EP2732075B1 - Aluminium smelter comprising electrical conductors made from a superconducting material - Google Patents
Aluminium smelter comprising electrical conductors made from a superconducting material Download PDFInfo
- Publication number
- EP2732075B1 EP2732075B1 EP12748726.2A EP12748726A EP2732075B1 EP 2732075 B1 EP2732075 B1 EP 2732075B1 EP 12748726 A EP12748726 A EP 12748726A EP 2732075 B1 EP2732075 B1 EP 2732075B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- superconducting material
- aluminum
- electrical
- electrical circuit
- aluminum smelter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/08—Cell construction, e.g. bottoms, walls, cathodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/16—Electric current supply devices, e.g. bus bars
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/20—Automatic control or regulation of cells
Definitions
- the present invention relates to an aluminum smelter, and more particularly to the electrical conductor system of an aluminum smelter.
- an electrolytic cell composed in particular of a steel box, a refractory lining, and a cathode made of carbon material, connected to conductors used to carry the electrolysis current.
- the electrolytic cell also contains an electrolytic bath consisting in particular of cryolite in which is dissolved alumina.
- the Hall-Héroult process consists in partially immersing a carbon block constituting the anode in this electrolytic bath, the anode being consumed as and when the reaction progresses. At the bottom of the electrolytic cell is formed a sheet of liquid aluminum.
- aluminum production plants include several hundred electrolysis tanks. These electrolysis tanks are traversed by a high electrolysis current of the order of several hundreds of thousands of amperes.
- Some problems are common in an aluminum smelter; they consist in particular in the reduction of the costs in terms of energy consumed, of the material used to make the electrical conductors and the reduction of the bulk in order to increase the production on the same surface.
- FIG. 1 schematically illustrates, seen from above, an electrolytic tank 100 in which the magnetic field is self-compensating thanks to the arrangement of the conductors 101 connecting this tank 100 to the next tank 102 placed downstream.
- the conductors 101 are eccentric with respect to the tank 100 which they bypass.
- An example of a magnetically self-compensated tank is known in particular from the patent document FR2469475 .
- Another solution for decreasing the vertical component of the magnetic field is to use a secondary electrical circuit formed by one or more metallic electrical conductors.
- This secondary electrical circuit conventionally follows the axis or axes of alignment of the electrolysis cells of the aluminum smelter. It is traversed by a current whose intensity is equal to a certain percentage of the intensity of the electrolysis current, and thereby generates a magnetic field compensating for the effects of the magnetic field created by the electrolysis current.
- the present invention aims to remedy all or part of the disadvantages mentioned above and to provide a solution to the problems encountered in an aluminum production plant by proposing an aluminum smelter whose manufacturing and operating costs are significantly reduced and with less space.
- At least one electrical conductor of superconducting material makes it possible in particular to reduce the overall energy consumption of the aluminum smelter, and therefore the operating costs of the smelter.
- electrical conductors of superconducting material allow better management of the available space inside the aluminum smelter. Because of their lower mass than equivalent conductors made of aluminum, copper or steel, electrical conductors of superconducting material require less important support structures and therefore less expensive.
- an electrical conductor of superconducting material is particularly advantageous when it has a significant length.
- the loop formed by the secondary electrical circuit runs along the row or rows of tanks, and includes several rounds in series. This makes it possible to divide by the number of turns the value of the intensity of the current flowing through the electrical conductor in superconductive material, and consequently to reduce the cost of the power supply station intended to deliver this current to the secondary electrical circuit and the cost of the junctions between the poles of the power station and the electrical conductor of superconducting material.
- the electrical conductor of superconducting material of the secondary electrical circuit comprises a single cryogenic envelope, inside which pass side by side the turns made by said electrical conductor of superconducting material.
- a single cryogenic envelope inside which pass side by side the turns made by said electrical conductor of superconducting material.
- the electrical conductor of superconducting material of the secondary electrical circuit is flexible and has at least one curved portion.
- the secondary electrical circuit may comprise one or more non-rectilinear portions (s).
- the flexibility of the electrical conductor in superconducting material makes it possible to avoid obstacles (thus to adapt to the spatial constraints of the aluminum smelter), but also to refine the compensation of the magnetic field locally.
- the electrical conductor of superconducting material of the secondary electrical circuit is placed, in part, inside a magnetic shield enclosure.
- This characteristic has the advantage of preventing the electrical conductor of superconducting material from generating a surrounding magnetic field.
- this makes it possible to create passage zones for vehicles or vehicles the operation of which would be disturbed by the intensity of the magnetic field at these passage zones in the absence of a magnetic shield. It also avoids the use of expensive gear with shielding protecting them from strong magnetic fields.
- the magnetic shield enclosure is located at at least one end of the electrolysis cell line (s).
- the secondary electric circuit comprises two ends, each end of said electric circuit. secondary being connected to an electrical pole of a feed station separate from the feed station of the main circuit.
- the electrical conductor made of superconducting material of the secondary electrical circuit runs along the electrolysis cell line or queues a predetermined number of times in order to allow the use of a feed station of the secondary electrical circuit delivering a current of intensity. between 5 kA and 40 kA.
- the electrical conductor superconducting material thus performs as many rounds in series as necessary to allow the use of a power station that can be easily found in the trade and economically interesting.
- At least a portion of the electrical conductor of superconducting material of the secondary electrical circuit is disposed in at least one electrolytic cell of the or queues.
- At least a portion of the electrical conductor made of superconducting material of the secondary electrical circuit runs along the right side and / or the left side of the electrolytic cells of the line or queues.
- each electrical conductor of superconducting material is formed by a cable comprising a central core of copper or aluminum, at least one fiber of superconducting material and a cryogenic envelope.
- the cryogenic envelope is traversed by a cooling fluid.
- the cooling fluid is liquid nitrogen and / or helium.
- the figure 2 shows a classic example of electrolysis tank 2.
- the electrolysis tank 2 comprises in particular a metal box 3, for example made of steel.
- the metal casing 3 is lined internally with refractory and / or insulating materials, for example bricks.
- the electrolysis cell 2 also comprises a cathode 6 made of carbonaceous material and a plurality of anodes 7, intended to be consumed as the electrolysis reaction takes place in an electrolytic bath including cryolite and electrolysis. alumina.
- a blanket of alumina and milled bath generally covers the electrolytic bath and at least partially the anodes 7.
- a sheet of liquid aluminum is formed.
- the cathode 6 is electrically connected to cathode outlets 9 in the form of metal bars passing through the caisson 3, the cathode outlets 9 being themselves connected to electrical conductors 11 of tank to tank.
- the electric tank 11 conductors allow the flow of the electrolysis current I1 from one electrolysis tank 2 to another.
- the electrolysis current I1 passes through the conductive elements of each electrolysis cell 2: firstly an anode 7, then the electrolytic bath 8, the liquid aluminum ply 10, the cathode 6 and finally the electric tank conductors 11. with a tank connected to the cathode outlets 9, for then feeding the electrolysis current I1 to an anode 7 of the following electrolysis tank 2.
- the electrolysis tanks 2 of an aluminum plant 1 are conventionally arranged and electrically connected in series.
- a series may comprise one or more rows F of electrolysis tanks 2.
- the series comprises several files F, these are generally rectilinear and parallel to each other, and are preferably even in number.
- the aluminum smelter 1 comprises a main electrical circuit 15 traversed by an electrolysis current I1.
- the intensity of the electrolysis current I1 can reach values of the order of several hundreds of thousands of amperes, for example of the order of 300 kA to 600 kA.
- a feed station 12 feeds the series of electrolysis tanks 2 electrolysis current I1.
- the ends of the series of electrolysis tanks 2 are each connected to an electrical pole of the supply station 12.
- Electrical connecting conductors 13 connect the electrical poles of the feed station 12 to the ends of the series.
- the rows F of a series are connected electrically in series.
- One or more electrical connecting conductors 14 allow the electrolysis current I1 of the last electrolytic cell 2 of a line F to be conveyed to the first electrolysis cell 2 of the following line F.
- the main electrical circuit 15 consists of the electrical connecting conductors 13 connecting the ends of the series of electrolysis tanks 2 to the supply station 12, electrical connecting conductors 14 connecting the rows F of the electrolysis tanks 2. to each other, electrical conductors 11 of the bottom of the tank connecting two electrolytic cells 2 of the same file F, and conductive elements of each electrolysis tank 2.
- 50 to 500 electrolysis cells 2 are connected in series and extend over two rows F of more than 1 km in length each.
- the aluminum smelter 1 also comprises one or more secondary electrical circuits 16, 17, visible for example on the figure 3 .
- These secondary electrical circuits 16, 17 typically follow the lines F of electrolysis tanks 2. They make it possible to compensate for the magnetic field generated by the high value of the intensity of the electrolysis current I1, causing the instability of the electrolytic bath 8 and thus affecting the efficiency of the electrolysis tanks 2.
- Each secondary electrical circuit 16, 17 is traversed respectively by a current I2, I3, delivered by a feed station 18.
- the feed station 18 of each secondary circuit 16, 17 is distinct from the feed station 12 of the main circuit 15.
- the aluminum smelter 1 comprises at least one secondary electrical circuit 16, 17 provided with an electrical conductor of superconducting material.
- These superconducting materials may for example comprise BiSrCaCuO, YaBaCuO, MgB2, materials known from patent applications. WO2008011184 , US20090247412 or other materials known for their superconducting properties.
- Superconducting materials are used to carry current with little or no Joule heat generation loss because their resistivity is zero when held below their critical temperature. Due to this absence of energy loss, it is possible to dedicate a maximum of the energy received by the aluminum smelter (for example 600kA and 2kV) to the main electrical circuit 15 which produces aluminum, and in particular increase the number of vats 2.
- a superconducting cable used to implement the present invention comprises a central core made of copper or aluminum, ribbons or fibers of superconducting material, and a cryogenic envelope.
- the cryogenic envelope may be formed by a sheath containing a cooling fluid, for example liquid nitrogen.
- the cooling fluid makes it possible to maintain the temperature of the superconducting materials at a temperature below their critical temperature, for example less than 100 K (Kelvin), or between 4 K and 80 K.
- the electrical conductors of superconducting material are particularly advantageous when they have a certain length, and more particularly a length equal to or greater than 10 m. .
- FIGS. 3, 4 and 5 illustrate, by way of non-exhaustive examples, various possible embodiments of an aluminum smelter 1.
- the electrical conductors of superconducting material are represented by dashed lines in the various figures.
- FIG. 3 shows an aluminum smelter 1 comprising two secondary electrical circuits 16 and 17, respectively traversed by currents of intensity I2 and I3 and each supplied by a feed station 18.
- the currents I2 and I3 travel through the respective secondary electrical circuits 16 and 17 in the same direction as the electrolysis current I1.
- the secondary electrical circuits 16 and 17 compensate for the magnetic field generated by the conductors 11. electric tank to tank.
- the intensity of each of the electric currents I2, I3 is important, for example between 20% and 100% of the intensity of the electrolysis current I1 and preferably from 40% to 70%.
- the compensation of the magnetic field of the neighboring queue F can be obtained with the example of the figure 4 .
- the aluminum smelter 1 illustrated in figure 4 comprises a secondary electrical circuit 17 forming an inner loop, traversed by an electric current I3.
- the use of electrical conductors of superconducting material to form the secondary circuit or circuits 16, 17 is interesting because of the length, of the order of two kilometers, of the secondary electrical circuits 16, 17.
- the use of electrical conductors in superconducting material requires less voltage compared to that required by electrical conductors made of aluminum or copper.
- the cost of the feed station 18 of the secondary electrical circuit or circuits is reduced accordingly.
- the lighting 1 comprises a secondary electrical circuit 16, 17 provided with an electrical conductor of superconducting material and running substantially in the same place. advantageously at least twice the same file F electrolysis tanks 2, as is particularly visible on the Figures 6 and 7 .
- the use of one or more turns in series to form the secondary electrical circuits 16, 17 of superconducting material has the advantage of reducing the magnetic fields in the path between the feed station 18 and the first and the second. last tank 2 electrolysis because it has a low intensity on this path (a single passage of the electrical conductor).
- the small size of the electrical conductors of superconducting material relative to electrical conductors made of aluminum or copper facilitates several series turns in the loops formed by the secondary electrical circuits 16, 17.
- the aluminum smelter 1 according to the embodiment illustrated in FIG. figure 6 comprises a secondary electrical circuit 16 whose electrical conductors run in series twice the rows F of the series.
- the aluminum smelter 1 comprises a secondary electrical circuit 16 running along both the left and the right side of the electrolysis vessels 2 of the series (left side and right side being defined with respect to an observer placed at the level of the electric circuit main 15 and directing his eyes in the direction of global circulation of the electrolysis current I1).
- the electrical conductors (made of superconducting material) of the secondary electrical circuit 16 of the aluminum smelter 1 shown in FIG. figure 7 perform several rounds in series, including two laps along the left sides of tanks 2 of the series and three laps along the right sides.
- the number of turns could be twenty and thirty respectively.
- the difference between the number of turns to be made on each side is determined according to the distance between the queues in order to obtain an optimal magnetic balance.
- This cryogenic envelope may comprise a thermally insulated sheath in which a cooling fluid circulates. At a given location, the cryogenic envelope can therefore contain side by side several passages of the same electrical conductor of superconducting material.
- the aluminum smelter 1 may thus comprise one or more secondary electrical circuits 16, 17 comprising an electrical conductor of superconducting material having at least one curved portion. This makes it possible to circumvent the obstacles 19 present inside the aluminum smelter 1, for example a pillar, as is visible on the figure 10 .
- This also makes it possible to locally adjust the compensation of the magnetic field in the smelter 1 by locally adjusting the position of the electrical conductor in superconducting material of the secondary electrical circuit or circuits 16, 17, as allowed by the curved portion 16a of the secondary electrical circuit 16 of the aluminum smelter 1 visible on the figure 10 .
- This flexibility makes it possible to move the electrical conductor in superconducting material relative to its initial position, to correct the magnetic field by adapting to the evolution of the aluminum smelter 1 (for example the increase in the intensity of the current of I1 electrolysis, or to use the results of the most recent magnetic correction calculations that are enabled by the new computer powers and general knowledge on the subject).
- the electrical conductors of superconducting material or secondary electrical circuits 16, 17 may be arranged under the electrolysis tanks 2. In particular, they can be buried. This arrangement is made possible by the small size of the electrical conductors of material superconducting on the one hand, and by the fact that they do not heat on the other hand. This provision would be difficult to achieve with electrical conductors made of aluminum or copper, because their size is greater at equal intensity, and because they heat and therefore need to be cooled (commonly in contact with the air and / or with specific cooling means).
- the figure 11 shows, for the same implantation of aluminum smelter 1, the possible locations of secondary electrical circuits 16, 17 with electrical conductors of superconducting material and secondary electrical circuits 16 ', 17' using aluminum electrical conductors.
- the secondary electrical circuits 16 ', 17' are placed on either side of an electrolysis cell 2.
- the secondary electrical circuits 16 ', 17' prevent access to the electrolytic cells 2, for example for maintenance operations.
- they can not be placed under the electrolysis tanks 2, such as the secondary electrical circuits 16, 17 with electrical conductors of superconducting material, because they have a larger footprint and need to be cooled.
- the secondary electrical circuits 16, 17 using electrical conductors of superconducting material may, however, be placed under the electrolysis tanks 2. Access to the electrolysis tanks 2 is thus not limited.
- the electrical conductors of superconducting material may be contained partly inside a magnetic shield enclosure 20.
- This enclosure 20 may be a metal tube, for example steel. It can significantly reduce the magnetic field outside of this magnetic shield. This thus makes it possible to create, in the places where this chamber 20 has been placed, passage zones, in particular of vehicles the operation of which would have been disturbed by the magnetic field emanating from the electrical conductors made of superconducting material. This makes it possible to reduce the cost of these vehicles (which must otherwise be equipped with protection).
- This enclosure 20 may advantageously be placed around the electrical conductors of superconducting material located at the end of the line F, as illustrated on FIG. figure 6 .
- the magnetic shield enclosure 20 may also be formed of superconducting material maintained below its critical temperature.
- this enclosure of superconducting material forming a magnetic shield can be disposed as close as possible to the electrical conductors of superconducting material, inside the cryogenic envelope. The mass of superconducting material of the enclosure is minimized and the superconducting material of the enclosure is kept below its critical temperature without the need for another specific cooling system.
- a protective enclosure 20 is not possible with conventional electrical conductors of the prior art made of aluminum, or even copper. These aluminum electrical conductors actually have a section of significant dimensions, of the order of 1 m by 1 m, against 25 cm in diameter for an electrical conductor of superconducting material. Above all, aluminum electrical conductors heat up in operation. The use of such a magnetic shield enclosure 20 would not allow a proper evacuation of the heat generated.
- the electrical conductors of superconducting material have a mass per meter which can be twenty times lower than that of an aluminum electrical conductor for an equivalent intensity.
- the cost of the supports of the electrical conductors in superconducting material is therefore lower and their installation is facilitated.
- the main electrical circuit 15 of the aluminum smelter 1 may also comprise one or more electrical conductors of superconducting material.
- the electrical connecting conductors 14 electrically connecting the rows F of the series to each other may be of superconducting material, as shown in FIG. figure 8 .
- the electrical connecting conductors 13, connecting the ends of the series of electrolysis cells 2 to the poles of the feed station 12 of the main circuit 15, may also be of superconducting material, as shown in FIG. figure 9 .
- the electrical connecting conductors 14 connecting two rows F measure from 30m to 150m depending on whether the two lines F they connect are in the same building or in two separate buildings for reasons of magnetic interaction between these two lines.
- the electrical connecting leads 13 connecting the ends of the series to the poles of the power station 12 generally measure from 20m to 1 km depending on the positioning of this station 12 supply. Because of these lengths, it will be readily understood that the use of electrical conductors of superconducting material at these locations can achieve energy savings.
- the use of electrical conductors of superconducting material in an aluminum smelter 1 may be advantageous for sufficiently high conductor lengths.
- the use of conductive material electrical conductors is particularly advantageous for secondary electrical circuits 16, 17 intended to reduce the effect of the tank-to-cell magnetic field by means of loops of the type described in the patent document.
- EP0204647 when the intensity of the current flowing in the main electrical circuit 15 is particularly high, greater than 350 kA, and when the sum of the intensities flowing in the secondary electrical circuit, in the same direction as the current flowing in the main circuit, is between 20% and 100% of the main circuit current, and preferably 40% to 70%.
- a main electrical circuit 15 comprising both electrical conductors 14 of one-to-one file in superconducting material and electrical connecting conductors 13 connecting the ends of a series to the poles of the station 12.
- supply of superconducting material also, and one or more secondary electrical circuits 16, 17 also comprising electrical conductors of superconducting material performing several turns in series.
- a single secondary electrical circuit 16 comprising electrical conductors made of superconducting material may also be provided, with conductors performing several turns in series, between the rows F of tanks 2 or outside thereof.
- the invention is not limited to the embodiments described above, these embodiments having been given only as examples. Modifications are possible, particularly from the point of view of the constitution of the various elements or by the substitution of technical equivalents, without departing from the scope of protection of the invention defined by the claims.
- the invention can be extended to aluminum smelters with electrolysis with inert anodes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
Description
La présente invention concerne une aluminerie, et plus particulièrement le système de conducteur électrique d'une aluminerie.The present invention relates to an aluminum smelter, and more particularly to the electrical conductor system of an aluminum smelter.
Il est connu de produire l'aluminium industriellement à partir d'alumine par électrolyse selon le procédé de Hall-Héroult. A cet effet, on prévoit une cuve d'électrolyse composée notamment d'un caisson en acier, d'un revêtement intérieur réfractaire, et d'une cathode en matériau carboné, reliée à des conducteurs servant à l'acheminement du courant d'électrolyse. La cuve d'électrolyse contient également un bain électrolytique constitué notamment de cryolithe dans lequel est dissout de l'alumine. Le procédé de Hall-Héroult consiste à plonger partiellement un bloc carboné constituant l'anode dans ce bain électrolytique, l'anode étant consommée au fur et à mesure de l'état d'avancement de la réaction. Au fond de la cuve d'électrolyse se forme une nappe d'aluminium liquide.It is known to produce aluminum industrially from alumina by electrolysis according to the Hall-Héroult process. For this purpose, there is provided an electrolytic cell composed in particular of a steel box, a refractory lining, and a cathode made of carbon material, connected to conductors used to carry the electrolysis current. . The electrolytic cell also contains an electrolytic bath consisting in particular of cryolite in which is dissolved alumina. The Hall-Héroult process consists in partially immersing a carbon block constituting the anode in this electrolytic bath, the anode being consumed as and when the reaction progresses. At the bottom of the electrolytic cell is formed a sheet of liquid aluminum.
Généralement, les usines de production d'aluminium comprennent plusieurs centaines de cuves d'électrolyse. Ces cuves d'électrolyse sont parcourues par un courant d'électrolyse élevé de l'ordre de plusieurs centaines de milliers d'ampères.Generally, aluminum production plants include several hundred electrolysis tanks. These electrolysis tanks are traversed by a high electrolysis current of the order of several hundreds of thousands of amperes.
Certaines problématiques sont courantes dans une aluminerie ; elles consistent notamment en la réduction des coûts en matière d'énergie consommée, de matériau utilisé pour réaliser les conducteurs électriques et en la diminution de l'encombrement afin d'augmenter la production sur une même surface.Some problems are common in an aluminum smelter; they consist in particular in the reduction of the costs in terms of energy consumed, of the material used to make the electrical conductors and the reduction of the bulk in order to increase the production on the same surface.
Une autre problématique résulte de l'existence d'un champ magnétique important généré par le courant d'électrolyse. Ce champ magnétique perturbe le fonctionnement des cuves dont il diminue le rendement. La composante verticale de ce champ magnétique, en particulier, provoque l'instabilité de la nappe d'aluminium liquide.Another problem results from the existence of a large magnetic field generated by the electrolysis current. This magnetic field disturbs the operation of the tanks whose performance it decreases. The vertical component of this magnetic field, in particular, causes the instability of the liquid aluminum sheet.
Il est connu de diminuer la composante verticale du champ magnétique en compensant le champ magnétique à l'échelle d'une cuve d'électrolyse. Cette solution est mise en oeuvre grâce à une disposition particulière des conducteurs acheminant le courant d'électrolyse d'une cuve N à une cuve N+1. Ces conducteurs, généralement des barres en aluminium, contournent les extrémités de la cuve N. La
Cette solution impose beaucoup de contraintes de conception en raison de l'encombrement important dû à la disposition particulière des conducteurs. De plus, la longueur importante des conducteurs, généralement en aluminium, pour la mise en oeuvre de cette solution implique des coûts en matériau élevés et d'importantes pertes d'énergie par effet résistif des conducteurs.This solution imposes many design constraints because of the large size due to the particular layout of the drivers. In addition, the large length of the conductors, usually aluminum, for the implementation of this solution involves high material costs and significant energy losses by resistive effect of the conductors.
Une autre solution pour diminuer la composante verticale du champ magnétique consiste à utiliser un circuit électrique secondaire formé par un ou plusieurs conducteurs électriques métalliques. Ce circuit électrique secondaire longe classiquement l'axe ou les axes d'alignement des cuves d'électrolyse de l'aluminerie. Il est parcouru par un courant dont l'intensité est égale à un certain pourcentage de l'intensité du courant d'électrolyse, et génère de ce fait un champ magnétique compensant les effets du champ magnétique créé par le courant d'électrolyse.Another solution for decreasing the vertical component of the magnetic field is to use a secondary electrical circuit formed by one or more metallic electrical conductors. This secondary electrical circuit conventionally follows the axis or axes of alignment of the electrolysis cells of the aluminum smelter. It is traversed by a current whose intensity is equal to a certain percentage of the intensity of the electrolysis current, and thereby generates a magnetic field compensating for the effects of the magnetic field created by the electrolysis current.
Il est notamment connu du document de brevet
Il est également connu du document de brevet
Néanmoins, cette solution est coûteuse dans la mesure où elle nécessite une grande quantité de matériau, classiquement de l'aluminium, afin de réaliser ce ou ces circuits électriques secondaires. Elle est également coûteuse en énergie puisqu'il est nécessaire d'alimenter en courant le ou les circuit(s) électrique(s) secondaire(s). Enfin, elle nécessite l'installation de stations d'alimentation (ou générateurs) de puissance et de dimensions importantes.However, this solution is expensive insofar as it requires a large amount of material, typically aluminum, to achieve this or these secondary electrical circuits. It is also expensive in energy since it is necessary to supply power to the secondary electrical circuit (s). Finally, it requires the installation of power stations (or generators) power and large dimensions.
Aussi la présente invention a pour but de remédier à tout ou partie des inconvénients cités ci-dessus et d'apporter une solution aux problématiques rencontrées dans une usine de production d'aluminium en proposant une aluminerie dont les coûts de fabrication et d'exploitation sont sensiblement réduits et offrant un encombrement moindre.Also the present invention aims to remedy all or part of the disadvantages mentioned above and to provide a solution to the problems encountered in an aluminum production plant by proposing an aluminum smelter whose manufacturing and operating costs are significantly reduced and with less space.
A cet effet, la présente invention a pour objet une aluminerie comprenant :
- (i) une série de cuves d'électrolyse, destinées à la production d'aluminium, formant une ou plusieurs files,
- (ii) une station d'alimentation destinée à alimenter la série de cuves d'électrolyse en courant d'électrolyse I1,
- (iii) un circuit électrique principal, destiné à être parcouru par le courant d'électrolyse I1, présentant deux extrémités reliées chacune à l'un des pôles de la station d'alimentation,
- (iv) au moins un circuit électrique secondaire comprenant un conducteur électrique en matériau supraconducteur, destiné à être parcouru par un courant (12, 13), longeant la ou les files de cuves d'électrolyse,
- (i) a series of electrolysis cells, intended for the production of aluminum, forming one or more lines,
- (ii) a feed station intended to supply the series of electrolysis cells with an electrolysis current I1,
- (iii) a main electrical circuit, intended to be traversed by the electrolysis current I1, having two ends each connected to one of the poles of the feed station,
- (iv) at least one secondary electrical circuit comprising an electrical conductor of superconducting material, intended to be traversed by a current (12, 13), along the electrolysis cell line or rows,
L'utilisation d'au moins un conducteur électrique en matériau supraconducteur permet notamment de réduire la consommation d'énergie globale de l'aluminerie, donc les coûts d'exploitation de l'aluminerie. De plus, du fait de leur encombrement moindre, les conducteurs électriques en matériau supraconducteur permettent une meilleure gestion de la place disponible à l'intérieur de l'aluminerie. En raison de leur masse plus faible que celle des conducteurs équivalents en aluminium, cuivre ou acier, les conducteurs électriques en matériau supraconducteur nécessitent des structures de support moins importantes donc moins coûteuses.The use of at least one electrical conductor of superconducting material makes it possible in particular to reduce the overall energy consumption of the aluminum smelter, and therefore the operating costs of the smelter. In addition, because of their smaller footprint, electrical conductors of superconducting material allow better management of the available space inside the aluminum smelter. Because of their lower mass than equivalent conductors made of aluminum, copper or steel, electrical conductors of superconducting material require less important support structures and therefore less expensive.
Du fait de l'existence de pertes énergétiques au niveau des jonctions entre un conducteur électrique en matériau supraconducteur et un conducteur électrique classique, un conducteur électrique en matériau supraconducteur est particulièrement avantageux lorsqu'il présente une longueur importante.Due to the existence of energy losses at the junctions between an electrical conductor of superconducting material and a conventional electrical conductor, an electrical conductor of superconducting material is particularly advantageous when it has a significant length.
L'utilisation d'un circuit secondaire en matériau supraconducteur permet de réduire les effets néfastes du champ magnétique généré par le courant d'électrolyse sur les liquides contenus dans les cuves, en réalisant des économies d'énergie du fait de la résistivité quasi-nulle des conducteurs électriques en matériau supraconducteur maintenus en-dessous de leur température critique.The use of a secondary circuit of superconducting material makes it possible to reduce the harmful effects of the magnetic field generated by the electrolysis current on the liquids contained in the tanks, by realizing energy savings due to the quasi-zero resistivity. electrical conductors of superconducting material maintained below their critical temperature.
En outre, la boucle formée par le circuit électrique secondaire longe à plusieurs reprises la ou les files de cuves, et comprend plusieurs tours en série. Cela permet de diviser par le nombre de tours la valeur de l'intensité du courant parcourant le conducteur électrique en matériau supraconducteur, et par conséquent de réduire le coût de la station d'alimentation électrique destinée à délivrer ce courant au circuit électrique secondaire et le coût des jonctions entre les pôles de la station d'alimentation et le conducteur électrique en matériau supraconducteur.In addition, the loop formed by the secondary electrical circuit runs along the row or rows of tanks, and includes several rounds in series. This makes it possible to divide by the number of turns the value of the intensity of the current flowing through the electrical conductor in superconductive material, and consequently to reduce the cost of the power supply station intended to deliver this current to the secondary electrical circuit and the cost of the junctions between the poles of the power station and the electrical conductor of superconducting material.
Avantageusement, le conducteur électrique en matériau supraconducteur du circuit électrique secondaire comporte une enveloppe cryogénique unique, à l'intérieure de laquelle passent côte à côte les tours réalisés par ledit conducteur électrique en matériau supraconducteur. Un tel mode de réalisation permet de diminuer la longueur de l'enveloppe cryogénique et la puissance du système de refroidissement.Advantageously, the electrical conductor of superconducting material of the secondary electrical circuit comprises a single cryogenic envelope, inside which pass side by side the turns made by said electrical conductor of superconducting material. Such an embodiment makes it possible to reduce the length of the cryogenic envelope and the power of the cooling system.
Selon une autre caractéristique de l'aluminerie selon l'invention, le conducteur électrique en matériau supraconducteur du circuit électrique secondaire est flexible et présente au moins une partie courbe.According to another characteristic of the aluminum smelter according to the invention, the electrical conductor of superconducting material of the secondary electrical circuit is flexible and has at least one curved portion.
Ainsi, le circuit électrique secondaire peut comporter une ou plusieurs portions non rectiligne(s). La flexibilité du conducteur électrique en matériau supraconducteur permet d'éviter des obstacles (donc de s'adapter aux contraintes spatiales de l'aluminerie), mais aussi d'affiner localement la compensation du champ magnétique.Thus, the secondary electrical circuit may comprise one or more non-rectilinear portions (s). The flexibility of the electrical conductor in superconducting material makes it possible to avoid obstacles (thus to adapt to the spatial constraints of the aluminum smelter), but also to refine the compensation of the magnetic field locally.
De manière avantageuse, le conducteur électrique en matériau supraconducteur du circuit électrique secondaire est placé, en partie, à l'intérieur d'une enceinte formant bouclier magnétique.Advantageously, the electrical conductor of superconducting material of the secondary electrical circuit is placed, in part, inside a magnetic shield enclosure.
Cette caractéristique présente l'avantage d'éviter que le conducteur électrique en matériau supraconducteur ne génère un champ magnétique alentour. En particulier, cela permet de créer des zones de passage pour des engins ou véhicules dont le fonctionnement serait perturbé par l'intensité du champ magnétique au niveau de ces zones de passage en l'absence de bouclier magnétique. Cela permet aussi d'éviter de recourir à des engins coûteux possédant un blindage les protégeant de forts champs magnétiques.This characteristic has the advantage of preventing the electrical conductor of superconducting material from generating a surrounding magnetic field. In particular, this makes it possible to create passage zones for vehicles or vehicles the operation of which would be disturbed by the intensity of the magnetic field at these passage zones in the absence of a magnetic shield. It also avoids the use of expensive gear with shielding protecting them from strong magnetic fields.
Préférentiellement, l'enceinte formant bouclier magnétique est localisée à au moins une des extrémités de la ou des files de cuves d'électrolyse.Preferably, the magnetic shield enclosure is located at at least one end of the electrolysis cell line (s).
Selon une autre caractéristique de l'aluminerie selon l'invention, le circuit électrique secondaire comprend deux extrémités, chaque extrémité dudit circuit électrique secondaire étant reliée à un pôle électrique d'une station d'alimentation distincte de la station d'alimentation du circuit principal.According to another characteristic of the aluminum plant according to the invention, the secondary electric circuit comprises two ends, each end of said electric circuit. secondary being connected to an electrical pole of a feed station separate from the feed station of the main circuit.
Avantageusement, le conducteur électrique en matériau supraconducteur du circuit électrique secondaire longe la ou les files de cuves d'électrolyse un nombre de fois prédéterminé afin de permettre l'utilisation d'une station d'alimentation du circuit électrique secondaire délivrant un courant d'intensité comprise entre 5 kA et 40 kA.Advantageously, the electrical conductor made of superconducting material of the secondary electrical circuit runs along the electrolysis cell line or queues a predetermined number of times in order to allow the use of a feed station of the secondary electrical circuit delivering a current of intensity. between 5 kA and 40 kA.
Le conducteur électrique en matériau supraconducteur réalise ainsi autant de tours en série que nécessaire pour permettre d'utiliser une station d'alimentation pouvant être aisément trouvée dans le commerce et économiquement intéressante.The electrical conductor superconducting material thus performs as many rounds in series as necessary to allow the use of a power station that can be easily found in the trade and economically interesting.
Selon une autre caractéristique de l'aluminerie selon l'invention, au moins une partie du conducteur électrique en matériau supraconducteur du circuit électrique secondaire est disposée sous au moins une cuve d'électrolyse de la ou des files.According to another characteristic of the aluminum smelter according to the invention, at least a portion of the electrical conductor of superconducting material of the secondary electrical circuit is disposed in at least one electrolytic cell of the or queues.
Selon encore une autre caractéristique de l'aluminerie selon l'invention, une partie au moins du conducteur électrique en matériau supraconducteur du circuit électrique secondaire longe le côté droit et/ou le côté gauche des cuves d'électrolyse de la ou des files.According to yet another characteristic of the aluminum smelter according to the invention, at least a portion of the electrical conductor made of superconducting material of the secondary electrical circuit runs along the right side and / or the left side of the electrolytic cells of the line or queues.
Selon une autre caractéristique de l'aluminerie selon l'invention, chaque conducteur électrique en matériau supraconducteur est formé par un câble comprenant une âme centrale en cuivre ou en aluminium, au moins une fibre en matériau supraconducteur et une enveloppe cryogénique.According to another characteristic of the aluminum smelter according to the invention, each electrical conductor of superconducting material is formed by a cable comprising a central core of copper or aluminum, at least one fiber of superconducting material and a cryogenic envelope.
Selon une autre caractéristique de l'aluminerie selon l'invention, l'enveloppe cryogénique est parcourue par un fluide de refroidissement.According to another characteristic of the aluminum plant according to the invention, the cryogenic envelope is traversed by a cooling fluid.
De manière avantageuse, le fluide de refroidissement est de l'azote liquide et/ou de l'hélium.Advantageously, the cooling fluid is liquid nitrogen and / or helium.
L'invention sera mieux comprise à l'aide de la description détaillée qui est exposée ci-dessous en regard des figures annexées dans lesquelles :
- La
figure 1 est une vue schématique de dessus d'une cuve d'électrolyse appartenant à l'état de la technique, - La
figure 2 est une vue de côté d'une cuve d'électrolyse de l'état de la technique, - Les
figures 3, 4, 5 ,6 sont des vues schématiques de dessus d'une aluminerie, dans lesquels au moins un conducteur électrique en matériau supraconducteur est utilisé dans un circuit électrique secondaire,et 7 - Les
figures 8 sont des vues schématiques de dessus d'une aluminerie, dans lesquels un conducteur électrique en matériau supraconducteur est utilisé dans le circuit électrique principal,et 9 - La
figure 10 est une vue schématique partielle et de dessus d'une aluminerie comprenant un circuit électrique secondaire munie d'une partie courbe, - La
figure 11 est une vue en coupe d'une cuve d'électrolyse d'une aluminerie présentant un positionnement particulier des conducteurs électriques en matériau supraconducteur de deux circuits électriques secondaires, et présentant également le positionnement qu'il aurait fallu utiliser avec des conducteurs électriques classiques en aluminium ou en cuivre,
- The
figure 1 is a schematic top view of an electrolysis cell belonging to the state of the art, - The
figure 2 is a side view of an electrolysis cell of the state of the art, - The
Figures 3, 4, 5 ,6 and 7 are schematic top views of an aluminum smelter, in which at least one electrical conductor of superconducting material is used in a secondary electrical circuit, - The
Figures 8 and 9 are schematic top views of an aluminum smelter, in which an electrical conductor of superconducting material is used in the main electrical circuit, - The
figure 10 is a partial schematic view from above of an aluminum smelter comprising a secondary electrical circuit provided with a curved portion, - The
figure 11 is a sectional view of an electrolysis cell of an aluminum smelter having a particular positioning of the electrical conductors of superconducting material of two secondary electrical circuits, and also having the positioning that should have been used with conventional aluminum electrical conductors or copper,
La
Les cuves 2 d'électrolyse d'une aluminerie 1 sont classiquement disposées et connectées électriquement en série. Une série peut comprendre une ou plusieurs files F de cuves 2 d'électrolyse. Lorsque la série comporte plusieurs files F, celles-ci sont généralement rectilignes et parallèles les unes aux autres, et sont avantageusement en nombre pair.The
L'aluminerie 1, dont un exemple est visible sur la
Une station 12 d'alimentation alimente la série de cuves 2 d'électrolyse en courant d'électrolyse I1. Les extrémités de la série de cuves 2 d'électrolyse sont reliées chacune à un pôle électrique de la station d'alimentation 12. Des conducteurs 13 électriques de liaison relient les pôles électriques de la station 12 d'alimentation aux extrémités de la série.A
Les files F d'une série sont reliées électriquement en série. Un ou plusieurs conducteurs 14 électriques de liaison permettent l'acheminement du courant d'électrolyse I1 de la dernière cuve 2 d'électrolyse d'une file F à la première cuve 2 d'électrolyse de la file F suivante.The rows F of a series are connected electrically in series. One or more electrical connecting
Le circuit électrique principal 15 est constitué des conducteurs 13 électriques de liaison reliant les extrémités de la série de cuves 2 d'électrolyse à la station 12 d'alimentation, des conducteurs 14 électriques de liaison reliant les files F de cuves 2 d'électrolyse les unes aux autres, des conducteurs 11 électriques de cuve à cuve reliant deux cuves 2 d'électrolyse d'une même file F, et des éléments conducteurs de chaque cuve 2 d'électrolyse.The main
De façon classique, 50 à 500 cuves 2 d'électrolyse sont reliées en série et s'étendent sur deux files F de plus de 1 km de longueur chacune.Typically, 50 to 500
L'aluminerie 1 selon un mode de réalisation de la présente invention comprend également un ou plusieurs circuits électriques secondaires 16, 17, visibles par exemple sur la
Chaque circuit électrique secondaire 16, 17 est parcouru respectivement par un courant I2, I3, délivré par une station 18 d'alimentation. La station 18 d'alimentation de chaque circuit secondaire 16, 17 est distincte de la station 12 d'alimentation du circuit principal 15.Each secondary
L'aluminerie 1 comprend au moins un circuit électrique secondaire 16, 17 muni d'un conducteur électrique en matériau supraconducteur.The
Ces matériaux supraconducteurs peuvent par exemple comporter du BiSrCaCuO, du YaBaCuO, du MgB2, des matériaux connus des demandes de brevet
Les matériaux supraconducteurs sont utilisés pour transporter du courant avec peu ou pas de perte par génération de chaleur par effet Joule, car leur résistivité est nulle lorsqu'ils sont maintenus en-dessous de leur température critique. En raison de cette absence de perte d'énergie, il est possible de consacrer un maximum de l'énergie reçu par l'aluminerie (par exemple 600kA et 2kV) au circuit électrique principal 15 qui produit de l'aluminium, et notamment d'augmenter le nombre de cuves 2.Superconducting materials are used to carry current with little or no Joule heat generation loss because their resistivity is zero when held below their critical temperature. Due to this absence of energy loss, it is possible to dedicate a maximum of the energy received by the aluminum smelter (for example 600kA and 2kV) to the main
A titre d'exemple, un câble supraconducteur utilisé pour mettre en oeuvre la présente invention comprend une âme centrale en cuivre ou en aluminium, des rubans ou des fibres en matériau supraconducteur, et une enveloppe cryogénique. L'enveloppe cryogénique peut être formée par une gaine contenant un fluide de refroidissement, par exemple de l'azote liquide. Le fluide de refroidissement permet de maintenir la température des matériaux supraconducteurs à une température inférieure à leur température critique, par exemple inférieure à 100 K (Kelvin), ou comprise entre 4 K et 80 K.By way of example, a superconducting cable used to implement the present invention comprises a central core made of copper or aluminum, ribbons or fibers of superconducting material, and a cryogenic envelope. The cryogenic envelope may be formed by a sheath containing a cooling fluid, for example liquid nitrogen. The cooling fluid makes it possible to maintain the temperature of the superconducting materials at a temperature below their critical temperature, for example less than 100 K (Kelvin), or between 4 K and 80 K.
Du fait que les pertes en énergie se situent aux jonctions du conducteur électrique en matériau supraconducteur avec les autres conducteurs électriques, les conducteurs électriques en matériau supraconducteur sont particulièrement avantageux lorsqu'ils présentent une certaine longueur, et plus particulièrement une longueur égale ou supérieure à 10m.Since the energy losses are located at the junctions of the superconducting electrical conductor with the other electrical conductors, the electrical conductors of superconducting material are particularly advantageous when they have a certain length, and more particularly a length equal to or greater than 10 m. .
Les
L'exemple de la
La compensation du champ magnétique de la file F voisine peut être obtenue avec l'exemple de la
Il est également possible de compenser le champ magnétique de la file F voisine en prévoyant un unique circuit secondaire 16 formant une boucle externe, parcouru par un courant I2 cheminant dans le sens contraire du courant d'électrolyse I1, comme cela est illustré sur la
L'utilisation de conducteurs électriques en matériau supraconducteur pour former le ou les circuits secondaires 16, 17 est intéressante du fait de la longueur, de l'ordre de deux kilomètres, des circuits électriques secondaires 16, 17. L'utilisation de conducteurs électriques en matériau supraconducteur nécessite une tension moindre par rapport à celle nécessitée par des conducteurs électriques en aluminium ou en cuivre. Ainsi, il est possible de diminuer la tension de 30 V à 1 V lorsque le ou les circuits électriques secondaires 16, 17 comprennent des conducteurs électriques en matériau supraconducteur. Cela représente une réduction de la consommation d'énergie de l'ordre de 75 % à 99 % par rapport à des conducteurs électriques en aluminium de type classique. De plus, le coût de la station 18 d'alimentation du ou des circuits électriques secondaires est réduit en conséquence.L'aluminerie 1 comprend un circuit électrique secondaire 16, 17 muni d'un conducteur électrique en matériau supraconducteur et longeant sensiblement au même endroit avantageusement au moins deux fois une même file F de cuves 2 d'électrolyse, comme cela est notamment visible sur les
Le fait que la boucle formée par un circuit électrique secondaire 16, 17 comprenne plusieurs tours en série permet pour un même effet magnétique de diviser l'intensité du courant I2, I3 traversant le circuit électrique secondaire 16, 17 autant de fois que le nombre de tours réalisés. La réduction de la valeur de cette intensité permet par ailleurs de diminuer les pertes d'énergie par effet Joule au niveau des jonctions et le cout des jonctions entre les conducteurs électriques en matériau supraconducteur et les conducteurs électriques d'entrée ou de sortie du circuit électrique secondaire 16, 17. La diminution de l'intensité globale parcourant chaque circuit électrique secondaire 16, 17 avec des conducteurs électriques en matériau supraconducteur permet de diminuer la taille de la station 18 d'alimentation qui leur est associée. Par exemple, pour une boucle devant délivrer un courant de 200 kA, vingt tours de conducteur électrique en matériau supraconducteur permettent d'utiliser une station 18 d'alimentation délivrant 10kA. De même, quarante tours de conducteur électrique en matériau supraconducteur permettraient d'utiliser une station d'alimentation délivrant un courant d'intensité égale à 5 kA. Cela permet ainsi d'utiliser des équipements couramment vendus dans le commerce et donc peu onéreux.The fact that the loop formed by a secondary
De plus, l'utilisation d'un ou plusieurs tours en série pour former les circuits électriques secondaires 16, 17 en matériau supraconducteur présente l'avantage de diminuer les champs magnétiques sur le trajet entre la station 18 d'alimentation et la première et la dernière cuve 2 d'électrolyse car on a une intensité faible sur ce trajet (un seul passage du conducteur électrique).In addition, the use of one or more turns in series to form the secondary
Le faible encombrement des conducteurs électriques en matériau supraconducteur par rapport à des conducteurs électriques en aluminium ou en cuivre (section jusqu'à 150 fois plus faible que la section d'un conducteur en cuivre pour une intensité égale, et davantage encore par rapport à un conducteur en aluminium) facilite la réalisation de plusieurs tours en série dans les boucles formées par les circuits électriques secondaires 16, 17.The small size of the electrical conductors of superconducting material relative to electrical conductors made of aluminum or copper (section up to 150 times smaller than the section of a copper conductor for an equal intensity, and even more so with respect to a aluminum conductor) facilitates several series turns in the loops formed by the secondary
L'aluminerie 1 selon le mode de réalisation illustré à la
Du fait de la faible différence de potentiel entre deux tours de conducteur électrique en matériau supraconducteur, il est aisé d'isoler électriquement les différents tours du conducteur électrique. Un isolant électrique de faible épaisseur placé entre chaque tour de conducteur électrique en matériau supraconducteur suffit.Due to the small difference in potential between two turns of electrical conductor in superconducting material, it is easy to electrically isolate the different turns of the electrical conductor. A thin electrical insulator placed between each electric conductor tower of superconducting material is sufficient.
Pour cette raison, et grâce au faible encombrement du conducteur électrique en matériau supraconducteur, il est possible de contenir le conducteur électrique en matériau supraconducteur d'un circuit à l'intérieur d'une unique enveloppe cryogénique, et ce quelque soit le nombre de tours réalisés par ce conducteur. Cette enveloppe cryogénique peut comprendre une gaine thermiquement isolée dans laquelle circule un fluide de refroidissement. A un endroit donné, l'enveloppe cryogénique peut donc contenir côte à côte plusieurs passages du même conducteur électrique en matériau supraconducteur.For this reason, and thanks to the small size of the electrical conductor in superconducting material, it is possible to contain the electrical conductor material superconducting a circuit inside a single cryogenic envelope, and whatever the number of turns made by this driver. This cryogenic envelope may comprise a thermally insulated sheath in which a cooling fluid circulates. At a given location, the cryogenic envelope can therefore contain side by side several passages of the same electrical conductor of superconducting material.
Cela serait plus contraignant avec des conducteurs électriques en aluminium ou en cuivre réalisant plusieurs fois le tour de la série de cuves d'électrolyse. Les conducteurs électriques en aluminium ou en cuivre sont en effet plus encombrants que les conducteurs électriques en matériau supraconducteur. De plus, en raison de la chute de potentiel importante qui existerait entre chaque tour, il serait nécessaire d'ajouter des isolants couteux à mettre en place et à maintenir. Les conducteurs électriques classiques, en aluminium ou en cuivre, chauffant en fonctionnement, la mise en place d'un isolant entre les différents tours de conducteurs poserait des problèmes d'évacuation de chaleur.This would be more restrictive with aluminum or copper electrical conductors making several turns around the series of electrolysis tanks. Electrical conductors made of aluminum or copper are indeed more bulky than electrical conductors of superconducting material. In addition, because of the significant potential drop that would exist between each turn, it would be necessary to add costly insulators to set up and maintain. Conventional electrical conductors, aluminum or copper, heating in operation, the establishment of insulation between the various turns of conductors would pose problems of heat removal.
Les conducteurs électriques en matériau supraconducteur peuvent présenter également l'avantage par rapport aux conducteurs électriques en aluminium ou en cuivre d'être flexibles. L'aluminerie 1 peut ainsi comprendre un ou plusieurs circuits électriques secondaires 16, 17 comportant un conducteur électrique en matériau supraconducteur présentant au moins une partie courbe. Cela permet de contourner les obstacles 19 présents à l'intérieur de l'aluminerie 1, par exemple un pilier, comme cela est visible sur la
Cela permet également d'ajuster localement la compensation du champ magnétique dans l'aluminerie 1 en ajustant localement la position du conducteur électrique en matériau supraconducteur du ou des circuits électriques secondaires 16, 17, comme le permet la partie courbe 16a du circuit électrique secondaire 16 de l'aluminerie 1 visible sur la
Il est à noter que les conducteurs électriques en matériau supraconducteur du ou des circuits électriques secondaires 16, 17 peuvent être disposés sous les cuves 2 d'électrolyse. En particulier, ils peuvent être enterrés. Cette disposition est rendue possible par le faible encombrement des conducteurs électriques en matériau supraconducteur d'une part, et par le fait qu'ils ne chauffent pas d'autre part. Cette disposition serait difficilement réalisable avec des conducteurs électriques en aluminium ou en cuivre, car leur taille est plus importante à intensité égale, et parce qu'ils chauffent et nécessitent en conséquence d'être refroidis (couramment au contact de l'air et /ou avec des moyens de refroidissements spécifiques). La
Selon un mode particulier de réalisation dont un exemple est représenté sur la
L'enceinte 20 formant bouclier magnétique peut également être formée de matériau supraconducteur maintenu en dessous de sa température critique. Avantageusement, cette enceinte en matériau supraconducteur formant bouclier magnétique peut être disposée au plus près des conducteurs électriques en matériau supraconducteur, à l'intérieur de l'enveloppe cryogénique. La masse de matériau supraconducteur de l'enceinte est minimisée et le matériau supraconducteur de l'enceinte est maintenu en dessous de sa température critique sans qu'il soit nécessaire de disposer d'un autre système de refroidissement spécifique.The
L'utilisation d'une enceinte 20 protectrice, n'est pas possible avec les conducteurs électriques classiques de l'art antérieur en aluminium, ou même en cuivre. Ces conducteurs électriques en aluminium présentent effectivement une section de dimensions importantes, de l'ordre de 1 m par 1 m, contre 25 cm de diamètre pour un conducteur électrique en matériau supraconducteur. Surtout, les conducteurs électriques en aluminium chauffent en fonctionnement. L'utilisation d'une telle enceinte 20 formant bouclier magnétique ne permettrait pas une évacuation correcte de la chaleur générée.The use of a
Il est aussi à noter que les conducteurs électriques en matériau supraconducteur présentent une masse par mètre qui peut être vingt fois inférieure à celle d'un conducteur électrique en aluminium pour une intensité équivalente. Le coût des supports des conducteurs électriques en matériau supraconducteur est donc moindre et leur installation est facilitée.It should also be noted that the electrical conductors of superconducting material have a mass per meter which can be twenty times lower than that of an aluminum electrical conductor for an equivalent intensity. The cost of the supports of the electrical conductors in superconducting material is therefore lower and their installation is facilitated.
Le circuit électrique principal 15 de l'aluminerie 1 peut également comprendre un ou plusieurs conducteurs électriques en matériau supraconducteur. Ainsi, les conducteurs 14 électriques de liaison reliant électriquement les files F de la série entre elles peuvent être en matériau supraconducteur, comme cela est représenté sur la
Dans une aluminerie classique, les conducteurs 14 électriques de liaison reliant deux files F mesurent de 30m à 150m selon si les deux files F qu'ils relient se trouvent dans le même batiment ou dans deux batiments séparés pour des raisons d'interaction magnétique entre ces deux files F. Les conducteurs 13 électriques de liaison reliant les extrémités de la série aux pôles de la station 12 d'alimentation mesurent généralement de 20m à 1 km selon le positionnement de cette station 12 d'alimentation. En raison de ces longueurs, on comprendra aisément que l'utilisation de conducteurs électriques en matériau supraconducteur à ces emplacements peut permettre de réaliser des économies d'énergie. Les autres avantages procurés par l'utilisation de conducteurs en matériaux supraconducteurs décrits précédemment, comme leur faible encombrement, leur flexibilité ou leur capacité à être placés dans une enceinte formant bouclier magnétique, justifient également l'usage potentiel de conducteurs électriques en matériau supraconducteur dans le circuit principal 15 de l'aluminerie 1.In a conventional smelter, the electrical connecting
En revanche, du fait de la longueur moins importante des conducteurs 11 électriques de cuve à cuve, et des pertes énergétiques aux jonctions, l'utilisation d'un conducteur électrique en matériau supraconducteur pour conduire le courant d'électrolyse d'une cuve 2 à une autre n'est pas économiquement intéressant.On the other hand, because of the shorter length of the
Ainsi, l'utilisation de conducteurs électriques en matériau supraconducteur dans une aluminerie 1 peut s'avérer avantageux pour des longueurs de conducteurs suffisamment élevées. L'utilisation des conducteurs électriques en matériau conducteur est particulièrement avantageuse pour des circuits électriques secondaires 16, 17 destinés à réduire l'effet du champ magnétique cuve à cuve au moyen de boucles du type décrit dans le document de brevet
Les modes de réalisation décrits ne sont bien entendu pas exclusifs les uns des autres et peuvent être combinés afin de renforcer par synergie l'effet technique obtenu. Ainsi, il est possible de prévoir un circuit électrique principal 15 comprenant à la fois des conducteurs 14 électriques de liaison de file à file en matériau supraconducteur et des conducteurs 13 électriques de liaison reliant les extrémités d'une série aux pôles de la station 12 d'alimentation en matériau supraconducteur également, et un ou plusieurs circuits électriques secondaires 16, 17 comprenant également des conducteurs électriques en matériau supraconducteur réalisant plusieurs tours en série. Un seul circuit électrique secondaire 16 comprenant des conducteurs électriques en matériau supraconducteur peut également être prévu, avec des conducteurs réalisant plusieurs tours en série, entre les files F de cuves 2 ou à l'extérieur de celles-ci.The described embodiments are of course not exclusive of each other and can be combined in order to synergistically reinforce the technical effect obtained. Thus, it is possible to provide a main
Enfin, l'invention n'est nullement limitée aux modes de réalisation décrits ci-dessus, ces modes de réalisation n'ayant été donnés qu'à titre d'exemples. Des modifications restent possibles, notamment du point de vue de la constitution des divers éléments ou par la substitution d'équivalents techniques, sans pour autant sortir du domaine de protection de l'invention défini par les revendications. En particulier, l'invention peut s'étendre à des alumineries avec électrolyse avec des anodes inertes.Finally, the invention is not limited to the embodiments described above, these embodiments having been given only as examples. Modifications are possible, particularly from the point of view of the constitution of the various elements or by the substitution of technical equivalents, without departing from the scope of protection of the invention defined by the claims. In particular, the invention can be extended to aluminum smelters with electrolysis with inert anodes.
Elle est aussi généralisable à tout autre type de boucles, par exemple à un type de boucles décrit dans les documents de brevet
Claims (12)
- An aluminum smelter (1) comprising:(i) a series of electrolytic cells (2), designed for the production of aluminum, forming one or more rows (F),(ii) an electricity supply station (12) designed to supply the series of electrolytic cells (2) with an electrolysis current (I1),the said electricity supply station (12) comprising two poles,(iii) a main electrical circuit (15) through which the electrolysis current (I1) flows, having two extremities each connected to one of the poles of the supply station (12),(iv) at least one secondary electrical circuit (16-17) comprising an electrical conductor made of superconducting material through which a current (I2, I3) flows, running along the row or rows (F) of electrolytic cells (2),characterized in that the electrical conductor made of superconducting material in the secondary electrical circuit (16, 17) runs along the row or rows (F) of electrolytic cells (2) at least twice in such a way as to make several turns in series.
- An aluminum smelter (1) according to claim 1, characterized in that the electrical conductor made of superconducting material in the secondary electrical circuit (16, 17) comprises a single cryogenic casing within which run side by side the turns made by said electrical conductor made of superconducting material.
- An aluminum smelter (1) according to any one of claims 1 to 2, characterized in that the electrical conductor made of superconducting material in the secondary electrical circuit (16, 17) is flexible and has at least one curved part.
- An aluminum smelter (1) according to any one of claims 1 to 3, characterized in that the secondary electrical circuit (16, 17) comprises two extremities, each extremity of said secondary electrical circuit (16, 17) being connected to one electrical pole of an electricity supply station (18) which is separate from the electricity supply station (12) for the main electrical circuit (15).
- An aluminum smelter (1) according to claim 4, characterized in that the electrical conductor made of superconducting material in the secondary electrical circuit (16, 17) runs along the row or rows of electrolytic cells (2) a predetermined number of times so as to allow use of a supply station (18) for the secondary electrical circuit (16,17) delivering a current of intensity between 5 kA and 40 kA.
- An aluminum smelter (1) according to any one of claims 1 to 5, characterized in that at least one part of the electrical conductor made of superconducting material in the secondary electrical circuit (16, 17) is located beneath at least one electrolytic cell (2) in row or rows (F).
- An aluminum smelter (1) according to any one of claims 1 to 6, characterized in that at least part of the electrical conductor made of superconducting material in the secondary electrical circuit (16, 17) runs along the right-hand side and/or left-hand side of the electrolytic cells (2) in the row or rows (F).
- An aluminum smelter (1) according to any one of claims 1 to 7, characterized in that each electrical conductor made of superconducting material is formed of a cable comprising a central core of copper or aluminum, at least one fiber of superconducting material and a cryogenic casing.
- An aluminum smelter (1) according to claim 8, characterized in that a cooling fluid flows through the cryogenic casing.
- An aluminum smelter (1) according to claim 9, characterized in that the cooling fluid is liquid nitrogen and/or helium.
- An aluminum smelter (1) according to any one of claims 1 to 10, characterized in that the aluminum smelter comprises an enclosure (20) forming a magnetic shield and characterized in that the electrical conductor made of superconducting material is placed partly within an enclosure (20) forming a magnetic shield.
- An aluminum smelter (1) according to claim 11, characterized in that the enclosure (20) forming the magnetic shield is located at least one of the extremities of the row or rows (F) of electrolytic cells (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201231308T SI2732075T1 (en) | 2011-07-12 | 2012-07-10 | Aluminium smelter comprising electrical conductors made from a superconducting material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1102198A FR2977899A1 (en) | 2011-07-12 | 2011-07-12 | Smelter, useful for the production of aluminum from alumina by electrolysis, comprises series of electrolysis tank for producing aluminum, station that is adapted for supplying power to tank, electric circuits, and electric conductor |
FR1102199A FR2977898A1 (en) | 2011-07-12 | 2011-07-12 | ALUMINERY COMPRISING CATHODIC EXIT TANKS THROUGH THE BOTTOM OF THE HOUSING AND TANK STABILIZATION MEANS |
PCT/FR2012/000282 WO2013007893A2 (en) | 2011-07-12 | 2012-07-10 | Aluminium smelter comprising electrical conductors made from a superconducting material |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2732075A2 EP2732075A2 (en) | 2014-05-21 |
EP2732075B1 true EP2732075B1 (en) | 2018-03-14 |
Family
ID=46717874
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12748726.2A Active EP2732075B1 (en) | 2011-07-12 | 2012-07-10 | Aluminium smelter comprising electrical conductors made from a superconducting material |
EP12748727.0A Withdrawn EP2732076A2 (en) | 2011-07-12 | 2012-07-10 | Aluminium smelter comprising electrical conductors made from a superconducting material |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12748727.0A Withdrawn EP2732076A2 (en) | 2011-07-12 | 2012-07-10 | Aluminium smelter comprising electrical conductors made from a superconducting material |
Country Status (16)
Country | Link |
---|---|
US (2) | US20140209457A1 (en) |
EP (2) | EP2732075B1 (en) |
CN (2) | CN103649375A (en) |
AR (2) | AR087122A1 (en) |
AU (2) | AU2012282373B2 (en) |
BR (2) | BR112014000760A2 (en) |
CA (2) | CA2841847A1 (en) |
DK (1) | DK179966B1 (en) |
EA (1) | EA201490256A1 (en) |
IN (1) | IN2014CN00886A (en) |
MY (1) | MY166183A (en) |
NO (1) | NO2732075T3 (en) |
RU (2) | RU2014104795A (en) |
SI (1) | SI2732075T1 (en) |
TR (1) | TR201807790T4 (en) |
WO (2) | WO2013007894A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3115942A1 (en) | 2020-11-05 | 2022-05-06 | Nexans | Cryostat box for superconducting hardwired circuit, and associated superconducting hardwired circuits |
EP3996209A1 (en) | 2020-11-10 | 2022-05-11 | Nexans | Electrical connection device for superconducting wires |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3009564A1 (en) * | 2013-08-09 | 2015-02-13 | Rio Tinto Alcan Int Ltd | ALUMINUM COMPRISING AN ELECTRIC COMPENSATION CIRCUIT |
FR3032459B1 (en) * | 2015-02-09 | 2019-08-23 | Rio Tinto Alcan International Limited | ALUMINERY AND METHOD FOR COMPENSATING A MAGNETIC FIELD CREATED BY CIRCULATION OF THE ELECTROLYSIS CURRENT OF THIS ALUMINUM |
FR3042509B1 (en) * | 2015-10-15 | 2017-11-03 | Rio Tinto Alcan Int Ltd | SERIES OF ELECTROLYSIS CELLS FOR THE PRODUCTION OF ALUMINUM COMPRISING MEANS FOR BALANCING THE MAGNETIC FIELDS AT THE END OF THE FILE |
RU2678624C1 (en) * | 2017-12-29 | 2019-01-30 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Modular busbar for series of aluminum electrolysis cells |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB797428A (en) * | 1954-03-10 | 1958-07-02 | Vaw Ver Aluminium Werke Ag | Plant for carrying out fusion electrolysis |
FR2425482A1 (en) * | 1978-05-11 | 1979-12-07 | Pechiney Aluminium | PROCESS FOR COMPENSATION OF THE MAGNETIC FIELD INDUCED BY THE NEIGHBORING LINE IN SERIES OF HIGH INTENSITY ELECTROLYSIS TANKS |
US4222830A (en) * | 1978-12-26 | 1980-09-16 | Aluminum Company Of America | Production of extreme purity aluminum |
FR2469475A1 (en) | 1979-11-07 | 1981-05-22 | Pechiney Aluminium | METHOD AND DEVICE FOR THE REMOVAL OF MAGNETIC DISTURBANCES IN VERY HIGH-INTENSITY ELECTROLYSING Cuvettes Placed Through Them |
FR2583069B1 (en) | 1985-06-05 | 1987-07-31 | Pechiney Aluminium | CONNECTION DEVICE BETWEEN VERY HIGH INTENSITY ELECTROLYSIS TANKS FOR THE PRODUCTION OF ALUMINUM, INCLUDING A SUPPLY CIRCUIT AND AN INDEPENDENT MAGNETIC FIELD CORRECTION CIRCUIT |
DE69509540T2 (en) | 1994-09-08 | 1999-09-30 | Moltech Invent S.A., Luxemburg/Luxembourg | ALUMINUM ELECTRIC PRODUCTION CELL WITH IMPROVED CARBON CATHODE BLOCKS |
US5831489A (en) * | 1996-09-19 | 1998-11-03 | Trw Inc. | Compact magnetic shielding enclosure with high frequency feeds for cryogenic high frequency electronic apparatus |
DE69809202T2 (en) | 1997-05-23 | 2003-05-28 | Moltech Invent S.A., Luxemburg/Luxembourg | ALUMINUM MANUFACTURING CELL AND CATHODE |
FR2868436B1 (en) | 2004-04-02 | 2006-05-26 | Aluminium Pechiney Soc Par Act | SERIES OF ELECTROLYSIS CELLS FOR THE PRODUCTION OF ALUMINUM COMPRISING MEANS FOR BALANCING THE MAGNETIC FIELDS AT THE END OF THE FILE |
NO322258B1 (en) | 2004-09-23 | 2006-09-04 | Norsk Hydro As | A method for electrical coupling and magnetic compensation of reduction cells for aluminum, and a system for this |
CN101142637B (en) * | 2005-03-14 | 2010-06-16 | 住友电气工业株式会社 | superconducting cable |
CN101228595B (en) * | 2006-04-10 | 2014-04-16 | 住友电气工业株式会社 | Superconducting cable |
RU2316619C1 (en) * | 2006-04-18 | 2008-02-10 | Общество с ограниченной ответственностью "Русская инжиниринговая компания" | Apparatus for compensating magnetic field induced by adjacent row of connected in series high-power aluminum cells |
KR20120040757A (en) | 2006-07-21 | 2012-04-27 | 아메리칸 수퍼컨덕터 코포레이션 | High-current, compact flexible conductors containing high temperature superconducting tapes |
NO332480B1 (en) | 2006-09-14 | 2012-09-24 | Norsk Hydro As | Electrolysis cell and method of operation of the same |
CN101255567B (en) * | 2007-12-17 | 2010-08-25 | 中国铝业股份有限公司 | Method for optimizing aluminium electrolysis slot field |
US8478374B2 (en) | 2008-03-28 | 2013-07-02 | American Superconductor Corporation | Superconducting cable assembly and method of assembly |
US9431864B2 (en) * | 2011-03-15 | 2016-08-30 | Siemens Energy, Inc. | Apparatus to support superconducting windings in a rotor of an electromotive machine |
-
2012
- 2012-07-10 CA CA2841847A patent/CA2841847A1/en not_active Abandoned
- 2012-07-10 EP EP12748726.2A patent/EP2732075B1/en active Active
- 2012-07-10 SI SI201231308T patent/SI2732075T1/en unknown
- 2012-07-10 CA CA2841300A patent/CA2841300C/en active Active
- 2012-07-10 BR BR112014000760A patent/BR112014000760A2/en not_active IP Right Cessation
- 2012-07-10 RU RU2014104795/02A patent/RU2014104795A/en not_active Application Discontinuation
- 2012-07-10 NO NO12748726A patent/NO2732075T3/no unknown
- 2012-07-10 EA EA201490256A patent/EA201490256A1/en unknown
- 2012-07-10 MY MYPI2014700059A patent/MY166183A/en unknown
- 2012-07-10 EP EP12748727.0A patent/EP2732076A2/en not_active Withdrawn
- 2012-07-10 IN IN886CHN2014 patent/IN2014CN00886A/en unknown
- 2012-07-10 AU AU2012282373A patent/AU2012282373B2/en active Active
- 2012-07-10 DK DKPA201370794A patent/DK179966B1/en not_active IP Right Cessation
- 2012-07-10 BR BR112014000573-7A patent/BR112014000573B1/en not_active IP Right Cessation
- 2012-07-10 RU RU2018140052A patent/RU2764623C2/en active
- 2012-07-10 US US14/232,125 patent/US20140209457A1/en not_active Abandoned
- 2012-07-10 AU AU2012282374A patent/AU2012282374A1/en not_active Abandoned
- 2012-07-10 CN CN201280034611.7A patent/CN103649375A/en active Pending
- 2012-07-10 CN CN201280034686.5A patent/CN103687982B/en active Active
- 2012-07-10 WO PCT/FR2012/000283 patent/WO2013007894A2/en active Application Filing
- 2012-07-10 WO PCT/FR2012/000282 patent/WO2013007893A2/en active Application Filing
- 2012-07-10 TR TR2018/07790T patent/TR201807790T4/en unknown
- 2012-07-10 US US14/232,168 patent/US9598783B2/en active Active
- 2012-07-11 AR ARP120102506A patent/AR087122A1/en active IP Right Grant
- 2012-07-11 AR ARP120102508A patent/AR087124A1/en not_active Application Discontinuation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3115942A1 (en) | 2020-11-05 | 2022-05-06 | Nexans | Cryostat box for superconducting hardwired circuit, and associated superconducting hardwired circuits |
EP3996223A1 (en) | 2020-11-05 | 2022-05-11 | Nexans | Cryostat housing for wired superconductor circuit, and associated wired superconductor circuits |
EP3996209A1 (en) | 2020-11-10 | 2022-05-11 | Nexans | Electrical connection device for superconducting wires |
FR3116147A1 (en) | 2020-11-10 | 2022-05-13 | Nexans | Electrical connection device for superconducting wires |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2732075B1 (en) | Aluminium smelter comprising electrical conductors made from a superconducting material | |
EP2732074B1 (en) | Aluminum smelter including cells having a cathode outlet through the base of the casing, and a means for stabilizing the cells | |
FR2583069A1 (en) | CONNECTION DEVICE BETWEEN VERY HIGH-INTENSITY ELECTROLYSING CUPES FOR THE PRODUCTION OF ALUMINUM HAVING A POWER CIRCUIT AND AN INDEPENDENT CIRCUIT FOR CORRECTING THE MAGNETIC FIELD | |
FR2977899A1 (en) | Smelter, useful for the production of aluminum from alumina by electrolysis, comprises series of electrolysis tank for producing aluminum, station that is adapted for supplying power to tank, electric circuits, and electric conductor | |
EP3030695B1 (en) | Aluminium smelter comprising a compensating electric circuit | |
OA16843A (en) | Aluminum plant comprising electrical conductors of superconducting material | |
EP3030694B1 (en) | Electrolytic cell intended for the production of aluminium and electrolytic smelter comprising this cell | |
EP2616571B1 (en) | Electrical connection device, for connecting between two successive cells of a series of cells for the production of aluminium | |
EP3256623B1 (en) | Aluminium smelter and method to compensate for a magnetic field created by the circulation of the electrolysis current of said aluminium smelter | |
OA16842A (en) | Aluminum plant comprising tanks with cathodic outlet through the bottom of the box and means for stabilizing the tanks | |
EP1155167A1 (en) | Electrolytic cell arrangement for production of aluminium | |
KR101835268B1 (en) | Transport current variable type power cable | |
OA17793A (en) | Aluminum plant including an electrical compensation circuit | |
FR3148215A1 (en) | Energy storage device, propulsion system and associated aircraft | |
NZ619717B2 (en) | Aluminium smelter comprising electrical conductors made from a superconducting material | |
OA18402A (en) | Aluminum smelter and process for compensating a magnetic field created by the circulation of electrolysis current from this smelter. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131216 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA |
|
RAX | Requested extension states of the european patent have changed |
Extension state: BA Payment date: 20131216 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RIO TINTO ALCAN INTERNATIONAL LIMITED |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20171026 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 978971 Country of ref document: AT Kind code of ref document: T Effective date: 20180315 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012043988 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180314 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20180314 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 978971 Country of ref document: AT Kind code of ref document: T Effective date: 20180314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180614 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012043988 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180716 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
26N | No opposition filed |
Effective date: 20181217 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180710 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180710 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180314 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20200709 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20210624 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SI Payment date: 20210628 Year of fee payment: 10 Ref country code: RO Payment date: 20210701 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210710 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 27465 Country of ref document: SK Effective date: 20220710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220710 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20230314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220710 Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220711 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IS Payment date: 20240624 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240621 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240618 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20240709 Year of fee payment: 13 |