CN101142637B - superconducting cable - Google Patents
superconducting cable Download PDFInfo
- Publication number
- CN101142637B CN101142637B CN2005800491178A CN200580049117A CN101142637B CN 101142637 B CN101142637 B CN 101142637B CN 2005800491178 A CN2005800491178 A CN 2005800491178A CN 200580049117 A CN200580049117 A CN 200580049117A CN 101142637 B CN101142637 B CN 101142637B
- Authority
- CN
- China
- Prior art keywords
- superconducting
- cable
- layer
- cores
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 129
- 239000004020 conductor Substances 0.000 claims abstract description 80
- 230000007935 neutral effect Effects 0.000 claims abstract description 10
- 239000002826 coolant Substances 0.000 claims description 54
- 230000007423 decrease Effects 0.000 claims description 10
- 230000008602 contraction Effects 0.000 claims description 8
- 230000005684 electric field Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 242
- 239000011241 protective layer Substances 0.000 abstract description 14
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 25
- 239000000123 paper Substances 0.000 description 20
- 239000002655 kraft paper Substances 0.000 description 15
- 238000009413 insulation Methods 0.000 description 12
- 125000006850 spacer group Chemical group 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000004804 winding Methods 0.000 description 8
- 239000002131 composite material Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000005856 abnormality Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000002887 superconductor Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000003339 best practice Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B12/00—Superconductive or hyperconductive conductors, cables, or transmission lines
- H01B12/02—Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
- H01B12/06—Films or wires on bases or cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B12/00—Superconductive or hyperconductive conductors, cables, or transmission lines
- H01B12/02—Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
- H01B12/08—Stranded or braided wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B12/00—Superconductive or hyperconductive conductors, cables, or transmission lines
- H01B12/16—Superconductive or hyperconductive conductors, cables, or transmission lines characterised by cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
本发明提供了电缆直径进一步减小的超导电缆和包括该超导电缆的DC传输系统。超导电缆(1)具有这样的结构,其中两个电缆芯(2)被绞合到一起并容纳在热绝缘管(8)中,每个电缆芯具有均由超导材料制成的超导导体层(4)和外超导层(6)。每个电缆芯(2)从中心开始按序具有成形器(3)、超导导体层(4)、绝缘层(5)、外超导层(6)和保护层(7)。在单极传输中,两个芯(2)的超导导体层(4)被用作携带单极电流的去程线路,两个芯(2)的外超导层(6)被用作携带回流电流的回流线路。在双极传输中,一个芯(2)的超导导体层(4)被用作正极传输,另一个芯(2)的超导导体层(4)被用作负极传输,而两个芯(2)的外超导层(6)被用作中性线层。
The present invention provides a superconducting cable with a further reduced cable diameter and a DC transmission system including the superconducting cable. A superconducting cable (1) has a structure in which two cable cores (2) are twisted together and accommodated in a heat insulating tube (8), each cable core having a superconducting Conductor layer (4) and outer superconducting layer (6). Each cable core (2) has a shaper (3), a superconducting conductor layer (4), an insulating layer (5), an outer superconducting layer (6) and a protective layer (7) in order from the center. In unipolar transmission, the superconducting conductor layers (4) of the two cores (2) are used as the outgoing line for carrying the unipolar current, and the outer superconducting layers (6) of the two cores (2) are used as the The return line for the return current. In bipolar transmission, the superconducting conductor layer (4) of one core (2) is used as the positive pole transmission, the superconducting conductor layer (4) of the other core (2) is used as the negative pole transmission, and the two cores ( The outer superconducting layer (6) of 2) is used as a neutral layer.
Description
技术领域technical field
本发明涉及通过将多个电缆芯绞合到一起所形成的超导电缆和包括该超导电缆的DC传输系统。本发明尤其涉及能进一步减小其直径的超导电缆。The present invention relates to a superconducting cable formed by twisting together a plurality of cable cores and a DC transmission system including the superconducting cable. In particular, the invention relates to superconducting cables whose diameter can be further reduced.
背景技术Background technique
作为AC超导电缆,公知的三芯绞合型电缆是通过将三个电缆芯绞合到一起形成的。图4是用于三相AC的三芯绞合型电缆的横截面图。超导电缆100具有这样的结构,其中三个电缆芯102被绞合到一起并容纳在热绝缘管101中。该热绝缘管101具有由外管101a和内管101b组成的双管结构,在这两管之间设置了热绝缘材料(未示出)。外管101a和内管101b之间的空隙被抽成真空。在热绝缘管101的外周上提供了防腐蚀被覆层104。每个电缆芯102从中心开始按序包括成形器200、超导导体层201、绝缘层202、超导屏蔽层203以及保护层204。空隙103被内管101b包围,电缆芯102形成用于冷却剂例如液氮的通道。As an AC superconducting cable, a known three-core twisted type cable is formed by twisting three cable cores together. Fig. 4 is a cross-sectional view of a three-core twisted type cable for three-phase AC. The
在通过使用上述超导电缆进行AC传输时,不仅由电感引起的AC损耗大而且短路时的电流也大,由于那时的损耗使得温度可能过度上升。和AC传输相比,使用超导电缆的DC传输不仅消除了AC损耗而且还降低了短路电流。作为DC超导电缆,专利文献1已经提出了通过将三个电缆芯绞合到一起形成的超导电缆,每个电缆芯具有超导导体和绝缘层。在该超导电缆中,各个芯分别被用作正极芯、负极芯和中性线芯以进行双极传输。When AC transmission is performed by using the above-mentioned superconducting cable, not only the AC loss due to inductance is large but also the current at the time of short circuit is large, and the temperature may rise excessively due to the loss at that time. Compared with AC transmission, DC transmission using superconducting cables not only eliminates AC loss but also reduces short-circuit current. As a DC superconducting cable,
专利文献1:公布的日本专利申请Tokukai 2003-249130。Patent Document 1: Published Japanese Patent Application Tokukai 2003-249130.
发明内容Contents of the invention
发明解决的技术问题The technical problem solved by the invention
在前述专利文献1公开的超导电缆中,使用一个电缆就能双极传输。然而,该电缆在一个电缆中提供了不小于三个的电缆芯,从而增加了电缆直径。因此,取决于安装空间,存在该电缆不能应用的可能性。因此,为进行DC传输,希望能开发出一种能进一步减小电缆直径的超导电缆。另外,如图4所示的AC超导电缆还在一个电缆中具有三个芯。因此,该电缆具有与上述专利文献1中所述的电缆一样大的电缆直径。In the superconducting cable disclosed in the
考虑到上述情况,本发明的主要目的是提供具有更小电缆直径的超导电缆。本发明的另一个目的是提供适合于DC传输的超导电缆。还有另一个目的是提供包括上述超导电缆的DC传输系统。In view of the foregoing, a main object of the present invention is to provide a superconducting cable having a smaller cable diameter. Another object of the present invention is to provide a superconducting cable suitable for DC transmission. Yet another object is to provide a DC transmission system comprising the above-mentioned superconducting cable.
解决问题的方法way of solving the problem
本发明通过减小一个电缆中具有的芯的数量来实现上述目的。The present invention achieves the above objects by reducing the number of cores in one cable.
更特别地,本发明的超导电缆具有这样的特点,其中通过将两个电缆芯绞合到一起形成电缆,每个电缆芯具有下列部件:More particularly, the superconducting cable of the present invention is characterized in that the cable is formed by twisting together two cable cores, each cable core having the following components:
(a)超导导体层;(a) a superconducting conductor layer;
(b)在前述超导导体层的外周上提供的绝缘层;以及(b) an insulating layer provided on the outer periphery of the aforementioned superconducting conductor layer; and
(c)在前述绝缘层的外周上提供的外超导层。(c) An outer superconducting layer provided on the outer periphery of the aforementioned insulating layer.
本发明的DC传输系统是包括上述超导电缆的传输系统,并通过使用在下述芯中提供的超导导体层和外超导层进行传输。The DC transmission system of the present invention is a transmission system including the superconducting cable described above, and performs transmission by using a superconducting conductor layer and an outer superconducting layer provided in a core described below.
(单极传输)(unipolar transmission)
使用在两个芯中都提供的超导导体层作为去程线路,以及使用在两个芯中都提供的外超导层作为回流线路。The superconducting conductor layer provided in both cores is used as the outbound line, and the outer superconducting layer provided in both cores is used as the return line.
(双极传输)(bipolar transmission)
在其中的一个芯中提供的超导导体层被用来为一个极进行传输;或者是正极或者是负极。在另一个芯中提供的超导导体层被用来为另一个极进行传输。在两个芯中都提供的外超导层被用来作为中性线路。A layer of superconducting conductors provided in one of the cores is used to transport one pole; either positive or negative. A layer of superconducting conductor provided in the other core is used for transport for the other pole. An outer superconducting layer provided in both cores is used as a neutral line.
在图4所示的上述AC超导电缆中和在专利文献1中描述的DC超导电缆中,为了获得电缆芯在冷却时的收缩余量,该电缆具有以提供松弛部分而将三个芯绞合在一起的结构。然而,在一个电缆中具有三个芯的结构不能避免电缆直径的增加。In the above-mentioned AC superconducting cable shown in FIG. 4 and in the DC superconducting cable described in
例如,以下对具有这种结构的DC超导电缆进行计算,在该结构中,从中心开始,三个电缆芯的每个都按序具有成形器、超导导体层、绝缘层、由铜制成的屏蔽层以及保护层。在该电缆中,各个芯分别被用作正极芯,负极芯和中性线芯。假设包括成形器的超导导体层具有20mm的直径,绝缘层具有5mm的厚度,屏蔽层具有1mm的厚度,以及保护层具有2mm的厚度。那么,该三芯的包络圆的直径达到约77.6mm另外,通过在相邻的芯之间设置一个具有5mm厚度的隔离物来提供松弛部分时,包络圆的直径达到约83.3mm For example, the following calculations are performed for a DC superconducting cable having a structure in which, starting from the center, each of the three cable cores has, in order, a former, a superconducting conductor layer, an insulating layer, a Formed shielding layer and protective layer. In this cable, individual cores are used as positive core, negative core and neutral core respectively. Assume that the superconducting conductor layer including the shaper has a diameter of 20 mm, the insulating layer has a thickness of 5 mm, the shielding layer has a thickness of 1 mm, and the protective layer has a thickness of 2 mm. Then, the diameter of the enveloping circle of the three cores reaches about 77.6mm In addition, when the slack is provided by providing a spacer having a thickness of 5 mm between adjacent cores, the diameter of the envelope circle reaches about 83.3 mm
另一方面,在DC超导电缆中,当屏蔽层由超导材料形成被用作外超导层,并且然后该外超导层被用作回流线路或中性线层时,芯的数量可以是两个。该两芯电缆可以具有比上述具有三芯的超导电缆小的电缆直径。例如,像前述计算的那样,以下对具有这种结构的超导电缆进行另一计算,在该结构中,从中心开始,两个电缆芯的每个都按序具有成形器、超导导体层、绝缘层、外超导层以及保护层。在该电缆中,各个芯的超导导体层分别被用于正极和负极的传输,这两个芯的外超导层被用作中性线层。假设包括成形器的超导导体层具有20mm的直径,绝缘层具有5mm的厚度,外超导层具有1mm的厚度,以及保护层具有2mm的厚度。那么,该两芯的包络圆的直径达到72mm((20+5×2+1×2+2×2)×2=72)。另外,通过在芯之间设置一个具有5mm厚度的隔离物来提供松弛部分时,包络圆具有77mm的直径(72+5=77)。如上所述,在使用两芯结构时,电缆直径可以比上述具有三个电缆芯绞合到一起的结构的超导电缆的直径小。On the other hand, in a DC superconducting cable, when a shield layer formed of a superconducting material is used as an outer superconducting layer, and then the outer superconducting layer is used as a return line or a neutral layer, the number of cores can be is two. The two-core cable may have a smaller cable diameter than the above-mentioned superconducting cable with three cores. For example, as in the previous calculation, another calculation is performed below for a superconducting cable having a structure in which, starting from the center, each of the two cable cores has a shaper, a superconducting conductor layer, , insulating layer, outer superconducting layer and protective layer. In this cable, the superconducting conductor layers of the individual cores are used for the transmission of the positive and negative poles respectively, and the outer superconducting layers of the two cores are used as the neutral layer. Assume that the superconducting conductor layer including the shaper has a diameter of 20 mm, the insulating layer has a thickness of 5 mm, the outer superconducting layer has a thickness of 1 mm, and the protective layer has a thickness of 2 mm. Then, the diameter of the enveloping circle of the two cores reaches 72 mm ((20+5×2+1×2+2×2)×2=72). In addition, when the slack is provided by providing a spacer having a thickness of 5 mm between the cores, the envelope circle has a diameter of 77 mm (72+5=77). As described above, when a two-core structure is used, the cable diameter can be smaller than that of the above-mentioned superconducting cable having a structure in which three cable cores are twisted together.
而且对于AC超导电缆,通过使用多个具有两个电缆芯的超导电缆可以进行三相AC传输,而且同时减小了一个电缆的电缆直径。Also for the AC superconducting cable, three-phase AC transmission can be performed by using a plurality of superconducting cables having two cable cores while reducing the cable diameter of one cable.
因此,本发明指定芯的数量为两个。以下将更详细地解释本发明。Therefore, the present invention specifies that the number of cores be two. The present invention will be explained in more detail below.
指定本发明的超导电缆为通过将两个电缆芯绞合到一起来形成,每个电缆芯具有以下部件:It is specified that the superconducting cable of the present invention is formed by twisting together two cable cores, each cable core having the following components:
(a)超导导体层;(a) a superconducting conductor layer;
(b)设置在前述超导导体层的外周上的绝缘层;以及(b) an insulating layer provided on the outer periphery of the aforementioned superconducting conductor layer; and
(c)设置在前述绝缘层外周上的外超导层。(c) An outer superconducting layer provided on the outer periphery of the aforementioned insulating layer.
尤其是,在本发明中,对于单极传输,外超导层被用作回流线路,而对于双极传输,外超导层被用来循环正极和负极之间的不平衡电流或异常电流。因此,通过使用超导材料来形成外超导层。Especially, in the present invention, for unipolar transmission, the outer superconducting layer is used as a return line, and for bipolar transmission, the outer superconducting layer is used to circulate unbalanced or abnormal current between positive and negative electrodes. Therefore, the outer superconducting layer is formed by using a superconducting material.
建议超导导体层通过螺旋卷绕带型电线形成,该电线具有这样的结构,其中多个由例如Bi-2223基超导材料制成的细丝被放置在基质例如银护套中。该超导导体层可以是单层也可以是由多层组成。在使用多层结构时,绝缘层可以设置在构成超导层之间。可以通过螺旋地卷绕绝缘纸例如牛皮纸或半合成的绝缘纸例如PPLP(注册商标,由Sumitomo Electric Industries,Ltd.生产)(PPLP是聚丙烯层叠纸的缩写)来提供在构成超导层之间的绝缘层。上述的超导导体层通过在成形器的外周上螺旋卷绕前述由超导材料制成的电线而形成。成形器可以是通过使用金属材料例如铜或铝形成的实体也可以是空心体。例如,其可以具有其中多个铜线绞合的结构。作为铜线,可以使用具有绝缘被覆层的电线。成形器用作用于保持超导导体层的形状的元件。可以在成形器和超导导体层之间设置缓冲层。该缓冲层避免成形器和超导线之间直接的金属接触以防止超导线受到损害。尤其是,在成形器由绞合导线形成时,缓冲层还可以用来进一步使成形器的表面平滑。作为缓冲层的特殊材料,可以适当使用绝缘纸或复写纸。It is proposed that the superconducting conductor layer be formed by helically winding a tape-type wire having a structure in which a plurality of filaments made of, for example, a Bi-2223-based superconducting material are placed in a matrix such as a silver sheath. The superconducting conductor layer may be a single layer or may be composed of multiple layers. When a multilayer structure is used, an insulating layer may be provided between layers constituting the superconducting layer. Between the constituent superconducting layers can be provided by spirally winding insulating paper such as kraft paper or semi-synthetic insulating paper such as PPLP (registered trademark, produced by Sumitomo Electric Industries, Ltd.) (PPLP is an abbreviation for polypropylene laminated paper) insulation layer. The above-mentioned superconducting conductor layer is formed by helically winding the aforementioned electric wire made of a superconducting material on the outer periphery of the former. The former may be a solid or a hollow body formed by using a metallic material such as copper or aluminum. For example, it may have a structure in which a plurality of copper wires are twisted. As the copper wire, an electric wire with an insulating coating can be used. The shaper serves as an element for maintaining the shape of the superconducting conductor layer. A buffer layer may be provided between the shaper and the superconducting conductor layer. The buffer layer avoids direct metallic contact between the shaper and the superconducting wire to prevent damage to the superconducting wire. In particular, the buffer layer may also be used to further smoothen the surface of the shaper when the shaper is formed from stranded wire. As a special material for the buffer layer, insulating paper or carbon paper can be used appropriately.
绝缘层可以通过螺旋卷绕半合成的绝缘纸例如PPLP(注册商标)或绝缘纸例如牛皮纸而形成。绝缘层被设计成具有在超导导体层和地之间的绝缘所需的绝缘强度。The insulating layer may be formed by spirally winding semi-synthetic insulating paper such as PPLP (registered trademark) or insulating paper such as kraft paper. The insulating layer is designed to have a dielectric strength required for insulation between the superconducting conductor layer and the ground.
在本发明的超导电缆用于DC传输时,上述绝缘层可以构造成具有ρ(电阻率)分级以使DC电场的径向(厚度方向)分布平整。进行ρ分级使得径向位置朝绝缘层的最内的部分移动时,电阻率降低了,并且在径向位置朝最外的部分移动时,电阻率增加了。进行ρ分级逐步地改变绝缘层厚度方面的电阻率。ρ分级可以使绝缘层各处的DC电场的厚度方向的分布平整。结果,绝缘厚度可以降低。所以,希望ρ分级,因为其还进一步降低了电缆直径。每层具有不同的电阻率,层的数量没有特别限制。然而,实际上,使用的是两层或三层左右。尤其是,在各层的厚度相等时,可以有效地进行DC电场分布的平整。When the superconducting cable of the present invention is used for DC transmission, the above-mentioned insulating layer may be configured to have p (resistivity) grading to level the radial (thickness direction) distribution of the DC electric field. The p-grading is performed such that the resistivity decreases as the radial position moves toward the innermost portion of the insulating layer, and increases as the radial position moves toward the outermost portion. Performing p grading changes the resistivity in terms of the thickness of the insulating layer stepwise. The ρ grading can flatten the distribution of the DC electric field in the thickness direction throughout the insulating layer. As a result, the insulation thickness can be reduced. Therefore, ρ grading is desirable because it further reduces the cable diameter. Each layer has a different resistivity, and the number of layers is not particularly limited. In practice, however, two or three layers or so are used. In particular, when the thicknesses of the layers are equal, smoothing of the DC electric field distribution can be effectively performed.
为进行ρ分级,建议使用具有不同电阻率(ρ′s)的绝缘材料。例如,在使用绝缘纸例如牛皮纸时,电阻率例如可以通过改变牛皮纸的密度或者通过往牛皮纸中添加氰基胍而变化。在使用由绝缘纸和塑料薄膜组成的复合纸例如PPLP(注册商标)时,电阻率可以通过改变复合纸的塑料薄膜的厚度tp与总厚度T的比值k(比值k,表示为(tp/T)×100)或通过改变绝缘纸的密度、质量、添加剂等而变化。希望的是,例如,比值k的值位于40%到90%左右的范围内。通常,随着比值k的增加,电阻率ρ增加。For p-grading, it is recommended to use insulating materials with different resistivities (p's). For example, when insulating paper such as kraft paper is used, the resistivity can be varied, for example, by changing the density of the kraft paper or by adding cyanoguanidine to the kraft paper. When using a composite paper composed of insulating paper and plastic film such as PPLP (registered trademark), the resistivity can be changed by changing the ratio k of the thickness tp of the plastic film of the composite paper to the total thickness T (ratio k, expressed as (tp/T )×100) or by changing the density, quality, additives, etc. of the insulating paper. Desirably, for example, the value of the ratio k is in the range of about 40% to 90%. Generally, as the ratio k increases, the resistivity ρ increases.
另外,在超导导体层附近,绝缘层具有高ε(介电常数)层,该高ε层具有比其他部分高的介电常数,不仅能使承受DC电压的性能提高,而且承受脉冲电压的性能也提高。介电常数ε(在20℃)的值总结如下:In addition, in the vicinity of the superconducting conductor layer, the insulating layer has a high ε (dielectric constant) layer, which has a higher dielectric constant than other parts, which not only improves the performance of withstanding DC voltage, but also improves the performance of withstanding pulse voltage. Performance is also improved. The values of the dielectric constant ε (at 20°C) are summarized as follows:
(a)通常的牛皮纸:3.2到4.5左右(a) Ordinary kraft paper: about 3.2 to 4.5
(b)比值k为40%的复合纸:2.8左右(b) Composite paper with ratio k of 40%: about 2.8
(c)比值k为60%的复合纸:2.6左右(c) Composite paper with ratio k of 60%: around 2.6
(d)比值k为80%的复合纸:2.4左右。(d) Composite paper with ratio k of 80%: about 2.4.
尤其是,希望通过使用具有高比值k并包括气密性相当高的牛皮纸的复合纸来形成绝缘层,因为这样的结构在DC和脉冲承受电压方面都表现优异。In particular, it is desirable to form an insulating layer by using composite paper having a high ratio k and including kraft paper having relatively high airtightness, because such a structure is excellent in both DC and pulse withstand voltage.
除上述的ρ分级外,绝缘层可以这样构成,使得在径向位置朝最内的部分移动时,介电常数ε增加了,而且在径向位置朝最外的部分移动时,介电常数ε减小了。该ε分级还可以在绝缘层各处上径向形成。如上所述,通过进行ε分级,本发明的超导电缆变成具有优异DC性能、使得本身适合DC传输的电缆。另一方面,现在,大多数传输线路被构造为AC系统。考虑到未来传输系统从AC向DC的转变,可以想到,在转变成DC传输前,还存在这样一种情况,通过暂时使用本发明的电缆进行AC传输。例如,会存在这样一种情况,其中,虽然传输线路中的电缆的部分已经用本发明的超导电缆替代,但是剩余部分还是由AC传输电缆构成。另一个可以想到的情况是,其中,虽然传输线路中的AC传输电缆被本发明的超导电缆替代,但是连接到该电缆的电力传输装置仍然是用于AC用途。在这种情况下,首先,使用本发明的电缆暂时地进行AC传输,再者,最后,会进行向DC传输的转变。因此,希望本发明的电缆不仅具有优异的DC性能而且还通过考虑AC性能来进行设计。还有,在考虑AC性能时,可以通过使用绝缘层来构造具有优异的对抗脉冲电压例如浪涌电压的性能的电缆,该绝缘层在其径向位置朝最内的部分移动时,介电常数ε增加了,在其径向位置朝最外的部分移动时,介电常数ε减小了。稍后,当前述过渡期结束并开始DC传输时,在过渡期中使用的本发明的电缆可以被用作DC电缆而不做任何改变。换句话说,不仅通过ρ分级而且通过分级ε来构造的本发明的电缆还适合用作AC/DC电缆。In addition to the ρ grading described above, the insulating layer may be constructed such that the dielectric constant ε increases as the radial position moves toward the innermost part, and the dielectric constant ε increases as the radial position moves toward the outermost part. reduced. The ε grading can also be formed radially throughout the insulating layer. As described above, by performing ε classification, the superconducting cable of the present invention becomes a cable having excellent DC performance, making itself suitable for DC transmission. On the other hand, at present, most transmission lines are constructed as AC systems. Considering the transformation of the transmission system from AC to DC in the future, it is conceivable that before the transformation into DC transmission, there is still such a situation that AC transmission is performed by temporarily using the cable of the present invention. For example, there may be a case where, although part of the cable in the transmission line has been replaced with the superconducting cable of the present invention, the remaining part is constituted by the AC transmission cable. Another conceivable situation is one in which, although the AC transmission cable in the transmission line is replaced by the superconducting cable of the present invention, the power transmission device connected to the cable is still for AC use. In this case, first, AC transmission is temporarily performed using the cable of the present invention, and then, finally, a transition to DC transmission will be performed. Therefore, it is desired that the cable of the present invention not only has excellent DC performance but also be designed by considering AC performance. Also, when AC performance is considered, a cable having excellent performance against pulse voltage such as surge voltage can be constructed by using an insulating layer whose dielectric constant when moving toward the innermost part in its radial position ε increases and the permittivity ε decreases as its radial position moves towards the outermost part. Later, when the aforementioned transition period ends and DC transmission starts, the cable of the present invention used in the transition period can be used as a DC cable without any change. In other words, the cables of the invention constructed not only by ρ but also by ε are also suitable for use as AC/DC cables.
通常,上述PPLP(注册商标)具有这样的性能,使得比值k增大时,电阻率ρ增大,介电常数ε减小。因此,在绝缘层以这样一种方式构造时,在径向位置朝最外的部分移动时,使用具有更高比值k的PPLP(注册商标),绝缘层可以具有这样的性能,使得在径向位置朝最外的部分移动时,电阻率ρ增加了,而同时介电常数ε减小了。In general, the above-mentioned PPLP (registered trademark) has properties such that as the ratio k increases, the resistivity ρ increases and the dielectric constant ε decreases. Therefore, when the insulating layer is constructed in such a way that when moving toward the outermost part in the radial position, using PPLP (registered trademark) having a higher ratio k, the insulating layer can have such a property that in the radial direction As the position moves toward the outermost portion, the resistivity ρ increases, while at the same time the permittivity ε decreases.
另一方面,牛皮纸通常具有这样的性能,使得在气密性增加时,电阻率ρ增大而且介电常数ε也增大。因此,在只使用牛皮纸时,很难以这样一种方式构造绝缘层,使得在径向位置朝最外的部分移动时,电阻率ρ增大同时介电常数ε减小。因此,在使用牛皮纸时,希望通过与复合纸组合来构造绝缘层。例如,建议牛皮纸层形成在绝缘层的最内的部分处,并且PPLP层形成在牛皮纸的外侧处。在这种情况下,PPLP层具有比牛皮纸层高的电阻率ρ,同时,PPLP层具有比牛皮纸层低的介电常数ε。On the other hand, kraft paper generally has properties such that as the airtightness increases, the resistivity ρ increases and the dielectric constant ε also increases. Therefore, when only kraft paper is used, it is difficult to construct the insulating layer in such a way that the resistivity ρ increases while the dielectric constant ε decreases as the radial position moves toward the outermost portion. Therefore, when using kraft paper, it is desirable to construct an insulating layer by combining it with composite paper. For example, it is suggested that a kraft paper layer is formed at the innermost part of the insulating layer, and a PPLP layer is formed at the outer side of the kraft paper. In this case, the PPLP layer has a higher resistivity p than the kraft paper layer, and at the same time, the PPLP layer has a lower dielectric constant ε than the kraft paper layer.
在上述的绝缘层上提供外超导层。由于具有前述超导导体层,所以外超导层通过使用超导材料形成。要用于外超导层的超导材料可以是与用于形成前述超导导体层的材料相似。外超导层被设置在接地电势。在使用本发明的超导电缆来进行双极传输时,正极电流和负极电流通常具有几乎相同的大小并且相互抵消。因此,用作中性线层的外超导层几乎没有电压施加。然而,在正极和负极之间发生不平衡时,不平衡电流流过外超导层。另外,由于在一极中的异常情况而使得双极传输被转换成单极传输时,因为外超导层被用来充当单极传输的回流线路,与传输电流相当的电流会流过外超导层。考虑到这些情况,在本发明中,外超导层由超导材料形成。希望保护层还充当在外超导层的外周上提供的绝缘层。An outer superconducting layer is provided on the above-mentioned insulating layer. With the aforementioned superconducting conductor layer, the outer superconducting layer is formed by using a superconducting material. The superconducting material to be used for the outer superconducting layer may be similar to that used to form the aforementioned superconducting conductor layer. The outer superconducting layer is set at ground potential. When bipolar transmission is performed using the superconducting cable of the present invention, positive and negative currents generally have almost the same magnitude and cancel each other out. Therefore, almost no voltage is applied to the outer superconducting layer used as a neutral layer. However, when an imbalance occurs between the positive and negative electrodes, an unbalanced current flows through the outer superconducting layer. Also, when bipolar transmission is converted to unipolar transmission due to an anomaly in one pole, a current equivalent to the transmitted current flows through the outer superconducting layer because the outer superconducting layer is used as a return line for unipolar transmission. guide layer. In view of these circumstances, in the present invention, the outer superconducting layer is formed of a superconducting material. It is desirable that the protective layer also acts as an insulating layer provided on the outer periphery of the outer superconducting layer.
另外,在绝缘层的内圆周、外周或两者处都形成有半导体层。尤其是,其可以在超导导体层和绝缘层之间、绝缘层和外超导层之间形成或两者中都形成。在形成内半导体层,其是前者,或外半导体层,其是后者,时,超导导体层或外超导层和绝缘层的接触开始增加。因此,伴随着部分放电等产生的破坏会被抑制。In addition, the semiconductor layer is formed on the inner circumference, the outer circumference, or both of the insulating layer. In particular, it may be formed between the superconducting conductor layer and the insulating layer, between the insulating layer and the outer superconducting layer, or both. Upon formation of the inner semiconducting layer, which is the former, or the outer semiconducting layer, which is the latter, the contact between the superconducting conductor layer or the outer superconducting layer and the insulating layer begins to increase. Therefore, destruction due to partial discharge or the like is suppressed.
制备具有上述结构的两个电缆芯。通过将这两个芯绞合到一起,本发明的超导电缆可以具有这样的结构,其提供用于电缆冷却时的收缩的余量。由于该结构提供了用于收缩的余量,即作为用来吸收热收缩量的结构,例如,该芯可以通过给芯提供松弛部分来进行绞合。例如,松弛部分可以通过以下步骤形成:将芯连同芯之间的隔离物一起绞合,随后在绞合的芯被容纳在热绝缘管中时(或在绞合芯上形成热绝缘管时)将隔离物除去。该隔离物可以由一片例如具有大约5mm厚度的毡形成。建议根据电缆芯的直径适当地改变隔离物的厚度。Two cable cores having the above-mentioned structure were prepared. By twisting these two cores together, the superconducting cable of the present invention can have a structure that provides a margin for contraction when the cable is cooled. Since the structure provides a margin for shrinkage, that is, as a structure for absorbing the amount of heat shrinkage, for example, the core can be twisted by providing the core with slack. For example, the slack may be formed by stranding the cores together with spacers between the cores, then when the stranded cores are housed in a thermally insulating tube (or when a thermally insulating tube is formed on the stranded cores) Remove the spacer. The spacer may be formed from a piece of felt, for example having a thickness of about 5 mm. It is recommended to appropriately change the thickness of the spacer according to the diameter of the cable core.
本发明的超导电缆通过将上述的两个芯绞合到一起并将绞合体容纳在热绝缘管中来构造而成。热绝缘管可以具有这样的结构,其中,例如,双管结构由外管和内管组成,热绝缘管材料被放置在这两个管之间,外管和内管之间的空间被抽成真空。在内管中,被电缆芯的外表面和内管的内表面包围的空间被填充有冷却剂例如液氮,用来冷却电缆芯。空间被用作冷却剂的通道。防腐蚀包覆层通过使用树脂例如聚氯乙烯被提供在热绝缘管的外周上。The superconducting cable of the present invention is constructed by twisting the above-mentioned two cores together and housing the twisted body in a heat insulating tube. The heat insulating pipe may have a structure in which, for example, a double pipe structure consists of an outer pipe and an inner pipe, between which the heat insulating pipe material is placed, and the space between the outer pipe and the inner pipe is evacuated into vacuum. In the inner tube, the space surrounded by the outer surface of the cable core and the inner surface of the inner tube is filled with a coolant such as liquid nitrogen for cooling the cable core. The space is used as a passage for the coolant. An anti-corrosion coating is provided on the outer periphery of the heat insulating pipe by using a resin such as polyvinyl chloride.
希望具有这样的结构,其中,在上述热绝缘管的内管中的冷却剂通道被用作冷却剂的外部通道,以及单独地提供冷却剂的回流通道,因为这样的结构减小了从侵入的热。作为冷却剂的回流通道,可以使用冷却剂循环管。希望具有这样的结构,其中,冷却剂循环管与这两个芯绞合到一起,因为将冷却剂循环管放置在热绝缘管中很容易。为了通过压缩冷却剂循环管而不增加电缆直径,这样设计冷却剂循环管,使得其具有比芯小的直径,使得这两个芯和冷却剂循环管的包络圆可以具有与这两个芯的包络圆相同的直径。上述的冷却剂循环管的数量可以是一个或两个甚至更多。It is desirable to have a structure in which the coolant channel in the inner tube of the above-mentioned thermally insulating tube is used as an external channel for the coolant, and a return channel for the coolant is provided separately, because such a structure reduces damage from intrusion. hot. As a coolant return channel, a coolant circulation pipe can be used. It is desirable to have a structure in which the coolant circulation pipe is twisted together with the two cores because it is easy to place the coolant circulation pipe in the thermal insulation pipe. In order not to increase the cable diameter by compressing the coolant circulation tube, the coolant circulation tube is designed such that it has a smaller diameter than the core so that the two cores and the enveloping circle of the coolant circulation tube can have the same diameter as the two cores The enveloping circle has the same diameter. The number of the above-mentioned coolant circulation pipes can be one or two or even more.
希望前述冷却剂循环管具有膨胀-收缩的性能,使得该管在电缆冷却时收缩。由于该冷却剂循环管具有膨胀-收缩的性能,希望使用例如由金属材料制成的波纹管,该金属材料例如即使在冷却剂温度下仍具有优异强度的不锈钢。在只是两个芯被绞合到一起时,在电缆冷却的同时需要用于收缩的松弛部分。然而,在使用具有膨胀-收缩性能的冷却剂循环管时,冷却剂循环管可以和两个芯绞合到一起而不提供松弛部分。理由是即使在松弛部分得不到保证时(在只有两个芯被绞合到一起时,如上所述,需要收缩用的松弛部分),冷却剂循环管自身的膨胀-收缩性能能吸收收缩量。另外,保护层可以通过螺旋卷绕牛皮纸等被提供在冷却剂循环管的外周上。通过提供保护层,可以防止冷却剂循环管与芯或热绝缘管接触。因此,可以抑制它们的损害和其他问题。It is desirable that the aforementioned coolant circulation tube has expansion-contraction properties such that the tube contracts when the cable cools. Since the coolant circulation pipe has expansion-contraction properties, it is desirable to use, for example, a bellows made of a metal material such as stainless steel which has excellent strength even at the coolant temperature. When just two cores are twisted together, slack is required for shrinkage while the cable cools. However, when using a coolant circulation tube having an expansion-contraction property, the coolant circulation tube may be twisted together with two cores without providing a slack. The reason is that even when the slack cannot be ensured (when only two cores are twisted together, as described above, slack for contraction is required), the expansion-contraction performance of the coolant circulation tube itself can absorb the amount of contraction . In addition, a protective layer may be provided on the outer circumference of the coolant circulation pipe by spirally winding kraft paper or the like. By providing a protective layer, it is possible to prevent the coolant circulation pipe from coming into contact with the core or the heat insulating pipe. Therefore, their damage and other problems can be suppressed.
具有上述结构的本发明的超导电缆通过使用下列布置可以用于单极传输:The superconducting cable of the present invention having the above structure can be used for unipolar transmission by using the following arrangement:
(a)在两个芯中都提供的超导导体层被用作去程线路;以及(a) a superconducting conductor layer provided in both cores is used as an outbound line; and
(b)在两个芯中都提供的外超导层被用作回流线路。(b) The outer superconducting layer provided in both cores is used as a return line.
另外,该电缆通过使用下列布置还可被用于双极传输:Alternatively, the cable can also be used for bipolar transmission by using the following arrangement:
(a)在其中一个芯中提供的超导导体层被用来进行一极的传输;该一极是正极或负极;(a) the layer of superconducting conductor provided in one of the cores is used for the transmission of one pole; the one pole being positive or negative;
(b)在另一个芯中提供的超导体层被用来进行另一极的传输;以及(b) a superconductor layer provided in the other core is used for transmission at the other pole; and
(c)在各个芯中提供的外超导体层被用作中性线路。(c) The outer superconductor layer provided in each core is used as a neutral line.
而且,在进行双极传输的过程中,一个极可以在用于该极的超导导体层中或例如在连接到电缆的DC-AC转换器中经受异常情况。在这种情况下,在该极由于异常需要停止电力传输时,用于其他完好的极的芯可以被用来进行单极传输。尤其是,用于完好的极的芯的超导导体层可以被用作去程线路,相同芯的外超导体层被用作回流线路。在任意一个传输系统中,不管是单极还是双极传输系统,这两个芯的外超导体层被设置为地电势。Also, during bipolar transmission, one pole may experience anomalies in the superconducting conductor layer for that pole or eg in the DC-AC converter connected to the cable. In this case, when the pole needs to stop power transmission due to abnormality, the cores for other intact poles can be used for unipolar transmission. In particular, the superconducting conductor layer of the core for an intact pole can be used as a forward line and the outer superconducting layer of the same core as a return line. In either transmission system, whether unipolar or bipolar, the outer superconductor layers of the two cores are set to ground potential.
本发明的超导电缆通过提供具有如上所述ε分级的绝缘层结构,不仅适用于DC传输而且适用于AC传输。在进行单相AC传输时,可以使用本发明的一个超导电缆。在这种情况下,各个芯的超导导体层可以被用于相的电力传输,而各个芯的外超导层被用作屏蔽层。可选择地,其中一个芯的超导导体层可以被用于相的电力传输,相同芯的外超导层被用作屏蔽层,剩下的芯被用作备用芯。在用于单相AC传输后,在该超导电缆用于DC传输时,该电缆可以用于单极传输或可以用于双极传输。在进行三相AC传输时,制备两个或三个本发明的超导电缆,使得芯的总量变成至少三个。在使用两个电缆时,芯的总量变成四个。因此,建议使用一个芯作为备用芯,剩下的三个芯的超导导体层被用于各相的传输,并且外超导体层被用作屏蔽层。在使用三个电缆时,建议各个电缆的超导导体层被用于各相的传输,并且外超导层被用作屏蔽层。换句话说,建议两个芯被用于一个相的传输。在这些超导电缆用于三相AC传输后用于DC传输时,各个电缆可以被用于单极传输或双极传输。The superconducting cable of the present invention is suitable for not only DC transmission but also AC transmission by providing an insulating layer structure having the ε-gradation as described above. When performing single-phase AC transmission, a superconducting cable of the present invention can be used. In this case, the superconducting conductor layer of each core can be used for phase power transmission, while the outer superconducting layer of each core is used as a shielding layer. Alternatively, the superconducting conductor layer of one core may be used for phase power transfer, the outer superconducting layer of the same core used as a shield, and the remaining core used as a spare. After being used for single-phase AC transmission, when the superconducting cable is used for DC transmission, the cable can be used for unipolar transmission or can be used for bipolar transmission. When performing three-phase AC transmission, two or three superconducting cables of the present invention are prepared so that the total number of cores becomes at least three. When two cables are used, the total number of cores becomes four. Therefore, it is proposed to use one core as a spare core, the superconducting conductor layers of the remaining three cores are used for the transmission of each phase, and the outer superconducting layer is used as a shielding layer. When using three cables, it is recommended that the superconducting conductor layer of each cable is used for the transmission of each phase and that the outer superconducting layer is used as a shielding layer. In other words, it is suggested that two cores are used for the transmission of one phase. When these superconducting cables are used for DC transmission after three-phase AC transmission, each cable can be used for unipolar transmission or bipolar transmission.
发明效果Invention effect
具有上述结构的本发明的超导电缆还具有进一步减小的电缆直径。其还可以用一个电缆来进行双极传输。另外,甚至在其中的一个极产生异常情况时,通过将双极传输转换到单极传输可以进行传输。而且,本发明的超导电缆具有冷却剂循环管而没有增加电缆的直径。这样的结构可以减小从侵入的热量。The superconducting cable of the present invention having the above structure also has a further reduced cable diameter. It is also possible to use one cable for bipolar transmission. In addition, even when an abnormality occurs in one of the poles, transmission can be performed by switching bipolar transmission to unipolar transmission. Also, the superconducting cable of the present invention has coolant circulation pipes without increasing the diameter of the cable. Such a structure can reduce the heat from intrusion.
另外,在本发明的超导电缆中设有的芯中,通过在绝缘层中进行ρ分级,可以使得DC电场的厚度方向的分布在绝缘层各处平整。结果,承受DC电压的性能提高了,因此,绝缘层的厚度可以被减小。所以,电缆直径可以被进一步减小。除ρ分级外,通过在超导导体层附近提供具有高ε的绝缘层,除上述的承受DC电压的性能的提高外,承受脉冲电压的性能还可以被提高。尤其是,通过以这样的方式来构造绝缘层,该方式使得在其径向位置朝最内的部分移动时,ε增加,而在径向位置朝最外的部分移动时,ε减小,本发明的超导电缆可以成为也具有优异AC电性能的电缆。因此,本发明的超导电缆不仅适用于DC传输和AC传输而且还适合于在传输系统在AC和DC之间转换的过渡期间使用。In addition, in the core provided in the superconducting cable of the present invention, by performing ρ grading in the insulating layer, the distribution of the thickness direction of the DC electric field can be made even throughout the insulating layer. As a result, the performance of withstanding DC voltage is improved, and therefore, the thickness of the insulating layer can be reduced. Therefore, the cable diameter can be further reduced. In addition to p grading, by providing an insulating layer having a high ε near the superconducting conductor layer, the pulse voltage withstand performance can be improved in addition to the above-mentioned improvement of the DC voltage withstand performance. In particular, by configuring the insulating layer in such a way that ε increases as its radial position moves toward the innermost part and ε decreases as it moves in the radial position toward the outermost part, the present The invented superconducting cable can be a cable that also has excellent AC electrical properties. Therefore, the superconducting cable of the present invention is suitable not only for DC transmission and AC transmission but also for use during the transition of the transmission system between AC and DC.
最佳实施方式best practice
以下解释本发明的实施例。Embodiments of the present invention are explained below.
实例1Example 1
图1(A)为结构示意图,示出了通过使用本发明的超导电缆来构造用于单极传输的DC传输线路的状态。图1(B)是横截面示意图,示出了在超导电缆中的电缆芯之间设置隔离物的状态。在以下附图中,相同的附图标记表示相同的元件。超导电缆1具有这样的结构,其中,两个电缆芯2绞合到一起并容纳在热绝缘管8中,每个电缆芯2具有均由超导材料制成的超导导体层4和外超导层6。每个电缆芯2从中心开始按序具有成形器3、超导导体层4、绝缘层5、外超导层6和保护层7。FIG. 1(A) is a schematic structural view showing a state in which a DC transmission line for unipolar transmission is constructed by using the superconducting cable of the present invention. FIG. 1(B) is a schematic cross-sectional view showing a state where spacers are provided between cable cores in a superconducting cable. In the following drawings, the same reference numerals denote the same elements. The
在该实例中,超导导体层4和外超导层6通过使用Bi-2223基超导带型线(Ag-Mn涂覆的带型线)形成。超导导体层4通过在成形器3的外周上螺旋地缠绕前述超导带型线而构成。用上述同样的方法在绝缘层5上构造外超导层6。通过绞合多个铜线形成成形器3。由绝缘纸制成的缓冲层(未示出)在成形器3和超导导体层4之间形成。在超导导体层4的外周上,通过螺旋地卷绕半合成绝缘纸(PPLP:注册商标,由Sumitomo Electric Industries,Ltd.生产)构成绝缘层5。提供绝缘层5以便在超导导体层4和地之间的绝缘具有所需的绝缘强度。在外超导层6的外周上通过螺旋地卷绕绝缘纸来提供保护层7。In this example, the
在该实例中,制备两个电缆芯2,每个电缆芯具有成形器3、超导导体层4、绝缘层5、外超导层6以及保护层7。这两个电缆芯2被绞合到一起并具有松弛部分,使得具有热收缩所需的收缩余量,并将电缆芯2容纳在热绝缘管8中。在该实例中,热绝缘管8由波纹不锈钢管形成。如图4中所示的传统超导电缆,该热绝缘管8具有由外管8a和内管8b组成的双管结构,在这两个管之间放置了多层的热绝缘材料(未示出)。双管之间的空隙被抽成真空。因此,热绝缘管8具有抽空了的多层热绝缘结构。被内管8b和这两个电缆芯2包围的空隙9形成用于冷却剂例如液氮的通道。由聚氯乙烯制成的防腐蚀包覆层(未示出)被形成在热绝缘管8的外周上。另外,这两个电缆芯2被绞合到一起并具有松弛部分,该松弛部分通过在图1(B)中所示的在芯2之间设置隔离物90然后在绞合体被容纳在热绝缘管8中的同时(或者在在绞合体上形成热绝缘管8的同时)移去该隔离物90而形成。在该实例中,隔离物90由一片具有5mm厚、具有矩形横截面的毡形成。In this example, two
具有上述结构的本发明的超导电缆1可以被用于DC传输,更具体地双极传输或者是单极传输。首先,解释进行单极传输的情况。为进行单极传输,建议构造如图1(A)所示的传输线路。尤其是,在图1(A)右侧的芯2中提供的超导导体层4的一端被通过引线20和引线21连接到DC-AC转换器10,该转换器被连接到AC系统(未示出)。相同超导导体层4的另一端被通过引线22连接到DC-AC转换器11,该转换器被连接到AC系统(未示出)。类似地,在图1(A)左侧的芯2中提供的超导导体层4的一端通过引线23和引线21被连接到DC-AC转换器10。相同超导导体层4的另一端通过引线22被连接到DC-AC转换器11。另一方面,这两个芯2的外超导层6通过引线24、引线25和引线26被连接到DC-AC转换器10,并通过引线27连接到DC-AC转换器11。在该实例中,引线26接地。该接地将外超导层6设置在地电势。在该实例中,使用单端接地。然而,也可以通过将引线27接地使用两端接地。引线20到27利用DC-AC转换器10和11将超导导体层4和外超导层6电连接。The
通过将在两个芯2中提供的超导导体层4作为携带单极电流的去程线路和通过将在两个芯2中提供的外超导层6作为携带返回电流的回流线路,设有前述结构的DC传输线路可以被用来进行单极传输。另外,通过将这两个电缆芯以形成松弛部分的方式绞合到一起来形成超导电缆。因此,该松弛部分可以吸收在冷却时的热收缩的量。而且,超导电缆1具有比传统电缆数量少的芯。因此,该电缆可以减小电缆直径。By providing the
实例2Example 2
接着,解释进行双极传输的情况。图2(A)示出的是通过使用本发明的超导电缆来构造用于双极传输的DC传输线路的状态的结构示意图。(B)是示出通过使用其中一个芯的超导电缆层和外超导层来构造用于单极传输的DC传输线路的状态的结构示意图。在实例1中使用的超导电缆1也可以被用于双极传输。为进行双极传输,建议构造如图2(A)所示的传输线路。更具体地,在其中的一个芯2(图2(A)中,右边的芯2)中提供的超导导体层4的一端通过引线30被连接到DC-AC转换器12,该转换器连接到AC系统(未示出)。相同超导导体层4的另一端通过引线31被连接到DC-AC转换器13,该转换器连接到AC系统(未示出)。类似地,在相同芯2中提供的外超导层6的一端通过引线32和引线33被连接到DC-AC转换器12。相同外超导层6的另一端通过引线34被连接到DC-AC转换器13。另一方面,在另一个芯2(图2(A)中,左边的芯2)中提供的超导导体层4的一端通过引线35被连接到DC-AC转换器14,该转换器被连接到AC系统(未示出)。相同超导导体层4的另一端通过引线36被连接到DC-AC转换器15,该转换器被连接到AC系统(未示出)。类似地,在相同芯2中提供的外超导层6的一端通过引线37和引线33被连接到DC-AC转换器14。相同外超导层6的另一端通过引线34被连接到DC-AC转换器15。引线33接地。该接地将外超导层6置于地电势。在该实例中,通过只将引线33接地来使用单端接地。然而,也可以通过将引线34接地来使用两端接地。引线30到37利用DC-AC转换器12、13、14和15将超导导体层4和外超导层6电连接。Next, the case where bipolar transmission is performed is explained. FIG. 2(A) is a schematic structural view showing the state of constructing a DC transmission line for bipolar transmission by using the superconducting cable of the present invention. (B) is a structural schematic diagram showing a state in which a DC transmission line for unipolar transmission is constructed by using a superconducting cable layer of one of the cores and an outer superconducting layer. The
上述结构在正向上组成了正极电路,该正极电路由DC-AC转换器13、引线31、图2(A)右边的芯2的超导导体层4、引线30、DC-AC转换器12、引线33、引线32、外超导层6和引线34构成。另一方面,该结构在正向上还组成了负极电路,该负极电路由DC-AC转换器15、引线36、图2(A)左边的芯2的超导导体层4、引线35、DC-AC转换器14、引线33、引线37、外超导层6和引线34构成。在上述正向上的示出的正极或负极电路能进行双极传输。在该结构中,两个芯2的外超导层6不仅用作中性线层而且还用来循环正极和负极之间的不平衡电流或异常电流。在该实例中,在图2(A),右边的芯用于正极,左边的芯用于负极。然而,当然,该使用可以颠倒。The above-mentioned structure constitutes a positive pole circuit in the positive direction, and the positive pole circuit consists of a DC-
即使在其中的一个极由于用于该极的超导导体层或DC-AC转换器中的异常引起停止使用其超导导体层的电力传输,通过使用用于完好的极的超导导体层可以进行单极传输。例如,在图2(A)中,在左边的芯2、DC-AC转换器14和15等产生异常情况时,即负极产生异常情况时,使用图2(A)中左边的芯2的传输停止了。在这种情况下,如图2(B)所示,通过使用另一个芯2(在图2(A)中,右边的芯2)形成用于单极传输的传输线路。更具体地,通过将芯2的超导导体层4用作去程线路和将相同芯的外超导层6用作回流线路,可以进行单极传输。在该实例中,解释负极产生异常的情况。然而,在正极产生异常时,也采取相似的措施。在这种情况下,通过将另一个芯2(在图2(A)中,左边的芯2)的超导导体层4用作去程线路和将相同芯的外超导层6用作回流线路可以进行单极传输。Even if one of the poles stops power transmission using its superconducting conductor layer due to an abnormality in the superconducting conductor layer for that pole or in the DC-AC converter, by using the superconducting conductor layer for the intact pole it is possible for unipolar transmission. For example, in FIG. 2(A), when abnormal conditions occur in the
如上面所解释的,本发明的超导电缆通过使用一个电缆可以用于双极传输和单极传输。尤其是,指定在一个电缆中具有的电缆芯的数量为两个。因此,与具有三个芯的结构相比,电缆直径可以进一步被减小。As explained above, the superconducting cable of the present invention can be used for bipolar transmission and monopolar transmission by using one cable. In particular, it is specified that the number of cable cores to have in one cable is two. Therefore, the cable diameter can be further reduced compared to a structure with three cores.
如先前所描述的,为进行DC传输,在绝缘层5由ρ分级构成,使得在径向位置朝绝缘层的最内的部分移动时,电阻率减小,而在径向位置朝最外的部分移动时,电阻率增加,可以使得DC电场的分布在绝缘层中在厚度方向上平整。因此,绝缘层的厚度可以进一步被减小。通过使用不同组的PPLP(注册商标)可以改变电阻率,每个不同的组具有不同的比值k。在比值k增加时,电阻率趋向于增加。另外,在绝缘层5在超导导体层4的附近被提供有高ε层时,除改进承受DC电压性能外还可以改进承受脉冲电压的性能。高ε层例如可以通过使用具有低比值k的PPLP(注册商标)形成。在这种情况下,高ε层也就变成了低ρ层。而且,除上述的ρ分级外,当以这样的方式形成绝缘层5时,以至于在径向位置朝最内的部分移动时,介电常数ε增加,而在径向位置朝最外的部分移动时,介电常数ε减小,绝缘层还具有优异的AC性能。因此,超导电缆1还适用于AC传输。例如,通过使用不同组的PPLP(注册商标),每个不同的组具有不同的比值k。如下,绝缘层可以形成为具有三个不同级别的电阻率和介电常数。建议下列三层按下列顺序从里到外设置(每个X和Y代表常数):As previously described, for DC transmission, the insulating
低ρ层:比值(k):60%,电阻率(ρ)(20℃):XΩ·cm,介电常数(ε):Y;Low ρ layer: ratio (k): 60%, resistivity (ρ) (20°C): XΩ cm, dielectric constant (ε): Y;
中ρ层:比值(k):70%,电阻率(ρ)(20℃):大约1.2XΩ·cm,介电常数(ε):大约0.95Y;以及Middle ρ layer: ratio (k): 70%, resistivity (ρ) (20°C): about 1.2XΩ·cm, dielectric constant (ε): about 0.95Y; and
高ρ层:比值(k):80%,电阻率(ρ)(20℃):大约1.4XΩ·cm,介电常数(ε):大约0.9Y。High ρ layer: Ratio (k): 80%, resistivity (ρ) (20°C): about 1.4XΩ·cm, dielectric constant (ε): about 0.9Y.
在使用超导电缆1进行三相AC传输时,建议使用两个或三个超导电缆1。在使用两个电缆1时,建议在两个电缆1的四个芯2中,一个芯2被用作备用芯,剩下的三个芯2的超导导体层4被用于各个相的传输,而这三个芯2的外超导层6被用作屏蔽层。在使用三个电缆1时,各个电缆1被用于各个相的传输。更具体地,在每个电缆1中提供的两个芯2被用于一相的传输。在这种情况下,在每个电缆1中提供的这两个芯2的超导导体层4被用于相应相的传输,在这些超导导体层4的外侧处提供的外超导层6被用作屏蔽层。在超导电缆1被用于进行单相AC传输时,建议制备一个超导电缆1,将各个芯2的超导导体层4用于相同相的传输,将在这些超导层4的外侧处提供的外超导层6用作屏蔽层。When using
在被用于进行上述的AC传输后,超导电缆1可以被用于进行DC传输,例如上述的单极传输和双极传输。如上所述,具有由ρ分级和ε分级构成的绝缘层的本发明的超导电缆适合于用作DC/AC电缆。涉及的ρ分级和ε分级的内容还被应用于下述的实例3中。After being used for the above-mentioned AC transmission, the
实例3Example 3
接着,给出既提供有冷却剂的外部通道又提供有冷却剂回流通道的结构的解释。图3示出的是本发明的超导电缆的横截面示意图,该超导电缆通过将两个电缆芯和冷却剂循环管绞合到一起而形成。在上述的实例1和2中,给出了其中热绝缘管的内管的内侧被用作冷却剂通道的结构的解释。然而,如图3中所示,冷却剂循环管40可以被单独提供,使得内管中的空隙9可以用作冷却剂的外部通道,使得冷却剂循环管40的内部可以用作冷却剂的回流通道。在如上所述提供冷却剂的外部通道和回流通道时,可以减小侵入的热量。Next, an explanation is given of a structure provided with both the coolant external passage and the coolant return passage. Fig. 3 shows a schematic cross-sectional view of a superconducting cable of the present invention, which is formed by twisting two cable cores and a coolant circulation tube together. In the above-mentioned Examples 1 and 2, an explanation was given of the structure in which the inner side of the inner pipe of the heat insulating pipe is used as the coolant passage. However, as shown in FIG. 3, the
在该实例中,制备两个冷却剂循环管40以形成这样的结构,其中两个电缆芯2和两个冷却剂循环管40被绞合到一起。尤其是,在该实例中,使用由不锈钢制成的波纹管作为冷却剂循环管40。在使用柔性管如波纹管时,冷却剂循环管本身的膨胀-收缩性能可以吸收在电缆冷却时的收缩量。因此,在与两个电缆芯2绞合到一起时,以不形成前述的收缩用的松弛部分的方式来绞合冷却剂循环管40。In this example, two
设计冷却剂循环管40以具有比电缆芯2小的直径。另外,如图3所示,两个冷却剂循环管40和两个芯2的包络圆(图3中用虚线画出的圆)被设计为具有与这两个芯2的包络圆相同的直径。因此,即使除这两个电缆芯2外还提供有冷却剂循环管40时,该超导电缆具有的电缆直径也不大于在实例1和2所示的没有冷却剂循环管40的超导电缆1的直径。在该实例中,使用两个冷却剂循环管40。然而,冷却剂循环管的数量可以是一个或三个甚至更多。然而,必须选择冷却剂循环管的大小使得冷却剂循环管或多个冷却剂循环管和两个电缆芯的包络圆可以具有与这两个芯的包络圆相同的直径。The
工业实用性Industrial Applicability
本发明的超导电缆适合用于进行电力传输的电气线路。尤其是,本发明的超导电缆不仅适合用于传输DC电力的装置而且适合用于在将传输系统从AC转换到DC的过渡时期传输AC电力的装置。而且,适合在通过使用上述的本发明的超导电缆进行DC传输的同时进行本发明的DC传输系统。The superconducting cable of the present invention is suitable for use in electric lines for power transmission. In particular, the superconducting cable of the present invention is suitable not only for a device for transmitting DC power but also for a device for transmitting AC power during the transition period of converting the transmission system from AC to DC. Also, it is suitable to perform the DC transmission system of the present invention while performing DC transmission by using the superconducting cable of the present invention described above.
附图说明Description of drawings
图1(A)为结构示意图,示出了通过使用本发明的超导电缆来构造DC传输线路的状态,(B)是横截面示意图,示出了在超导电缆中的电缆芯之间设置隔离物的状态。Fig. 1 (A) is a structural schematic diagram showing the state of constructing a DC transmission line by using the superconducting cable of the present invention, (B) is a cross-sectional schematic diagram showing a superconducting cable arranged between cable cores The state of the isolate.
图2(A)示出的是通过使用本发明的超导电缆来构造用于双极传输的DC传输线路的状态的结构示意图,(B)示出的是通过使用其中一个芯的超导导体层和外超导层来构造用于单极传输的DC传输线路的状态的结构示意图。What Fig. 2 (A) shows is to construct the state of the DC transmission line for bipolar transmission by using the superconducting cable of the present invention, (B) shows the superconducting conductor by using one of the cores Layer and outer superconducting layer to construct a state-of-the-art DC transmission line for unipolar transmission.
图3示出的是本发明的超导电缆的横截面示意图,该超导电缆通过将两个电缆芯和冷却剂循环管绞合到一起而形成。Fig. 3 shows a schematic cross-sectional view of a superconducting cable of the present invention, which is formed by twisting two cable cores and a coolant circulation tube together.
图4是用于三相AC的三芯绞合型超导电缆的横截面图。Fig. 4 is a cross-sectional view of a three-core twisted type superconducting cable for three-phase AC.
附图标记解释Explanation of reference signs
1:超导电缆;2:电缆芯;3:成形器;4:超导导体层;5:绝缘层;6:外超导层;7:保护层;8:热绝缘管;8a:外管;8b:内管;9:空隙;10-15:DC-AC转换器;20-27,30-37:引线;40:冷却剂循环管;90:隔离物;100:三相AC用的超导电缆;101:热绝缘管;101a:外管;101b:内管;102:电缆芯;103:空隙;104:防腐蚀包覆层;200:成形器;201:超导导体层;202:绝缘层;203:超导屏蔽层;204:保护层。1: superconducting cable; 2: cable core; 3: former; 4: superconducting conductor layer; 5: insulating layer; 6: outer superconducting layer; 7: protective layer; 8: thermal insulation tube; 8a: outer tube ;8b: Inner tube; 9: Gap; 10-15: DC-AC converter; 20-27, 30-37: Lead wire; 40: Coolant circulation tube; 90: Spacer; Conductive cable; 101: thermal insulation tube; 101a: outer tube; 101b: inner tube; 102: cable core; 103: void; 104: anti-corrosion coating; 200: former; 201: superconducting conductor layer; 202: Insulation layer; 203: superconducting shielding layer; 204: protective layer.
Claims (9)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005072046A JP4604775B2 (en) | 2004-05-21 | 2005-03-14 | Superconducting cable |
JP072046/2005 | 2005-03-14 | ||
PCT/JP2005/023179 WO2006098068A1 (en) | 2005-03-14 | 2005-12-16 | Superconducting cable |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101142637A CN101142637A (en) | 2008-03-12 |
CN101142637B true CN101142637B (en) | 2010-06-16 |
Family
ID=36991425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005800491178A Expired - Fee Related CN101142637B (en) | 2005-03-14 | 2005-12-16 | superconducting cable |
Country Status (9)
Country | Link |
---|---|
US (1) | US7943852B2 (en) |
EP (1) | EP1860666A4 (en) |
KR (1) | KR101118415B1 (en) |
CN (1) | CN101142637B (en) |
CA (1) | CA2598343A1 (en) |
MX (1) | MX2007011075A (en) |
NO (1) | NO20075177L (en) |
RU (1) | RU2007134217A (en) |
WO (1) | WO2006098068A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007287388A (en) * | 2006-04-13 | 2007-11-01 | Sumitomo Electric Ind Ltd | Superconducting cable core and superconducting cable |
US8279030B2 (en) * | 2008-09-27 | 2012-10-02 | Magnetic-Electrostatic Confinement (Mec) Corporation | Method and apparatus for electrical, mechanical and thermal isolation of superconductive magnets |
US9006146B2 (en) | 2010-05-10 | 2015-04-14 | Furukawa Electric Co., Ltd. | Superconducting cable |
JP5674961B2 (en) * | 2010-12-15 | 2015-02-25 | エービービー テクノロジー アーゲー | High voltage electric cable |
MY166183A (en) * | 2011-07-12 | 2018-06-07 | Rio Tinto Alcan Int Ltd | Aluminium smelter comprising electrical conductors made from |
AU2011250865A1 (en) * | 2011-08-15 | 2013-03-07 | Saminco Inc. | DC trailing cable system for tethered mining vehicles |
WO2013071945A1 (en) | 2011-11-14 | 2013-05-23 | Abb Research Ltd | A solid direct current (dc) transmission system comprising a laminated insulation layer and method of manufacturing |
CA2856751C (en) | 2011-11-25 | 2016-04-05 | Abb Research Ltd | A direct current (dc) transmission system comprising a thickness controlled laminated insulation layer and method of manufacturing |
JP2013140764A (en) * | 2011-12-06 | 2013-07-18 | Sumitomo Electric Ind Ltd | Superconducting cable, superconducting cable line, method for laying superconducting cable, and method for operating superconducting cable line |
DK2634779T3 (en) * | 2012-03-01 | 2017-10-02 | Nexans | System with a three-phase superconducting electrical transfer element |
DE102015209432A1 (en) * | 2015-05-22 | 2016-11-24 | Siemens Aktiengesellschaft | Device for DC transmission and cooling method |
CN104966557B (en) * | 2015-07-06 | 2016-06-29 | 国网山东省电力公司烟台供电公司 | A kind of cable of the heat screen cover with flexibility demarcation strip |
CN108318795B (en) * | 2018-02-01 | 2020-07-31 | 中国科学院合肥物质科学研究院 | Processing method of large superconducting magnet short sample high-voltage test electrode |
WO2021214588A1 (en) | 2020-04-21 | 2021-10-28 | Janssen Biotech, Inc. | Anti-tnf alpha agent for treating coronavirus infections |
WO2021262319A2 (en) * | 2020-05-07 | 2021-12-30 | Massachusetts Institute Of Technology | Cabling method of superconducting flat wires |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1366310A (en) * | 2001-01-15 | 2002-08-28 | 住友电气工业株式会社 | Method of making superconducting cable |
CN1489769A (en) * | 2001-11-02 | 2004-04-14 | ס�ѵ�����ҵ��ʽ���� | Superconducting cables and superconducting cable lines |
CN1518009A (en) * | 2003-01-23 | 2004-08-04 | 住友电气工业株式会社 | superconducting cable |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2895507B2 (en) | 1989-05-12 | 1999-05-24 | 古河電気工業株式会社 | Superconducting cable |
US6985761B2 (en) * | 2000-08-14 | 2006-01-10 | Pirelli S.P.A. | Superconducting cable |
JP4676095B2 (en) * | 2001-07-12 | 2011-04-27 | 古河電気工業株式会社 | Superconducting cable |
JP2003087651A (en) | 2001-09-11 | 2003-03-20 | Hitachi Ltd | Imaging device |
JP3877057B2 (en) * | 2001-12-18 | 2007-02-07 | 住友電気工業株式会社 | High temperature superconducting cable |
JP4482851B2 (en) * | 2001-12-18 | 2010-06-16 | 住友電気工業株式会社 | DC superconducting cable |
-
2005
- 2005-12-16 CA CA002598343A patent/CA2598343A1/en not_active Abandoned
- 2005-12-16 MX MX2007011075A patent/MX2007011075A/en not_active Application Discontinuation
- 2005-12-16 EP EP05816627A patent/EP1860666A4/en not_active Withdrawn
- 2005-12-16 CN CN2005800491178A patent/CN101142637B/en not_active Expired - Fee Related
- 2005-12-16 RU RU2007134217/09A patent/RU2007134217A/en not_active Application Discontinuation
- 2005-12-16 KR KR1020077020919A patent/KR101118415B1/en not_active Expired - Fee Related
- 2005-12-16 US US11/883,068 patent/US7943852B2/en not_active Expired - Fee Related
- 2005-12-16 WO PCT/JP2005/023179 patent/WO2006098068A1/en active Application Filing
-
2007
- 2007-10-10 NO NO20075177A patent/NO20075177L/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1366310A (en) * | 2001-01-15 | 2002-08-28 | 住友电气工业株式会社 | Method of making superconducting cable |
CN1489769A (en) * | 2001-11-02 | 2004-04-14 | ס�ѵ�����ҵ��ʽ���� | Superconducting cables and superconducting cable lines |
CN1518009A (en) * | 2003-01-23 | 2004-08-04 | 住友电气工业株式会社 | superconducting cable |
Non-Patent Citations (1)
Title |
---|
JP平2-299108A 1990.12.11 |
Also Published As
Publication number | Publication date |
---|---|
US20080164048A1 (en) | 2008-07-10 |
EP1860666A4 (en) | 2012-02-29 |
RU2007134217A (en) | 2009-03-20 |
KR101118415B1 (en) | 2012-03-07 |
WO2006098068A1 (en) | 2006-09-21 |
HK1115222A1 (en) | 2008-11-21 |
CA2598343A1 (en) | 2006-09-21 |
NO20075177L (en) | 2007-10-10 |
MX2007011075A (en) | 2007-11-07 |
CN101142637A (en) | 2008-03-12 |
EP1860666A1 (en) | 2007-11-28 |
KR20070112170A (en) | 2007-11-22 |
US7943852B2 (en) | 2011-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4300517B2 (en) | Superconducting cable | |
CN101142637B (en) | superconducting cable | |
US7633014B2 (en) | Superconductor cable | |
JP6399674B2 (en) | Superconducting cable | |
KR100874605B1 (en) | Dc superconducting cable | |
JP2018530853A (en) | Superconducting wire | |
CA2560867C (en) | A system for transmitting current including magnetically decoupled superconducting conductors | |
CN110462756A (en) | Three-phase coaxial superconducting cable | |
CN101840775A (en) | Current limiter | |
CN101142636B (en) | Superconductive cable and DC power transmission using the superconductive cable | |
JP4604775B2 (en) | Superconducting cable | |
JP4716248B2 (en) | Superconducting cable | |
JP5423692B2 (en) | Superconducting cable | |
JP5252323B2 (en) | Room-temperature insulated superconducting cable and manufacturing method thereof | |
HK1115222B (en) | Superconducting cable | |
JP4716164B2 (en) | Superconducting cable | |
JP2000067663A (en) | Superconducting conductor | |
WO2007116519A1 (en) | Superconducting cable | |
HK1115223B (en) | Superconductive cable and dc transmission system incoporating the superconductive cable | |
CN116110656A (en) | Fault current limiting type superconductive charging cable | |
CN111584150A (en) | A CICC conductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1115222 Country of ref document: HK |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1115222 Country of ref document: HK |
|
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100616 Termination date: 20121216 |