[go: up one dir, main page]

EP2718917B1 - Rauchwarnmelder und verfahren zu dessen betrieb - Google Patents

Rauchwarnmelder und verfahren zu dessen betrieb Download PDF

Info

Publication number
EP2718917B1
EP2718917B1 EP12718918.1A EP12718918A EP2718917B1 EP 2718917 B1 EP2718917 B1 EP 2718917B1 EP 12718918 A EP12718918 A EP 12718918A EP 2718917 B1 EP2718917 B1 EP 2718917B1
Authority
EP
European Patent Office
Prior art keywords
light
frequency
time
measurement
receiver unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12718918.1A
Other languages
English (en)
French (fr)
Other versions
EP2718917A1 (de
Inventor
Gerhard Röpke
Gerhard Niederfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ista International GmbH
Job Lizenz GmbH and Co KG
Original Assignee
Ista International GmbH
Job Lizenz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ista International GmbH, Job Lizenz GmbH and Co KG filed Critical Ista International GmbH
Publication of EP2718917A1 publication Critical patent/EP2718917A1/de
Application granted granted Critical
Publication of EP2718917B1 publication Critical patent/EP2718917B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/185Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system

Definitions

  • the invention relates to a method for operating a smoke detector with at least one light emitting unit and at least one light receiver unit, wherein the light receiver unit receives from the light emitting unit and emitted in at least one light measuring section scattered / reflected light, wherein the light measuring path at least partially outside of the components of the Smoke alarm receiver receiving housing is arranged.
  • the invention further relates to a smoke detector with at least one light emitting unit and at least one light receiver unit, wherein the light receiver unit is adapted to receive from the light emitting unit and emitted in at least one light measuring section scattered / reflected light, wherein the at least one light measuring path at least partially outside a the components of the smoke detector receiving housing is arranged.
  • Smoke alarms of this type and methods for operating such smoke detectors are basically known in the art, for example from the publication EP 1 191 496 A1 ,
  • the cited publication discloses a method or a smoke detector in which the temporal profile of the received signal of the light receiver is analyzed by means of a processor in order to conclude on the basis of the time course whether smoke or another foreign body is present in the scattering point ,
  • the publication also mentions the possibility of additionally using an ultrasonic sensor in such a smoke detector in order to be able to monitor an area around the scattering point in addition to the previously mentioned monitoring of the scattering point.
  • this object is achieved by a method of the aforementioned generic type in which an intensity-modulated light is emitted into the light measuring path in at least one measuring step, preferably in repetitive measuring steps from a transmission start time with the light-emitting unit, wherein the frequency of the intensity modulation with the Time after a predetermined modulation function changes and the light receiver unit is tuned to a frequency to be received intensity modulation of light received from the light path so that the tuned receiving frequency changes with an adjustable reception time with the same modulation function and recorded during the frequency tuning a receiver output signal or is formed.
  • the object is also achieved by a smoke detector of the type mentioned in the introduction, in which the light-emitting unit is set up to emit an intensity-modulated light in a measuring step, preferably several measuring steps, starting from a transmission start time whose modulation frequency changes with time after a predetermined modulation function and the light receiver unit can be tuned to a frequency of an intensity modulation of light received from the light measuring path in such a way that the tuned reception frequency changes with the same modulation function after an adjustable reception time.
  • the light receiver unit used is not sensitive to any light signal received from the light measuring path, but is only susceptible to those light signals whose intensity modulation frequency coincides with the reception frequency tuned to the light receiver unit at the moment of reception.
  • a light receiver unit of the type according to the invention preferably only generates an output signal which is different from zero if the currently tuned frequency of the light receiver unit corresponds to the intensity modulation frequency of a receiving light signal, but otherwise no output signal of the receiver is generated.
  • a transmission start time is set in the implementation of the method or in the smoke detector according to the invention and is known and the vote of the light receiver unit to a frequency to be received intensity modulation takes place only from an adjustable reception time, by the time period between be determined in advance of the transmission start time and the reception time, how long the transit time of a receivable light signal between the light emitting unit and light receiver unit may be due to the fixed propagation speed of the light and the fixed geometry of the transmitter and receiver, from which spatial distance between the light emitting unit and the light receiver unit a detectable scattered light signal can be detected.
  • the path of the light emitted from the light emitting unit light signal and the path of the scattered by an object / smoke light signal to the light receiver substantially parallel to each other, which can be achieved by the geometric arrangement of light emitting unit and light receiver unit, as well as the emission direction of the transmitting unit , so gives the distance to the light receiver unit, from the one scattered light signal is receivable, in a simple way out of the context: distance speed of light / 2 * (reception time - start time)
  • Scattered light signals from other distance ranges may, if appropriate, impinge on the light receiver unit, but at this time have no matching to the currently tuned reception frequency intensity modulation and are therefore at least substantially not perceived by the light receiver unit.
  • the invention of the type described above has the advantage that not only a single scattering point at a certain distance from the light receiver unit can be monitored with this method or such a functioning smoke alarm, but basically any distance can be monitored. Accordingly, for each measurement step to be carried out, it is also possible to individually determine in advance the distance at which scattered light is to be sampled.
  • future requirements for smoke detectors may also be met, indicating that during operation of a smoke alarm, it must be ensured that a certain prescribed environment around the smoke alarm is not blocked by objects obstructing safe smoke detection.
  • the light receiver unit is tuned so that it not only outputs a non-zero receiver output signal when the frequency of the intensity modulation of the receiving light exactly matches the currently tuned frequency of the light receiver unit, but already even if the frequency of the intensity modulation of the received light within a frequency bandwidth coincides with the frequency tuned to the light receiver unit.
  • the frequency bandwidth of the light receiver unit is adjustable.
  • a sensitivity of the light receiver unit within a certain preferably adjustable frequency bandwidth that a scattered light signal is received not only if it comes from a defined exactly by the time interval between the transmission start time and reception time spatial distance to the light receiver unit, but also if the light scattering in a spatial interval is formed whose length is defined by the frequency bandwidth and whose distance from the light receiver unit is given by the time difference between the reception time and the transmission start time.
  • a smoke detector or a method of the type according to the invention therefore has the further advantage that not only the monitored distance is adjustable, but also by the adjustable frequency bandwidth, a measuring section can be defined, in which a check for scattered light takes place.
  • the invention thus offers the possibility of creating a virtual measuring chamber located outside the smoke alarm device whose length extension in the light propagation direction or backscattering direction to the light receiver unit is defined by the set frequency bandwidth of the receiver and whose distance from the light receiver unit is defined by the time interval between the transmission start time and the reception time.
  • a reception time can be predefined in advance by an electronics of the smoke alarm device, wherein the distance to the housing of the smoke alarm device is defined by the time difference between the reception time and the transmission start time, from which the light to be detected in the measurement step should be scattered / reflected , Furthermore, the frequency bandwidth of the light receiving unit can be set around the distance to be checked as a function of a desired interval interval defined by the bandwidth.
  • a chosen modulation function ensures that the time derivative of the frequency is not equal to zero at any time of the modulation.
  • a modulation function may preferably be continuous.
  • a light signal is preferably emitted by the light-emitting unit only if an intensity modulation according to the selected function also takes place. The modulation takes place over a predetermined modulation time, so that a pulse-like light signal is emitted in the length of the modulation time. For example, at the beginning of the modulation, a light source in the light-emitting unit, e.g. a laser or LED is turned on and off at the end of the modulation time.
  • a particularly significant advantage of the method according to the invention is that the light receiver unit always provides an output signal of the same type, namely a zero signal except for noise components if no scattered signal reaches the receiver unit from the measurement interval determined by the time interval (between reception time and transmission start time) and frequency bandwidth but a signal is generated which has a first flank, in particular a rising flank, then a plateau region and a following second flank, in particular a falling flank. If necessary.
  • the height of the plateau region can change, for example, as a function of the intensity of the scattering occurring, which has an effect on the overall intensity of the received light signal.
  • the inventive method or a smoke alarm that makes use of this method thus operates essentially with always the same type of received signal, so that in contrast to the prior art of the type described above, no temporal analysis of the course of the received signal is to perform in order draw conclusions about the events in the scattering point from the received signal.
  • the preselection of the parameters it is possible to distinguish between the emergence of scattered light due to a solid object or smoke metrologically by the preselection of the parameters to be set time interval between the transmission start time and reception time or frequency bandwidth, especially in preselection and implementation of the measurement in several measurement steps.
  • a receiving signal will always be detected if this measuring path interval is shifted spatially relative to the receiver between several measuring steps, for example by varying the distance between the starting time and the receiving time. Assuming an even density distribution of smoke within a predetermined interval, if this interval is checked by measurement, a received signal will always be detected by varying the time interval between the transmission start time and the reception time, possibly with only a slightly different altitude.
  • a smoke alarm device If, on the other hand, there is a solid object in the vicinity of a smoke alarm device according to the invention, it generates light scattering only exactly at a very specific distance from the light receiver, in which there is a surface of this object. In spatial areas before or after this concrete distance range, however, no received signal will be detectable, if by appropriate parameter selection of temporal difference between the transmission start time and the time of reception, these areas located in front of and behind the scattering surface are checked for scattered light.
  • An electronics which is connected downstream of the receiver unit to a smoke detector according to the invention, thus can have a much simpler structure than is the case in the prior art, since any temporal analysis of a signal waveform can be omitted.
  • a microprocessor initially mentioned in the prior art can either be dispensed with altogether or, if available for evaluation of the received signal, requires at least no extensive programming for the purpose of detecting different possible time courses in the received signal.
  • a measurement scenario may be provided which tests in several measurement steps whether or not there is smoke at a specific distance to the receiver unit and in a measuring path interval arranged around this distance.
  • Another scenario may be provided for carrying out, if appropriate, a plurality of measuring steps in order to determine whether a disturbing object is arranged in a certain distance range to be selected for the receiver.
  • a series of measuring steps are carried out to check for smoke, in order to perform the actual function of the smoke alarm, whereby in others, e.g. checking for the presence of objects in the immediate vicinity of the smoke detector at longer intervals.
  • this process successively checks the area around the smoke detector at different distances from the light receiver for scattered light. From the determination of whether a light receiver signal is generated in one or more measuring steps can be concluded whether smoke is present in the predetermined distance (if several measurement steps generated a received signal) or if a solid object is present (if only one or very few measurement steps, a received signal was generated).
  • the different light measuring sections define different measuring directions, so that a predetermined range, e.g. a predetermined angle environment can be checked by a smoke detector.
  • a smoke alarm device of the type according to the invention not only has a light-emitting unit and a light-receiver unit, but rather a plurality of such unit pairings.
  • a specific light measuring path is defined by each such pairing.
  • a multiplicity of possible measuring paths may extend in a star shape, in particular in a plane around a smoke alarm.
  • a light-emitting unit which emits light in at least one plane by 360 degrees, with different light receivers being tested for scattered light from different spatial regions or directions.
  • the transmission start time is determined by a higher-level electronics in the smoke detector, which is then the same for all recipients, with the reception times, from which the modulation of the tuned Receiving frequency is performed at the receiver will be the same or different for all existing light receiver.
  • FIG. 1 shows a schematic representation of only the arrangement of a light emitting unit 1 and a light receiver unit 6 of a smoke detector according to the invention, which is not shown in the figure with respect to its other components.
  • the light emitting unit 1 emits a light signal 2 which is modulated in intensity
  • the modulation frequency is not constant in time, but obeys a predefined function, here in this embodiment, for example, a linear function that causes in that the light is initially modulated in intensity with a low frequency at the time the transmission starts, and this modulation frequency increases with increasing time.
  • a predefined function here in this embodiment, for example, a linear function that causes in that the light is initially modulated in intensity with a low frequency at the time the transmission starts, and this modulation frequency increases with increasing time.
  • a predefined function here in this embodiment, for example, a linear function that causes in that the light is initially modulated in intensity with a low frequency at the time the transmission starts, and this modulation frequency increases with increasing time.
  • a predefined function here in this embodiment, for example, a linear function that causes in that the light is initially modulated in intensity with a low frequency at the time the transmission starts, and this modulation frequency increases with increasing time.
  • This light signal 2 then initially propagates over a distance R1 in space until it reaches an assumed obstacle 3, where it is scattered.
  • the light scattering is also carried out in the direction of the light receiver 6, on which the scattered light signal 5 then impinges after bridging the distance R2 between the light receiver 6 and the obstacle 3, which has the same modulation as the originally emitted light signal 2.
  • the light receiver unit 6 tunes the light receiver unit 6 with respect to the possible receivable frequency of the intensity modulation of a scattered light signal 5 with the same modulation function, as was the case with the emission of the light signal 2, which means that a scattered light signal 5 is independent of its formation on the obstacle 3 is received only when the modulation of the receivable frequency of the receiving unit 6 is made at a time TE at a time interval to the emission at the time T0 of the light signal 2, which corresponds to the time that the light needs to bridge the aforementioned distances R1 and R2 ,
  • the FIG. 1 shows here an amplitude modulation signal 7, with which the light transmitter 1 is driven, wherein the frequency of this amplitude signal 7 according to the function 8 changes over time.
  • the same function is used here as function 10 to tune the receiving frequency of the receiver 6, for which this receiver is sensitive only in the environment of a frequency bandwidth.
  • Obstacle 3 determines, in which case, when a scattered light signal from the set Distance to the light receiver 6 impinges on the receiver, a signal 11 is generated, as shown in the figure, otherwise not.
  • the plateau height of the received signal 11 may depend on the one hand on the intensity of the scattering by the obstacle 3 and on the degree of overlap between the currently set at the receiver frequency and the frequency of the received scattered light signal within the possible frequency bandwidth.
  • the shape of the received signal is otherwise always the same and has over time no characteristics specific to smoke or other objects.
  • the plateau is maximum in height and decreases with increasing deviation, until that outside the frequency bandwidth no signal at the receiver with the Present signal waveform is present.
  • FIG. 2 shows in a slight modification to FIG. 1 only a situation in which a plurality of articles 14a, 14b and 14c each contribute to a scattering of light emitted here from the light emitter 12.
  • FIGS. 1 and 2 show that the output signal 11 or 19 always has the same waveform, regardless of the distance at which a scattered light event takes place or by what type of event the scattering takes place, for example by an obstacle 3 or by diffuse smoke.
  • a discrimination between solid objects and smoke preferably takes place by the type of measurement series and the choice of parameters in a measurement series, in particular the individually determined for each measurement step time intervals between the transmission start and the reception time and the frequency bandwidth.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betrieb eines Rauchwarnmelders mit wenigstens einer Lichtsendeeinheit und wenigstens einer Lichtempfängereinheit, wobei die Lichtempfängereinheit von der Lichtsendeeinheit ausgesendetes und in wenigstens einer Licht-Messstrecke gestreutes/reflektiertes Licht empfängt, wobei die Licht-Messstrecke zumindest teilweise außerhalb eines die Komponenten des Rauchwarnmelders aufnehmenden Gehäuses angeordnet ist.
  • Die Erfindung betrifft weiterhin auch einen Rauchwarnmelder mit wenigstens einer Lichtsendeeinheit und wenigstens einer Lichtempfängereinheit, wobei die Lichtempfängereinheit eingerichtet ist, von der Lichtsendeeinheit ausgesendetes und in wenigstens einer Licht-Messstrecke gestreutes/reflektiertes Licht zu empfangen, wobei die wenigstens eine Licht-Messstrecke zumindest teilweise außerhalb eines die Komponenten des Rauchwarnmelders aufnehmenden Gehäuses angeordnet ist.
  • Rauchwarnmelder dieser Art sowie Verfahren zum Betrieb solcher Rauchwarnmelder sind im Stand der Technik grundsätzlich bekannt, beispielsweise aus der Veröffentlichung EP 1 191 496 A1 .
  • Diese Veröffentlichung beschreibt bereits einen Rauchmelder bzw. ein Verfahren der vorgenannten gattungsgemäßen Art, wobei in dieser Veröffentlichung die Problematik adressiert wird, dass im Streupunkt eines solchen Rauchmelders eine Streuung des ausgesendeten Lichtes nicht nur durch Rauch entstehen kann, sondern z.B. auch durch Fremdkörper, wie beispielsweise Leitern, die für Handwerksarbeiten abgestellt werden oder Kisten, die deckenhoch gestapelt werden sowie auch durch Spinnen oder sonstige Insekten, die sich im Umgebungsbereich des Streupunktes befinden.
  • Um diese Problematik auszuräumen, offenbart die genannte Veröffentlichung ein Verfahren bzw. einen Rauchmelder, bei dem mittels eines Prozessors der zeitliche Verlauf des Empfangssignals des Lichtempfängers analysiert wird, um anhand des zeitlichen Verlaufs darauf zu schließen, ob im Streupunkt Rauch oder aber ein anderer Fremdkörper vorliegt.
  • So wird darauf hingewiesen, dass bei vorliegendem Rauch mit zunehmender Zeit eine steigende Intensität des Streulichtsignals zu registrieren ist, wohingegen beim Eindringen eines Fremdkörpers in den Streupunkt im zeitlichen Verlauf eine Sprungfunktion im empfangenen Signal zu detektieren ist, welches nach dem Sprung wieder in ein festes Signal übergeht.
  • Die Veröffentlichung benennt weiterhin die Möglichkeit, zusätzlich in einem solchen Rauchwarnmelder auch einen Ultraschallsensor einzusetzen, um neben der zuvor benannten Überwachung des Streupunktes auch ein Gebiet um den Streupunkt herum überwachen zu können.
  • Nachteilig erweist es sich an diesem zuvor genannten Stand der Technik, dass eine aufwändige, mit einem Mikroprozessor zu realisierende und durch eine Software programmierte Analyse des zeitlichen Verlaufs des Empfangssignals vorgenommen werden muss, um Informationen über das auslösende Ereignis von auftretendem Streulicht zu erzielen bzw. dass für eine um den Streupunkt herum gewünschte Überwachung ein zusätzlicher Sensor in der Art eines Ultraschallsensors eingesetzt werden muss. Diese Maßnahmen gestalten den Rauchwarnmelder dieser Art als technisch aufwändig und kostenintensiv.
  • Es ist somit die Aufgabe der Erfindung, ein alternatives Verfahren bzw. einen alternativen Rauchmelder bereitzustellen, mit dem die Möglichkeit besteht, zum einen zwischen verschiedenen Ereignissen zu unterscheiden, die zu einem Auftreten von Streulicht führen, insbesondere das Auftreten von Rauch innerhalb einer Licht-Messstrecke von Gegenständen zu unterscheiden und darüber hinaus eine kostengünstige Möglichkeit ohne zusätzliche Sensoren zu schaffen, die Umgebung eines Rauchwarnmelders auf störende Gegenstände zu überwachen.
  • Erfindungsgemäß wird diese Aufgabe durch ein Verfahren der eingangs genannten gattungsgemäßen Art gelöst, bei dem weiterhin in wenigstens einem Messschritt, bevorzugt in sich wiederholenden Messschritten ab einer Sendestartzeit mit der Lichtsendeeinheit ein intensitätsmoduliertes Licht in die Lichtmessstrecke ausgesendet wird, wobei die Frequenz der Intensitätsmodulation sich mit der Zeit nach einer vorgegebenen Modulationsfunktion ändert und die Lichtempfängereinheit auf eine zu empfangende Frequenz einer Intensitätsmodulation von aus der Licht-Messstrecke empfangenen Lichts so abgestimmt wird, dass sich ab einer einstellbaren Empfangszeit die abgestimmte Empfangsfrequenz mit derselben Modulationsfunktion ändert und während der Frequenzabstimmung ein Empfängerausgangssignal erfasst bzw. gebildet wird.
  • Gelöst wird die Aufgabe demnach auch weiterhin durch einen Rauchwarnmelder der eingangs genannten gattungsgemäßen Art, bei dem die Lichtsendeeinheit eingerichtet ist in einem Messschritt, bevorzugt mehreren Messschritten jeweils ab einer Sendestartzeit ein intensitätsmoduliertes Licht auszusenden, dessen Modulationsfrequenz sich mit der Zeit nach einer vorgegebenen Modulationsfunktion ändert und die Lichtempfängereinheit auf eine zu empfangende Frequenz einer Intensitätsmodulation von aus der Lichtmessstrecke empfangenen Lichts so abstimmbar ist, dass sich ab einer einstellbaren Empfangszeit die abgestimmte Empfangsfrequenz mit derselben Modulationsfunktion ändert.
  • Ein wesentlicher Kerngedanke der Erfindung ist es hier, dass die eingesetzte Lichtempfängereinheit nicht empfindlich ist für jegliches, aus der Licht-Messstrecke empfangenes Lichtsignal, sondern nur für solche Lichtsignale empfänglich ist, deren Intensitätsmodulationsfrequenz im Augenblick des Empfangs mit der an der Lichtempfängereinheit abgestimmten Empfangsfrequenz übereinstimmt.
  • So erzeugt eine Lichtempfängereinheit der erfindungsgemäßen Art bevorzugterweise nur dann ein Ausgangssignal, welches von Null verschieden ist, wenn die aktuell abgestimmte Frequenz der Lichtempfängereinheit zu der Intensitätsmodulationsfrequenz eines empfangenden Lichtsignals korrespondiert, ansonsten wird hingegen kein Ausgangssignal des Empfängers generiert.
  • Durch die erfindungsgemäße Ausbildung, dass eine Sendestartzeit bei der Durchführung des Verfahrens bzw. in dem erfindungsgemäßen Rauchwarnmelder gesetzt ist bzw. bekannt ist und die Abstimmung der Lichtempfängereinheit auf eine zu empfangende Frequenz einer Intensitätsmodulation erst ab einer einstellbaren Empfangszeit erfolgt, kann durch die zeitliche Dauer zwischen der Sendestartzeit und der Empfangszeit im Voraus bestimmt werden, wie lang die Laufzeit eines empfangbaren Lichtsignals zwischen Lichtsendeeinheit und Lichtempfängereinheit sein darf bzw. aufgrund der festen Ausbreitungsgeschwindigkeit des Lichts und der festen Geometrie von Sender und Empfänger, aus welchem räumlichen Abstand zwischen Lichtsendeeinheit und Lichtempfängereinheit ein detektierbares gestreutes Lichtsignal detektiert werden kann.
  • Liegen in der Lichtmessstrecke der Weg des von der Lichtsendeeinheit ausgesendeten Lichtsignals und der Weg des von einem Gegenstand / von Rauch gestreuten Lichtsignals bis zum Lichtempfänger im Wesentlichen parallel zueinander, was sich durch die geometrische Anordnung von Lichtsendeeinheit und Lichtempfängereinheit, sowie die Abstrahlungsrichtung der Sendeeinheit erzielen lässt, so ergibt sich der Abstand zur Lichtempfängereinheit , aus dem ein gestreutes Lichtsignal empfangbar ist, in einfacher Weise aus dem Zusammenhang : Abstand =Lichtgeschwindigkeit/2 * (Empfangszeit - Startzeit)
  • Nur gestreute Lichtsignale, die diesem Zusammenhang gehorchen, haben zum Zeitpunkt des Empfangs an der Lichtempfangseinheit eine aktuelle Intensitätsmodulationsfrequenz, die mit der aktuell abgestimmten Empfangsfrequenz übereinstimmen und erzeugen demnach ein Empfangssignal.
  • Gestreute Lichtsignale aus anderen Abstandsbereichen können zwar ggfs. auf die Lichtempfängereinheit auftreffen, haben aber zu diesem Zeitpunkt keine zur aktuell abgestimmten Empfangsfrequenz passende Intensitätsmodulation und werden daher von der Lichtempfängereinheit zumindest im Wesentlichen nicht wahrgenommen.
  • In Abhängigkeit der zeitlichen Dauer zwischen Sendestartzeit und Empfangszeit lässt sich somit im Wesentlichen beliebig einstellen, in welchem Abstand zur Lichtempfängereinheit der überwachte Streupunkt des Rauchwarnmelders liegt.
  • So hat die Erfindung der vorbeschriebenen Art den Vorteil, dass mit diesem Verfahren bzw. einem derart funktionierenden Rauchwarnmelder nicht nur ein einziger Streupunkt in einem bestimmten Abstand zu der Lichtempfängereinheit überwachbar ist, sondern grundsätzlich jeder beliebige Abstand überwacht werden kann. Demnach kann für jeden durchzuführenden Messschritt auch individuell im Voraus festgelegt werden, in welchem Abstand auf Streulicht geprobt werden soll.
  • Vorteilhafterweise können demnach mit Hilfe der Erfindung auch gegebenenfalls zukünftige Anforderungen an Rauchwarnmelder erfüllt werden, die besagen, dass während des Betriebs eines Rauchwarnmelders sicher gestellt werden muss, dass eine bestimmte vorgeschriebene Umgebung um den Rauchwarnmelder nicht durch Gegenstände blockiert ist, welche eine sichere Rauchdetektion behindern.
  • Abhängig von in solchen Regularien festgelegten Abständen, die überprüft werden müssen, besteht mit der Erfindung die Möglichkeit, die zeitliche Differenz zwischen Sendestartzeit und Empfangszeit vorzuwählen und somit in genau dem gewünschten Abstand zum Rauchwarnmelder bzw. dessen Empfängereinheit auf Streulicht zu prüfen.
  • In besonders bevorzugter Ausgestaltung der Erfindung kann es vorgesehen sein, dass die Lichtempfängereinheit so abgestimmt wird, dass sie nicht nur dann ein von Null verschiedenes Empfängerausgangssignal ausgibt, wenn die Frequenz der Intensitätsmodulation des empfangenden Lichtes exakt mit der aktuell abgestimmten Frequenz der Lichtempfängereinheit übereinstimmt, sondern bereits auch dann, wenn die Frequenz der Intensitätsmodulation des empfangenen Lichts innerhalb einer Frequenzbandbreite mit der an der Lichtempfängereinheit abgestimmten Frequenz übereinstimmt. Hierbei kann es sodann in einer weiterhin besonders bevorzugten Ausgestaltung vorgesehen sein, dass die Frequenzbandbreite der Lichtempfängereinheit einstellbar ist.
  • So bewirkt eine Empfindlichkeit der Lichtempfängereinheit innerhalb einer bestimmten bevorzugt einstellbaren Frequenzbandbreite, dass ein Streulichtsignal nicht nur dann empfangen wird, wenn es aus einem exakt durch den zeitlichen Abstand zwischen Sendestartzeit und Empfangszeit festgelegten räumlichen Abstand zur Lichtempfängereinheit stammt, sondern auch dann, wenn die Lichtstreuung in einem räumlichen Intervall entsteht, dessen Länge durch die Frequenzbandbreite definiert wird und dessen Abstand zur Lichtempfängereinheit durch die Zeitdifferenz zwischen Empfangszeit und Sendestartzeit gegeben ist.
  • So hat ein Rauchmelder bzw. ein Verfahren der erfindungsgemäßen Art demnach den weiteren Vorteil, dass nicht nur der überwachte Abstand einstellbar ist, sondern auch durch die einstellbare Frequenzbandbreite ein Messstreckenabschnitt definiert werden kann, in welchem eine Überprüfung auf Streulicht stattfindet.
  • Die Erfindung bietet somit die Möglichkeit, eine virtuelle außerhalb des Rauchwarnmelders liegende Messkammer zu schaffen, deren Längenerstreckung in Lichtausbreitungsrichtung bzw. Rückstreurichtung zur Lichtempfängereinheit durch die eingestellte Frequenzbandbreite des Empfängers definiert wird und deren Abstand zur Lichtempfängereinheit durch den zeitlichen Abstand zwischen Sendestartzeit und Empfangszeit definiert ist.
  • Für jeden durchzuführenden Messschritt kann im Voraus von einer Elektronik des Rauchwarnmelders eine Empfangszeit vorgegeben werden, wobei über die Zeitdifferenz zwischen der Empfangszeit und der Sendestartzeit derjenige Abstand zum Gehäuse des Rauchwarnmelders definiert wird, aus welchem das in dem Messschritt zu erfassende Licht gestreut / reflektiert sein soll. Weiterhin kann die Frequenzbandbreite der Lichtempfangseinheit in Abhängigkeit eines gewünschten durch die Bandbreite definierten Abstandsintervalls um den zu überprüfenden Abstand herum eingestellt werden.
  • So besteht z.B. die Möglichkeit, eine Messung in mehreren Messschritten immer in ein- und demselben Messstreckenintervall in einem vorgegebenen Abstand vorzunehmen oder aber zwischen den Messschritten durch Parameteränderung des zeitlichen Abstands zwischen Sendestartzeit und Empfangszeit die Abstandslage des überwachten Messstreckenintervalls zu ändern und/oder durch Änderung der Frequenzbandbreite die Intervalllänge des überwachten Messstreckenbereichs zu ändern.
  • In einer besonders einfachen Ausgestaltung der Erfindung kann es vorgesehen sein, für die Modulationsfunktion bei der Aussendung des intensitätsmodulierten Lichtes eine solche Funktion zu verwenden, gemäß welcher die Frequenz über die Zeit beispielsweise linear geändert wird, z.B. linear steigt oder fällt. In gleicher Weise wird demnach dieselbe Modulationsfunktion auch verwendet, um die empfangbare Frequenz an der Lichtempfängereinheit einzustellen.
  • Selbstverständlich ist es ohne Beschränkung der Allgemeinheit auch möglich, hiervon abweichende Modulationsfunktionen zu verwenden. Bevorzugt stellt eine gewählte Modulationsfunktion sicher, dass zu jeder Zeit der Modulation die zeitliche Ableitung der Frequenz ungleich Null ist. Eine Modulationsfunktion kann bevorzugt stetig sein. Weiterhin wird ein Lichtsignal bevorzugt nur dann von der Lichtsendeeinheit ausgesendet, wenn auch eine Intensitätsmodulation gemäß der gewählten Funktion erfolgt. Die Modulation erfolgt über eine vorbestimmte Modulationszeit, so dass ein pulsartiges Lichtsignal ausgesendet wird in der Länge der Modulationszeit. Beispielsweise kann mit Beginn der Modulation eine Lichtquelle in der Lichtsendeeinheit, z.B. eine Laser- oder Leuchtdiode eingeschaltet und am Ende der Modulationszeit ausgeschaltet werden.
  • Ein besonders wesentlicher Vorteil des erfindungsgemäßen Verfahrens ist es, dass die Lichtempfängereinheit ein immer gleichartiges Ausgangssignal bereitstellt, nämlich entweder gegebenenfalls bis auf Rauschanteile ein Nullsignal, wenn aus dem durch Zeitabstand (zwischen Empfangszeit und Sendestartzeit) und Frequenzbandbreite bestimmten Messstreckenintervall kein gestreutes Signal die Empfängereinheit erreicht oder aber es wird ein Signal erzeugt, welches eine erste Flanke aufweist, insbesondere eine steigende Flanke, sodann einen Plateaubereich und eine folgende zweite Flanke, insbesondere eine fallende Flanke. Ggfs. kann sich hier die Höhe des Plateaubereichs sich ändern, beispielsweise in Abhängigkeit der Stärke der auftretenden Streuung, was sich auf die Gesamtintensität des empfangenen Lichtsignals auswirkt.
  • Das erfindungsgemäße Verfahren bzw. ein Rauchwarnmelder, der sich dieses Verfahren zu Nutze macht, arbeitet somit im Wesentlichen mit immer derselben Art von Empfangssignal, so dass im Gegensatz zum Stand der Technik der vorbeschriebenen Art keinerlei zeitliche Analyse des Verlaufs des Empfangssignals durchzuführen ist, um aus dem Empfangssignal Rückschlüsse zu ziehen auf die Ereignisse im Streupunkt.
  • Vielmehr wird bei der Erfindung durch vorherige Parameterfestlegung der Streupunkt bzw. ein Messstreckenintervall, welches auf Streuung überwacht wird sowie dessen Abstand zum Empfänger definiert, so dass in Kenntnis dieser vorgewählten Parameter das Auftreten oder Nichtauftreten eines Empfangssignals, insbesondere der vorbeschriebenen Art, ausgewertet wird.
  • Hierbei besteht beispielsweise die Möglichkeit, zwischen dem Entstehen von Streulicht aufgrund eines festen Gegenstandes oder aber durch Rauch messtechnisch durch die Vorauswahl der einzustellenden Parameter also zeitlichem Abstand zwischen Sendestartzeit und Empfangszeit bzw. Frequenzbandbreite zu unterscheiden, insbesondere bei Vorauswahl und Durchführung der Messung in mehreren Messschritten.
  • So ist es beispielsweise typisch für das Auftreten von Rauch, dass Rauch nicht nur singulär an einem bestimmten konkreten Ort auftritt, sondern in einem örtlichen Bereich. Es wird also bei der Durchführung mehrerer, aufeinanderfolgender Messschritte in einem überwachten Messstreckenintervall immer ein Empfangssignal festzustellen sein, wenn dieses Messstreckenintervall beispielsweise durch Variation des Abstands zwischen Startzeit und Empfangszeit räumlich relativ zum Empfänger zwischen mehreren Messschritten geschoben wird. Bei einer angenommenen gleichmäßigen Dichteverteilung von Rauch innerhalb eines vorgegebenen Intervalls wird somit, wenn dieses Intervall .messtechnisch überprüft wird durch Variation des zeitlichen Abstands zwischen Sendestartzeit und Empfangszeit immer ein Empfangssignal festzustellen sein, gegebenenfalls mit nur leicht abweichender Höhe.
  • Befindet sich hingegen ein fester Gegenstand in der Umgebung eines erfindungsgemäßen Rauchwarnmelders, so erzeugt dieser eine Lichtstreuung lediglich exakt in einem ganz bestimmten Abstand zum Lichtempfänger, in welchem sich eine Oberfläche dieses Gegenstandes befindet. In räumlichen Bereichen vor oder hinter diesem konkreten Abstandsbereich wird hingegen kein Empfangssignal feststellbar sein, wenn durch entsprechende Parameterwahl der zeitlichen Differenz zwischen Sendestartzeit und Empfangszeit diese vor und hinter der Streuoberfläche liegenden Bereiche auf Streulicht überprüft werden.
  • So erfolgt hier eine Unterscheidung zwischen z.B. festen Gegenständen und Rauch nicht anhand einer Auswertung dadurch hervorgerufener unterschiedlicher zeitlicher Verläufe der Empfangssignale, wie dies im Stand der Technik der Fall ist, sondern eine Unterscheidung zwischen diesen verschiedenen Streuereignissen erfolgt durch Vorbestimmung der Parameterwahl bei der Durchführung mehrerer Messschritte und Messung dadurch erzeugter immer artgleicher Empfangssignale.
  • Eine Elektronik, die der Empfängereinheit an einem erfindungsgemäßen Rauchwarnmelder nachgeschaltet ist, kann somit einen wesentlich einfacheren Aufbau haben, als dies im Stand der Technik der Fall ist, da jegliche zeitliche Analyse eines Signalverlaufs unterbleiben kann. Beispielsweise kann ein im Stand der Technik eingangs genannter Mikroprozessor entweder komplett entfallen oder, sofern dieser zur Auswertung des Empfangssignals vorhanden ist, bedarf es zumindest keiner umfangreichen Programmierung zwecks Erfassung unterschiedlicher möglicher Zeitverläufe im Empfangssignal.
  • Erfindungsgemäß kann es demnach vorgesehen sein, dass in einem Rauchwarnmelder der erfindungsgemäßen Art verschiedene Messszenarien zum Abruf gespeichert sind, die Überprüfungen auf bestimmte mögliche Streuereignisse ermöglichen.
  • Z.B. kann ein Messszenario vorgesehen sein, welches in mehreren Messschritten testet, ob in einem bestimmten Abstand zur Empfängereinheit und in einem um diesen Abstand herum angeordneten Messstreckenintervall Rauch vorliegt oder nicht. Es kann ein anderes Szenario zur Durchführung von gegebenenfalls mehreren Messschritten vorgesehen sein, um festzustellen, ob in einem bestimmten vorzuwählenden Abstandsbereich zum Empfänger ein störender Gegenstand angeordnet ist.
  • Erfindungsgemäß kann es z.B. vorgesehen sein, dass in regelmäßigen Intervallen z.B. eine Folge von Messschritten zwecks Überprüfung auf Rauch durchgeführt wird, um hiermit die eigentliche Funktion des Rauchwarnmelders durchzuführen, wobei in anderen, z.B. größeren zeitlichen Abständen eine Überprüfung auf das Vorhandensein von Gegenständen in der unmittelbaren Umgebung des Rauchwarnmelders vorzunehmen.
  • In einer Ausführungsform der Erfindung kann es auch vorgesehen sein, eine Serie von Messschritten durchzuführen, bei der zwischen zwei Messschritten die Empfangszeit relativ zur Sendestartzeit geändert wird, insbesondere zwischen den Messschritten um einen immer konstanten zeitlichen Betrag geändert wird. Hierbei kann beispielsweise die Frequenzbandbreite gleich gehalten werden oder aber auch zwischen den Messschritten ebenso eine Änderung erfahren. Vorteilhafterweise wird durch dieses Verfahren sukzessive der Bereich um den Rauchwammelder in verschiedenen Abständen zum Lichtempfänger auf Streulicht überprüft. Aus der Feststellung, ob in einem oder mehreren Messschritten ein Lichtempfängersignal erzeugt wird kann geschlossen werden, ob in dem vorbestimmten Abstand Rauch vorliegt (wenn mehrere Messschritte ein Empfangssignal erzeugten) oder ob ein fester Gegenstand vorliegt (wenn nur in einem oder sehr wenigen Messschritten ein Empfangssignal erzeugt wurde).
  • Es kann auch in einer anderen Ausführung vorgesehen sein, eine Serie von Messschritten durchzuführen, bei der zwischen den Messschritten die Empfangszeit relativ zur Sendestartzeit gleich bleibt, was bedeutet, dass immer auf das Auftreten eines Streulichtereignisses in einem vorbestimmten Abstand zum Lichtempfänger geprobt wird. Hierbei kann es sodann beispielsweise vorgesehen sein, über alle Messschritte dieser zuvor genannten Serie das Empfängerausgangssignal zu integrieren. Dadurch gelingt es, das Auflösungsvermögen des Messverfahrens oder eines Rauchwarnmelders der sich dieses Messverfahrens bedient, für schwach streuende Gegenstände oder persistierenden Rauch, wie er z.B. bei Schwelbränden auftritt, im Vergleich zur Auflösung einer einzelnen Messung durch die Mittelung mindestens zweier Messungen zu erhöhen.
  • In bevorzugter Ausgestaltung der Erfindung kann es vorgesehen sein, dass mit einer Lichtempfängereinheit nicht nur Licht aus einer einzigen Lichtmessstrecke empfangbar ist, sondern Licht aus wenigstens zwei verschiedenen, gegebenenfalls sogar noch mehr Lichtmessstrecken empfangbar ist, in welche Licht, bevorzugterweise von derselben Lichtsendeeinheit gesendet wird.
  • Hierbei kann es sodann in weiterer Bevorzugung vorgesehen sein, dass die verschiedenen Lichtmessstrecken verschiedene Messrichtungen definieren, so dass mit einem Rauchwarnmelder dieser erfindungsgemäßen Art bzw. einem solchen Verfahren ein vorbestimmter Bereich, z.B. eine vorbestimmte Winkelumgebung um einen Rauchwarnmelder überprüft werden kann.
  • Ebenso kann es vorgesehen sein, dass ein Rauchwarnmelder der erfindungsgemäßen Art nicht nur eine Lichtsendeeinheit und eine Lichtempfängereinheit aufweist, sondern mehrere solcher Einheitenpaarungen. Beispielsweise kann es hierfür vorgesehen sein, dass durch jede solche Paarung eine bestimmte Lichtmessstrecke definiert wird. Z.B. kann sich eine Vielzahl von möglichen Messstrecken sternförmig, insbesondere in einer Ebene um einen Rauchwarnmelder erstrecken.
  • Gegebenenfalls kann es auch vorgesehen sein, eine Lichtsendeeinheit vorzusehen, die um 360 Grad in wenigstens einer Ebene Licht aussendet, wobei mit verschiedenen Lichtempfängern auf Streulicht aus verschiedenen Raumbereichen bzw. Richtungen geprüft wird. Hierbei wird durch eine übergeordnete Elektronik im Rauchwarnmelder der Sendestartzeitpunkt festgelegt, der sodann für alle Empfänger gleich ist, wobei die Empfangszeitpunkte, ab denen die Modulation der abzustimmenden Empfangsfrequenz am Empfänger durchgeführt wird für alle vorhandenen Lichtempfänger gleich oder auch unterschiedlich gewählt sein können.
  • Ein Ausführungsbeispiel der Erfindung ist in den nachfolgenden Figuren dargestellt. Es zeigen
  • Figur 1
    eine Ausführungsform mit lediglich einer Messstrecke
    Figur 2
    eine Ausführungsform mit mehreren Messstrecken
  • Die Figur 1 zeigt in schematischer Darstellung lediglich die Anordnung einer Lichtsendeeinheit 1 und einer Lichtempfängereinheit 6 eines erfindungsgemäßen Rauchmelders, der hinsichtlich seiner weiteren Komponenten in der Figur nicht dargestellt ist.
  • Wesentlich ist es hier, dass gemäß dem erfindungsgemäßen Verfahren die Lichtsendeeinheit 1 ein Lichtsignal 2 aussendet, welches in seiner Intensität moduliert ist, wobei die Modulationsfrequenz zeitlich nicht konstant ist, sondern einer vordefinierten Funktion gehorcht, hier in dieser Ausführung beispielsweise einer linearen Funktion, die bewirkt, dass das Licht zum Zeitpunkt des Beginns der Aussendung zunächst mit einer niedrigen Frequenz in der Intensität moduliert wird und diese Modulationsfrequenz mit fortschreitender Zeit zunimmt. Später ausgesendetes Licht des Lichtsignals 2 hat somit also eine größere Modulationsfrequenz als Licht am Anfang des Lichtsignals 2. Dieser funktionale Zusammenhang kann z.B. auch umgekehrt sein oder durch ein gänzlichst andere Funktion beschrieben sein.
  • Dieses Lichtsignal 2 breitet sich sodann zunächst über eine Strecke R1 im Raum aus, bis dass es hier zu einem angenommenen Hindernis 3 gelangt, an dem es gestreut wird. Die Lichtstreuung erfolgt unter anderem auch zurück in Richtung zum Lichtempfänger 6, auf welchen sodann nach Überbrückung des Abstands R2 zwischen Lichtempfänger 6 und Hindernis 3 das Streulichtsignal 5 auftrifft, welches die gleiche Modulation aufweist, wie das ursprünglich ausgesandte Lichtsignal 2.
  • Erfindungsgemäß ist es hier vorgesehen, die Lichtempfängereinheit 6 hinsichtlich der möglichen empfangsbaren Frequenz der Intensitätsmodulation eines Streulichtsignals 5 mit derselben Modulationsfunktion abzustimmen, wie dies bei der Aussendung des Lichtsignals 2 der Fall war, was bedeutet, dass ein Streulichtsignal 5 unabhängig von seiner Entstehung am Hindernis 3 nur dann empfangen wird, wenn die Modulation der empfangbaren Frequenz der Empfangseinheit 6 zu einer Zeit TE in einem zeitlichen Abstand zur Aussendung zur Zeit T0 des Lichtsignals 2 vorgenommen wird, welcher der Zeit entspricht, die das Licht zur Überbrückung der vorgenannten Abstände R1 und R2 benötigt.
  • Durch die Auswahl dieses zeitlichen Abstands zwischen Sendestartzeitpunkt T0 und dem Zeitpunkt TE der beginnenden Empfängermodulation wird somit festgelegt, welcher Abstandsbereich relativ zum Lichtempfänger 6 auf ein Streuereignis hin überprüft wird.
  • Die Figur 1 zeigt hier ein Amplitudenmodulationssignal 7, mit welchem der Lichtsender 1 angesteuert wird, wobei sich die Frequenz dieses Amplitudensignals 7 gemäß der Funktion 8 zeitlich ändert. Es wird dieselbe Funktion hier als Funktion 10 verwendet, um die Empfangsfrequenz des Empfängers 6 abzustimmen, für welche dieser Empfänger ausschließlich bzw. in der Umgebung einer Frequenzbandbreite empfindlich ist.
  • Durch den zeitlichen Abstand zwischen dem Beginn der Modulation zum Senden des Lichtsignals 2, hier der Startzeitpunkt T0 und dem Empfangszeitpunkt TE, zu welchem begonnen wird, die Lichtempfangseinheit 6 hinsichtlich seiner empfindlichen Frequenz zu modulieren, wird daher der eingangs genannte räumliche Abstand zwischen Empfängereinheit 6 und Hindernis 3 bestimmt, wobei in einem solchen Fall, wenn ein gestreutes Lichtsignal aus der eingestellten Entfernung zum Lichtempfänger 6 an diesem auftrifft, am Empfänger ein Signal 11 erzeugt wird, wie es in der Figur dargestellt ist, ansonsten nicht.
  • Die Plateauhöhe des empfangenen Signals 11 kann einerseits abhängen von der Stärke der Streuung durch das Hindernis 3 sowie auch vom Grad der Überlappung zwischen der aktuell am Empfänger eingestellten Frequenz und der Frequenz des empfangenen Streulichtsignals innerhalb der möglichen Frequenzbandbreite. Die Form des Empfangssignals ist ansonsten immer gleich und weist im zeitlichen Verlauf keine für Rauch oder sonstige Gegenstände spezifischen Charakteristika auf.
  • Liegt das Empfangssignal mit seiner aktuell am Empfänger auftretenden Modulationsfrequenz exakt zentrisch in der Frequenzbandbreite bezüglich der aktuell am Empfänger eingestellten Frequenz, so ist das Plateau maximal in seiner Höhe und nimmt mit zunehmender Abweichung ab, bis dass außerhalb der Frequenzbandbreite kein Signal mehr am Empfänger mit der dargestellten Signalform vorhanden ist.
  • Die Figur 2 zeigt in einer leichten Abwandlung zur Figur 1 lediglich eine Situation, bei der mehrere Gegenstände 14a, 14b und 14c jeweils zu einer Streuung beitragen von Licht, das hier vom Lichtsender 12 ausgesandt wurde.
  • Aufgrund der unterschiedlichen Anordnungen der Hindernisse 14a - 14c zu Sender und Empfänger 13 ergeben sich unterschiedliche Laufzeiten, so dass entsprechende Streulichtsignale 17, ausgehend von dem ausgesandten Lichtsignal 15 zu verschiedenen Zeiten am Lichtempfänger 13 einlaufen.
  • Durch die relative Lage zwischen dem Empfangszeitpunkt TE, zu dem die Modulation der Empfangsfrequenz gemäß der Funktion 18 beginnt, bezogen auf den Zeitpunkt T0, zu welchem die Aussendung des Signals erfolgt, kann diskriminiert werden, welches der drei Signale 17, die am Empfänger eintreffen, zu einem Ausgangssignal 19 des Empfängers 13 führen.
  • Es kann demnach durch zeitliches Schieben des Empfangszeitpunktes TE relativ zum Startzeitpunkt T0 in einer Serie von Messschritten mit jeweils unterschiedlicher Dauer zwischen Startzeitpunkt T0 und Empfangszeit TE auch festgestellt werden, dass zu mehreren gleichzeitig in der Umgebung eines Rauchwarnmelders vorliegenden Gegenständen Streulichtereignisse entstehen.
  • Durch die Parameterwahl, insbesondere die Einstellung der Dauer zwischen Startzeitpunkt und Empfangszeitpunkt, kann exakt die räumliche Abstandslage zur Empfängereinheit 12 bestimmt werden.
  • Die Figuren 1 und 2 zeigen, dass das Ausgangssignal 11 bzw. 19 immer dieselbe Signalform hat, unabhängig davon, in welchem Abstand ein Streulichtereignis stattfindet oder durch welche Art von Ereignis die Streuung stattfindet, also beispielsweise durch ein Hindernis 3 oder auch durch diffusen Rauch.
  • Wie im allgemeinen Teil beschrieben, erfolgt eine Diskriminierung zwischen festen Gegenständen und Rauch bevorzugterweise durch die Art der Messserie und der bei einer Messserie erfolgten Parameterwahl, insbesondere der für jeden Messschritt individuell festgelegten zeitlichen Abstände zwischen dem Sendestart und der Empfangszeit sowie der Frequenzbandbreite.

Claims (9)

  1. Verfahren zum Betrieb eines Rauchwarnmelders mit wenigstens einer Lichtsendeeinheit (1) und wenigstens einer Lichtempfängereinheit (6), wobei die Lichtempfängereinheit (6) von der Lichtsendeeinheit (1) ausgesendetes und in wenigstens einer Licht-Messtrecke (R1, R2) gestreutes / reflektiertes Licht (5) empfängt, wobei die Licht-Messstrecke (R1, R2) zumindest teilweise außerhalb eines die Komponenten des Rauchwarnmelders aufnehmenden Gehäuses angeordnet ist, wobei in einem Messschritt ab einer Sendestartzeit (TO) mit der Lichtsendeeinheit (1) ein intensitätsmoduliertes Licht (2) ausgesendet wird, dadurch gekennzeichnet, dass die Frequenz der Intensitätsmodulation sich mit der Zeit nach einer vorgegebenen Modulationsfunktion (8) ändert und von einer Elektronik des Rauchwarnmelders für einen durchzuführenden Messschritt eine Empfangszeit (TE) vorgegeben wird, wobei über die Zeitdifferenz zwischen der Empfangszeit (TE) und der Sendestartzeit (TO) derjenige Abstand zum Gehäuse des Rauchwarnmelders definiert wird, aus welchem das in dem Messschritt zu erfassende Licht (5) gestreut / reflektiert sein soll und sodann die Lichtempfängereinheit (6) auf eine zu empfangende Frequenz einer Intensitätsmodulation von aus der Lichtmessstrecke (R1, R2) empfangenen Lichts (5) so abgestimmt wird, dass sich ab der eingestellten Empfangszeit (TE) die abgestimmte Empfangsfrequenz mit derselben Modulationsfunktion (10) ändert und während der Frequenzabstimmung ein Empfängerausgangssignal (11) erfasst wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Lichtempfängereinheit (6) so abgestimmt wird, dass Sie nur dann ein von Null verschiedenes Empfängerausgangssignal (11) ausgibt, wenn die Frequenz der Intensitätsmodulation des empfangenen Lichts (5) innerhalb einer einstellbaren Frequenz-Bandbreite der Lichtempfängereinheit (6) mit der abgestimmten Frequenz übereinstimmt.
  3. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass mit der Modulationsfunktion (8, 10) die Frequenz über die Zeit linear geändert wird.
  4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Frequenzbandbreite der Lichtempfangseinheit (6) in Abhängigkeit eines gewünschten durch die Bandbreite definierten Abstandsintervalls um den zu überprüfenden Abstand herum eingestellt wird.
  5. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass eine Serie von Messschritten durchgeführt wird, bei der zwischen zwei Messschritten die Empfangszeit (TE) relativ zur Sendestartzeit (T0) geändert wird, insbesondere zwischen den Messschritten um einen immer konstanten zeitlichen Betrag geändert wird.
  6. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass eine Serie von Messschritten durchgeführt wird, bei der zwischen den Messschritten die Empfangszeit (TE) relativ zur Sendestartzeit (T0) gleich bleibt und über alle Messschritte das Empfängerausgangssignal (11) integriert wird.
  7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, mit einer Lichtempfängereinheit (6) Licht aus wenigstens zwei verschiedenen Licht-Messstrecken empfangen wird, in welche Licht von derselben Lichtsendeeinheit (1) gesendet wird, insbesondere wobei die verschiedenen Licht-Messstrecken verschiedenen Messrichtungen zugeordnet sind.
  8. Rauchwarnmelder mit wenigstens einer Lichtsendeeinheit (1) und wenigstens wenigstens einer Lichtempfängereinheit (6), wobei die Lichtempfängereinheit (6) eingerichtet ist, von der Lichtsendeeinheit (1) ausgesendetes und in wenigstens einer Licht-Messtrecke (R1, R2) gestreutes / reflektiertes Licht (5) zu empfangen, wobei die Licht-Messstrecke (R1, R2) zumindest teilweise außerhalb eines die Komponenten des Rauchwarnmelders aufnehmenden Gehäuses angeordnet ist, wobei die Lichtsendeeinheit (1) weiterhin eingerichtet ist in einem Messschritt ab einer Sendestartzeit (T0) ein intensitätsmoduliertes Licht (2) auszusenden, dadurch gekennzeichnet, dass dessen Modulationsfrequenz sich mit der Zeit nach einer vorgegebenen Modulationsfunktion (8) ändert und von einer Elektronik des Rauchwarnmelders für einen durchzuführenden Messschritt eine Empfangszeit (TE) vorgebbar ist, wobei über die Zeitdifferenz zwischen der Empfangszeit (TE) und der Sendestartzeit (TO) derjenige Abstand zum Gehäuse des Rauchwarnmelders definierbar ist, aus welchem das in dem Messschritt zu erfassende Licht (5) gestreut / reflektiert sein soll und sodann die Lichtempfängereinheit (6) auf eine zu empfangende Frequenz einer Intensitätsmodulation von aus der Lichtmessstrecke empfangenen Lichts (5) so abstimmbar ist, dass sich ab der eingestellten Empfangszeit (TE) die abgestimmte Empfangsfrequenz mit derselben Modulationsfunktion (10) ändert.
  9. Rauchwarnmelder nach Anspruch 8, dadurch gekennzeichnet, dass die Lichtempfängereinheit (6) so abstimmbar ist, dass Sie nur dann ein von Null verschiedenes Empfängerausgangssignal (11) ausgibt, wenn die Frequenz der Intensitätsmodulation des empfangenen Lichts (5) innerhalb einer einstellbaren Frequenz-Bandbreite der Lichtempfängereinheit (6) mit der abgestimmten Frequenz übereinstimmt.
EP12718918.1A 2011-06-09 2012-04-27 Rauchwarnmelder und verfahren zu dessen betrieb Active EP2718917B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110105183 DE102011105183A1 (de) 2011-06-09 2011-06-09 Rauchwarnmelder und Verfahren zu dessen Betrieb
PCT/EP2012/001856 WO2012167858A1 (de) 2011-06-09 2012-04-27 Rauchwarnmelder und verfahren zu dessen betrieb

Publications (2)

Publication Number Publication Date
EP2718917A1 EP2718917A1 (de) 2014-04-16
EP2718917B1 true EP2718917B1 (de) 2015-09-30

Family

ID=46027908

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12718918.1A Active EP2718917B1 (de) 2011-06-09 2012-04-27 Rauchwarnmelder und verfahren zu dessen betrieb

Country Status (3)

Country Link
EP (1) EP2718917B1 (de)
DE (1) DE102011105183A1 (de)
WO (1) WO2012167858A1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19947023A1 (de) * 1999-09-30 2001-05-10 Siemens Gebaeudesicherheit Gmb Verfahren und Vorrichtung zum Detektieren von lichtstreuenden Objekten
DE10046992C1 (de) 2000-09-22 2002-06-06 Bosch Gmbh Robert Streulichtrauchmelder
EP1688898A4 (de) * 2003-11-17 2010-03-03 Hochiki Co Rauchmelder, der streulicht verwendet
DE602007006232D1 (de) * 2006-11-14 2010-06-10 Instro Prec Ltd Detektionssystem für eindringlinge

Also Published As

Publication number Publication date
WO2012167858A1 (de) 2012-12-13
DE102011105183A1 (de) 2012-12-13
EP2718917A1 (de) 2014-04-16

Similar Documents

Publication Publication Date Title
EP2252984B1 (de) Auswerten eines differenzsignals zwischen ausgangssignalen zweier empfangseinrichtungen in einer sensorvorrichtung
DE102014108713B3 (de) Rauch- und Brandmelder
EP1936400B1 (de) Laserscanner
EP2093733B1 (de) Rauchdetektion mittels zweier spektral unterschiedlicher Streulichtmessungen
EP1960810B1 (de) Sensoranordnung sowie sensorvorrichtung für eine sensor anordnung
DE102012112987B3 (de) Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
EP3435117B1 (de) Sensor und verfahren zur erfassung und abstandsbestimmung von objekten
EP1887536A1 (de) Streulicht-Rauchmelder
DE3831654A1 (de) Optischer rauchmelder
EP2624228B1 (de) Brandmelder mit Mensch-Maschinen-Schnittstelle sowie Verfahren zur Steuerung des Brandmelders
EP2043069B1 (de) Vorrichtung zur Überwachung eines Brandmelders und Konfigurierungsverfahren und Brandmelder
EP3220164B1 (de) Verfahren zum betreiben eines abstandsmessenden überwachungssensors und überwachungssensor
EP3258296B1 (de) Reflexionsmikrowellenschranke
EP0635731B1 (de) Verfahren zum Bestimmen der Sichtweite bei dichtem Nebel sowie Sichtweitensensor
EP3822666A1 (de) Lichtschrankenanordnung
EP3413014B1 (de) Verfahren und vorrichtung zum erfassen und vermessen von objekten
EP3287809B1 (de) Verfahren zum betreiben eines scanners und scanner
WO2019101506A1 (de) Verfahren zum betreiben eines lidar-sensors und lidar-sensor
EP2718917B1 (de) Rauchwarnmelder und verfahren zu dessen betrieb
EP2977786B1 (de) Entfernungsmessender sensor zur erfassung und abstandsbestimmungen von objekten
DE202007013986U1 (de) Vorrichtung zur Steuerung eines angetriebenen Bewegungselements, insbesondere einer Tür oder eines Tores
DE202014103348U1 (de) Entfernungsmessender Sensor zur Erfassung und Abstandsbestimmung von Objekten
EP2851704A1 (de) Vorrichtung und Verfahren zum optischen Bestimmen von Abständen zu Objekten in einem Überwachungsbereich
DE202012105044U1 (de) Optoelektronischer Sensor zur Erfassung und Abstandsbestimmung von Objekten
DE10348950A1 (de) Verfahren zur Volumenbestimmung von kleinen bewegten kugelförmigen Objekten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150506

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 752824

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012004756

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151231

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160201

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012004756

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

26N No opposition filed

Effective date: 20160701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120427

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 752824

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012004756

Country of ref document: DE

Representative=s name: COHAUSZ HANNIG BORKOWSKI WISSGOTT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012004756

Country of ref document: DE

Owner name: DETECTOMAT GMBH, DE

Free format text: FORMER OWNERS: ISTA INTERNATIONAL GMBH, 45131 ESSEN, DE; JOB LIZENZ GMBH & CO. KG, 22926 AHRENSBURG, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012004756

Country of ref document: DE

Owner name: ISTA INTERNATIONAL GMBH, DE

Free format text: FORMER OWNERS: ISTA INTERNATIONAL GMBH, 45131 ESSEN, DE; JOB LIZENZ GMBH & CO. KG, 22926 AHRENSBURG, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012004756

Country of ref document: DE

Representative=s name: COHAUSZ HANNIG BORKOWSKI WISSGOTT PATENTANWALT, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210923 AND 20210929

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: ISTA INTERNATIONAL GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: JOB LIZENZ GMBH & CO. KG

Effective date: 20210914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240422

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240422

Year of fee payment: 13