650 ° C without free oxygen and then maintained at 845-955 ° C under a> 95 vol .-% H2 / N2 containing atmosphere. In addition, in the trunk, over which the respective steel strip is led out of the furnace into the melt bath,> 97% by volume H2 / N2 atmosphere with a dew point of <-29 ° C prevails.
Eine dritte Variante des ersten Verfahrenstyps ist aus der
Das aus der
Der zweite bekannte Verfahrenstyp basiert auf der Anwendung der Oxidations-/Reduktionstechnik ("Voroxidation").The second known type of process is based on the application of the oxidation / reduction technique ("pre-oxidation").
Eine erste Variante dieses zweiten Verfahrenstyps ist in der
Gemäß der
Der erste Verfahrenstyp lässt sich im betrieblichen Alltag an einer Schmelztauchbeschichtungsanlage, welche für konventionell legierte Stähl konzipiert ist, nur mit großem Aufwand realisieren. Die notwendigen hohen Glühtemperaturen sowie der hohe H2-Verbrauch verursachen deutlich erhöhte Betriebskosten. Ebenso zeigt die großtechnische Praxis, dass ein Taupunkt < -40 °C in der Haltezone des Durchlaufofens nicht prozesssicher einzuhalten ist.The first type of process can only be implemented with great effort in everyday operations at a hot-dip coating plant designed for conventionally alloyed steel. The necessary high annealing temperatures and the high H2 consumption cause significantly higher operating costs. Likewise, the large-scale practice shows that a dew point <-40 ° C in the holding zone of the continuous furnace is not to comply with process reliability.
Die zum zweiten Verfahrenstyp gehörenden Varianten können zwar deutlich leichter im Rahmen der großtechnischen Schmelztauchbeschichtung realisiert werden. Allerdings zeigt auch hier die betriebliche Praxis, dass Benetzungsstörungen bei Stahlflachprodukten aus Stählen mit hohen Cr-Gehalten sich nicht prozesssicher vermeiden lassen. Besonders die in der
Ein weiterer, den voranstehend erläuterten Verfahrenstypen gemeinsamer Nachteil besteht darin, dass sich diese Verfahren jeweils nur auf die Feueraluminierung beziehen.Another disadvantage common to the above-described types of method is that these methods each relate only to the fire aluminization.
Neben dem voranstehend erläuterten Stand der Technik ist aus der
Auch in der
Auch in der
Vor diesem Hintergrund bestand die Aufgabe der Erfindung darin, ein Verfahren anzugeben, welches es auf kostengünstige und umweltfreundliche Weise erlaubt, für besonders korrosiv beanspruchte Anwendungsfälle vorgesehene Stahlflachprodukte, die mehr als 5,0 Gew.-% und bis zu 30 Gew.-% Chrom enthalten, mit einer Schmelztauchbeschichtung zu versehen.Against this background, the object of the invention to provide a method which allows it in a cost-effective and environmentally friendly manner, provided for particularly corrosive applications claimed steel flat products containing more than 5.0 wt .-% and up to 30 wt .-% chromium to be provided with a hot-dip coating.
Erfindungsgemäß ist diese Aufgabe durch das in Anspruch 1 angegebene Verfahren gelöst worden.According to the invention, this object has been achieved by the method specified in claim 1.
Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden wie der allgemeine Erfindungsgedanke nachfolgend im Einzelnen erläutert.Advantageous embodiments of the invention are set forth in the dependent claims and, like the general inventive idea are explained in detail below.
Gemäß der Erfindung wird ein bereitgestelltes, mit einem hohen Cr-Gehalt legiertes Stahlflachprodukt in einem in einer kontinuierlich aufeinander folgenden Arbeitsschrittfolge absolvierten Prozess zuerst in einem Durchlaufofen wärmebehandelt und unmittelbar anschließend in-line oberflächenveredelt. Je nach angestrebtem Verwendungszweck kann dabei erfindungsgemäß ein Zink-, Zink/Aluminium-, Zink/Magnesium-, Aluminium- oder Aluminium/Silizium-Schmelztauchüberzug appliziert werden.According to the invention, a supplied high-alloy steel flat product is first heat-treated in a continuous furnace in a process completed in a continuous successive sequence of operations and then immediately surface-finished in-line. Depending on the intended use, a zinc, zinc / aluminum, zinc / magnesium, aluminum or aluminum / silicon hot-dip coating can be applied according to the invention.
Das erfindungsgemäße Verfahren zum Schmelztauchbeschichten eines Stahlflachprodukts, das aus einem nicht rostenden Stahl, der mehr als 5 Gew.-% und bis zu 30 Gew.-% Cr enthält, hergestellt ist, mit einem metallischen, vor Korrosion schützenden Schutzüberzug, umfasst zu diesem Zweck die im Anspruch 1 angegebenen Arbeitsschritte.The process according to the invention for hot dip coating a flat steel product made of a stainless steel containing more than 5% by weight and up to 30% by weight of Cr, with a metallic, corrosion protective protective coating, comprises for this purpose the steps specified in claim 1.
Gemäß der Erfindung werden somit eine besonders gute Benetzung und gute Haftung des Schmelztauchüberzugs auch bei hohen Umformgraden durch eine gezielte Temperatur- und Atmosphäreregelung im Durchlaufofen prozesssicher dadurch erzielt, dass ein zweistufiges Aufheizen als Kombination aus einer schnellen Erwärmung (erste Aufheizstufe - Arbeitsschritt a)) und einem konventionellen Weiterheizen (zweite Aufheizstufe - Arbeitsschritt b)) bis hin zur Haltetemperatur durchgeführt wird. Dieser Verfahrensweg erlaubt eine besonders homogene und somit besonders effektive Voroxidation während der zweiten Aufheizstufe, welche gut kontrollierbar ist. Dadurch wird auf dem zu beschichtenden Stahlflachprodukt eine gleichmäßig deckende FeO-Schicht erzeugt, die als Diffusionsbarriere der Cr-Oxidation entgegenwirkt.According to the invention, a particularly good wetting and good adhesion of the hot-dip coating are thus reliably achieved even at high degrees of deformation by a targeted temperature and atmosphere control in the continuous furnace that a two-stage heating as a combination of rapid heating (first heating step - step a)) and a conventional heat-up (second heating stage - step b)) up to the holding temperature is performed. This procedure allows a particularly homogeneous and thus particularly effective pre-oxidation during the second heating stage, which is easy to control. As a result, a uniform on the flat steel product to be coated produces opaque FeO layer, which acts as a diffusion barrier of Cr oxidation.
Optimale Arbeitsergebnisse ergeben sich, wenn die Temperatur des Stahlflachprodukts am Ende der Aufheizphase (Arbeitsschritt a)) im Bereich von 200 - 500 °C liegt.Optimum work results are obtained when the temperature of the flat steel product at the end of the heating phase (step a)) is in the range of 200-500 ° C.
Die Aufheizphase (Arbeitsschritt a)) sollte bevorzugt nur 1 - 5 sec dauern.The heating phase (step a)) should preferably take only 1 to 5 seconds.
In der Praxis lässt sich das erfindungsgemäße schnelle Aufheizen (Arbeitsschritt a)) mit Hilfe einer so genannten "Booster-Heizeinrichtung" durchführen, wie sie beispielsweise in der
Die Aufheizatmosphäre während Arbeitsschritt a) enthält neben N2 und technisch unvermeidbaren Verunreinigungen optional 1 - 50 Vol.-% H2.The heating atmosphere during step a) contains, in addition to N 2 and technically unavoidable impurities, optionally 1 to 50% by volume of H 2 .
Sowohl die Aufheizatmosphäre als auch die Voroxidationsatmosphäre können beispielsweise H2O, CO oder CO2 als herstellungsbedingt unvermeidbare Verunreinigungen enthalten.Both the heating atmosphere and the pre-oxidation atmosphere may contain, for example, H 2 O, CO or CO 2 as inevitable impurities due to production.
Während die beim Arbeitsschritt a) aufrechterhaltene Aufheizatmosphäre sauerstofffrei sein soll, d. h. in ihr O2 allenfalls in technisch unvermeidbaren, unwirksamen Mengen vorhanden ist, weist die Voroxidationsatmosphäre neben N2 und technisch unvermeidbaren Verunreinigungen 0,1 - 3,0 Vol.-% O2 bei einem Taupunkt von -20 °C bis +25 °C auf, um das gewünschte Oxidationsergebnis zu erzielen.While the heating atmosphere maintained in operation a) should be free of oxygen, ie in its O 2 possibly present in technically unavoidable, ineffective amounts, the Voroxidationsatmosphäre in addition to N 2 and technically unavoidable impurities 0.1 - 3.0 vol .-% O 2 at a dew point of -20 ° C to +25 ° C to achieve the desired oxidation result.
Die Voroxidation (Arbeitsschritt b) dauert typischerweise 1 - 15 Sekunden. Sie kann beispielsweise in einem direkt beheizten Ofen des DFF-Typs ("DFF" = Direct Fired Furnace) durchgeführt werden. Bei einem DFF-Ofen kann an den eingesetzten Gasbrennern das Oxidationspotential durch Einstellung der Luftzahl λ in der das Band umgebenden Atmosphäre erzeugt werden. Die Erwärmung im DFF-Ofen hat den zusätzlichen Vorteil, dass auf der Oberfläche des Stahlflachproduktes vorhandene organische Verschmutzungen durch Verbrennung entfernt werden. Alternativ ist es auch denkbar, einen Ofen des RTF-Typs (RTF = Radiant Tube Furnace) zu verwenden, bei dem ausschließlich Strahlrohre verwendet werden und die Voroxidation des Eisens über eine Einstellung des Sauerstoffpartialdrucks der Voroxidationsatmosphäre erfolgt.The pre-oxidation (step b) typically takes 1 to 15 seconds. It can be carried out, for example, in a directly heated furnace of the DFF type ("DFF" = Direct Fired Furnace). In a DFF furnace, the oxidation potential can be generated on the gas burners used by adjusting the air ratio λ in the atmosphere surrounding the band. The heating in the DFF furnace has the additional advantage that on the surface of the flat steel product existing organic pollutants are removed by combustion. Alternatively, it is also conceivable to use a furnace of the RTF type (RTF = Radiant Tube Furnace), in which only jet pipes are used and the pre-oxidation of the iron via an adjustment of the Oxygen partial pressure of the Voroxidationsatmosphäre takes place.
Optimalerweise wird das Stahlflachprodukt dabei zur Vermeidung einer externen Chromoxidschicht auf der Stahloberfläche in einem Oxidationstemperaturbereich von 550 - 800 °C, idealerweise bei einer Oxidationstemperatur von 600 - 700 °C, über eine Dauer oxidiert, die typischerweise 1 - 15 s beträgt. Dazu kann auf dem Ofenabschnitt, über den der betreffende Bereich der Oxidationstemperatur vorliegt, die vorgegebene N2/ H2-Glühatmosphäre zusätzlich mit 0,1 - 3,0 Vol.-% O2 beaufschlagt werden, während im davor und dahinter liegenden Ofenbereich jeweils eine weitestgehend sauerstofffreie Atmosphäre aufrechterhalten wird. Diese oxidierende Atmosphäre kann bei einer DFF-Anlage gezielt dadurch eingestellt werden, dass in dem jeweiligen Ofenabschnitt ein λ-Werte > 1 eingestellt wird. Bei einer RTF-Anlage kann dagegen eine gegenüber den vorhergehend und dem nachfolgend durchlaufenen Bereich abgeschottete Ofenzone ausgebildet werden, in der die sauerstoffhaltige Atmosphäre besteht. Alternativ kann die Voroxidation auch über eine zusätzliche zwischengeschaltete Booster-Einrichtung erfolgen.Optimally, the steel flat product is thereby oxidized to avoid an external chromium oxide layer on the steel surface in an oxidation temperature range of 550 - 800 ° C, ideally at an oxidation temperature of 600 - 700 ° C, over a period which is typically 1-15 s. For this purpose, on the furnace section, over which the relevant region of the oxidation temperature is present, the predetermined N 2 / H 2 -Glühatmosphäre additionally be charged with 0.1 to 3.0 vol .-% O 2 , while in front of and behind the furnace area in each case a largely oxygen-free atmosphere is maintained. This oxidizing atmosphere can be specifically adjusted in a DFF system by setting a λ-value> 1 in the respective furnace section. In contrast, in the case of an RTF plant, a furnace zone which is sealed off from the preceding and the subsequently passed through region can be formed, in which the oxygen-containing atmosphere exists. Alternatively, the pre-oxidation can also take place via an additional intermediate booster device.
Im Zuge der erfindungsgemäß durchgeführten Voroxidation entsteht auf der Stahloberfläche eine Eisenoxidschicht mit einer Dicke, die weniger als 300 nm beträgt, idealerweise im Bereich von 20 - 200 nm liegt. Die Dicke dieser optimalerweise deckend ausgebildeten Schicht sollte über die jeweils betrachtete Oberfläche des Stahlflachprodukts möglichst homogen ausgebildet sein, um eine wirksame Diffusionsbarriere gegenüber der externen selektiven Cr-Oxidation zu bewirken. Der Taupunkt der im Oxidationsabschnitt des Ofenpunkts aufrechterhaltenen Atmosphäre kann dazu zwischen -20 - +25 °C liegen.In the course of the pre-oxidation carried out according to the invention, an iron oxide layer with a thickness which is less than 300 nm, ideally in the range from 20 to 200 nm, is formed on the steel surface. The thickness of this optimally opaque layer should be formed as homogeneously as possible over the surface of the flat steel product considered in each case in order to produce an effective Diffusion barrier to effect the external selective Cr oxidation. The dew point of the atmosphere maintained in the oxidation section of the furnace point may be between -20 to +25 ° C.
Optimale Prozesszeiten bei gleichzeitig einfacher Verfahrensführung ergeben sich, wenn die aufeinander folgend absolvierten Arbeitsschritte des erfindungsgemäßen Verfahrens in einer Wärmebehandlungslinie durchgeführt werden, bei der eine Boostereinrichtung, ein DFF-Ofen und/oder ein RTF-Ofen miteinander kombiniert sind und bei dem sich an den Ofenteil eine Halte- bzw. Kühlzone anschließt, die in eine Rüsselzone übergeht, die in das jeweilige Schmelztauchbad führt.Optimal process times with simultaneously simple process management result when the successively completed working steps of the method according to the invention are carried out in a heat treatment line in which a booster device, a DFF furnace and / or a RTF furnace are combined with each other and in which the furnace part a holding or cooling zone connects, which merges into a trunk zone, which leads into the respective Schmelztauchbad.
Im Zuge des Arbeitsschritts b) wird das Stahlflachprodukt ausgehend von der nach dem Arbeitsschritt a) erreichten, 100 - 600 °C betragenden Aufheiztemperatur auf die angestrebte Haltetemperatur von 750 - 950 °C weiter erwärmt. Im Fall, dass das verarbeitete Stahlflachprodukt vor dem Arbeitsschritt a) bereits zur Entfestigung einer rekristallisierenden Glühung unterzogen worden ist, kann dabei die Haltetemperatur auf 750 - 850 °C beschränkt werden. Tritt das Stahlflachprodukt dagegen im walzharten Zustand in den Arbeitsschritt a) ein, so hat es sich als zweckmäßig erwiesen, die Haltetemperatur auf 800 - 850 °C einzustellen, um im Zuge des Haltens eine Rekristallisation zu bewirken.In the course of step b), the steel flat product is further heated to the desired holding temperature of 750-950 ° C., starting from the heating temperature reached after step a), 100-600 ° C. In the event that the processed flat steel product has already been subjected to the softening of a recrystallizing annealing prior to step a), the holding temperature can be limited to 750-850 ° C. On the other hand, if the steel flat product enters the working step a) in the hard-rolling state, it has proved expedient to set the holding temperature to 800-850 ° C. in order to recrystallize during holding.
Mit Erreichen einer Haltetemperatur wird das in erfindungsgemäßer Weise zweistufig erwärmte und dabei voroxidierte Stahlflachprodukt über eine ausreichende Dauer auf der jeweiligen Haltetemperatur gehalten (Arbeitsschritt c)). Neben der erforderlichenfalls erzielten Rekristallisation des Gefüges wird während der Haltephase (Arbeitsschritt c)) die zuvor erzeugte FeO-Schicht unter einer entsprechend eingestellten Halteatmosphäre wieder zu metallischem Eisen reduziert.Upon reaching a holding temperature that is heated in two stages according to the invention and thereby preoxidized steel flat product maintained at the respective holding temperature for a sufficient duration (step c)). In addition to the recrystallization of the microstructure, if necessary, during the holding phase (step c)), the previously produced FeO layer is again reduced to metallic iron under a correspondingly adjusted holding atmosphere.
Die neuerliche Bildung externer Cr-Oxide kann effektiv durch Forcierung der internen Cr-Oxidation vermieden werden. Dies lässt sich dadurch erreichen, dass der Taupunkt der Halteatmosphäre bei -30 bis +25 °C, insbesondere bei mehr als -25 °C, gehalten wird. Ein solcher Taupunkt sichert ein so hohes H2O/H2-Verhältnis, dass eine ausreichende Stoffmenge an Sauerstoff zur Verfügung steht. Optimale Ergebnisse des Haltens bei der Haltetemperatur ergeben sich dementsprechend, wenn die Halteatmosphäre während des Haltens neben N2 und technisch unvermeidbaren Verunreinigungen 1,0 - 50,0 Vol.-% H2 enthält und einen Taupunkt von -30 °C bis +25 °C aufweist. Indem der Taupunkt der Halteatmosphäre mindestens -30 °C beträgt, insbesondere im Bereich von -25 bis 0 °C liegt, wird, wie erwähnt, die von außen erfolgende Cr-Oxidation zusätzlich gehemmt. Die Dauer der Haltephase wird in der Praxis typischerweise 10 - 120 s betragen, wobei sich bei heute zur Verfügung stehenden Anlagen eine Haltedauer von 30 - 60 s als optimal erwiesen hat.The recent formation of external Cr oxides can be effectively avoided by promoting internal Cr oxidation. This can be achieved by keeping the dew point of the holding atmosphere at -30 to +25 ° C, in particular at more than -25 ° C. Such a dew point ensures such a high H 2 O / H 2 ratio that a sufficient amount of oxygen is available. Accordingly, optimum holding performance at the hold temperature results when the hold atmosphere during holding contains N 2 and technically unavoidable impurities 1.0-50.0 vol% H 2 and a dew point of -30 ° C to + 25 ° C has. By the dew point of the holding atmosphere is at least -30 ° C, in particular in the range of -25 to 0 ° C, as mentioned, the external Cr oxidation is additionally inhibited. The duration of the holding phase will typically be 10-120 s in practice, with a holding time of 30-60 s having been found to be optimal in systems available today.
Im Anschluss an das Halten (Arbeitsschritt c)) und der optional durchgeführten Überalterungsbehandlung (Arbeitsschritt d)) wird das Stahlflachprodukt auf die jeweilige Schmelzenbadtemperatur abgekühlt und über eine an sich bekannte Rüsselkonstruktion in das jeweilige Schmelzenbad geleitet (Arbeitsschritt e)). Dabei hat es sich für das Benetzungsergebnis als besonders vorteilhaft erwiesen, wenn die Rüsselatmosphäre einen Taupunkt von -80 bis -25 °C, insbesondere weniger als -40 °C, besitzt.Following the holding (step c)) and the optional overaging treatment (step d)), the flat steel product is cooled to the respective melt bath temperature and over a per se known trunk structure in the respective melt bath passed (step e)). It has proved to be particularly advantageous for the wetting result when the trunk atmosphere has a dew point of -80 to -25 ° C, in particular less than -40 ° C, has.
Ein derart tiefer Taupunkt kann in der Praxis durch eine zusätzliche N2- oder H2-Einspeisung direkt in die Rüsselzone realisiert werden.Such a deep dew point can be realized in practice by an additional N 2 - or H 2 feed directly into the trunk zone.
Das in einen geeigneten Schmelzenbadkessel an sich bekannter Art eingefüllte Schmelzenbad wird anschließend von dem in erfindungsgemäßer Weise vorbereiteten Stahlflachprodukt im kontinuierlichen Durchlauf passiert, wobei sich in der Praxis eine Eintauchdauer von 0,5 - 10 s, insbesondere 1 - 3 s, bewährt hat. Im Schmelzenbadkessel benetzt das Schmelzbad die Stahloberfläche und es erfolgt eine chemische Reaktion zwischen dem metallischen Eisen des Stahlbands und dem Schmelzenbad zu einer intermetallischen Grenzschicht, welche die gute Überzugshaftung gewährleistet. Die Bandeintauch- und Schmelzbadtemperaturen ergeben sich dabei in Abhängigkeit der Schmelzenbadzusammensetzung. In Tabelle 1 sind für Überzüge auf Zn- (z. B. Zn-, ZnAl-, ZnMg- oder ZnMgAl-Überzüge) und Al-Basis (z. B. AlZn-, AlSi-Überzüge) typische Bereiche für die Temperatur, mit der das Stahlflachprodukt in das jeweilige Schmelzenbad eintaucht, sowie der passende Bereich der Temperatur des jeweiligen Schmelzenbades angegeben.
Im Fall, dass das Schmelztauchbeschichten als Feueraluminieren durchgeführt wird und ein Überaltern des Stahlflachprodukts durchgeführt wird, kann die Überalterungstemperatur auf 650 - 780 °C eingestellt werden, um eine weiter optimierte Haftung des Überzugs zu erzielen.In the case where the hot dip coating is performed as a fire aluminizing and over aging of the flat steel product is performed, the aging temperature can be set to 650 - 780 ° C to obtain further optimized adhesion of the coating.
Nach Verlassen des Schmelzenbades wird die Überzugsdicke erforderlichenfalls mittels Abstreifdüsen eingestellt und das erhaltene schmelztauchbeschichtete, Cr-legierte Stahlflachprodukt abgekühlt. An die Abkühlung können sich jeweils optional eine Nachverformung (Dressierwalzen), eine Passivierung, eine Beölung sowie ein Aufhaspeln des Stahlflachprodukts zu einem Coil anschließen.After leaving the melt bath, if necessary, the coating thickness is adjusted by means of wiping nozzles and the resulting hot-dip-coated Cr-alloyed flat steel product is cooled. Optionally, post-forming (skin pass rolling), passivation, lubrication and coiling of the flat steel product into a coil can be connected to the cooling.
Abhängig vom jeweils applizierten Überzug eignet sich das erfindungsgemäß beschichtete Stahlflachprodukt für eine ein-, zwei- oder mehrstufig durchgeführte Kalt- oder Warmumformung zu einem Bauteil. Vorteile gegenüber konventionellen Stahlflachprodukten und nicht schmelztauchveredelten Cr-legierten Stahlflachprodukten ergeben sich dabei insbesondere hinsichtlich der deutlich verbesserten Korrosionsbeständigkeit von Bauteilen, die in einer Umgebung mit hohem Korrosionspotenzial eingesetzt werden. Dies erweist sich insbesondere dann als vorteilhaft, wenn an dem betreffenden Einsatzort erhöhte Temperaturen herrschen.Depending on the coating applied in each case, the flat steel product coated according to the invention is suitable for one-, two- or multi-stage cold or hot forming into one component. Advantages compared to conventional flat steel products and non-hot-dip coated Cr-alloyed flat steel products result in particular in the significantly improved corrosion resistance of components that are used in an environment with high corrosion potential. This proves to be particularly advantageous if there are elevated temperatures at the site in question.
Eine besondere Vielseitigkeit der Verwendbarkeit von erfindungsgemäß beschichteten Stahlflachprodukten ergibt sich auch daraus, dass organische Beschichtungen oder Kleber, welche für verzinkte Oberflächen optimiert sind, nun auch für aus nicht rostenden Cr-legierten Stählen bestehende Bauteile effektiv genutzt werden können. Dies erweitert das Einsatzspektrum Cr-legierter Stahlprodukte z. B. für Strukturanwendungen im automobilen Karosseriebau oder chemischen Apparate- und Anlagenbau.A particular versatility of the usability of coated steel flat products according to the invention results This is also due to the fact that organic coatings or adhesives optimized for galvanized surfaces can now be used effectively for components made of stainless Cr-alloyed steels. This extends the range of applications of Cr-alloyed steel products, eg. B. for structural applications in automotive body construction or chemical apparatus and equipment.
Der nicht rostende Stahl, aus dem das erfindungsgemäß verarbeitete Stahlflachprodukt erzeugt ist, enthält neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) Cr: 5,0 - 30,0 %, Mn: weniger als 6,0 %, Mo: weniger als 5,0 %,Ni: bis zu 30,0 %, Si: weniger als 2,0 %, Cu: weniger als 2,0 %, Ti: weniger als 1,0 %, Nb: weniger als 1,0 %, V: weniger als 0,5 %, N: weniger als 0,2 %, Al: weniger als 0,2%, C: weniger als 0,1 %. Durch das Zulegieren von bis zu 30,0 Gew.-% Ni kann dabei ein austenitisches oder ferritisch-austenitisches Duplex-Gefüge erzeugt werden, welches die Umformbarkeit des Stahlflachprodukts weiterhin steigert. Ebenso wird dadurch der Korrosionswiderstand zusätzlich erhöht und die Umformbarkeit des Stahlflachprodukts verbessert.The stainless steel from which the flat steel product of the present invention is produced contains, in addition to iron and unavoidable impurities (in% by weight) Cr: 5.0-30.0%, Mn: less than 6.0%, Mo: less than 5.0%, Ni: up to 30.0%, Si: less than 2.0%, Cu: less than 2.0%, Ti: less than 1.0%, Nb: less than 1.0% , V: less than 0.5%, N: less than 0.2%, Al: less than 0.2%, C: less than 0.1%. By alloying up to 30.0% by weight of Ni, it is possible to produce an austenitic or ferritic-austenitic duplex structure which further increases the formability of the flat steel product. Likewise, this additionally increases the corrosion resistance and improves the formability of the flat steel product.
Besonders geeignet für das erfindungsgemäße Verfahren sind Stahlbleche oder -bänder, die aus einem auf der voranstehend angegebenen Legierungsvorschrift basierenden Stahl produziert sind, der (in Gew.-%) Cr: 10,0 - 13,0 %, Ni: weniger als 3,0 %, Mn: weniger als 1,0 %, Ti: weniger als 1,0 %, C: weniger als 0,03 % aufweist.Particularly suitable for the process according to the invention are steel sheets or strips which are produced from a steel based on the abovementioned alloy specification which contains (in% by weight) Cr: 10.0-13.0%, Ni: less than 3, 0%, Mn: less than 1.0%, Ti: less than 1.0%, C: less than 0.03%.
Sollen erfindungsgemäß vorbereitete Stahlflachprodukte feuerverzinkt werden, so eignen sich dafür Schmelzenbäder, die neben Zink und unvermeidbaren, gegebenenfalls Spuren von Si und Pb umfassende Verunreinigungen (in Gew.) 0,1 - 60,0 % Al und bis zu 0,5 % Fe aufweisen. Ebenso kann ein Verzinkungsbad zur Anwendung kommen, das nach Art des Standes der Technik, der in der
Sollen erfindungsgemäß vorbereitete Stahlflachprodukte feueraluminiert werden, so eignen sich dafür Schmelzenbäder, die neben Aluminium und unvermeidbaren, gegebenenfalls Spuren an Zn umfassende Verunreinigungen (in Gew.) bis zu 15 % Si und bis zu 5 % Fe aufweisen.If steel flat products prepared according to the invention are to be flame-aluminized, melt baths which, in addition to aluminum and unavoidable impurities (if present) containing traces of Zn, have up to 15% Si and up to 5% Fe.
Optimale Beschichtungsergebnisse ergeben sich dabei dann, wenn die Schmelzenbadtemperatur 660 - 680 °C beträgt. Die Eintauchdauer beträgt beim Feueraluminieren typischerweise 0,5 - 10 s, insbesondere 1 - 3 s. Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert.Optimum coating results are obtained when the melt bath temperature is 660 - 680 ° C. The immersion time during hot aluminizing is typically 0.5 to 10 s, in particular 1 to 3 s. The invention will be explained in more detail with reference to an embodiment.
Die Figur zeigt schematisch eine für die erfindungsgemäße Beschichtung eines Stahlbands S bestimmte Schmelztauchveredelungsanlage 1.The FIGURE schematically shows a hot-dip coating plant 1 intended for the coating of a steel strip S according to the invention.
Die Schmelztauchveredelungsanlage 1 umfasst eine Boosterzone 2, in der das Stahlband S schnell von Raumtemperatur auf eine Temperatur von 100 - 600 °C erwärmt wird. In der durch ein Gehäuse gegenüber der Umgebung abgeschirmten Boostereinrichtung wird das Stahlband unter einer sauerstofffreien Atmosphäre, die neben Stickstoff optional bis zu 5 Vol.-% H2 enthält und deren Taupunkt bei -20 °C bis +25 °C gehalten wird, innerhalb von 1 - 30 s schnell auf eine 100 - 950 °C betragende Bandtemperatur erwärmt (Arbeitsschritt a)).The hot-dip finishing plant 1 comprises a
Im Anschluss an die Boosterzone 2 läuft das Stahlband S unterbrechungsfrei und ohne mit der Umgebungsatmosphäre U in Kontakt zu kommen in eine Voroxidationszone 3 ein. Dort wird das Stahlband auf eine bis zu 950 °C betragende Bandtemperatur unter einer Atmosphäre erwärmt, die aus Stickstoff sowie bis zu 50 Vol.-% H2 und 0,1 - 3 Vol.-% O2 gebildet ist und deren Taupunkt bei -15 °C bis +25 °C gehalten wird. Als Heizeinrichtung kommen auch hier DFF-Brenneinrichtungen zum Einsatz, wobei deren λ-Wert hier > 1 eingestellt ist, um die Oberfläche des Stahlbands S gezielt zu oxidieren.Subsequent to the
Anschließend durchläuft das Stahlband S eine ebenfalls gegenüber der Umgebung abgeschirmte Haltezone 4, in der das Stahlband S bei der zuvor erzielten, im Bereich von 750 - 950 °C liegenden Bandtemperatur gehalten wird. Die Atmosphäre in der Haltezone 4 besteht neben Stickstoff und unvermeidbaren Verunreinigungen aus 1 - 50 Vol.-% H2, um neben der Rekristallisation eine Reduktion des Stahlbands S zu erzielen. Der Taupunkt der Haltezonenatmosphäre wird dabei zwischen -30 °C und +25 °C gehalten.Subsequently, the steel strip S passes through a likewise shielded from the
An die Haltezone 4 angeschlossen ist eine Kühlzone 5, in der das Stahlband S unter der unveränderten Haltezonenatmosphäre auf die jeweilige Eintrittstemperatur abgekühlt wird, mit der es in das Schmelzenbad 5 gelangt.Connected to the holding
Die Einleitung des Stahlbands S in das Schmelzenbad 6 erfolgt über einen Rüssel 7, den das Stahlband S unterbrechungsfrei von der Kühlzone 5 kommend und weiterhin gegenüber der Umgebung U abgeschirmt durchläuft. In dem Rüssel 7 wird eine Rüsselatmosphäre aufrechterhalten, die entweder aus Stickstoff oder aus Wasserstoff oder einem Gemisch dieser beiden Gase besteht. Der Taupunkt der Rüsselatmosphäre wird dabei bei -80 °C bis -25 °C gehalten.The introduction of the steel strip S in the melt bath 6 via a
In Tabelle 2 ist die Zusammensetzung eines für die Herstellung des Stahlbands S verwendeten Stahls angegeben (Angaben in Gew.-%, Rest Eisen und unvermeidbare Verunreinigungen).
Sechs Proben des Stahlband S sind für sechs Versuche V1 - V6 durch die Schmelztauchveredelungsanlage 1 geleitet worden. Der Ausgangszustand der jeweils verarbeiteten Probe, die dabei eingestellten Verfahrensparameter
- TB a) =
- Bandtemperatur am
Ende der Boosterzone 2, - TB b) =
- Bandtemperatur am
Ende der Voroxidationszone 3, - Atm b) =
- Zusammensetzung der Atmosphäre in
der Voroxidationszone 3, - TB c) =
- max. Bandtemperatur in
der Haltezone 4, - Atm c) =
- Zusammensetzung der Atmosphäre in
der Haltezone 4, - TP c) =
- Taupunkt der Atmosphäre in
der Haltezone 4, - TB e) =
- Bandtemperatur in
der Rüsselzone 7, - Atm e) =
- Zusammensetzung der Atmosphäre in
der Rüsselzone 7, - TP e) =
- Taupunkt der Atmosphäre in
der Rüsselzone 7 und
- TB a) =
- Belt temperature at the end of the
booster zone 2, - TB b) =
- Strip temperature at the end of the
pre-oxidation zone 3, - Atm b) =
- Composition of the atmosphere in the
pre-oxidation zone 3, - TB c) =
- Max. Strip temperature in the holding
zone 4, - Atm c) =
- Composition of the atmosphere in the holding
zone 4, - TP c) =
- Dew point of the atmosphere in the holding
zone 4, - TB e) =
- Strip temperature in the
trunk zone 7, - Atm e) =
- Composition of the atmosphere in the
trunk zone 7, - TP e) =
- Dew point of the atmosphere in the
trunk zone 7 and
Die Beurteilungen der Beschichtungsergebnisse für die sechs Versuche V1 - V6 sind in Tabelle 4 zusammengefasst. Es zeigt sich, dass die erfindungsgemäß beschichteten Proben optimale Beschichtungsergebnisse gepaart mit einem ebenso optimalen Verhalten des Überzugs bei der Verformung der jeweiligen Probe zu einem Bauteil besitzen, während die nicht erfindungsgemäß verarbeiteten Proben diese Eigenschaftskombination nicht erreichen.
Claims (10)
- Method for hot-dip coating a flat steel product which has been produced from a stainless steel containing (in % by weight) Cr: 5.0 - 30.0 %, Mn: < 6.0 %, Mo: < 5.0 %, Ni: < 30.0 %, Si: < 2.0 %, Cu: < 2.0 %, Ti: < 1.0 %, Nb: < 1.0 %, V: < 0.5 %, N: < 0.2 %, Al: < 0.2 %, C: < 0.1 %, remainder iron and unavoidable contaminants, with a metallic protective coating protecting against corrosion, comprising the following working steps which are completed in a continuously successive sequence:a) heating the flat steel product within a period of 1 - 30 seconds to a heating temperature of 100 - 600°C under an oxygen-free, except for operational contaminants, heating atmosphereruling out an oxidation of the surface of the flat steel product, wherein the heating atmosphere optionally contains 1 - 50 % by volume of H2 in addition to N2 and technically unavoidable contaminants;b) continuing the heating of the flat steel product up to a holding temperature of 750 - 950°C, wherein the heating procedure- is carried out up to a pre-oxidation temperature window of 550 - 800°C under an inert or reducing heating atmosphere- is carried out within the pre-oxidation temperature window for 1 to 15 seconds under an oxidising pre-oxidation atmosphere to cause a pre-oxidation of the surface of the flat steel product, the pre-oxidation atmosphere containing, in addition to N2 and technically unavoidable contaminants, 0.1 - 3.0 % by volume of O2 and optionally 1 - 50 % by volume of H2, and having a dew point of -20°C to +25°C, and- after leaving the pre-oxidation temperature window, is again carried out under an inert or reducing atmosphereuntil the holding temperature is reached;c) keeping the pre-oxidised flat steel product at the holding temperature for 10 - 120 seconds under a reducing holding atmosphere;d) optionally: overaging the flat steel product for 1 - 30 seconds under an inert or reducing overaging atmosphere at an overaging temperature of 430 - 780°C;
wherein the holding atmosphere contains during the holding procedure, or the overaging atmosphere contains during the optionally performed overaging procedure in each case 1.0 - 50.0 % by volume of H2 in addition to N2 and technically unavoidable contaminants, and has a dew point of -30°C to +25°C;e) passing the flat steel product through a nozzle zone and thereafter through a molten bath in which the flat steel product is hot-dip coated with the metallic coating, wherein the flat steel product is held under an inert or reducing nozzle atmosphere in the nozzle zone until it passes into the molten bath, which nozzle atmosphere has a dew point of -80°C to -25°C and either optionally contains 1 - 50 % by volume of H2 in addition to N2 and technically unavoidable contaminants, or completely consists of H2 in addition to technically unavoidable contaminants, and the temperature of the flat steel product while passing through the nozzle zone is 430-780°C. - Method according to Claim 1, characterised in that working step a) is completed within 1 to 5 seconds.
- Method according to any of the preceding claims,
characterised in that
the heating temperature in working step a) is 200 - 500°C. - Method according to any of the preceding claims,
characterised in that
before working step a), the flat steel product is subjected to a recrystallising annealing procedure, and the holding temperature is 750 - 850°C. - Method according to any of Claims 1 to 3,
characterised in that
the flat steel product passes into working step a) in a hard rolled state, and the holding temperature is 800 - 850°C. - Method according to any of the preceding claims,
characterised in that
the hot-dip coating process is carried out as a hot-dip galvanising process, and the overaging temperature which is set during the optionally performed overaging procedure is 430 - 650°C. - Method according to any of Claims 1 to 5,
characterised in that
the hot-dip coating process is carried out as a hot-dip aluminising process, and the overaging temperature which is set during the optionally performed overaging procedure is 650 - 780°C. - Method according to any of the preceding claims,
characterised in that
the hot-dip coating process of the flat steel product is carried out as a hot-dip galvanising process, and the temperature of the molten bath is 420 - 600°C. - Method according to any of Claims 1 to 7,
characterised in that
the hot-dip coating process of the flat steel product is carried out as a hot-dip aluminising process, and the temperature of the molten bath is 650 - 780°C. - Method according to any of the preceding claims,
characterised in that
the steel contains (in % by weight) Cr: 10.0 - 13.0 %, Ni: < 3.0 %, Mn: < 1.0 %, Ti: < 1.0 %, C: < 0.03 %.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010037254A DE102010037254B4 (en) | 2010-08-31 | 2010-08-31 | Process for hot dip coating a flat steel product |
PCT/EP2011/064222 WO2012028465A1 (en) | 2010-08-31 | 2011-08-18 | Method for hot-dip coating a flat steel product |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2611946A1 EP2611946A1 (en) | 2013-07-10 |
EP2611946B1 true EP2611946B1 (en) | 2018-10-03 |
Family
ID=44515132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11745783.8A Not-in-force EP2611946B1 (en) | 2010-08-31 | 2011-08-18 | Method for hot-dip coating a flat steel product |
Country Status (6)
Country | Link |
---|---|
US (1) | US9279175B2 (en) |
EP (1) | EP2611946B1 (en) |
CN (1) | CN103080363B (en) |
DE (1) | DE102010037254B4 (en) |
ES (1) | ES2701756T3 (en) |
WO (1) | WO2012028465A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011051731B4 (en) * | 2011-07-11 | 2013-01-24 | Thyssenkrupp Steel Europe Ag | Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer |
DE102012101018B3 (en) | 2012-02-08 | 2013-03-14 | Thyssenkrupp Nirosta Gmbh | Process for hot dip coating a flat steel product |
EP2687611A1 (en) * | 2012-07-17 | 2014-01-22 | Linde Aktiengesellschaft | Method and apparatus for controlling surface porosity of metal materials |
DE102013105378B3 (en) * | 2013-05-24 | 2014-08-28 | Thyssenkrupp Steel Europe Ag | Process for the preparation of a hot-dip coated flat steel product and continuous furnace for a hot-dip coating machine |
DE102015101312A1 (en) * | 2015-01-29 | 2016-08-04 | Thyssenkrupp Steel Europe Ag | A method of applying a metallic protective coating to a surface of a steel product |
US20180312955A1 (en) * | 2015-09-30 | 2018-11-01 | Thyssenkrupp Steel Europe Ag | Flat Steel Product Having a Zn-Galvannealed Protective Coating, and Method for the Production Thereof |
WO2017208671A1 (en) * | 2016-05-30 | 2017-12-07 | Jfeスチール株式会社 | Ferritic stainless steel sheet |
ES2742948T3 (en) * | 2016-10-07 | 2020-02-17 | Sepies Gmbh | Procedure for application with adhesive resistance of a sol-gel layer on a metal surface |
DE102018102624A1 (en) | 2018-02-06 | 2019-08-08 | Salzgitter Flachstahl Gmbh | Process for producing a steel strip with improved adhesion of metallic hot-dip coatings |
BE1026986B1 (en) | 2019-01-23 | 2020-08-25 | Drever Int S A | Method and furnace for the heat treatment of a strip of high strength steel comprising a temperature homogenization chamber |
DE102019108457B4 (en) | 2019-04-01 | 2021-02-04 | Salzgitter Flachstahl Gmbh | Process for the production of a steel strip with improved adhesion of metallic hot-dip coatings |
DE102019108459B4 (en) | 2019-04-01 | 2021-02-18 | Salzgitter Flachstahl Gmbh | Process for the production of a steel strip with improved adhesion of metallic hot-dip coatings |
CN113994016B (en) * | 2019-06-03 | 2024-09-27 | 蒂森克虏伯钢铁欧洲股份公司 | Method for producing a sheet metal component from a flat steel product provided with a corrosion protection coating |
JP7095804B2 (en) * | 2020-02-21 | 2022-07-05 | Jfeスチール株式会社 | Manufacturing method of high-strength hot-dip galvanized steel sheet |
CN111485188A (en) * | 2020-04-02 | 2020-08-04 | 鞍钢股份有限公司 | Method for improving surface platability of high-strength steel plate by adopting pre-oxidation technology |
CN112030091A (en) * | 2020-09-11 | 2020-12-04 | 霸州市青朗环保科技有限公司 | Method for preparing composite coating on surface of metal product |
EP4495281A1 (en) * | 2023-07-21 | 2025-01-22 | voestalpine Stahl GmbH | Method for applying a layer to a flat steel product |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US583723A (en) | 1897-06-01 | Overshoe for horses | ||
US3925579A (en) | 1974-05-24 | 1975-12-09 | Armco Steel Corp | Method of coating low alloy steels |
US4675214A (en) | 1986-05-20 | 1987-06-23 | Kilbane Farrell M | Hot dip aluminum coated chromium alloy steel |
US5066549A (en) | 1986-05-20 | 1991-11-19 | Armco Inc. | Hot dip aluminum coated chromium alloy steel |
US4883723A (en) | 1986-05-20 | 1989-11-28 | Armco Inc. | Hot dip aluminum coated chromium alloy steel |
US5023113A (en) * | 1988-08-29 | 1991-06-11 | Armco Steel Company, L.P. | Hot dip aluminum coated chromium alloy steel |
US5116645A (en) | 1988-08-29 | 1992-05-26 | Armco Steel Company, L.P. | Hot dip aluminum coated chromium alloy steel |
AT392089B (en) | 1988-09-14 | 1991-01-25 | Andritz Ag Maschf | METHOD FOR ONE AND BOTH SIDED ELECTROLYTIC GALVANIZING STAINLESS STEEL |
JP2727529B2 (en) | 1989-09-27 | 1998-03-11 | 新日本製鐵株式会社 | Method for producing highly corrosion-resistant aluminum-plated Cr-containing steel sheet with excellent plating adhesion |
FR2664617B1 (en) | 1990-07-16 | 1993-08-06 | Lorraine Laminage | PROCESS FOR COATING ALUMINUM BY HOT TEMPERING OF A STEEL STRIP AND STEEL STRIP OBTAINED BY THIS PROCESS. |
JP2743228B2 (en) | 1992-05-11 | 1998-04-22 | 新日本製鐵株式会社 | Method for producing hot-dip aluminized Cr-containing steel sheet with excellent workability and plating adhesion |
JP3277063B2 (en) * | 1994-01-25 | 2002-04-22 | 日新製鋼株式会社 | Hot-dip galvanizing method for high-strength hot-rolled steel sheet |
JPH07252624A (en) * | 1994-03-11 | 1995-10-03 | Kawasaki Steel Corp | Production of hot-dip galvanized steel sheet |
US5447754A (en) * | 1994-04-19 | 1995-09-05 | Armco Inc. | Aluminized steel alloys containing chromium and method for producing same |
FR2828888B1 (en) * | 2001-08-21 | 2003-12-12 | Stein Heurtey | METHOD FOR HOT GALVANIZATION OF HIGH STRENGTH STEEL METAL STRIPS |
DE102004059566B3 (en) | 2004-12-09 | 2006-08-03 | Thyssenkrupp Steel Ag | Process for hot dip coating a strip of high strength steel |
CN102260842B (en) * | 2004-12-21 | 2013-12-25 | 株式会社神户制钢所 | Method and facility for hot dip zinc plating |
EP1693477A1 (en) | 2005-02-22 | 2006-08-23 | ThyssenKrupp Steel AG | Coated steel plate |
DE102006005063A1 (en) | 2006-02-03 | 2007-08-09 | Linde Ag | Process for the heat treatment of steel strip |
CA2647687C (en) * | 2006-04-26 | 2012-10-02 | Thyssenkrupp Steel Ag | Hot dip coating process for a steel plate product made of high strengthheavy-duty steel |
EP1857566B1 (en) | 2006-05-15 | 2017-05-03 | ThyssenKrupp Steel Europe AG | Flat steel product provided with a corrosion protection coating and method of its manufacture |
JP2009035756A (en) | 2007-07-31 | 2009-02-19 | Nisshin Steel Co Ltd | Al-PLATED STEEL SHEET FOR EXHAUST GAS PASSAGEWAY MEMBER OF MOTORCYCLE EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND THE GAS PASSAGE WAY MEMBER USING THE STEEL SHEET |
EP2055799A1 (en) | 2007-11-05 | 2009-05-06 | ThyssenKrupp Steel AG | Flat steel product with an anti-corrosion metal coating and method for creating an anti-corrosion metal coating on a flat steel product |
-
2010
- 2010-08-31 DE DE102010037254A patent/DE102010037254B4/en not_active Expired - Fee Related
-
2011
- 2011-08-18 EP EP11745783.8A patent/EP2611946B1/en not_active Not-in-force
- 2011-08-18 US US13/819,481 patent/US9279175B2/en not_active Expired - Fee Related
- 2011-08-18 ES ES11745783T patent/ES2701756T3/en active Active
- 2011-08-18 CN CN201180041913.2A patent/CN103080363B/en not_active Expired - Fee Related
- 2011-08-18 WO PCT/EP2011/064222 patent/WO2012028465A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2012028465A1 (en) | 2012-03-08 |
EP2611946A1 (en) | 2013-07-10 |
US9279175B2 (en) | 2016-03-08 |
DE102010037254B4 (en) | 2012-05-24 |
CN103080363A (en) | 2013-05-01 |
US20140144550A1 (en) | 2014-05-29 |
ES2701756T3 (en) | 2019-02-25 |
CN103080363B (en) | 2015-11-25 |
DE102010037254A1 (en) | 2012-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2611946B1 (en) | Method for hot-dip coating a flat steel product | |
EP2010690B1 (en) | Hot dip coating process for a steel plate product made of high strengthheavy-duty steel | |
DE102006039307B3 (en) | Process for coating a 6-30 wt.% Mn-containing hot or cold rolled steel strip with a metallic protective layer | |
EP2732062B1 (en) | Method for producing a flat steel product which is provided with a metallic protective layer by means of hot dip coating | |
EP2049699B1 (en) | Method for steel strip coating and a steel strip provided with said coating | |
EP2432910B2 (en) | Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product | |
DE102014109943B3 (en) | Steel product with an anti-corrosion coating of an aluminum alloy and process for its production | |
DE69930291T2 (en) | High-strength hot-dip galvanized steel sheet with excellent plating adhesion and press formability, and process for its production | |
DE102012101018B3 (en) | Process for hot dip coating a flat steel product | |
DE102007061489A1 (en) | Process for producing hardened hardenable steel components and hardenable steel strip therefor | |
EP2513346B1 (en) | Method for producing an easily deformable flat steel product | |
WO2013182621A1 (en) | Steel, sheet steel product and process for producing a sheet steel product | |
DE102008005605A1 (en) | Process for coating a 6-30% by weight Mn-containing hot or cold rolled flat steel product with a metallic protective layer | |
EP3728654A1 (en) | Cold-rolled flat steel product having metal anti-corrosion layer and method for producing same | |
DE19543804B4 (en) | Process for producing hot-dip galvanized steel strip and hot-dip galvanized sheet or strip made of steel made therewith | |
DE102021128327A1 (en) | COLD ROLLED STEEL FLAT PRODUCT WITH METALLIC ANTI-CORROSION COATING AND PROCESS FOR MANUFACTURING SUCH |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130312 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170717 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: C23C0002020000 Ipc: C23C0002060000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 2/40 20060101ALI20180213BHEP Ipc: C23C 2/06 20060101AFI20180213BHEP Ipc: C23C 2/12 20060101ALI20180213BHEP Ipc: C23C 2/02 20060101ALI20180213BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180227 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1048685 Country of ref document: AT Kind code of ref document: T Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181003 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2701756 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190225 Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190103 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190103 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190203 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190203 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190104 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
26N | No opposition filed |
Effective date: 20190704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190818 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190818 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1048685 Country of ref document: AT Kind code of ref document: T Effective date: 20190818 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20200820 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190818 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200826 Year of fee payment: 10 Ref country code: BE Payment date: 20200826 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20201023 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110818 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210818 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20221102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210819 |