[go: up one dir, main page]

EP2664682A1 - Steel for the production of a steel component, flat steel product comprising same, component comprised of same and method for producing same - Google Patents

Steel for the production of a steel component, flat steel product comprising same, component comprised of same and method for producing same Download PDF

Info

Publication number
EP2664682A1
EP2664682A1 EP12168384.1A EP12168384A EP2664682A1 EP 2664682 A1 EP2664682 A1 EP 2664682A1 EP 12168384 A EP12168384 A EP 12168384A EP 2664682 A1 EP2664682 A1 EP 2664682A1
Authority
EP
European Patent Office
Prior art keywords
steel
flat
product
yes
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12168384.1A
Other languages
German (de)
French (fr)
Inventor
Thomas Gerber
Ilse Heckelmann
Maria KÖYER
Nicolas Vives Diaz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Priority to EP12168384.1A priority Critical patent/EP2664682A1/en
Publication of EP2664682A1 publication Critical patent/EP2664682A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a steel for the production of a steel component, a flat steel product consisting at least in sections of such a steel, a steel component produced from such a steel flat product by hot forming and quenching and a method for producing such a steel component.
  • the present invention relates to the use of steels having a ferritic / pearlitic / bainitic structure in the delivery state with precipitation hardening, for the production of press-hardened components in the strength range of about 700 to 1150 MPa.
  • alloy contents are stated here only in “%”, this always means “% by weight”, unless expressly stated otherwise.
  • components which are produced by hot forming and subsequently hardening of flat steel products which consist of a manganese-boron steel have prevailed here for crash-relevant automotive components.
  • hot press hardening manufacturing components can be produced, which can be used with optimally thin wall thickness and concomitantly minimized weight, for example, as B-pillars, B-pillar reinforcement and bumpers.
  • a typical example of a manganese-boron steel of the type mentioned above is the steel known in the art as 22MnB5, which has been given the material number 1.5528.
  • Hot forming with subsequent press hardening makes it possible to produce components with complex geometries with optimum properties from steels of this type Create dimensional accuracy. Due to their predominantly martensitic structure, the components obtained by hot-pressing hardening have the highest strengths (Rm approx. 1500 MPa, R P0 , 2 approx. 1100 MPa) and thus have an optimized lightweight construction potential.
  • Rm approx. 1500 MPa, R P0 , 2 approx. 1100 MPa Due to their predominantly martensitic structure, the components obtained by hot-pressing hardening have the highest strengths (Rm approx. 1500 MPa, R P0 , 2 approx. 1100 MPa) and thus have an optimized lightweight construction potential.
  • Rm approx. 1500 MPa, R P0 , 2 approx. 1100 MPa Due to their predominantly martensi
  • Tailored blanks are blanks composed of at least two sheets. The sheets in question differ in at least one property.
  • a particularly high strength and at the same time comparatively low toughness can be provided, while in another section a reduced strength but increased toughness is available.
  • a Tailored Blank for a B-pillar may be designed so that, for example, the upper area associated with the roof of the vehicle to which high strength requirements apply is 22MnB5, while the area associated with the B-pillar foot is a steel grade exists, which has an increased ductility after curing.
  • An example of a suitable steel for this purpose is steel H340LAD, to which the material number 1.0933 has been assigned. This steel reaches a Tensile strength of about 500 to 650 MPa at an elongation of about 15% after hot working.
  • WO 2008/132303 Al Another development towards partner material for tailored blanks is in the WO 2008/132303 Al described.
  • This is a steel plate made of a microalloyed steel with an Al or Zn-based corrosion protection coating. After full austenitization and subsequent press hardening, it has a predominantly ferritic structure (> 75%) with lower levels of martensite (5-20%). and bainite ( ⁇ 10%). Restaustenitanteile in the structure are expressly undesirable.
  • Components made from 0.5 - 4 mm thick steel blanks produced by this hot forming process have tensile strengths in the range of 500-600 MPa at elevated elongation values (> 15%). The improved ductility ensures a higher energy absorption capacity in the event of a crash.
  • an apparatus and a method for press hardening of blanks of higher and ultrahigh - strength steels are known.
  • the known device allows the control of the tool temperature during the forming process, whereby tailored tempering and hot forging can be performed.
  • tailored tempering and hot forging only partially heats the dies during hot forming.
  • the targeted temperature control produces locally a mixed structure with reduced strengths but improved ductility.
  • the workpiece In warm forging, the workpiece is heated to a temperature below the recrystallization temperature.
  • the warming temperature for warm forging is typically in the range of 400-650 ° C.
  • An example of a steel which is particularly suitable for hot forging is the steel known as "CP-W 800", which according to DIN EN 10336 is assigned the designation HDT780C.
  • Conventional practice for the 22MnB5 steel subjected to phase transformation during press-hardening requires mold temperatures below 200 ° C to produce a martensitic structure after press-hardening.
  • the object of the invention was to provide a steel which is optimally suitable for the production of components by hot-press hardening, a steel flat product also optimally suitable for hot-press hardening, a steel component in which high strength and high ductility are optimally achieved combined, and to provide a method for producing such a component.
  • the solution according to the invention of the abovementioned object is that such a flat steel product consists of a steel according to the invention.
  • a flat steel product according to the invention accordingly consists, at least in one section, of a steel according to the invention.
  • the flat steel product according to the invention consists of at least one section of a steel according to the invention includes, of course, the possibility that the flat steel product as a whole is made of a steel according to the invention.
  • the at least one section of the flat steel product consisting of the steel according to the invention may be formed from a hot-rolled sheet or a sheet produced by conventional cold-rolling.
  • the flat steel product according to the invention can be a tailored blank, which is composed of at least two sheet metal parts which are themselves in addition to possibly existing differences in their areal extent in at least one property, such as thickness, strength, toughness, elongation properties, etc., distinguish.
  • the steel component according to the invention is produced by hot forming and subsequent quenching of a flat steel product according to the invention.
  • the steel component has a tensile strength of at least 700 MPa in the region in which the steel obtained according to one of claims 1 to 5 has a structure consisting of a combination of finely divided hard phases (martensite / bainite ) and ductile phases (globular ferrite and dislocation-rich bainitic ferrite) and a residual austenite content of at most 5 area% in a fine-grained microstructure with additional precipitation hardening of titanium carbonitrides.
  • the average grain diameter of the globular ferrite or of the bainitic ferrite is 1.5-4.0 ⁇ m and the proportion of ductile phases is at least 5 area%.
  • the structure consists of a combination of finely divided hard phases (martensite / bainite) and more ductile phases (bainitic ferrite and globular ferrite) and retained austenite with additional precipitation hardening by titanium carbonitrides.
  • the proportion of ductile phases depends thereby directly from the C content and amounts to at least 5 area%.
  • the ferrite structure of the steel component according to the invention is extremely fine.
  • the average grain diameter of the ferrite or bainitic ferrite here is 1.5-4.0 microns, which according to DIN EN 643 with a particle diameter of 4.0 microns a particle size index of at least 13 and with a particle diameter of 1.5 microns a grain size number> 15 corresponds.
  • the fine-grained microstructure means not only small grains but also a high number of phase boundaries in the steel component produced from the steel according to the invention by hot press hardening. These have a stronger effect on the tensile strength than the ferritic grain boundaries alone.
  • the bainitic ferrite also has a high dislocation density. The fine structure and the high dislocation density contribute to the special mechanical and technological properties of the steel according to the invention, of a steel flat product consisting thereof and of a steel component produced therefrom.
  • the transfer from the oven to the tool can be completed within 5 to 12 seconds.
  • the invention provides a steel and a flat steel product made therefrom which, after hot-pressing hardening, have a tensile strength which, at breaking elongation values A 80 of 6 to 15%, are typically in the range from 700 to 1200 MPa, in particular 700 to 1150 MPa. In this way, the invention closes the gap between the materials with relatively low tensile strength and higher elongation at break (eg H340LAD) and materials with high tensile strength values and low elongation at break (eg 22MnB5).
  • C is present in a steel according to the invention with a content of at least 0.05% by weight and at most 0.150% by weight, in particular 0.06-0.11% by weight, in order, on the one hand, to ensure that the final one Deterrence, the minimum tensile strength of 700 MPa required for steel components according to the invention forms necessary Martensithärte and on the other hand to avoid an excessive increase in hardness.
  • the C content is limited to a maximum of 0.150 wt .-%, so as not to affect the weldability of the steel component according to the invention.
  • the range of tensile strength prescribed for the steel components according to the invention can be achieved particularly reliably if the C content of the steel is at least 0.08% by weight.
  • Mn in contents of 0.50-2.0% by weight serves as austenite former in the steel according to the invention by reducing the A C3 temperature by its presence.
  • the result is a high austenite content even at relatively low heating temperatures.
  • To optimize the weldability of the Mn content can be lowered to a maximum of 1.20 wt .-%.
  • Si acts as an oxidizing agent in the steel according to the invention on the one hand on the other hand, it has a positive effect on the mechanical properties. This is the case in particular if at least 0.20% by weight of Si are present in the steel according to the invention.
  • the presence of Si in the limits specified by the invention increases the yield strength and stabilizes the ferrite and the austenite at room temperature.
  • Si prevents unwanted carbide precipitation in austenite during cooling. Excessive Si content causes surface defects.
  • the size of the grains forming in the microstructure of the steel according to the invention can be controlled via the Al content. Accordingly, the formation of a particularly fine-grained microstructure contributes when the Al content of the steel according to the invention is at least 0.020% by weight.
  • Ti increases the yield strength and causes the formation of precipitates, which are present, for example, as titanium carbonitrides in a steel according to the invention.
  • precipitation formation increases tempering resistance and improves toughness by inhibiting grain growth during furnace heating during hot working.
  • a steel according to the invention contains relatively high Ti contents of 0.08-0.14% by weight, in particular at least 0.09% by weight.
  • Cr is contained in the steel according to the invention in amounts of 0.15-0.5% by weight in order to promote through-hardenability and thereby minimize the dependence on the cooling rate. In this way, steel according to the invention becomes less sensitive to possible fluctuations of the hot working parameters. However, in order to avoid surface defects on the finished steel component according to the invention, the Cr content must not exceed 0.5% by weight. The positive effects of the presence of Cr in a steel according to the invention can be used particularly reliably if the Cr content is 0.3-0.4% by weight.
  • the S-content of the steel according to the invention must not exceed 0.010% by weight, because otherwise problems in welding, in surface finishing and in the formation of harmful, elongated MnS precipitates are to be expected.
  • the S content of the steel according to the invention is as low as possible.
  • a steel according to the invention may optionally contain one or more of the elements selected in the group "P, N, Cu, Ni, Mo, V, B, Nb, Ca "are summarized. Each of these elements can have a positive benefit, but is not a compulsory component and can be dispensed with as such in order to be able to produce a steel component with the properties prescribed according to the invention by hot forming and subsequent hardening.
  • P may be present in amounts of up to 0.1 wt .-%.
  • P increases the stability of austenite. Too high a P content, however, damages the ductility and toughness of the steel.
  • N stabilizes the austenite in the steel according to the invention and increases the yield strength.
  • the presence of N enables the desired formation of titanium carbonitrides according to the invention. If N is not completely bound by Ti and the steel according to the invention additionally contains B, N reacts in combination with boron to boron nitrides, which cause grain refining of the starting structure and thus a refining of the martensitic structure present in the finished steel component after hot working and hardening.
  • the N content of the steel according to the invention may be set to at least 0.0025% by weight.
  • Cu can be used in the steel according to the invention to increase the yield strength. However, at levels above 0.1% by weight, the presence of Cu may affect the hot workability of the steel.
  • Ni can improve the yield strength and elongation at break of the steel of the present invention. In addition, contents are avoided for cost reasons.
  • Mo is optionally present in the steel of the present invention at levels of up to 0.1% by weight. Mo promotes martensite formation and improves toughness. Over 0.1% by weight However, exceeding Mo content may cause cold cracking in the steel according to the invention.
  • V increases the yield strength of the steel of the invention by grain refining and improves weldability.
  • B By adding up to 0.001% by weight of B, the hardenability of the steel according to the invention can be improved.
  • B prolongs the transformation times and stabilizes the mechanical properties for a wide temperature range of the hot working process in terms of early, homogeneous martensite formation.
  • amounts of B exceeding 0.0010% by weight markedly reduce the formability of the steel according to the invention.
  • Nb in amounts of up to 0.25% by weight increases the yield strength of the steel according to the invention by carbide precipitation and, by austenitic grain refining, produces a fine martensite structure which has a high resistance to crack propagation.
  • These positive properties can be used in particular when the Nb content is at least 0.001% by weight, in particular at least 0.005% by weight.
  • Ca is optionally alloyed to a steel of the invention at levels of 0.001-0.004 wt%, especially 0.001-0.003 wt%, to allow sulfide form control through the formation of spherical CaS over MnS. In this way, the isotropy of the mechanical properties is improved.
  • a Ca-treatment of the melt of the Steel according to the invention can also reduce the S content of the steel according to the invention.
  • the flat steel product according to the invention may have a surface finish for protection against scaling or corrosion.
  • the protective coating concerned can be applied by conventional methods.
  • the protective coating is applied in the hot dipping process and can contain zinc or aluminum in a conventional manner as a basic element.
  • the basic elements Zn and Al may optionally be alloyed with each other or additionally each with one or more oxygen-affine elements such as Mg, Si, Ti, Ca, boron, Mn.
  • Typical layer thicknesses of the protective coating are in the range 3-30 ⁇ m, preferably between 5-20 ⁇ m.
  • the hot dip coating can be preceded by a preoxidation in which a 10 to 1000 nm, preferably 70 to 500 nm, thick oxide layer is produced on the flat steel product to be coated.
  • the generation and adjustment of the oxide layer can take place in an oxidation chamber, as in the WO 2007/124781 A1 is described, the contents of which is included in the present application in this respect.
  • the complete reduction of the iron oxide layer thus formed takes place under a hydrogen-containing atmosphere and is carried out before immersion in the melt or before surface refinement.
  • Oxides of the alloying elements of the steel according to the invention can be present on the steel strip surface.
  • PVD / CVD processes processes with electrolytic or electroless or chemical deposition of metallic coatings, in particular coatings based on Zn, Zn-Ni, Zn-Fe and their combinations, as well as processes in which organic, organometallic, inorganic Coatings are applied in coil coating systems in the coil coating, spraying or dipping process can be used.
  • Steel flat products according to the invention can be produced by casting a molten steel composite according to the invention into slabs or thin slabs, which are subsequently brought to a temperature of 1050.degree.-1260.degree. C., at a hot rolling end temperature of 800.degree.-1000.degree. C. to form a hot strip having a hot strip thickness of to be hot rolled less than 4.5 mm.
  • the resulting hot strip is then coiled at a reel temperature of 450 - 700 ° C to form a coil.
  • Steel flat products according to the invention which are present as hot strip or sheet metal can produce steel components according to the invention in the same way as steel flat products according to the invention which are present as cold strip or sheet metal.
  • this can be done following the hot strip production explained above hot rolled strip obtained is cold rolled to a cold strip having a thickness of typically 0.5 to 2.85 mm.
  • blanks are separated from the flat steel product then present as a strip.
  • these boards can be welded to at least one other board.
  • the boards split off from the flat steel products produced according to the invention can also be processed as one piece into a steel component according to the invention.
  • the flat steel product which is now in the form of a single-piece blank or blanked blank, is heated to a heating temperature of 750-950 ° C.
  • a heating temperature 750-950 ° C.
  • the heating in accordance with the invention predetermined range of heating temperatures leads to a hot working and a press hardening to a microstructure, which consists of a combination of finely divided martensite and bainite phases, dislocation rich bainitic ferrite, globular ferrite and retained austenite.
  • an additional precipitation hardening by titanium carbonitrides is also used for the production of the steel component.
  • the result is a fine and homogeneous phase distribution, which causes an improvement in the elongation values and an increase in energy absorption at relatively high tensile strength values.
  • a small residual austenite content of up to 5% is achieved, which also contributes to the improvement in elongation values.
  • the proportion of ductile phases ferrite and bainitic ferrite is at least 5 area%.
  • the respective flat steel product is heated in the hot forming and curing preceding heating to heating temperatures of up to 900 ° C, in which there is only a partial Austenitmaschine.
  • the resulting component has further improved strengths, as is the case with a full austenitization, which with a heating in the temperature range> 900 ° C, in particular> 925 ° C. is reached.
  • This effect is due to the high Ti content of the steel according to the invention, which can be supported by the optionally additionally present contents of Nb and V. The presence of a larger amount of these micro-alloying elements, the grain size remains fine even during the heat treatment and hot working.
  • a particle size index of at least 13 determined according to DIN EN 643 is guaranteed here.
  • the holding time required for the heating on the heating temperature is typically 2 to 10 minutes, depending on the dimension of the flat steel product to be processed.
  • the heated steel flat product is transferred from the oven used for the heating to the tool in which the flat steel product is hot worked.
  • the thermoforming tool can be designed in such a way that the steel component thermoformed from the flat steel product is still quenched in the tool (single-stage process). Alternatively it is also possible to quench the resulting steel component outside the thermoforming tool in a separate workstation to produce the desired hardness structure (two-stage process). To avoid excessive cooling of the steel flat product between the heating furnace and the thermoforming tool, the transfer time should be limited to 5 - 12 seconds.
  • the cooling of the steel component formed from the respective flat steel product preferably takes place in the hot forming tool so rapidly that the component structure after cooling consists of a fine-grained structure of martensite, bainite, dislocation-rich bainitic ferrite, globular ferrite and retained austenite.
  • the required cooling rate is at least 25 ° C / s.
  • the molten steels E1 - E3 and V1 - V4 were cast into slabs, which were then hot rolled with a hot rolling end temperature WET to hot strip with a hot strip thickness WBD.
  • the hot strip obtained was then coiled at a reel temperature HAT to a coil.
  • the hot strips obtained after the coiling or optional annealing and coating, which consisted of the steels E2, E3 and V1 - V4, were then cold rolled with a cold rolling grade KG to cold strip with a cold strip thickness KBD.
  • annealing took place at an annealing temperature GT.
  • the annealed cold strips E2 and V4 were then covered with an aluminum-silicon protective layer ("AS coating"), which protects the respective strip against corrosion.
  • AS coating aluminum-silicon protective layer
  • Table 2 shows the hot rolling end temperature WET, the hot strip thickness WBD, the reel temperature HAT, the cold rolling degree KWG, the cold strip thickness KBD and the annealing temperature GT, among the hot and cold strips produced from the steels E1-E3 and V1-V4.
  • the respective flat steel products were heated in an oven to a heating temperature EWT within a heating time EZ and then placed within a transfer time TZ in a thermoforming mold having a tool temperature WZT. Within the thermoforming tool, the flat steel products are each formed into a steel component and cooled at a cooling rate AKR.
  • Tables 3 to 8 indicate the heating temperature EWT, the heating time EZ, the transfer time TZ, the cooling rate AKR of the quenching in the thermoforming mold and the tool temperature WZT for the steel components produced in the above-described manner. In addition, it is indicated in Table 3a whether the respective component has been subjected to a cathodic dip coating.
  • the average mechanical-technological values yield strength R p0.2 , tensile strength R m , uniform elongation Ag, elongation A 80 , the content of the structure F / BF to ferrite and bainitic ferrite, the content of the structure RA of retained austenite, the content M of the microstructure of martensite, the content B of the microstructure of bainite and the ferrite grain size KG determined in accordance with DIN EN 643.
  • the respective grain size has not been determined or could not be determined due to the extremely fine structure, this is indicated by the entry "---".
  • Tables 3 and 4 relate to steel components produced from the steels E1 (Table 3), E2 and E3 (Table 4) according to the invention, while Tables 5 to 8 consist of the comparative steels V1 (Table 5), V2 (Table 6), V3 (FIG. Table 7) and V4 (Table 8) relate to steel components produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Steel comprises 0.05-0.15 wt.% of carbon, 0.5-2 wt.% of manganese, 0.01-0.70 wt.% of silicon, 0.01-0.1 wt.% of aluminum, 0.08-0.14 wt.% of titanium, 0.15-0.50 wt.% of chromium = 0.010 wt.% of sulfur and/or optionally one or more elements comprising = 0.1 wt.% of phosphorus, = 0.01 wt.% of nitrogen, = 0.1 wt.% of copper, = 0.1 wt.% of nickel, = 0.1 wt.% of molybdenum, = 0.1 wt.% of vanadium, = 0.0010 wt.% of boron, = 0.25 wt.% of niobium and 0.001-0.0040 wt.% of calcium, iron and unavoidable impurities. Independent claims are included for: (1) a flat steel product, comprising completely or at least in a portion of a constituted steel; (2) a steel component produced by hot-forming and subsequent quenching of the produced flat steel product, comprising the constituted steel having a tensile strength of at least 700 MPa and a structure, which consists of a combination of finely dispersed hard phases (martensite/bainite) and ductile phases (globular ferrite and dislocation-rich bainitic ferrite) and/or an austenite area of maximum of 5% in a fine-grained microstructure with additional precipitation hardening from titanium carbonitrides; and (3) producing the constituted steel component, comprising heating the flat steel product at a temperature of 750-950[deg] C in an oven, transferring the flat steel product from the oven to a tool, hot-forming the flat steel product into the steel component, and quenching the flat steel product at a cooling rate of more than 25[deg] C/seconds.

Description

Die Erfindung betrifft einen Stahl für die Herstellung eines Stahlbauteils, ein zumindest abschnittsweise aus einem solchen Stahl bestehendes Stahlflachprodukt, ein aus einem solchen Stahlflachprodukt durch Warmumformen und Abschrecken hergestelltes Stahlbauteil sowie ein Verfahren zur Herstellung eines solchen Stahlbauteils.The invention relates to a steel for the production of a steel component, a flat steel product consisting at least in sections of such a steel, a steel component produced from such a steel flat product by hot forming and quenching and a method for producing such a steel component.

Insbesondere betrifft die vorliegende Erfindung den Einsatz von Stählen, die ein ferritisch / perlitisch / bainitisches Gefüge im Auslieferungszustand mit Ausscheidungshärtung aufweisen, zur Herstellung von pressgehärteten Bauteilen im Festigkeitsbereich von ca. 700 bis 1150 MPa.In particular, the present invention relates to the use of steels having a ferritic / pearlitic / bainitic structure in the delivery state with precipitation hardening, for the production of press-hardened components in the strength range of about 700 to 1150 MPa.

Unter dem Begriff "Stahlflachprodukt" werden hier durch einen Walzprozess erzeugte Stahlbleche oder Stahlbänder sowie davon abgeteilte Platinen und desgleichen verstanden.The term "flat steel product" here by a rolling process produced steel sheets or steel strips and divided therefrom boards and the like understood.

Sofern hier Legierungsgehalte lediglich in "%" angegeben sind, ist damit immer "Gew.-%" gemeint, sofern nicht ausdrücklich etwas anderes angegeben ist.If alloy contents are stated here only in "%", this always means "% by weight", unless expressly stated otherwise.

Die Anforderungen an die Automobilindustrie seitens des Gesetzgebers steigen in den letzten Jahren. Zum einen wird eine erhöhte Passagiersicherheit im Crashfall gefordert. Zum anderen stellt der Leichtbau eine wichtige Voraussetzung für die Einhaltung der gesetzlich vorgegebenen CO2-Grenzwerte und für die Minimierung des zum Antrieb des Fahrzeugs benötigten Energieeinsatzes dar. Gleichzeitig stellen die Nutzer von Fahrzeugen immer höhere Ansprüche an den Komfort, was zu einem erhöhten Anteil von elektronischen Komponenten im Fahrzeug und einem dadurch zunehmenden Fahrzeuggewicht führt. Um diese widersprüchlichen Anforderungen gleichzeitig zu erfüllen, streben die Automobilindustrie und die vorgeschaltete Flachstahlindustrie Leichtbauweisen bei der Fertigung der Karosseriestruktur an.The demands on the automotive industry by the legislator have increased in recent years. On the one hand, increased passenger safety is required in the event of a crash. On the other hand, lightweight construction is an important prerequisite for compliance with the statutory CO 2 limit values and for minimizing the energy required to drive the vehicle. At the same time, users of vehicles are placing ever greater demands on comfort, resulting in an increased share of electronic components in the vehicle and thereby increasing vehicle weight leads. In order to meet these conflicting requirements at the same time, the automotive industry and the upstream flat steel industry strive for lightweight construction in the manufacture of the body structure.

Für crashrelevante Automobilbauteile haben sich hier insbesondere Bauteile durchgesetzt, die durch Warmumformen und im Anschluss daran erfolgendes Härten von Stahlflachprodukten hergestellt werden, die aus einem Mangan-Bor-Stahl bestehen. Durch eine solche in der Fachsprache auch als "Warmpresshärten" bezeichnete Fertigung können Bauteile hergestellt werden, die sich bei optimal dünnen Wandstärken und damit einhergehend minimiertem Gewicht beispielsweise als B-Säulen, B-Säulenverstärkung und Stoßfänger verwenden lassen.In particular, components which are produced by hot forming and subsequently hardening of flat steel products which consist of a manganese-boron steel have prevailed here for crash-relevant automotive components. By such a term in the jargon also referred to as "hot press hardening" manufacturing components can be produced, which can be used with optimally thin wall thickness and concomitantly minimized weight, for example, as B-pillars, B-pillar reinforcement and bumpers.

Ein typisches Beispiel für einen Mangan-Bor-Stahl der voranstehend erwähnten Art ist der in der Fachwelt unter der Bezeichnung 22MnB5 bekannte Stahl, der die Werkstoffnummer 1.5528 erhalten hat. Durch eine Warmumformung mit sich daran anschließendem Presshärten lassen sich aus Stählen dieser Art Bauteile mit komplexen Geometrien mit optimaler Maßhaltigkeit erzeugen. Die durch das Warmpresshärten erhaltenen Bauteile weisen aufgrund ihres überwiegend martensitischen Gefüges höchste Festigkeiten (Rm ca. 1500 MPa, RP0,2 ca. 1100 MPa) auf und besitzen so ein optimiertes Leichtbaupotenzial. Allerdings muss als Preis für die hohen Festigkeiten eine geringe Duktilität (A80 ca. 5-6 %) in Kauf genommen werden. Daher wird in der Praxis die Blechdicke der Bauteile häufig aus Sicherheitsgründen stärker ausgeführt als es nötig wäre, um ein Versagen im Crashfall zu vermeiden. Infolgedessen werden die Leichtbaupotenziale nicht vollständig ausgeschöpft.A typical example of a manganese-boron steel of the type mentioned above is the steel known in the art as 22MnB5, which has been given the material number 1.5528. Hot forming with subsequent press hardening makes it possible to produce components with complex geometries with optimum properties from steels of this type Create dimensional accuracy. Due to their predominantly martensitic structure, the components obtained by hot-pressing hardening have the highest strengths (Rm approx. 1500 MPa, R P0 , 2 approx. 1100 MPa) and thus have an optimized lightweight construction potential. However, as a price for the high strength low ductility (A80 about 5-6%) must be accepted. Therefore, in practice, the sheet thickness of the components is often made stronger for safety reasons than it would be necessary to avoid failure in the event of a crash. As a result, the lightweight potentials are not fully exploited.

Eine Möglichkeit, diese Nachteile zu umgehen, besteht in der Verwendung von so genannten "Tailored Blanks". Bei Tailored Blanks handelt es sich um Platinen, die aus mindestens zwei Blechen zusammengesetzt sind. Die betreffenden Bleche unterscheiden sich dabei in mindestens einer Eigenschaft. So lässt sich beispielsweise in einem bestimmten Abschnitt des aus dem jeweiligen Tailored Blank zu formenden Bauteils eine besonders hohe Festigkeit bei gleichzeitig vergleichbar geringer Zähigkeit bereitstellen, während in einem anderen Abschnitt eine demgegenüber verminderte Festigkeit, jedoch erhöhte Zähigkeit zur Verfügung steht. Beispielsweise kann ein Tailored Blank für eine B-Säule so ausgelegt werden, dass beispielsweise der obere, dem Dach des Fahrzeugs zugeordnete Bereich, an den hohe Festigkeitsanforderungen gestellt werden, aus 22MnB5 besteht, während der dem Fuß der B-Säule zugeordnete Bereich aus einer Stahlgüte besteht, die nach dem Härten eine erhöhte Duktilität aufweist. Ein Beispiel für einen zu diesem Zweck in Frage kommenden Stahl ist der Stahl H340LAD, dem die Werkstoffnummer 1.0933 zugeordnet worden ist. Dieser Stahl erreicht eine Zugfestigkeit von ca. 500 bis 650 MPa bei einer Dehnung von ca. 15 % nach der Warmumformung.One way around these disadvantages is the use of so-called "tailored blanks". Tailored blanks are blanks composed of at least two sheets. The sheets in question differ in at least one property. Thus, for example, in a certain section of the component to be formed from the respective tailored blank, a particularly high strength and at the same time comparatively low toughness can be provided, while in another section a reduced strength but increased toughness is available. For example, a Tailored Blank for a B-pillar may be designed so that, for example, the upper area associated with the roof of the vehicle to which high strength requirements apply is 22MnB5, while the area associated with the B-pillar foot is a steel grade exists, which has an increased ductility after curing. An example of a suitable steel for this purpose is steel H340LAD, to which the material number 1.0933 has been assigned. This steel reaches a Tensile strength of about 500 to 650 MPa at an elongation of about 15% after hot working.

Nachteilig an der im voranstehenden Absatz erläuterten Lösung ist, dass im kritischen Bereich (beim hier gewählten Beispiel der B-Säule einer Fahrzeugkarosserie der untere Bereich der Säule) aufgrund der relativ niedrigen Festigkeit eine höhere Blechdicke notwendig ist, was ein entsprechend höheres Gewicht für das Gesamtbauteil zur Folge hat.A disadvantage of the solution explained in the preceding paragraph, that in the critical area (in the example chosen here, the B-pillar of a vehicle body, the lower portion of the column) due to the relatively low strength, a higher sheet thickness is necessary, resulting in a correspondingly higher weight for the entire component entails.

Eine weitere Entwicklung in Richtung Partnerwerkstoff für Tailored Blanks ist in der WO 2008/132303 Al beschrieben. Es handelt sich hierbei um eine aus einem mikrolegierten Stahl bestehende, mit einer auf Al oder Zn basierenden Korrosionsschutzbeschichtung versehene Stahlplatine, die nach einer Vollaustenitisierung und anschließendem Presshärten eine überwiegend ferritische Struktur (> 75 %) mit geringeren Anteilen von Martensit (5 - 20 %) und Bainit (< 10 %) aufweist. Restaustenitanteile im Gefüge sind dabei ausdrücklich unerwünscht. Nach diesem Warmumformungsverfahren aus 0,5 - 4 mm dicken Stahlplatinen hergestellte Bauteile weisen bei erhöhten Bruchdehnungswerten (> 15 %) Zugfestigkeiten auf, die im Bereich von 500 - 600 MPa liegen. Die verbesserte Duktilität sichert im Crashfall ein höheres Energieaufnahmevermögen.Another development towards partner material for tailored blanks is in the WO 2008/132303 Al described. This is a steel plate made of a microalloyed steel with an Al or Zn-based corrosion protection coating. After full austenitization and subsequent press hardening, it has a predominantly ferritic structure (> 75%) with lower levels of martensite (5-20%). and bainite (<10%). Restaustenitanteile in the structure are expressly undesirable. Components made from 0.5 - 4 mm thick steel blanks produced by this hot forming process have tensile strengths in the range of 500-600 MPa at elevated elongation values (> 15%). The improved ductility ensures a higher energy absorption capacity in the event of a crash.

Aus der DE 10 2006 019 395 Al sind zudem eine Vorrichtung und ein Verfahren zum Presshärten von Platinen aus höher - und höchstfesten Stählen bekannt. Die bekannte Vorrichtung ermöglicht die Steuerung der Werkzeugtemperatur während des Umformungsverfahrens, wodurch Tailored Tempering und eine Halbwarmumformung durchgeführt werden kann werden. Beim Tailored Tempering werden die Presswerkzeuge während der Warmumformung nur partiell erwärmt. Durch die gezielte Temperaturführung entsteht lokal ein Mischgefüge mit reduzierten Festigkeiten, aber verbesserter Duktilität. Somit kann im späteren Bauteil im Fall eines Crashs die dem jeweiligen Fahrzeug im Moment des Unfalls eigene kinetische Energie als Verformungsenergie abgebaut werden.From the DE 10 2006 019 395 A1 In addition, an apparatus and a method for press hardening of blanks of higher and ultrahigh - strength steels are known. The known device allows the control of the tool temperature during the forming process, whereby tailored tempering and hot forging can be performed. At the Tailored tempering only partially heats the dies during hot forming. The targeted temperature control produces locally a mixed structure with reduced strengths but improved ductility. Thus, in the later component in the event of a crash, the kinetic energy inherent in the respective vehicle at the moment of the accident can be dissipated as deformation energy.

Beim Halbwarmumformen wird das Werkstück auf eine unterhalb der Rekristallisationstemperatur liegende Temperatur erwärmt. Die Erwärmungstemperatur für das Halbwarmumformen liegt dabei typischerweise im Bereich von 400 - 650 °C. Ein Beispiel für einen Stahl, der sich besonders für das Halbwarmumformen eignet, ist der als "CP-W 800" bekannte Stahl, dem gemäß DIN EN 10336 die Bezeichnung HDT780C zugeordnet ist. Die herkömmliche Praxis für den Stahl 22MnB5, der einer Phasenumwandlung während des Presshärtens untergezogen wird, verlangt Werkzeugtemperaturen unter 200 °C, um ein martensitisches Gefüge nach dem Presshärten herzustellen.In warm forging, the workpiece is heated to a temperature below the recrystallization temperature. The warming temperature for warm forging is typically in the range of 400-650 ° C. An example of a steel which is particularly suitable for hot forging is the steel known as "CP-W 800", which according to DIN EN 10336 is assigned the designation HDT780C. Conventional practice for the 22MnB5 steel subjected to phase transformation during press-hardening requires mold temperatures below 200 ° C to produce a martensitic structure after press-hardening.

Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, einen für die Herstellung von Bauteilen durch Warmpressformhärten optimal geeigneten Stahl, ein ebenso optimal für das Warmpressformhärten geeignetes Stahlflachprodukt, ein Stahlbauteil, bei dem hohe Festigkeit und hohe Duktilität in optimaler Weise kombiniert sind, sowie ein Verfahren zur Herstellung eines solchen Bauteils anzugeben.Against the background of the prior art explained above, the object of the invention was to provide a steel which is optimally suitable for the production of components by hot-press hardening, a steel flat product also optimally suitable for hot-press hardening, a steel component in which high strength and high ductility are optimally achieved combined, and to provide a method for producing such a component.

In Bezug auf den Stahl ist diese Aufgabe erfindungsgemäß dadurch gelöst worden, dass ein solcher Stahl die in Anspruch 1 angegebene Zusammensetzung aufweist.With respect to the steel, this object has been achieved according to the invention in that such a steel has the composition specified in claim 1.

In Bezug auf das Stahlflachprodukt besteht die erfindungsgemäße Lösung der oben voranstehend genannten Aufgabe darin, dass ein solches Stahlflachprodukt aus einem erfindungsgemäßen Stahl besteht.With regard to the flat steel product, the solution according to the invention of the abovementioned object is that such a flat steel product consists of a steel according to the invention.

In Bezug auf das Bauteil ist die voranstehend genannte Aufgabe erfindungsgemäß dadurch gelöst worden, dass das Bauteil die in Anspruch 11 angegebenen Merkmale besitzt.With regard to the component, the above-mentioned object has been achieved according to the invention in that the component has the features specified in claim 11.

Schließlich besteht die Lösung der oben angegebenen Aufgabe in Bezug auf das Verfahren erfindungsgemäß darin, dass bei der Herstellung eines erfindungsgemäßen Bauteils die in Anspruch 13 angegebenen Arbeitsschritte durchgeführt werden.Finally, the solution of the above-mentioned object with respect to the method according to the invention is that in the production of a component according to the invention, the operations specified in claim 13 are performed.

Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.Advantageous embodiments of the invention are specified in the dependent claims and are explained below as the general inventive concept in detail.

Ein erfindungsgemäßer Stahl für die Herstellung eines Stahlbauteils durch Warmumformung mit anschließender Härtung enthält dementsprechend neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%)

  • C: 0,05 - 0,15 %,
  • Mn: 0,5 - 2,0 %,
  • Si: 0,01 - 0,70 %,
  • Al: 0,01 - 0,1 %,
  • Ti: 0,08 - 0,14 %,
  • Cr: 0,15 - 0,50 %,
  • S: ≤ 0,010 %,
  • sowie jeweils optional eines oder mehrere Elemente aus der Gruppe "P, N, Cu, Ni, Mo V, B, Nb, Ca" mit der Maßgabe
    • P: ≤ 0,1 %,
    • N: ≤ 0,01 %,
    • Cu: ≤ 0,1 %,
    • Ni: ≤ 0,1 %,
    • Mo: ≤ 0,1 %,
    • V: ≤ 0,1 %,
    • B: ≤ 0,0010 %,
    • Nb: ≤ 0,25 %,
    • Ca: 0,001 - 0,0040 %.
A steel according to the invention for the production of a steel component by hot working with subsequent hardening accordingly contains, in addition to iron and unavoidable impurities (in% by weight)
  • C: 0.05-0.15%,
  • Mn: 0.5-2.0%,
  • Si: 0.01-0.70%,
  • Al: 0.01 - 0.1%,
  • Ti: 0.08 - 0.14%,
  • Cr: 0.15-0.50%,
  • S: ≤ 0.010%,
  • and in each case optionally one or more elements from the group "P, N, Cu, Ni, Mo V, B, Nb, Ca" with the proviso
    • P: ≤ 0.1%,
    • N: ≤ 0.01%,
    • Cu: ≦ 0.1%,
    • Ni: ≤ 0.1%,
    • Mo: ≤ 0.1%,
    • V: ≤ 0.1%,
    • B: ≤ 0.0010%,
    • Nb: ≤0.25%,
    • Ca: 0.001-0.0040%.

Ein erfindungsgemäßes Stahlflachprodukt besteht dementsprechend mindestens in einem Abschnitt aus einem erfindungsgemäßen Stahl.A flat steel product according to the invention accordingly consists, at least in one section, of a steel according to the invention.

Die Maßgabe, dass das erfindungsgemäße Stahlflachprodukt mindestens in einem Abschnitt aus einem erfindungsgemäßen Stahl besteht, schließt dabei selbstverständlich die Möglichkeit ein, dass das Stahlflachprodukt insgesamt aus einem erfindungsgemäßen Stahl hergestellt ist. Dabei kann der mindestens eine aus dem erfindungsgemäßen Stahl bestehende Abschnitt des Stahlflachprodukts aus einem warmgewalzten oder einem durch konventionelles Kaltwalzen erzeugten Blech gebildet sein.The proviso that the flat steel product according to the invention consists of at least one section of a steel according to the invention includes, of course, the possibility that the flat steel product as a whole is made of a steel according to the invention. In this case, the at least one section of the flat steel product consisting of the steel according to the invention may be formed from a hot-rolled sheet or a sheet produced by conventional cold-rolling.

Insbesondere kann es sich bei dem erfindungsgemäßen Stahlflachprodukt um ein Tailored Blank handeln, das aus mindestens zwei Blechteilen zusammengesetzt ist, welche sich neben möglicherweise bestehenden Unterschieden in ihrer flächenmäßigen Ausdehnung in mindestens einer Eigenschaft, wie Dicke, Festigkeit, Zähigkeit, Dehnungseigenschaften etc., unterscheiden.In particular, the flat steel product according to the invention can be a tailored blank, which is composed of at least two sheet metal parts which are themselves in addition to possibly existing differences in their areal extent in at least one property, such as thickness, strength, toughness, elongation properties, etc., distinguish.

Das erfindungsgemäße Stahlbauteil ist durch Warmumformen und anschließendes Abschrecken eines erfindungsgemäßen Stahlflachprodukts hergestellt. Dabei besitzt das Stahlbauteil in dem Bereich, in dem aus dem gemäß einem der Ansprüche 1 bis 5 beschaffenen Stahl besteht, eine Zugfestigkeit von mindestens 700 MPa und weist in diesem Bereich ein Gefüge auf, das aus einer Kombination fein verteilter harter Phasen (Martensit/Bainit) und duktiler Phasen (globularer Ferrit und versetzungsreicher bainitischer Ferrit) sowie einem Restaustenitanteil von maximal 5 Flächen-% in einem feinkörnigen Gefügeaufbau mit zusätzlicher Ausscheidungshärtung aus Titankarbonitriden besteht. Gleichzeitig beträgt im Gefüge des aus dem erfindungsgemäßen Stahl bestehenden Bereich des Stahlbauteils der durchschnittliche Korndurchmesser des globularen Ferrits oder des bainitischen Ferrits 1,5 - 4,0 µm und der Anteil von duktilen Phasen mindestens 5 Flächen-%.The steel component according to the invention is produced by hot forming and subsequent quenching of a flat steel product according to the invention. In this case, the steel component has a tensile strength of at least 700 MPa in the region in which the steel obtained according to one of claims 1 to 5 has a structure consisting of a combination of finely divided hard phases (martensite / bainite ) and ductile phases (globular ferrite and dislocation-rich bainitic ferrite) and a residual austenite content of at most 5 area% in a fine-grained microstructure with additional precipitation hardening of titanium carbonitrides. At the same time, in the structure of the region of the steel component consisting of the steel according to the invention, the average grain diameter of the globular ferrite or of the bainitic ferrite is 1.5-4.0 μm and the proportion of ductile phases is at least 5 area%.

Beim durch Warmumformung und Härten eines erfindungsgemäßen Stahlflachprodukts erzeugten Stahlbauteils besteht das Gefüge aus einer Kombination von fein verteilten harten Phasen (Martensit/Bainit) und duktileren Phasen (bainitischer Ferrit und globularer Ferrit) sowie Restaustenit mit zusätzlicher Ausscheidungshärtung durch Titankarbonitride. Der Anteil von duktilen Phasen hängt dabei direkt vom C-Gehalt ab und beträgt mindestens 5 Flächen-%.In the case of the steel component produced by hot forming and hardening of a steel flat product according to the invention, the structure consists of a combination of finely divided hard phases (martensite / bainite) and more ductile phases (bainitic ferrite and globular ferrite) and retained austenite with additional precipitation hardening by titanium carbonitrides. The proportion of ductile phases depends thereby directly from the C content and amounts to at least 5 area%.

Die Ferritgefügestruktur des erfindungsgemäßen Stahlbauteils ist extrem fein. Der durchschnittliche Korndurchmesser des Ferrits bzw. bainitischen Ferrits beträgt hier 1,5 - 4,0 µm, was gemäß DIN EN 643 bei einem Korndurchmesser von 4,0 µm einer Korngrößenkennzahl von mindestens 13 und bei einem Korndurchmesser von 1,5 µm einer Korngrößenzahl > 15 entspricht.The ferrite structure of the steel component according to the invention is extremely fine. The average grain diameter of the ferrite or bainitic ferrite here is 1.5-4.0 microns, which according to DIN EN 643 with a particle diameter of 4.0 microns a particle size index of at least 13 and with a particle diameter of 1.5 microns a grain size number> 15 corresponds.

Die feinkörnige Mikrostruktur bedeutet im aus erfindungsgemäßem Stahl durch Warmpressformhärten hergestellten Stahlbauteil nicht nur kleine Körner, sondern auch eine hohe Anzahl von Phasengrenzen. Diese haben eine stärkere Auswirkung auf die Zugfestigkeit als die ferritischen Korngrenzen alleine. Der bainitische Ferrit weist zudem eine hohe Versetzungsdichte auf. Das feine Gefüge und die hohe Versetzungsdichte tragen zu den besonderen mechanisch-technologischen Eigenschaften des erfindungsgemäßen Stahls, eines daraus bestehenden Stahlflachprodukts und eines daraus hergestellten Stahlbauteils bei.The fine-grained microstructure means not only small grains but also a high number of phase boundaries in the steel component produced from the steel according to the invention by hot press hardening. These have a stronger effect on the tensile strength than the ferritic grain boundaries alone. The bainitic ferrite also has a high dislocation density. The fine structure and the high dislocation density contribute to the special mechanical and technological properties of the steel according to the invention, of a steel flat product consisting thereof and of a steel component produced therefrom.

Das erfindungsgemäße Verfahren zum Herstellen eines erfindungsgemäßen Stahlbauteils umfasst den voranstehenden Erläuterungen entsprechend die Arbeitsschritte:

  • Bereitstellen eines gemäß einem der Ansprüche 6 bis 8 beschaffenen Stahlflachprodukts,
  • Erwärmen des Stahlflachprodukts auf eine 750 - 950 °C betragende Erwärmungstemperatur in einem Ofen,
  • Transfer des Stahlflachprodukts vom Ofen zu einem Werkzeug,
  • in dem Werkzeug erfolgendes Warmumformen des Stahlflachprodukts zu dem Stahlbauteil,
  • Abschrecken des Stahlflachprodukts mit einer Abkühlrate von mehr als 25 °C/s.
The method according to the invention for producing a steel component according to the invention comprises the following steps according to the above explanations:
  • Providing a flat steel product obtained according to any one of claims 6 to 8,
  • Heating the flat steel product to a heating temperature of 750-950 ° C in an oven,
  • Transfer of the flat steel product from the furnace to a tool
  • hot working the steel flat product into the steel component in the tool;
  • Quenching the flat steel product with a cooling rate of more than 25 ° C / s.

Um sicher zu vermeiden, dass das in erfindungsgemäßer Weise auf die Erwärmungstemperatur erwärmte Stahlflachprodukt bei seinem Transport zum Warmumformwerkzeug einen zu großen Temperaturverlust erleidet, kann der Transfer vom Ofen zum Werkzeug innerhalb von 5 - 12 Sekunden absolviert werden.In order to reliably avoid the excessively high temperature loss of the steel flat product heated according to the invention to the heating temperature during its transport to the hot forming tool, the transfer from the oven to the tool can be completed within 5 to 12 seconds.

Mit der Erfindung stehen ein Stahl und ein daraus hergestelltes Stahlflachprodukt zur Verfügung, die nach einer Warmpresshärtung eine Zugfestigkeit aufweisen, welche bei Bruchdehnungswerten A80 von 6 - 15 % typischerweise im Bereich von 700 - 1200 MPa, insbesondere 700 - 1150 MPa, liegen. Auf diese Weise schließt die Erfindung die zwischen den Werkstoffen mit relativ niedriger Zugfestigkeit und höherer Bruchdehnung (z. B. H340LAD) und Werkstoffen mit hohen Zugfestigkeitswerten und niedriger Bruchdehnung (z. B. 22MnB5) bestehende Lücke. Durch das erfindungsgemäß vorgegebene Legierungskonzept gelingt es dabei, auf konventionellem Fertigungsweg aus einem erfindungsgemäßen Stahlflachprodukt durch Warmumformen mit anschließendem Härten ein Stahlbauteil herzustellen, das für die jeweilige Anforderung optimale mechanische Eigenschaften besitzt. Diese mechanischen Eigenschaften werden zuverlässig über das gesamte durch die Erfindung definierte Prozessfenster erzielt. Die Stabilität der mechanisch-technologischen Eigenschaften wird dabei durch das Analysenkonzept des erfindungsgemäßen Stahls sichergestellt.The invention provides a steel and a flat steel product made therefrom which, after hot-pressing hardening, have a tensile strength which, at breaking elongation values A 80 of 6 to 15%, are typically in the range from 700 to 1200 MPa, in particular 700 to 1150 MPa. In this way, the invention closes the gap between the materials with relatively low tensile strength and higher elongation at break (eg H340LAD) and materials with high tensile strength values and low elongation at break (eg 22MnB5). By means of the alloying concept predetermined according to the invention, it is possible to produce a steel component from a flat steel product according to the invention by hot forming with subsequent hardening, which is suitable for the respective conventional production method Requirement has optimal mechanical properties. These mechanical properties are reliably achieved over the entire process window defined by the invention. The stability of the mechanical and technological properties is ensured by the analysis concept of the steel according to the invention.

C ist in einem erfindungsgemäßen Stahl mit einem Gehalt von mindestens 0,05 Gew.-% und höchstens 0,150 Gew.-%, insbesondere 0,06 - 0,11 Gew.-%, vorhanden, um einerseits sicherzustellen, dass sich bei der abschließenden Abschreckung die für erfindungsgemäße Stahlbauteile vorgegebene Mindestzugfestigkeit von 700 MPa notwendige Martensithärte bildet und um andererseits ein zu großes Ansteigen der Härte zu vermeiden. Auch ist der C-Gehalt auf maximal 0,150 Gew.-% beschränkt, um die Schweißbarkeit des erfindungsgemäßen Stahlbauteils nicht zu beeinträchtigen. Besonders sicher lässt sich der für die erfindungsgemäßen Stahlbauteile vorgegebene Bereich der Zugfestigkeit erreichen, wenn der C-Gehalt des Stahls mindestens 0,08 Gew.-% beträgt.C is present in a steel according to the invention with a content of at least 0.05% by weight and at most 0.150% by weight, in particular 0.06-0.11% by weight, in order, on the one hand, to ensure that the final one Deterrence, the minimum tensile strength of 700 MPa required for steel components according to the invention forms necessary Martensithärte and on the other hand to avoid an excessive increase in hardness. Also, the C content is limited to a maximum of 0.150 wt .-%, so as not to affect the weldability of the steel component according to the invention. The range of tensile strength prescribed for the steel components according to the invention can be achieved particularly reliably if the C content of the steel is at least 0.08% by weight.

Mn in Gehalten von 0,50 - 2,0 Gew.-% dient im erfindungsgemäßen Stahl als Austenitbildner, indem durch seine Anwesenheit die AC3-Temperatur herabgesetzt wird. Das Ergebnis ist ein hoher Austenitanteil bereits bei relativ niedrigen Erwärmungstemperaturen. Zur Optimierung der Schweißeignung kann der Mn-Gehalt auf maximal 1,20 Gew.-% abgesenkt werden.Mn in contents of 0.50-2.0% by weight serves as austenite former in the steel according to the invention by reducing the A C3 temperature by its presence. The result is a high austenite content even at relatively low heating temperatures. To optimize the weldability of the Mn content can be lowered to a maximum of 1.20 wt .-%.

In Gehalten von 0,01 - 0,70 Gew.-% wirkt Si im erfindungsgemäßen Stahl einerseits als Oxidationsmittel und wirkt sich andererseits positiv auf die mechanischen Eigenschaften aus. Dies ist insbesondere dann der Fall, wenn mindestens 0,20 Gew.-% Si im erfindungsgemäßen Stahl vorhanden sind. So steigert die Anwesenheit von Si in den erfindungsgemäß vorgegebenen Grenzen die Streckgrenze und stabilisiert den Ferrit sowie den Austenit bei Raumtemperatur. Gleichzeitig behindert Si eine unerwünschte Karbidausscheidung im Austenit während der Abkühlung. Ein zu hoher Si-Gehalt verursacht Oberflächenfehler.In amounts of 0.01-0.70 wt.%, Si acts as an oxidizing agent in the steel according to the invention on the one hand On the other hand, it has a positive effect on the mechanical properties. This is the case in particular if at least 0.20% by weight of Si are present in the steel according to the invention. Thus, the presence of Si in the limits specified by the invention increases the yield strength and stabilizes the ferrite and the austenite at room temperature. At the same time, Si prevents unwanted carbide precipitation in austenite during cooling. Excessive Si content causes surface defects.

Al in Gehalten von 0,01 - 0,1 Gew.-%, insbesondere maximal 0,07 Gew.-%, stabilisiert in erfindungsgemäßem Stahl den Ferrit und den Austenit bei Raumtemperatur. Gleichzeitig kann über den Al-Gehalt die Größe der sich im Gefüge des erfindungsgemäßen Stahls bildenden Körner kontrolliert werden. Zur Bildung eines besonders feinkörnigen Gefüges trägt dementsprechend bei, wenn der Al-Gehalt des erfindungsgemäßen Stahls mindestens 0,020 Gew.-% beträgt.Al in contents of 0.01-0.1 wt.%, In particular maximally 0.07 wt.%, Stabilizes the ferrite and the austenite at room temperature in steel according to the invention. At the same time, the size of the grains forming in the microstructure of the steel according to the invention can be controlled via the Al content. Accordingly, the formation of a particularly fine-grained microstructure contributes when the Al content of the steel according to the invention is at least 0.020% by weight.

Ti erhöht in einem erfindungsgemäßen Stahl die Streckgrenze und bewirkt die Entstehung von Ausscheidungen, die beispielsweise als Ti-Karbonitride in einem erfindungsgemäßen Stahl vorliegen. Zudem wird durch die Ausscheidungsbildung die Anlassbeständigkeit erhöht und durch die Behinderung des Kornwachstums während der Ofenerwärmung bei der Warmumformung eine Verbesserung der Zähigkeit erzielt. Um durch einen hohen Ausscheidungsanteil insbesondere an Karbonitriden mögliche Streuungen dieser positiven Einflüsse zu reduzieren, enthält ein erfindungsgemäßer Stahl verhältnismäßig hohe Ti-Gehalte von 0,08 - 0,14 Gew.-%, insbesondere mindestens 0,09 Gew.-%.In a steel according to the invention, Ti increases the yield strength and causes the formation of precipitates, which are present, for example, as titanium carbonitrides in a steel according to the invention. In addition, precipitation formation increases tempering resistance and improves toughness by inhibiting grain growth during furnace heating during hot working. In order to reduce possible dispersions of these positive influences by a high precipitation fraction, in particular of carbonitrides, a steel according to the invention contains relatively high Ti contents of 0.08-0.14% by weight, in particular at least 0.09% by weight.

Cr ist im erfindungsgemäßen Stahl in Gehalten von 0,15 - 0,5 Gew.-% enthalten, um die Durchhärtbarkeit zu fördern und dadurch die Abhängigkeit von der Abkühlgeschwindigkeit zu minimieren. Auf diese Weise wird erfindungsgemäßer Stahl unempfindlicher gegen mögliche Schwankungen der Warmumformparameter. Um Oberflächenfehler am fertigen erfindungsgemäßen Stahlbauteil zu vermeiden, darf der Cr-Gehalt jedoch 0,5 Gew.-% nicht überschreiten. Besonders sicher lassen sich die positiven Einflüsse der Anwesenheit von Cr in einem erfindungsgemäßen Stahl nutzen, wenn der Cr-Gehalt 0,3 - 0,4 Gew.-% beträgt.Cr is contained in the steel according to the invention in amounts of 0.15-0.5% by weight in order to promote through-hardenability and thereby minimize the dependence on the cooling rate. In this way, steel according to the invention becomes less sensitive to possible fluctuations of the hot working parameters. However, in order to avoid surface defects on the finished steel component according to the invention, the Cr content must not exceed 0.5% by weight. The positive effects of the presence of Cr in a steel according to the invention can be used particularly reliably if the Cr content is 0.3-0.4% by weight.

Der S-Gehalt des erfindungsgemäßen Stahls darf 0,010 Gew.-% nicht überschreiten, weil andernfalls Probleme beim Schweißen, bei der Oberflächenveredelung und im Hinblick auf die Bildung schädlicher, gestreckter MnS-Ausscheidungen zu erwarten sind. Vorzugsweise ist daher der S-Gehalt des erfindungsgemäßen Stahls so gering wie möglich.The S-content of the steel according to the invention must not exceed 0.010% by weight, because otherwise problems in welding, in surface finishing and in the formation of harmful, elongated MnS precipitates are to be expected. Preferably, therefore, the S content of the steel according to the invention is as low as possible.

Neben den voranstehend aufgezählten Pflichtbestandteilen C, Mn, Si, Al, Ti und Cr kann ein erfindungsgemäßer Stahl optional eines oder mehrere der Elemente enthalten, die in der Gruppe "P, N, Cu, Ni, Mo, V, B, Nb, Ca" zusammengefasst sind. Jedes dieser Elemente kann dabei einen positiven Nutzen haben, ist jedoch nicht zwingender Bestandteil und als solches verzichtbar, um ein Stahlbauteil mit den erfindungsgemäß vorgegebenen Eigenschaften durch Warmumformen und anschließendem Härten herstellen zu können.In addition to the mandatory ingredients C, Mn, Si, Al, Ti and Cr enumerated above, a steel according to the invention may optionally contain one or more of the elements selected in the group "P, N, Cu, Ni, Mo, V, B, Nb, Ca "are summarized. Each of these elements can have a positive benefit, but is not a compulsory component and can be dispensed with as such in order to be able to produce a steel component with the properties prescribed according to the invention by hot forming and subsequent hardening.

Ebenso optional kann im erfindungsgemäßen Stahl P in Gehalten von bis zu 0,1 Gew.-% enthalten sein. In Kombination mit Si steigert P die Stabilität des Austenits. Ein zu hoher P-Gehalt schadet jedoch der Duktilität und der Zähigkeit des Stahls.Also optionally in the steel according to the invention P may be present in amounts of up to 0.1 wt .-%. In combination with Si, P increases the stability of austenite. Too high a P content, however, damages the ductility and toughness of the steel.

In Gehalten von bis zu 0,01 Gew.-% stabilisiert N im erfindungsgemäßen Stahl den Austenit und erhöht die Streckgrenze. Darüber hinaus ermöglicht die Anwesenheit von N die erfindungsgemäße erwünschte Bildung von Titankarbonitriden. Sofern N nicht vollständig von Ti abgebunden ist und der erfindungsgemäße Stahl zusätzlich B enthält, reagiert N in Kombination mit Bor zu Bornitriden, die eine Kornfeinung des Ausgangsgefüges und damit eine Feinung des beim fertigen Stahlbauteil nach der Warmumformung und Härtung vorhandenen martensitischen Gefüges bewirken. Um diese positiven Effekte der Anwesenheit von N sicher zu erreichen, kann der N-Gehalt des erfindungsgemäßen Stahls auf mindestens 0,0025 Gew.-% gesetzt werden.In amounts of up to 0.01% by weight, N stabilizes the austenite in the steel according to the invention and increases the yield strength. In addition, the presence of N enables the desired formation of titanium carbonitrides according to the invention. If N is not completely bound by Ti and the steel according to the invention additionally contains B, N reacts in combination with boron to boron nitrides, which cause grain refining of the starting structure and thus a refining of the martensitic structure present in the finished steel component after hot working and hardening. In order to safely achieve these positive effects of the presence of N, the N content of the steel according to the invention may be set to at least 0.0025% by weight.

Cu kann im erfindungsgemäßen Stahl zur Erhöhung der Streckgrenze genutzt werden. Bei über 0,1 Gew.-% hinausgehenden Gehalten kann jedoch die Anwesenheit von Cu die Warmumformbarkeit des Stahles beeinträchtigen.Cu can be used in the steel according to the invention to increase the yield strength. However, at levels above 0.1% by weight, the presence of Cu may affect the hot workability of the steel.

In Gehalten von bis zu 0,1 Gew.-% kann Ni die Streckgrenze und die Bruchdehnung des erfindungsgemäßen Stahls verbessern. Darüber hinausgehende Gehalte werden aus Kostengründen vermieden.In amounts of up to 0.1% by weight, Ni can improve the yield strength and elongation at break of the steel of the present invention. In addition, contents are avoided for cost reasons.

Mo ist im erfindungsgemäßen Stahl optional in Gehalten von bis zu 0,1 Gew.-% vorhanden. Mo fördert die Martensitbildung und verbessert die Zähigkeit. Ein über 0,1 Gew.-% hinausgehender Mo-Gehalt kann im erfindungsgemäßen Stahl jedoch Kaltrissbildung verursachen.Mo is optionally present in the steel of the present invention at levels of up to 0.1% by weight. Mo promotes martensite formation and improves toughness. Over 0.1% by weight However, exceeding Mo content may cause cold cracking in the steel according to the invention.

In Gehalten von bis zu 0,1 Gew.-% steigert V die Streckgrenze des erfindungsgemäßen Stahls durch Kornfeinung und verbessert die Schweißbarkeit.In amounts of up to 0.1% by weight, V increases the yield strength of the steel of the invention by grain refining and improves weldability.

Durch die Zugabe von bis zu 0,001 Gew.-% B kann die Härtbarkeit des erfindungsgemäßen Stahls verbessert werden. B verlängert hier durch Verzögerung der Ferritumwandlung während der Abkühlung die Umwandlungszeiten und stabilisiert die mechanischen Eigenschaften für einen weiten Temperaturbereich des Warmumformprozesses im Sinne früher, homogener Martensitbildung. Allerdings reduzieren über 0,0010 Gew.-% hinausgehende Gehalte an B die Umformbarkeit des erfindungsgemäßen Stahls deutlich.By adding up to 0.001% by weight of B, the hardenability of the steel according to the invention can be improved. Here, by delaying ferrite transformation during cooling, B prolongs the transformation times and stabilizes the mechanical properties for a wide temperature range of the hot working process in terms of early, homogeneous martensite formation. However, amounts of B exceeding 0.0010% by weight markedly reduce the formability of the steel according to the invention.

Nb in Gehalten von bis zu 0,25 Gew.-% erhöht die Streckgrenze des erfindungsgemäßen Stahl durch Karbidausscheidung und bewirkt durch Austenitkornfeinung ein feines Martensitgefüge, das eine hohe Stabilität gegenüber Rissausbreitung aufweist. Diese positiven Eigenschaften können insbesondere dann genutzt werden, wenn der Nb-Gehalt mindestens 0,001 Gew.-%, insbesondere mindestens 0,005 Gew.-% beträgt.Nb in amounts of up to 0.25% by weight increases the yield strength of the steel according to the invention by carbide precipitation and, by austenitic grain refining, produces a fine martensite structure which has a high resistance to crack propagation. These positive properties can be used in particular when the Nb content is at least 0.001% by weight, in particular at least 0.005% by weight.

Ca wird einem erfindungsgemäßen Stahl in Gehalten von 0,001 - 0,004 Gew.-%, insbesondere 0,001 - 0,003 Gew.-%, optional zulegiert, um eine Sulfidformkontrolle durch die Bildung von kugelförmigen CaS gegenüber MnS zu ermöglichen. Auf diese Weise wird auch die Isotropie der mechanischen Eigenschaften verbessert. Durch eine Ca-Behandlung der Schmelze des erfindungsgemäßen Stahls lässt sich zudem der S-Gehalt des erfindungsgemäßen Stahls reduzieren.Ca is optionally alloyed to a steel of the invention at levels of 0.001-0.004 wt%, especially 0.001-0.003 wt%, to allow sulfide form control through the formation of spherical CaS over MnS. In this way, the isotropy of the mechanical properties is improved. By a Ca-treatment of the melt of the Steel according to the invention can also reduce the S content of the steel according to the invention.

Das erfindungsgemäße Stahlflachprodukt kann zum Schutz vor Verzunderung oder Korrosion eine Oberflächenveredelung aufweisen. Die betreffende Schutzbeschichtung kann mittels konventioneller Verfahren aufgebracht werden. Bevorzugt wird die Schutzbeschichtung im Schmelztauchprozess aufgetragen und kann in konventioneller Weise als Grundelement Zink oder Aluminium enthalten. Die Grundelemente Zn und Al können dabei wahlweise miteinander oder zusätzlich jeweils mit einem oder mehreren sauerstoffaffinen Elementen wie Mg, Si, Ti, Ca, Bor, Mn legiert sein. Typische Schichtdicken der Schutzbeschichtung liegen im Bereich 3 - 30 µm, bevorzugt zwischen 5 - 20 µm.The flat steel product according to the invention may have a surface finish for protection against scaling or corrosion. The protective coating concerned can be applied by conventional methods. Preferably, the protective coating is applied in the hot dipping process and can contain zinc or aluminum in a conventional manner as a basic element. The basic elements Zn and Al may optionally be alloyed with each other or additionally each with one or more oxygen-affine elements such as Mg, Si, Ti, Ca, boron, Mn. Typical layer thicknesses of the protective coating are in the range 3-30 μm, preferably between 5-20 μm.

Zur Verbesserung der Oberflächenqualität und der Anbindung des Überzugs an die Stahloberfläche kann dem Schmelztauchbeschichten eine Voroxidation vorgeschaltet sein, bei der gezielt eine 10 - 1000 nm, bevorzugt 70 - 500 nm, dicke Oxidschicht auf dem zu beschichtenden Stahlflachprodukt erzeugt wird. Die Erzeugung und Einstellung der Oxidschicht kann dabei in einer Oxidationskammer erfolgen, wie sie in der WO 2007/124781 A1 beschrieben ist, deren Inhalt insoweit in die vorliegende Anmeldung einbezogen wird. Die vollständige Reduktion der so gebildeten Eisenoxidschicht erfolgt unter einer wasserstoffhaltigen Atmosphäre und wird vor dem Eintauchen in die Schmelze bzw. vor einer Oberflächenveredelung durchgeführt. Oxide der Legierungselemente des erfindungsgemäßen Stahls können dabei an der Stahlbandoberfläche vorliegen.To improve the surface quality and the connection of the coating to the steel surface, the hot dip coating can be preceded by a preoxidation in which a 10 to 1000 nm, preferably 70 to 500 nm, thick oxide layer is produced on the flat steel product to be coated. The generation and adjustment of the oxide layer can take place in an oxidation chamber, as in the WO 2007/124781 A1 is described, the contents of which is included in the present application in this respect. The complete reduction of the iron oxide layer thus formed takes place under a hydrogen-containing atmosphere and is carried out before immersion in the melt or before surface refinement. Oxides of the alloying elements of the steel according to the invention can be present on the steel strip surface.

Alternativ oder ergänzend ist es möglich, erfindungsgemäße Stahlflachprodukte in kontinuierlichen Glühanlagen und/oder in einer Haubenglühanlage zu glühen und mittels einer nachgeschalteten off-line Oberflächenveredelungsanlage zu beschichten. Hierzu können PVD-/ CVD-Prozesse, Prozesse mit elektrolytischer oder stromloser bzw. chemischer Abscheidung von metallischen Überzügen, insbesondere Überzügen auf Basis von Zn, Zn-Ni, Zn-Fe sowie deren Kombinationen, sowie Prozesse, bei denen organische, metallorganische, anorganische Überzüge in Bandbeschichtungsanlagen im Coilcoating-, Spritz- oder Tauchverfahren aufgetragen werden, eingesetzt werden.Alternatively or additionally, it is possible to anneal steel flat products according to the invention in continuous annealing plants and / or in a bell annealing plant and to coat them by means of a downstream off-line surface finishing plant. For this purpose, PVD / CVD processes, processes with electrolytic or electroless or chemical deposition of metallic coatings, in particular coatings based on Zn, Zn-Ni, Zn-Fe and their combinations, as well as processes in which organic, organometallic, inorganic Coatings are applied in coil coating systems in the coil coating, spraying or dipping process can be used.

Erfindungsgemäße Stahlflachprodukte können hergestellt werden, indem eine erfindungsgemäß zusammengesetzte Stahlschmelze zu Brammen oder Dünnbrammen vergossen wird, die anschließend auf eine 1050 - 1260 °C betragende Temperatur gebracht werden, um dann bei einer Warmwalzendtemperatur von 800 - 1000 °C zu einem Warmband mit einer Warmbanddicke von weniger als 4,5 mm warmgewalzt zu werden. Das erhaltene Warmband wird anschließend bei einer Haspeltemperatur von 450 - 700 °C zu einem Coil gehaspelt.Steel flat products according to the invention can be produced by casting a molten steel composite according to the invention into slabs or thin slabs, which are subsequently brought to a temperature of 1050.degree.-1260.degree. C., at a hot rolling end temperature of 800.degree.-1000.degree. C. to form a hot strip having a hot strip thickness of to be hot rolled less than 4.5 mm. The resulting hot strip is then coiled at a reel temperature of 450 - 700 ° C to form a coil.

Aus als Warmband oder -blech vorliegenden erfindungsgemäßen Stahlflachprodukten können in gleicher Weise erfindungsgemäße Stahlbauteile erzeugt werden, wie aus als Kaltband oder -blech vorliegenden erfindungsgemäßen Stahlflachprodukten. Im Fall, dass die Stahlflachprodukte als Kaltband verarbeitet werden sollen, kann im Anschluss an die voranstehend erläuterte Warmbandfertigung das dabei erhaltene Warmband zu einem Kaltband mit einer Dicke von typischerweise 0,5 - 2,85 mm kaltgewalzt werden.Steel flat products according to the invention which are present as hot strip or sheet metal can produce steel components according to the invention in the same way as steel flat products according to the invention which are present as cold strip or sheet metal. In the case that the flat steel products are to be processed as a cold strip, this can be done following the hot strip production explained above hot rolled strip obtained is cold rolled to a cold strip having a thickness of typically 0.5 to 2.85 mm.

Nach einer optionalen Oberflächenveredelung werden aus dem dann jeweils als Band vorliegenden Stahlflachprodukt Platinen abgetrennt. Zur Herstellung von Tailored Blanks können diese Platinen mit jeweils mindestens einer anderen Platine verschweißt werden. Alternativ können die aus den erfindungsgemäß erzeugten Stahlflachprodukten abgeteilten Platinen auch als ein Stück zu einem erfindungsgemäßen Stahlbauteil verarbeitet werden.After an optional surface refinement, blanks are separated from the flat steel product then present as a strip. For the production of tailored blanks, these boards can be welded to at least one other board. Alternatively, the boards split off from the flat steel products produced according to the invention can also be processed as one piece into a steel component according to the invention.

Für die Herstellung des Stahlbauteils wird das nun als einstückige Platine oder Tailored Blank vorliegende Stahlflachprodukt auf eine 750 - 950 °C betragende Erwärmungstemperatur erwärmt. Hierbei kommt es zu einer vollständigen oder partiellen Austenitisierung. Die Erwärmung im erfindungsgemäß vorgegebenen Bereich der Erwärmungstemperaturen führt nach einer Warmumformung und einem Presshärten zu einem Gefüge, das aus einer Kombination von fein verteilten Martensit- und Bainit-Phasen, versetzungsreichem bainitischen Ferrit, globularem Ferrit und Restaustenit besteht. Hinzukommt eine zusätzliche Ausscheidungshärtung durch Titankarbonitride. Es entsteht eine feine und homogene Phasenverteilung, die eine Verbesserung der Dehnungswerte und eine Erhöhung der Energieabsorption bei relativ hohen Zugfestigkeitswerten bewirkt. Gleichzeitig stellt sich ein geringer Restaustenitanteil von bis zu 5 % ein, der ebenfalls zur Verbesserung der Dehnungswerte beiträgt. Der Anteil der duktilen Phasen Ferrit und bainitischer Ferrit beträgt mindestens 5 Flächen-%.For the production of the steel component, the flat steel product, which is now in the form of a single-piece blank or blanked blank, is heated to a heating temperature of 750-950 ° C. This leads to a complete or partial austenitization. The heating in accordance with the invention predetermined range of heating temperatures leads to a hot working and a press hardening to a microstructure, which consists of a combination of finely divided martensite and bainite phases, dislocation rich bainitic ferrite, globular ferrite and retained austenite. In addition, an additional precipitation hardening by titanium carbonitrides. The result is a fine and homogeneous phase distribution, which causes an improvement in the elongation values and an increase in energy absorption at relatively high tensile strength values. At the same time, a small residual austenite content of up to 5% is achieved, which also contributes to the improvement in elongation values. The proportion of ductile phases ferrite and bainitic ferrite is at least 5 area%.

Bevorzugt wird das jeweilige Stahlflachprodukt bei der dem Warmumformen und Härten vorausgehenden Erwärmung auf Erwärmungstemperaturen von bis zu 900 °C erwärmt, bei denen es nur zu einer partiellen Austenitisierung kommt. Überraschenderweise hat sich gezeigt, dass bei einer derartigen Erwärmung nach der Warmumformung und dem anschließenden Härten das erhaltene Bauteil weiter verbesserte Festigkeiten aufweist, als dies bei einer Vollaustenitisierung der Fall ist, welche bei einer Erwärmung im Temperaturbereich > 900 °C, insbesondere > 925 °C erreicht wird. Dieser Effekt ist im hohen Ti-Gehalt des erfindungsgemäßen Stahls begründet, der durch die optional zusätzlich vorhandenen Gehalte an Nb und V unterstützt werden kann. Durch die Anwesenheit einer größeren Menge an diesen Mikrolegierungselementen bleibt die Korngröße auch bei der Wärmebehandlung und der Warmumformung fein. Für die Korngröße des globularen Ferrits bzw. des bainitischen Ferrits eines erfindungsgemäßen Stahlbauteils ist hier, wie bereits erwähnt, eine nach DIN EN 643 ermittelte Korngrößenkennzahl von mindestens 13 garantiert. Die für die Durcherwärmung erforderliche Haltezeit auf der Erwärmungstemperatur liegt je nach Abmessung des zu verarbeitenden Stahlflachprodukts typischerweise bei 2 - 10 Minuten.Preferably, the respective flat steel product is heated in the hot forming and curing preceding heating to heating temperatures of up to 900 ° C, in which there is only a partial Austenitisierung. Surprisingly, it has been found that with such a heating after the hot working and the subsequent hardening, the resulting component has further improved strengths, as is the case with a full austenitization, which with a heating in the temperature range> 900 ° C, in particular> 925 ° C. is reached. This effect is due to the high Ti content of the steel according to the invention, which can be supported by the optionally additionally present contents of Nb and V. The presence of a larger amount of these micro-alloying elements, the grain size remains fine even during the heat treatment and hot working. For the grain size of the globular ferrite or the bainitic ferrite of a steel component according to the invention, as already mentioned, a particle size index of at least 13 determined according to DIN EN 643 is guaranteed here. The holding time required for the heating on the heating temperature is typically 2 to 10 minutes, depending on the dimension of the flat steel product to be processed.

Nach der Erwärmung auf die Erwärmungstemperatur wird das erwärmte Stahlflachprodukt vom für die Erwärmung eingesetzten Ofen zu dem Werkzeug transferiert, in dem das Stahlflachprodukt warmumgeformt wird. Das Warmformwerkzeug kann dabei so ausgelegt sein, dass das aus dem Stahlflachprodukt warmgeformte Stahlbauteil noch im Werkzeug abgeschreckt wird (einstufiger Prozess). Alternativ ist es jedoch auch möglich, das erhaltene Stahlbauteil außerhalb des Warmformwerkzeugs in einer separaten Arbeitsstation abzuschrecken, um das gewünschte Härtegefüge zu erzeugen (zweistufiger Prozess). Um eine übermäßige Abkühlung des Stahlflachprodukts zwischen dem Erwärmungsofen und dem Warmformwerkzeug zu vermeiden, sollte die Transferzeit auf 5 - 12 Sekunden beschränkt werden.After heating to the heating temperature, the heated steel flat product is transferred from the oven used for the heating to the tool in which the flat steel product is hot worked. The thermoforming tool can be designed in such a way that the steel component thermoformed from the flat steel product is still quenched in the tool (single-stage process). Alternatively it is However, it is also possible to quench the resulting steel component outside the thermoforming tool in a separate workstation to produce the desired hardness structure (two-stage process). To avoid excessive cooling of the steel flat product between the heating furnace and the thermoforming tool, the transfer time should be limited to 5 - 12 seconds.

Die bevorzugt im Warmformwerkzeug erfolgende Abkühlung des aus dem jeweiligen Stahlflachprodukt geformten Stahlbauteils erfolgt so schnell, dass das Bauteilgefüge nach der Abkühlung ein feinkörniges Gefüge aus Martensit, Bainit, versetzungsreichem bainitischem Ferrit, globularem Ferrit und Restaustenit besteht. Die hierzu erforderliche Abkühlrate beträgt mindestens 25 °C/s.The cooling of the steel component formed from the respective flat steel product preferably takes place in the hot forming tool so rapidly that the component structure after cooling consists of a fine-grained structure of martensite, bainite, dislocation-rich bainitic ferrite, globular ferrite and retained austenite. The required cooling rate is at least 25 ° C / s.

Zum Nachweis der durch die Erfindung erzielten Effekte wurden drei erfindungsgemäße Stähle E1, E2, E3 sowie vier Vergleichsstähle V1, V2, V3, V4 erschmolzen. Die Zusammensetzungen der erfindungsgemäßen Stähle E1 - E3 und der Vergleichsstähle V1 - V4 sind in Tabelle 1 angegeben. Dabei sind bei den Vergleichsschmelzen V1 - V4 die Legierungsgehalte, in denen die jeweilige Legierung von den erfindungsgemäßen Vorgaben abweicht, durch Unterstreichungen gekennzeichnet. Zusätzlich sind in Tabelle 1 zu den Stählen E1 - E3 und V1 - V4 die jeweilige Ac1 - und Ac3-Temperaturen angegeben.To demonstrate the effects achieved by the invention, three inventive steels E1, E2, E3 and four comparative steels V1, V2, V3, V4 were melted. The compositions of steels E1-E3 according to the invention and comparative steels V1-V4 are given in Table 1. In the case of the comparative melts V1-V4, the alloy contents in which the respective alloy deviates from the specifications according to the invention are identified by underscores. In addition, the respective Ac1 and Ac3 temperatures are indicated in Table 1 for the steels E1 - E3 and V1 - V4.

Die Stahlschmelzen E1 - E3 und V1 - V4 sind zu Brammen vergossen worden, die anschließend mit einer Warmwalzendtemperatur WET zu Warmband mit einer Warmbanddicke WBD warmgewalzt wurden. Das erhaltene Warmband wurde anschließend bei einer Haspeltemperatur HAT zu einem Coil gehaspelt. Die nach dem Haspeln oder optional durchgeführten Glühung und Beschichtung erhaltenen, aus den Stählen E2, E3 und V1 - V4 bestehenden Warmbänder wurden anschließend mit einem Kaltwalzgrad KG zu Kaltband mit einer Kaltbanddicke KBD kaltgewalzt. Dann erfolgte bei den aus den Stählen E2 und V2 - V4 bestehenden Kaltbändern eine Glühung bei einer Glühtemperatur GT. Die geglühten Kaltbänder E2 und V4 wurden anschließend mit einer Aluminium-Silizium-Schutzschicht ("AS-Beschichtung") belegt, die das jeweilige Band gegen Korrosion schützt.The molten steels E1 - E3 and V1 - V4 were cast into slabs, which were then hot rolled with a hot rolling end temperature WET to hot strip with a hot strip thickness WBD. The hot strip obtained was then coiled at a reel temperature HAT to a coil. The hot strips obtained after the coiling or optional annealing and coating, which consisted of the steels E2, E3 and V1 - V4, were then cold rolled with a cold rolling grade KG to cold strip with a cold strip thickness KBD. Then, for the cold strips consisting of the steels E2 and V2 - V4, annealing took place at an annealing temperature GT. The annealed cold strips E2 and V4 were then covered with an aluminum-silicon protective layer ("AS coating"), which protects the respective strip against corrosion.

In Tabelle 2 sind zu den aus den Stählen E1 - E3 und V1 - V4 erzeugten Warm- bzw. Kaltbändern die Warmwalzendtemperatur WET, die Warmbanddicke WBD, die Haspeltemperatur HAT, der Kaltwalzgrad KWG, die Kaltbanddicke KBD und die Glühtemperatur GT angegeben. Vor dem anschließend durchgeführten Warmumformen und Härten lagen somit das aus dem Stahl E1 erzeugte Band als unbeschichtetes Warmband, das aus dem Stahl E2 erzeugte Band als geglühtes und mit einer AS-Beschichtung versehenes Kaltband, die aus den Stählen E3 und V1 erzeugten Bänder als walzharte Kaltbänder ohne Beschichtung, die aus den Stählen V2 und V3 erzeugten Bänder als geglühtes Kaltband ohne Beschichtung und das aus dem Stahl V4 erzeugte Band als geglühtes und mit einer AS-Beschichtung versehenes Kaltband vor.Table 2 shows the hot rolling end temperature WET, the hot strip thickness WBD, the reel temperature HAT, the cold rolling degree KWG, the cold strip thickness KBD and the annealing temperature GT, among the hot and cold strips produced from the steels E1-E3 and V1-V4. Before the subsequent hot forming and hardening were thus produced from the steel E1 band as uncoated hot strip, produced from steel E2 band as annealed and provided with an AS coating cold strip, the bands produced from the steels E3 and V1 as cold rolling cold strips without coating, the strips produced from steels V2 and V3 as annealed cold-rolled strip without coating and the strip produced from steel V4 as annealed cold-rolled strip provided with an AS coating.

Von den aus den Stählen E1 - E3 und V1 - V4 erzeugten, 1,15 - 1,5 mm dicken Warm- bzw. Kaltbändern wurden Stahlflachprodukte in Form von für ein Warmpressformhärten vorgesehenen Platinen abgeteilt.Of the 1.15 - 1.5 mm thick hot and cold strips produced from the steels E1 - E3 and V1 - V4, flat steel products in the form of boards intended for hot - press hardening were divided off.

Die jeweiligen Stahlflachprodukte sind in einem Ofen auf innerhalb einer Erwärmungszeit EZ auf eine Erwärmungstemperatur EWT aufgeheizt und anschließend innerhalb einer Transferzeit TZ in ein Warmformwerkzeug eingelegt worden, das eine Werkzeugtemperatur WZT hatte. Innerhalb des Warmformwerkzeugs sind die Stahlflachprodukte jeweils zu einem Stahlbauteil geformt und mit einer Abkühlrate AKR abgekühlt worden.The respective flat steel products were heated in an oven to a heating temperature EWT within a heating time EZ and then placed within a transfer time TZ in a thermoforming mold having a tool temperature WZT. Within the thermoforming tool, the flat steel products are each formed into a steel component and cooled at a cooling rate AKR.

Einige der so erzeugten Bauteile sind anschließend mit einer kathodischen Tauchbeschichtung ("KTL-Beschichtung") beschichtet worden. Bei der KTL-Beschichtung kommt es durch die damit verbundene Wärmebehandlung (übliche Simulation mit 170 °C/20 min.) in Folge des so genannten Bake-Hardening-Effekts ("BH-Effekt") zu leichten Streckgrenzenanstiegen. Bemerkenswert ist, dass damit bei den aus den erfindungsgemäßen Stählen E1 - E3 bestehenden Proben keine Reduzierung der Zugfestigkeit einherging. Auch hatte eine erhöhte Werkzeugtemperatur keinen wesentlichen Einfluss auf die Festigkeitseigenschaften.Some of the components thus produced have subsequently been coated with a cathodic dip coating ("KTL coating"). In the case of cathodic dip coating, the associated heat treatment (customary simulation at 170 ° C./20 min.) Results in slight yield strength increases as a result of the so-called bake hardening effect ("BH effect"). It is noteworthy that there was no reduction in the tensile strength of the samples consisting of steels E1-E3 according to the invention. Also, increased mold temperature had no significant impact on the strength properties.

In den Tabellen 3 bis 8 sind für die in der voranstehend erläuterten Weise erzeugten Stahlbauteile die Erwärmungstemperatur EWT, die Erwärmungszeit EZ, die Transferzeit TZ, die Abkühlrate AKR der Abschreckung im Warmformwerkzeug und die Werkzeugtemperatur WZT angegeben. Zusätzlich ist in der Tabelle 3a angegeben, ob das jeweilige Bauteil einer KTL-Beschichtung unterzogen worden ist. Des Weiteren sind in den Tabellen 3 bis 8 die durchschnittlichen mechanisch-technologischen Werte Streckgrenze Rp0,2, Zugfestigkeit Rm, Gleichmaßdehnung Ag, Dehnung A80, der Gehalt des Gefüges F/BF an Ferrit und bainitischem Ferrit, der Gehalt des Gefüges RA an Restaustenit, der Gehalt M des Gefüges an Martensit, der Gehalt B des Gefüges an Bainit und die nach DIN EN 643 bestimmte Ferritkorngröße KG angegeben. Im Fall, dass die jeweilige Korngröße nicht bestimmt worden ist bzw. auf Grund des extrem feinen Gefüges nicht bestimmt werden konnte, ist dies durch den Eintrag "---" gekennzeichnet.Tables 3 to 8 indicate the heating temperature EWT, the heating time EZ, the transfer time TZ, the cooling rate AKR of the quenching in the thermoforming mold and the tool temperature WZT for the steel components produced in the above-described manner. In addition, it is indicated in Table 3a whether the respective component has been subjected to a cathodic dip coating. Furthermore, in Tables 3 to 8, the average mechanical-technological values yield strength R p0.2 , tensile strength R m , uniform elongation Ag, elongation A 80 , the content of the structure F / BF to ferrite and bainitic ferrite, the content of the structure RA of retained austenite, the content M of the microstructure of martensite, the content B of the microstructure of bainite and the ferrite grain size KG determined in accordance with DIN EN 643. In the case that the respective grain size has not been determined or could not be determined due to the extremely fine structure, this is indicated by the entry "---".

Die Tabellen 3 und 4 betreffen dabei aus den erfindungsgemäßen Stählen E1 (Tabelle 3), E2 und E3 (Tabelle 4) hergestellte Stahlbauteile, während die Tabellen 5 bis 8 aus den Vergleichsstählen V1 (Tabelle 5), V2 (Tabelle 6), V3 (Tabelle 7) und V4 (Tabelle 8) erzeugte Stahlbauteile betreffen. Tabelle 1 C Si Mn P S Al Cr Mo N Ni Nb Ti B Ca Ac1 Ac3 [Gew.-%] [°C] E1 0,073 0,60 1,73 0,015 0,001 0,040 0,34 0,020 0,0042 0,01 0,001 0,116 0,0005 0,0013 715 920 E2 0,067 0,58 1,75 0,010 <0,001 0,030 0,32 0,010 0,0030 0,05 0,010 0,100 0,0007 0,0015 715 920 E3 0,091 0,61 1,71 0,009 <0,001 0,032 0,32 0,006 0,0040 0,05 0, 008 0,100 0,0006 0,0015 715 915 V1 0,083 0,08 1,54 0,010 0,002 0,025 0,08 0,010 0,0047 0,03 0,037 0,001 0,0005 0,0012 735 870 V2 0,156 0,27 1,83 0,012 <0,001 0,033 0,55 0,070 0,0040 0,06 0,004 0,040 0,0013 0,0020 720 875 V3 0,064 0,35 0, 99 0,018 0,004 0,047 0,03 0,002 0,0050 0,02 0,027 0,003 0,0003 0,0040 720 915 V4 0,241 0,24 1,22 0,013 0,002 0,038 0,15 0,002 0,0033 0,02 0,003 0,038 0,0024 0,0001 720 845 Tabelle 2 WBD [mm] KBD [mm] KWG [%] WET [°C] HAT [°C] GT [°C] E1 1,50 ---- --- 895 500 --- E2 2,05 1,50 27 890 500 780 E3 2,40 1,15 52 940 530 --- V1 3,06 1,50 51 865 470 --- V2 2,50 1,20 52 900 560 800 V3 4,04 1,50 63 885 630 810 V4 3,40 1,50 56 850 560 760 Tabelle 3 (RT = Raumtemperatur) EWT EZ TZ AKR WZT KTL R p0,2 Rm Ag A80 F/BF RA M/B KG Stahl [°C] [min] [s] [°C/s] [°C] JA/NEIN [MPa] [%] [Flächen-%] [-] E1 880 6 5 30 RT NEIN 489 795 8,5 11,5 84,5 1,5 14 >15 E1 880 6 5 30 RT JA 529 784 7,0 14,2 84,5 1,5 14 >15 E1 880 6 5 30 200 NEIN 481 770 8,8 13, 9 85 3,0 12 >15 E1 880 6 5 30 200 JA 507 768 8,1 13,7 85 3,0 12 >15 E1 880 6 5 80 RT NEIN 499 799 7, 6 11,3 91 < 1 9 >15 E1 880 6 5 80 RT JA 563 803 8,6 13, 4 91 < 1 9 >15 E1 880 6 5 80 200 NEIN 489 762 8,1 13,5 92 2,0 6 15 E1 880 6 5 80 200 JA 515 769 8,1 11,9 92 2,0 6 15 E1 880 6 15 30 RT NEIN 489 772 7, 6 12, 9 92 1,0 7 15 E1 880 6 15 30 RT JA 532 775 8,1 14, 9 92 1,0 7 15 E1 880 6 15 30 200 NEIN 482 754 8,3 15,1 91,5 1,5 7 15 E1 880 6 15 30 200 JA 516 768 8, 6 14,5 91,5 1,5 7 15 E1 880 6 15 80 RT NEIN 478 780 8,5 13,1 91 < 1 9 13 E1 880 6 15 80 RT JA 533 780 8,5 13,4 91 < 1 9 13 E1 880 6 15 80 200 NEIN 497 769 7,2 13,1 76 < 1 24 14 E1 880 6 15 80 200 JA 527 768 7,8 13,4 76 < 1 24 14 E1 925 6 5 30 RT NEIN 419 756 9, 6 15,4 75 2,0 23 14 E1 925 6 5 30 RT JA 453 755 10,5 14, 9 75 2,0 23 14 E1 925 6 5 30 200 NEIN 417 736 10,5 15,8 77,5 2,5 20 14 E1 925 6 5 30 200 JA 462 754 9,8 15,4 77,5 2,5 20 14 E1 925 6 5 80 RT NEIN 523 843 7,3 10,2 77,5 1,5 21 14 E1 925 6 5 80 RT JA 508 792 8,0 12,7 77,5 1,5 21 14 E1 925 6 5 80 200 NEIN 570 803 6,0 10,1 78 3,0 19 14 E1 925 6 5 80 200 JA 510 786 7,8 12,3 78 3,0 19 14 E1 925 6 15 30 RT NEIN 365 701 12,7 18,5 88,5 2,5 9 13 E1 925 6 15 30 RT JA 393 698 13,1 18,5 88,5 2,5 9 13 E1 925 6 15 30 200 NEIN 369 704 12,9 17, 5 87 3,0 10 13 E1 925 6 15 30 200 JA 388 690 12,2 17,4 87 3,0 10 13 E1 925 6 15 80 RT NEIN 384 708 12,4 17,4 84,5 1,5 14 13 E1 925 6 15 80 RT JA 418 723 11,9 17,2 84,5 1,5 14 13 E1 925 6 15 80 200 NEIN 378 698 12,0 18,0 83 2,0 15 13 E1 925 6 15 80 200 JA 408 702 12,6 19,2 83 2,0 15 13 Tabelle 4 (RT = Raumtemperatur) Stahl EWT EZ TZ AKR WZT KTL Rp0,2 Rm Ag A80 F/BF RA M/B KG [°C] [min] [s] [°C/s] [°C] JA/NEIN [MPa] [%] [Flächen-%] [-] E2 750 6 7 ≥100 RT NEIN 885 1053 4,5 7,1 1 68 < 1 32 --- E2 750 6 7 ≥100 RT JA 918 1047 4,4 6,3 68 < 1 32 --- E2 750 6 7 ≥100 200 NEIN 842 1026 4, 9 7,1 88 < 1 12 --- E2 750 6 7 ≥100 200 JA 889 1023 4, 6 6,5 88 < 1 12 --- E2 780 6 7 ≥100 RT NEIN 777 998 5,2 8 47 < 1 53 --- E2 780 6 7 ≥100 RT JA 829 993 5 7,4 47 < 1 53 --- E2 780 6 7 ≥100 200 NEIN 775 988 5,4 7,5 79 < 1 21 --- E2 780 6 7 ≥100 200 JA 824 982 5,4 7,8 79 < 1 21 --- E2 880 6 7 ≥100 RT NEIN 509 813 9, 9 15, 6 58,5 1,5 40 15 E2 880 6 7 ≥100 RT JA 569 806 9,7 15,6 58,5 1,5 40 15 E2 880 6 7 ≥100 200 NEIN 592 822 8 12,9 69 1 30 15 E2 880 6 7 ≥100 200 JA 623 816 8,1 13,2 69 1 30 15 E2 925 6 7 ≥100 RT NEIN 557 830 8,3 13,9 59 1 40 15 E2 925 6 7 ≥100 RT JA 621 831 7,7 13,1 59 1 40 15 E2 925 6 7 ≥100 200 NEIN 620 840 7,1 11,6 48,5 1,5 50 15 E2 925 6 7 ≥100 200 JA 657 842 6, 6 11,5 48,5 1,5 50 15 E3 880 6 7 ≥100 RT NEIN 541 958 9,5 13,5 31,5 2,5 66 14-15 E3 880 6 7 ≥100 RT JA 658 948 9,1 12,8 31,5 2,5 66 14-15 E3 880 6 7 ≥100 200 NEIN 684 982 6,2 9,9 20,5 3,5 76 14-15 E3 880 6 7 ≥100 200 JA 759 985 6, 9 10,5 20,5 3,5 76 14-15 E3 925 6 7 ≥100 RT NEIN 704 1038 5,4 8 4,5 1,5 94 >15 E3 925 6 7 ≥100 RT JA 834 1044 5,1 7,7 4,5 1,5 94 >15 E3 925 6 7 ≥100 200 NEIN 757 1019 5,1 8,2 10 3 87 >15 E3 925 6 7 ≥100 200 JA 819 1021 5,7 8, 6 10 3 87 >15 Tabelle 5 (RT=Raumtemperatur; *=Nicht erfindungsgemäß) EWT [°C] EZ [min] TZ [s] AKR [°C/s] WZT [°C] KTL JA/NEIN R p0,2 Rm Ag A80 F/BF RA M/B KG Stahl [MPa] [%] [Flächen-%] [-] V1* 880 6 5 30 RT NEIN 382 675 11,5 19,4 75 5 20 15 V1* 880 6 5 30 RT JA 408 673 13,2 18,4 75 5 20 15 V1* 880 6 5 30 200 NEIN 365 650 14,5 19,6 73,5 4,5 22 15 V1* 880 6 5 30 200 JA 420 653 14, 6 22,3 73,5 4,5 22 15 V1* 880 6 5 80 RT NEIN 455 778 10,7 14,7 76,5 4,5 19 15 V1* 880 6 5 80 RT JA 534 752 9,8 13,6 76,5 4,5 19 15 V1* 880 6 5 80 200 NEIN 469 681 8,7 12,7 8,5 2,5 89 --- V1* 880 6 5 80 200 JA 474 694 10,8 17, 6 8,5 2,5 89 --- V1* 880 6 15 30 RT NEIN 326 683 14,7 20,1 86,5 3,5 10 14 V1* 880 6 15 30 RT JA 388 669 13,3 18,6 86,5 3,5 10 14 V1* 880 6 15 30 200 NEIN 316 660 14, 1 20 86,5 4,5 11 14 V1* 880 6 15 30 200 JA 355 645 14, 6 20,6 86,5 4,5 11 74 V1* 880 6 15 80 RT NEIN 366 733 12,8 18 87 3 10 14 V1* 880 6 15 80 RT JA 578 803 7,1 12,8 87 3 10 14 V1* 880 6 15 80 200 NEIN 352 709 11, 9 16,8 87 4 9 14 V1* 880 6 15 80 200 JA 400 692 10,8 17,2 87 4 9 14 V1* 925 6 5 30 RT NEIN 417 722 11,4 16,2 56,5 3,5 40 15 V1* 925 6 5 30 RT JA 530 731 8, 9 14, 6 56,5 3,5 40 15 V1* 925 6 5 30 200 NEIN 407 650 10,4 16,6 51,5 2,5 46 - V1* 925 6 5 30 200 JA 438 652 10,5 18, 9 51,5 2,5 46 - V1* 925 6 5 80 RT NEIN 515 797 7,6 11,7 8,5 1,5 90 - V1* 925 6 5 80 RT JA 666 829 5,5 8,7 8,5 1,5 90 - V1* 925 6 5 80 200 NEIN 479 677 9,3 16 8 1 91 - V1* 925 6 5 80 200 JA 524 700 8,2 14,8 8 1 91 - V1* 925 6 15 30 RT NEIN 350 706 12,4 16,4 77,5 2,5 20 13 V1* 925 6 15 30 RT JA 412 677 8,2 18,4 77,5 2,5 20 13 V1* 925 6 15 30 200 NEIN 323 657 11,5 18,1 75 3 22 14 V1* 925 6 15 30 200 JA 367 662 11,5 18,2 75 3 22 14 Fortsetzung Tabelle 5 (RT=Raumtemperatur; *=Nicht erfindungsgemäß) EWT EZ TZ AKR WZT KTL Rp0,2 Rm Ag A80 F/BF RA M/B KG Stahl [°C] [min] [s] [°C/s] [°C] JA/NEIN [MPa] [%] [Flächen-%] [-] V1* 925 6 15 80 RT NEIN 452 808 9,1 13,2 74 2 24 14 V1* 925 6 15 80 RT JA 486 755 9, 9 18,2 74 2 24 14 V1* 925 6 15 80 200 NEIN 377 727 9,6 13,4 75 3 22 14 V1* 925 6 15 80 200 JA 496 731 8,2 14,1 75 3 22 14 Tabelle 6 (RT=Raumtemperatur; *=Nicht erfindungsgemäß) EWT EZ TZ AKR WZT KTL Rp0,2 Rm Ag A80 F/BF RA M/B KG Stahl [°C] [min] [s] [°C/s] [°C] JA/NEIN [MPa] [%] [Flächen-%] [-] V2* 750 6 7 ≥ 100 RT NEIN 654 1241 7, 1 10,8 19 < 1 81 14 V2* 750 6 7 ≥ 100 RT JA 775 1210 5,2 8, 9 19 < 1 81 14 V2* 750 6 7 ≥ 100 200 NEIN 621 1200 6,8 10,5 17,5 1,5 81 15 V2* 750 6 7 ≥ 100 200 JA 734 1195 6,3 10 17,5 1,5 81 15 V2* 780 6 7 ≥ 100 RT NEIN 865 1353 5 8,3 10 < 1 90 15 V2* 780 6 7 ≥ 100 RT JA 1045 1346 4,1 1 6,8 10 < 1 90 15 V2* 780 6 7 ≥ 100 200 NEIN 750 1296 5,4 8,2 11 < 1 89 15 V2* 780 6 7 ≥ 100 200 JA 909 1287 4,8 7, 6 11 < 1 89 15 V2* 880 6 7 ≥ 100 RT NEIN 1003 1401 4 6,1 0 < 1 99 --- V2* 880 6 7 ≥ 100 RT JA 1148 1380 3,6 5,4 0 < 1 99 --- V2* 880 6 7 ≥ 100 200 NEIN 999 1369 4,2 6 0 < 1 99 --- V2* 880 6 7 ≥ 100 200 JA 1046 1355 4 5, 4 0 < 1 99 --- V2* 925 6 7 ≥ 100 RT NEIN 994 1368 3,9 5,9 0 < 1 99 --- V2* 925 6 7 ≥ 100 RT JA 1089 1358 3,7 5, 8 0 < 1 99 --- V2* 925 6 7 ≥ 100 200 NEIN 972 1339 4 5,7 0 < 1 99 --- V2* 925 6 7 ≥ 100 200 JA 1048 1332 4 5,4 0 < 1 99 --- Tabelle 7 (RT=Raumtemperatur; *=Nicht erfindungsgemäß) EWT EZ TZ AKR WZT KTL R p0,2 Rm Ag A80 F/BF RA M/B KG Stahl [°C] [min] [s] [°C/s] [°C] JA/NEIN [MPa] [%] [Flächen-%] [-] V3* 880 6 5 30 RT NEIN 323 561 17,4 23,9 90 3 7 12 V3* 880 6 5 30 RT JA 316 543 18,2 26,9 90 3 7 12 V3* 880 6 5 30 200 NEIN 299 530 16,9 25,2 89,5 3,5 7 12-13 V3* 880 6 5 30 200 JA 322 522 18, 6 26,1 89,5 3,5 7 12-13 V3* 880 6 5 80 RT NEIN 357 608 14, 1 20,3 89 2 9 12-13 V3* 880 6 5 80 RT JA 372 583 16,1 23,9 89 2 9 12-13 V3* 880 6 5 80 200 NEIN 318 554 15,7 24 90 2 8 12 V3* 880 6 5 80 200 JA 348 561 14,5 22,4 90 2 8 12 V3* 880 6 15 30 RT NEIN 322 548 18,2 24,8 90,5 3,5 6 12 V3* 880 6 15 30 RT JA 312 530 19,4 27, 9 90,5 3,5 6 12 V3* 880 6 15 30 200 NEIN 307 532 18, 5 23,9 90,5 3,5 6 12 V3* 880 6 15 30 200 JA 314 521 19 28,2 90,5 3,5 6 12 V3* 880 6 15 80 RT NEIN 351 604 15,6 21,6 86 3 11 12-13 V3* 880 6 15 80 RT JA 340 555 15, 9 23,5 86 3 11 12-13 V3* 880 6 15 80 200 NEIN 307 564 17,7 24,1 89 3 8 12-13 V3* 880 6 15 80 200 JA 324 541 15,7 24, 9 89 3 8 12-13 V3* 925 6 5 30 RT NEIN 318 589 12, 8 18, 6 81,5 2,5 16 12 V3* 925 6 5 30 RT JA 326 569 15,3 24,3 81,5 2,5 16 12 V3* 925 6 5 30 200 NEIN 291 548 16,8 23,4 80,5 2,5 17 12 V3* 925 6 5 30 200 JA 304 524 17,3 26,5 80,5 2,5 17 12 V3* 925 6 5 80 RT NEIN 364 650 13 18,3 79 2 19 12 V3* 925 6 5 80 RT JA 378 602 13, 4 21,6 79 2 19 12 V3* 925 6 5 80 200 NEIN 332 581 12,9 20,1 84 3 13 12-13 V3* 925 6 5 80 200 JA 339 566 14 22,1 84 3 13 12-13 V3* 925 6 15 30 RT NEIN 291 572 13,9 19,1 92,5 2,5 5 12 V3* 925 6 15 30 RT JA 288 532 18,5 27,4 92,5 2,5 5 12 V3* 925 6 15 30 200 NEIN 271 548 15 20,9 87,5 2,5 10 12 V3* 925 6 15 30 200 JA 290 538 18,4 26,8 87,5 2,5 10 12 Fortsetzung Tabelle 7 (RT=Raumtemperatur; *=Nicht erfindungsgemäß) EWT EZ TZ AKR WZT KTL Rp0,2 Rm Ag A80 F/BF RA M/B KG Stahl [°C] [min] [s] [°C/s] [°C] JA/NEIN [MPa] [%] [Flächen-%] [-] V3* 925 6 15 80 RT NEIN 328 605 15,2 20,3 85 2 13 12 V3* 925 6 15 80 RT JA 313 561 15,5 24,2 85 2 13 12 V3* 925 6 15 80 200 NEIN 299 570 17,7 24, 6 79,5 1,5 19 13 V3* 925 6 15 80 200 JA 316 559 15, 9 22,8 79,5 1,5 19 13 Tabelle 8 (RT=Raumtemperatur; *=Nicht erfindungsgemäß) EWT EZ TZ AKR WZT KTL Rp0,2 Rm Ag A80 F/BF RA M/B KG Stahl [°C] [min] [s] [°C/s] [°C] JA/NEIN [MPa] [%] [Flächen-%] [-] V4* 750 6 7 ≥ 100 RT NEIN 522 1197 6, 6 9 44,5 4,5 51 13 V4* 750 6 7 ≥ 100 RT JA 553 1153 6, 6 10, 6 44,5 4,5 51 13 V4* 750 6 7 ≥ 100 200 NEIN 536 1189 9,1 11,4 42,5 3,5 54 14 V4* 750 6 7 ≥ 100 200 JA 561 1162 8, 6 11,5 42,5 3,5 54 14 V4* 780 6 7 ≥ 100 RT NEIN 775 1378 5, 5 7,8 37,5 2,5 60 14 V4* 780 6 7 ≥ 100 RT JA 862 1359 5,3 6, 9 37,5 2,5 60 14 V4* 780 6 7 ≥ 100 200 NEIN 814 1385 5,7 7,7 24 2 74 14 V4* 780 6 7 ≥ 100 200 JA 933 1380 4,9 7 24 2 74 14 V4* 880 6 7 ≥ 100 RT NEIN 1042 1543 3, 9 5,5 0 1,5 98,5 --- V4* 880 6 7 ≥ 100 RT JA 1166 1549 3,8 5,6 0 1,5 98,5 --- V4* 880 6 7 ≥ 100 200 NEIN 974 1510 4,3 5,9 0 2 98 --- V4* 880 6 7 ≥ 100 200 JA 1072 1510 4 5,7 0 2 98 --- V4* 925 6 7 ≥ 100 RT NEIN 1038 1527 4 5, 9 0 1 99 --- V4* 925 6 7 ≥ 100 RT JA 1160 1523 3,8 5,9 0 1 99 --- V4* 925 6 7 ≥ 100 200 NEIN 1022 1488 4 5,7 0 1 99 --- V4* 925 6 7 ≥ 100 200 JA 1073 1492 4,2 6, 6 0 1 99 --- Tables 3 and 4 relate to steel components produced from the steels E1 (Table 3), E2 and E3 (Table 4) according to the invention, while Tables 5 to 8 consist of the comparative steels V1 (Table 5), V2 (Table 6), V3 (FIG. Table 7) and V4 (Table 8) relate to steel components produced. Table 1 C Si Mn P S al Cr Not a word N Ni Nb Ti B Ca Ac1 ac3 [Wt .-%] [° C] E1 0.073 0.60 1.73 0,015 0.001 0,040 0.34 0,020 0.0042 0.01 0.001 0.116 0.0005 0.0013 715 920 E2 0.067 0.58 1.75 0,010 <0.001 0,030 0.32 0,010 0.0030 0.05 0,010 0,100 0.0007 0.0015 715 920 E3 0.091 0.61 1.71 0.009 <0.001 0.032 0.32 0,006 0.0040 0.05 0, 008 0,100 0.0006 0.0015 715 915 V1 0.083 0.08 1.54 0,010 0,002 0,025 0.08 0,010 0.0047 0.03 0.037 0.001 0.0005 0.0012 735 870 V2 0.156 0.27 1.83 0,012 <0.001 0.033 0.55 0,070 0.0040 0.06 0,004 0,040 0.0013 0.0020 720 875 V3 0.064 0.35 0, 99 0,018 0,004 0.047 0.03 0,002 0.0050 0.02 0.027 0,003 0.0003 0.0040 720 915 V4 0,241 0.24 1.22 0,013 0,002 0,038 0.15 0,002 0.0033 0.02 0,003 0,038 0.0024 0.0001 720 845 Table 2 WBD [mm] KBD [mm] KWG [%] WET [° C] HAS [° C] GT [° C] E1 1.50 ---- --- 895 500 --- E2 2.05 1.50 27 890 500 780 E3 2.40 1.15 52 940 530 --- V1 3.06 1.50 51 865 470 --- V2 2.50 1.20 52 900 560 800 V3 4.04 1.50 63 885 630 810 V4 3.40 1.50 56 850 560 760 Table 3 (RT = room temperature) EWT EZ TZ AKR WZT KTL R p0 , 2 R m Ag A 80 F / BF RA M / B KG stole [° C] [min] [s] [° C / s] [° C] YES NO [MPa] [%] [Area%] [ - ] E1 880 6 5 30 RT NO 489 795 8.5 11.5 84.5 1.5 14 > 15 E1 880 6 5 30 RT YES 529 784 7.0 14.2 84.5 1.5 14 > 15 E1 880 6 5 30 200 NO 481 770 8.8 13, 9 85 3.0 12 > 15 E1 880 6 5 30 200 YES 507 768 8.1 13.7 85 3.0 12 > 15 E1 880 6 5 80 RT NO 499 799 7, 6 11.3 91 <1 9 > 15 E1 880 6 5 80 RT YES 563 803 8.6 13, 4 91 <1 9 > 15 E1 880 6 5 80 200 NO 489 762 8.1 13.5 92 2.0 6 15 E1 880 6 5 80 200 YES 515 769 8.1 11.9 92 2.0 6 15 E1 880 6 15 30 RT NO 489 772 7, 6 12, 9 92 1.0 7 15 E1 880 6 15 30 RT YES 532 775 8.1 14, 9 92 1.0 7 15 E1 880 6 15 30 200 NO 482 754 8.3 15.1 91.5 1.5 7 15 E1 880 6 15 30 200 YES 516 768 8, 6 14.5 91.5 1.5 7 15 E1 880 6 15 80 RT NO 478 780 8.5 13.1 91 <1 9 13 E1 880 6 15 80 RT YES 533 780 8.5 13.4 91 <1 9 13 E1 880 6 15 80 200 NO 497 769 7.2 13.1 76 <1 24 14 E1 880 6 15 80 200 YES 527 768 7.8 13.4 76 <1 24 14 E1 925 6 5 30 RT NO 419 756 9, 6 15.4 75 2.0 23 14 E1 925 6 5 30 RT YES 453 755 10.5 14, 9 75 2.0 23 14 E1 925 6 5 30 200 NO 417 736 10.5 15.8 77.5 2.5 20 14 E1 925 6 5 30 200 YES 462 754 9.8 15.4 77.5 2.5 20 14 E1 925 6 5 80 RT NO 523 843 7.3 10.2 77.5 1.5 21 14 E1 925 6 5 80 RT YES 508 792 8.0 12.7 77.5 1.5 21 14 E1 925 6 5 80 200 NO 570 803 6.0 10.1 78 3.0 19 14 E1 925 6 5 80 200 YES 510 786 7.8 12.3 78 3.0 19 14 E1 925 6 15 30 RT NO 365 701 12.7 18.5 88.5 2.5 9 13 E1 925 6 15 30 RT YES 393 698 13.1 18.5 88.5 2.5 9 13 E1 925 6 15 30 200 NO 369 704 12.9 17, 5 87 3.0 10 13 E1 925 6 15 30 200 YES 388 690 12.2 17.4 87 3.0 10 13 E1 925 6 15 80 RT NO 384 708 12.4 17.4 84.5 1.5 14 13 E1 925 6 15 80 RT YES 418 723 11.9 17.2 84.5 1.5 14 13 E1 925 6 15 80 200 NO 378 698 12.0 18.0 83 2.0 15 13 E1 925 6 15 80 200 YES 408 702 12.6 19.2 83 2.0 15 13 Table 4 (RT = room temperature) stole EWT EZ TZ AKR WZT KTL R p0,2 R m Ag A 80 F / BF RA M / B KG [° C] [Min] [s] [° C / s] [° C] YES NO [MPa] [%] [Area%] [-] E2 750 6 7 ≥100 RT NO 885 1053 4.5 7.1 1 68 <1 32 --- E2 750 6 7 ≥100 RT YES 918 1047 4.4 6.3 68 <1 32 --- E2 750 6 7 ≥100 200 NO 842 1026 4, 9 7.1 88 <1 12 --- E2 750 6 7 ≥100 200 YES 889 1023 4, 6 6.5 88 <1 12 --- E2 780 6 7 ≥100 RT NO 777 998 5.2 8th 47 <1 53 --- E2 780 6 7 ≥100 RT YES 829 993 5 7.4 47 <1 53 --- E2 780 6 7 ≥100 200 NO 775 988 5.4 7.5 79 <1 21 --- E2 780 6 7 ≥100 200 YES 824 982 5.4 7.8 79 <1 21 --- E2 880 6 7 ≥100 RT NO 509 813 9, 9 15, 6 58.5 1.5 40 15 E2 880 6 7 ≥100 RT YES 569 806 9.7 15.6 58.5 1.5 40 15 E2 880 6 7 ≥100 200 NO 592 822 8th 12.9 69 1 30 15 E2 880 6 7 ≥100 200 YES 623 816 8.1 13.2 69 1 30 15 E2 925 6 7 ≥100 RT NO 557 830 8.3 13.9 59 1 40 15 E2 925 6 7 ≥100 RT YES 621 831 7.7 13.1 59 1 40 15 E2 925 6 7 ≥100 200 NO 620 840 7.1 11.6 48.5 1.5 50 15 E2 925 6 7 ≥100 200 YES 657 842 6, 6 11.5 48.5 1.5 50 15 E3 880 6 7 ≥100 RT NO 541 958 9.5 13.5 31.5 2.5 66 14-15 E3 880 6 7 ≥100 RT YES 658 948 9.1 12.8 31.5 2.5 66 14-15 E3 880 6 7 ≥100 200 NO 684 982 6.2 9.9 20.5 3.5 76 14-15 E3 880 6 7 ≥100 200 YES 759 985 6, 9 10.5 20.5 3.5 76 14-15 E3 925 6 7 ≥100 RT NO 704 1038 5.4 8th 4.5 1.5 94 > 15 E3 925 6 7 ≥100 RT YES 834 1044 5.1 7.7 4.5 1.5 94 > 15 E3 925 6 7 ≥100 200 NO 757 1019 5.1 8.2 10 3 87 > 15 E3 925 6 7 ≥100 200 YES 819 1021 5.7 8, 6 10 3 87 > 15 Table 5 (RT = room temperature; * = not according to the invention) EWT [ ° C] EZ [min] TZ [s] AKR [° C / s] WZT [° C] KTL YES / NO R p0 , 2 R m Ag A 80 F / BF RA M / B KG stole [MPa] [%] [Area%] [-] V1 * 880 6 5 30 RT NO 382 675 11.5 19.4 75 5 20 15 V1 * 880 6 5 30 RT YES 408 673 13.2 18.4 75 5 20 15 V1 * 880 6 5 30 200 NO 365 650 14.5 19.6 73.5 4.5 22 15 V1 * 880 6 5 30 200 YES 420 653 14, 6 22.3 73.5 4.5 22 15 V1 * 880 6 5 80 RT NO 455 778 10.7 14.7 76.5 4.5 19 15 V1 * 880 6 5 80 RT YES 534 752 9.8 13.6 76.5 4.5 19 15 V1 * 880 6 5 80 200 NO 469 681 8.7 12.7 8.5 2.5 89 --- V1 * 880 6 5 80 200 YES 474 694 10.8 17, 6 8.5 2.5 89 --- V1 * 880 6 15 30 RT NO 326 683 14.7 20.1 86.5 3.5 10 14 V1 * 880 6 15 30 RT YES 388 669 13.3 18.6 86.5 3.5 10 14 V1 * 880 6 15 30 200 NO 316 660 14, 1 20 86.5 4.5 11 14 V1 * 880 6 15 30 200 YES 355 645 14, 6 20.6 86.5 4.5 11 74 V1 * 880 6 15 80 RT NO 366 733 12.8 18 87 3 10 14 V1 * 880 6 15 80 RT YES 578 803 7.1 12.8 87 3 10 14 V1 * 880 6 15 80 200 NO 352 709 11, 9 16.8 87 4 9 14 V1 * 880 6 15 80 200 YES 400 692 10.8 17.2 87 4 9 14 V1 * 925 6 5 30 RT NO 417 722 11.4 16.2 56.5 3.5 40 15 V1 * 925 6 5 30 RT YES 530 731 8, 9 14, 6 56.5 3.5 40 15 V1 * 925 6 5 30 200 NO 407 650 10.4 16.6 51.5 2.5 46 - V1 * 925 6 5 30 200 YES 438 652 10.5 18, 9 51.5 2.5 46 - V1 * 925 6 5 80 RT NO 515 797 7.6 11.7 8.5 1.5 90 - V1 * 925 6 5 80 RT YES 666 829 5.5 8.7 8.5 1.5 90 - V1 * 925 6 5 80 200 NO 479 677 9.3 16 8th 1 91 - V1 * 925 6 5 80 200 YES 524 700 8.2 14.8 8th 1 91 - V1 * 925 6 15 30 RT NO 350 706 12.4 16.4 77.5 2.5 20 13 V1 * 925 6 15 30 RT YES 412 677 8.2 18.4 77.5 2.5 20 13 V1 * 925 6 15 30 200 NO 323 657 11.5 18.1 75 3 22 14 V1 * 925 6 15 30 200 YES 367 662 11.5 18.2 75 3 22 14 Continuation of Table 5 (RT = room temperature; * = not according to the invention) EWT EZ TZ AKR WZT KTL R p0 , 2 R m Ag A 80 F / BF RA M / B KG stole [° C] [min] [s] [° C / s] [° C] YES NO [MPa] [%] [Area%] [-] V1 * 925 6 15 80 RT NO 452 808 9.1 13.2 74 2 24 14 V1 * 925 6 15 80 RT YES 486 755 9, 9 18.2 74 2 24 14 V1 * 925 6 15 80 200 NO 377 727 9.6 13.4 75 3 22 14 V1 * 925 6 15 80 200 YES 496 731 8.2 14.1 75 3 22 14 Table 6 (RT = room temperature; * = not according to the invention) EWT EZ TZ AKR WZT KTL R p0 , 2 R m Ag A 80 F / BF RA M / B KG stole [° C] [min] [s] [° C / s] [° C] YES NO [MPa] [%] [Area%] [-] V2 * 750 6 7 ≥ 100 RT NO 654 1241 7, 1 10.8 19 <1 81 14 V2 * 750 6 7 ≥ 100 RT YES 775 1210 5.2 8, 9 19 <1 81 14 V2 * 750 6 7 ≥ 100 200 NO 621 1200 6.8 10.5 17.5 1.5 81 15 V2 * 750 6 7 ≥ 100 200 YES 734 1195 6.3 10 17.5 1.5 81 15 V2 * 780 6 7 ≥ 100 RT NO 865 1353 5 8.3 10 <1 90 15 V2 * 780 6 7 ≥ 100 RT YES 1045 1346 4.1 1 6.8 10 <1 90 15 V2 * 780 6 7 ≥ 100 200 NO 750 1296 5.4 8.2 11 <1 89 15 V2 * 780 6 7 ≥ 100 200 YES 909 1287 4.8 7, 6 11 <1 89 15 V2 * 880 6 7 ≥ 100 RT NO 1003 1401 4 6.1 0 <1 99 --- V2 * 880 6 7 ≥ 100 RT YES 1148 1380 3.6 5.4 0 <1 99 --- V2 * 880 6 7 ≥ 100 200 NO 999 1369 4.2 6 0 <1 99 --- V2 * 880 6 7 ≥ 100 200 YES 1046 1355 4 5, 4 0 <1 99 --- V2 * 925 6 7 ≥ 100 RT NO 994 1368 3.9 5.9 0 <1 99 --- V2 * 925 6 7 ≥ 100 RT YES 1089 1358 3.7 5, 8 0 <1 99 --- V2 * 925 6 7 ≥ 100 200 NO 972 1339 4 5.7 0 <1 99 --- V2 * 925 6 7 ≥ 100 200 YES 1048 1332 4 5.4 0 <1 99 --- Table 7 (RT = room temperature; * = not according to the invention) EWT EZ TZ AKR WZT KTL R p0 , 2 R m Ag A 80 F / BF RA M / B KG stole [° C] [min] [s] [° C / s] [° C] YES NO [MPa] [%] [Area%] [-] V3 * 880 6 5 30 RT NO 323 561 17.4 23.9 90 3 7 12 V3 * 880 6 5 30 RT YES 316 543 18.2 26.9 90 3 7 12 V3 * 880 6 5 30 200 NO 299 530 16.9 25.2 89.5 3.5 7 12-13 V3 * 880 6 5 30 200 YES 322 522 18, 6 26.1 89.5 3.5 7 12-13 V3 * 880 6 5 80 RT NO 357 608 14, 1 20.3 89 2 9 12-13 V3 * 880 6 5 80 RT YES 372 583 16.1 23.9 89 2 9 12-13 V3 * 880 6 5 80 200 NO 318 554 15.7 24 90 2 8th 12 V3 * 880 6 5 80 200 YES 348 561 14.5 22.4 90 2 8th 12 V3 * 880 6 15 30 RT NO 322 548 18.2 24.8 90.5 3.5 6 12 V3 * 880 6 15 30 RT YES 312 530 19.4 27, 9 90.5 3.5 6 12 V3 * 880 6 15 30 200 NO 307 532 18, 5 23.9 90.5 3.5 6 12 V3 * 880 6 15 30 200 YES 314 521 19 28.2 90.5 3.5 6 12 V3 * 880 6 15 80 RT NO 351 604 15.6 21.6 86 3 11 12-13 V3 * 880 6 15 80 RT YES 340 555 15, 9 23.5 86 3 11 12-13 V3 * 880 6 15 80 200 NO 307 564 17.7 24.1 89 3 8th 12-13 V3 * 880 6 15 80 200 YES 324 541 15.7 24, 9 89 3 8th 12-13 V3 * 925 6 5 30 RT NO 318 589 12, 8 18, 6 81.5 2.5 16 12 V3 * 925 6 5 30 RT YES 326 569 15.3 24.3 81.5 2.5 16 12 V3 * 925 6 5 30 200 NO 291 548 16.8 23.4 80.5 2.5 17 12 V3 * 925 6 5 30 200 YES 304 524 17.3 26.5 80.5 2.5 17 12 V3 * 925 6 5 80 RT NO 364 650 13 18.3 79 2 19 12 V3 * 925 6 5 80 RT YES 378 602 13, 4 21.6 79 2 19 12 V3 * 925 6 5 80 200 NO 332 581 12.9 20.1 84 3 13 12-13 V3 * 925 6 5 80 200 YES 339 566 14 22.1 84 3 13 12-13 V3 * 925 6 15 30 RT NO 291 572 13.9 19.1 92.5 2.5 5 12 V3 * 925 6 15 30 RT YES 288 532 18.5 27.4 92.5 2.5 5 12 V3 * 925 6 15 30 200 NO 271 548 15 20.9 87.5 2.5 10 12 V3 * 925 6 15 30 200 YES 290 538 18.4 26.8 87.5 2.5 10 12 Continuation Table 7 (RT = room temperature; * = not according to the invention) EWT EZ TZ AKR WZT KTL R p0,2 R m Ag A 80 F / BF RA M / B KG stole [° C] [min] [s] [° C / s] [° C] YES NO [MPa] [%] [Area%] [-] V3 * 925 6 15 80 RT NO 328 605 15.2 20.3 85 2 13 12 V3 * 925 6 15 80 RT YES 313 561 15.5 24.2 85 2 13 12 V3 * 925 6 15 80 200 NO 299 570 17.7 24, 6 79.5 1.5 19 13 V3 * 925 6 15 80 200 YES 316 559 15, 9 22.8 79.5 1.5 19 13 Table 8 (RT = room temperature; * = not according to the invention) EWT EZ TZ AKR WZT KTL R p0,2 R m Ag A 80 F / BF RA M / B KG stole [° C] [min] [s] [° C / s] [° C] YES NO [MPa] [%] [Area%] [-] V4 * 750 6 7 ≥ 100 RT NO 522 1197 6, 6 9 44.5 4.5 51 13 V4 * 750 6 7 ≥ 100 RT YES 553 1153 6, 6 10, 6 44.5 4.5 51 13 V4 * 750 6 7 ≥ 100 200 NO 536 1189 9.1 11.4 42.5 3.5 54 14 V4 * 750 6 7 ≥ 100 200 YES 561 1162 8, 6 11.5 42.5 3.5 54 14 V4 * 780 6 7 ≥ 100 RT NO 775 1378 5, 5 7.8 37.5 2.5 60 14 V4 * 780 6 7 ≥ 100 RT YES 862 1359 5.3 6, 9 37.5 2.5 60 14 V4 * 780 6 7 ≥ 100 200 NO 814 1385 5.7 7.7 24 2 74 14 V4 * 780 6 7 ≥ 100 200 YES 933 1380 4.9 7 24 2 74 14 V4 * 880 6 7 ≥ 100 RT NO 1042 1543 3, 9 5.5 0 1.5 98.5 --- V4 * 880 6 7 ≥ 100 RT YES 1166 1549 3.8 5.6 0 1.5 98.5 --- V4 * 880 6 7 ≥ 100 200 NO 974 1510 4.3 5.9 0 2 98 --- V4 * 880 6 7 ≥ 100 200 YES 1072 1510 4 5.7 0 2 98 --- V4 * 925 6 7 ≥ 100 RT NO 1038 1527 4 5, 9 0 1 99 --- V4 * 925 6 7 ≥ 100 RT YES 1160 1523 3.8 5.9 0 1 99 --- V4 * 925 6 7 ≥ 100 200 NO 1022 1488 4 5.7 0 1 99 --- V4 * 925 6 7 ≥ 100 200 YES 1073 1492 4.2 6, 6 0 1 99 ---

Claims (15)

Stahl für die Herstellung eines Stahlbauteils durch Warmumformung mit anschließender Härtung, neben Eisen und unvermeidbaren Verunreinigungen enthaltend (in Gew.-%) C: 0,05 - 0,15 %, Mn: 0,5 - 2,0 %, Si: 0,01 - 0,70 %, Al: 0,01 - 0,1 %, Ti: 0,08 - 0,14 %, Cr: 0,15 - 0,50 %, S: ≤ 0,010 %, sowie jeweils optional eines oder mehrere Elemente aus der Gruppe "P, N, Cu, Ni, Mo V, B, Nb, Ca" mit der Maßgabe P: ≤ 0,1 %, N: ≤ 0,01 %, Cu: ≤ 0,1 %, Ni: ≤ 0,1 %, Mo: ≤ 0,1 %, V: ≤ 0,1 %, B: ≤ 0,0010 %, Nb: ≤ 0,25 %, Ca: 0,001 - 0,0040 %. Steel for the manufacture of a steel component by hot forming followed by hardening, containing in addition to iron and unavoidable impurities (in% by weight) C: 0.05-0.15%, Mn: 0.5-2.0%, Si: 0.01-0.70%, Al: 0.01 - 0.1%, Ti: 0.08 - 0.14%, Cr: 0.15-0.50%, S: ≤ 0.010%, and in each case optionally one or more elements from the group "P, N, Cu, Ni, Mo V, B, Nb, Ca" with the proviso P: ≤ 0.1%, N: ≤ 0.01%, Cu: ≦ 0.1%, Ni: ≤ 0.1%, Mo: ≤ 0.1%, V: ≤ 0.1%, B: ≤ 0.0010%, Nb: ≤0.25%, Ca: 0.001-0.0040%. Stahl nach Anspruch 1, dadurch gekennzeichnet, dass sein C-Gehalt 0,06 - 0,11 Gew.-% beträgt.Steel according to claim 1, characterized in that its C content is 0.06 - 0.11 wt .-%. Stahl nach einem der voranstehenden Ansprüche,
dadurch gekennzeichnet,dass sein C-Gehalt 0,08 - 0,11 Gew.-% beträgt.
Steel according to one of the preceding claims,
characterized in that its C content is 0.08 - 0.11 wt .-%.
Stahl nach einem der voranstehenden Ansprüche,
dadurch gekennzeichnet, dass sein Ti-Gehalt größer oder gleich 0,09 Gew.-% ist.
Steel according to one of the preceding claims,
characterized in that its Ti content is greater than or equal to 0.09 wt .-%.
Stahl nach einem der voranstehenden Ansprüche,
dadurch gekennzeichnet, dass sein Cr-Gehalt 0,3 - 0,4 Gew.-% beträgt.
Steel according to one of the preceding claims,
characterized in that its Cr content is 0.3-0.4% by weight.
Stahlflachprodukt, dadurch
gekennzeichnet, dass es ganz oder mindestens in einem Abschnitt aus einem gemäß einem der Ansprüche 1 bis 5 beschaffenen Stahl besteht.
Flat steel product, by
in that it consists entirely or at least in one section of a steel obtained according to one of claims 1 to 5.
Stahlflachprodukt nach Anspruch 6, dadurch gekennzeichnet, dass es vollständig aus dem gemäß einem der Ansprüche 1 bis 5 beschaffenen Stahl besteht.Flat steel product according to claim 6, characterized in that it consists entirely of the steel obtained according to one of claims 1 to 5. Stahlflachprodukt nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass mindestens der aus dem gemäß einem der Ansprüche 1 bis 5 beschaffenen Stahl bestehende Abschnitt des Stahlflachprodukts durch ein warmgewalztes Blech gebildet ist.Flat steel product according to one of claims 6 or 7, characterized in that at least the one according to one of claims 1 to 5 obtained steel existing portion of the flat steel product is formed by a hot rolled sheet. Stahlflachprodukt nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass mindestens der aus dem gemäß einem der Ansprüche 1 bis 5 beschaffenen Stahl bestehende Abschnitt des Stahlflachprodukts durch ein kaltgewalztes Blech gebildet ist.Flat steel product according to either of Claims 6 and 7, characterized in that at least the portion of the flat steel product made from the steel obtained according to one of Claims 1 to 5 is formed by a cold-rolled sheet. Stahlflachprodukt nach Anspruch 6 bis 9,
dadurch gekennzeichnet, dass es mindestens an einer seiner Oberflächen mit einem vor Korrosion oder Verzunderung schützenden Überzug versehen ist.
Flat steel product according to claims 6 to 9,
characterized in that it is provided at least on one of its surfaces with a protective coating against corrosion or scaling.
Stahlbauteil hergestellt durch Warmumformen und anschließendem Abschrecken eines gemäß einem der Ansprüche 6 bis 10 hergestellten Stahlflachprodukts, wobei das Stahlbauteil in dem Bereich, in dem aus dem gemäß einem der Ansprüche 1 bis 5 beschaffenen Stahl besteht, eine Zugfestigkeit von mindestens 700 MPa besitzt und ein Gefüge aufweist, das aus einer Kombination fein verteilter harter Phasen (Martensit/Bainit) und duktiler Phasen (globularer Ferrit und versetzungsreicher bainitischer Ferrit) sowie einem Restaustenitanteil von maximal 5 Flächen-% in einem feinkörnigen Gefügeaufbau mit zusätzlicher Ausscheidungshärtung aus Titankarbonitriden besteht, bei dem der durchschnittliche Korndurchmesser des globularen Ferrits oder des bainitischen Ferrits 1,5 - 4,0 µm und der Anteil von duktilen Phasen mindestens 5 Flächen-% beträgt.A steel component produced by hot working and subsequent quenching of a flat steel product produced according to any one of claims 6 to 10, wherein the steel component has a tensile strength of at least 700 MPa and a microstructure in the region in which the steel obtained according to any one of claims 1 to 5 is made comprising a combination of finely divided hard phases (martensite / bainite) and ductile phases (globular ferrite and dislocation-rich bainitic ferrite) and a residual austenite content of not more than 5 area% in a fine-grained microstructure with additional precipitation hardening Titanium carbonitrides in which the average grain diameter of the globular ferrite or the bainitic ferrite is 1.5-4.0 μm and the proportion of ductile phases is at least 5 area%. Stahlbauteil nach Anspruch 11, dadurch gekennzeichnet, dass in dem Bereich, in dem es aus dem gemäß einem der Ansprüche 1 bis 5 beschaffenen Stahl besteht, der Martensit/Bainit-Gehalt des Gefüges mindestens 5 Flächen-% beträgt.Steel component according to claim 11, characterized in that in the region in which it consists of the steel obtained according to one of claims 1 to 5, the martensite / bainite content of the microstructure is at least 5 area%. Verfahren zum Herstellen eines gemäß einem der Ansprüche 11 oder 12 beschaffenen Stahlbauteils umfassend folgende Arbeitsschritte: - Bereitstellen eines gemäß einem der Ansprüche 6 bis 8 beschaffenen Stahlflachprodukts, - Erwärmen des Stahlflachprodukts auf eine 750 - 950 °C betragende Erwärmungstemperatur in einem Ofen, - Transfer des Stahlflachprodukts vom Ofen zu einem Werkzeug, - in dem Werkzeug erfolgendes Warmumformen des Stahlflachprodukts zu dem Stahlbauteil, - Abschrecken des Stahlflachprodukts mit einer Abkühlrate von mehr als 25 °C/s. A method of producing a steel component according to one of claims 11 or 12, comprising the following steps: Providing a flat steel product obtained according to one of claims 6 to 8, Heating the flat steel product to a heating temperature of 750-950 ° C. in an oven, Transfer of the flat steel product from the furnace to a tool, hot-working the steel flat product into the steel component in the tool, Quenching the steel flat product at a cooling rate of more than 25 ° C / s. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der Transfer vom Ofen zum Werkzeug innerhalb von 5 - 12 Sekunden absolviert wird.A method according to claim 13, characterized in that the transfer from the oven to the tool is completed within 5 - 12 seconds. Verfahren nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass die Erwärmungstemperatur < 900 °C ist.Method according to one of claims 13 or 14, characterized in that the heating temperature is <900 ° C.
EP12168384.1A 2012-05-16 2012-05-16 Steel for the production of a steel component, flat steel product comprising same, component comprised of same and method for producing same Withdrawn EP2664682A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12168384.1A EP2664682A1 (en) 2012-05-16 2012-05-16 Steel for the production of a steel component, flat steel product comprising same, component comprised of same and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12168384.1A EP2664682A1 (en) 2012-05-16 2012-05-16 Steel for the production of a steel component, flat steel product comprising same, component comprised of same and method for producing same

Publications (1)

Publication Number Publication Date
EP2664682A1 true EP2664682A1 (en) 2013-11-20

Family

ID=46318839

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12168384.1A Withdrawn EP2664682A1 (en) 2012-05-16 2012-05-16 Steel for the production of a steel component, flat steel product comprising same, component comprised of same and method for producing same

Country Status (1)

Country Link
EP (1) EP2664682A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016095721A1 (en) * 2014-12-19 2016-06-23 宝山钢铁股份有限公司 Quenched-tempered high-strength steel with yield strength of 900 mpa to 1000 mpa grade, and manufacturing method therefor
EP3112488A4 (en) * 2014-02-27 2017-03-22 JFE Steel Corporation High-strength hot-rolled steel sheet and manufacturing method therefor
CN110512142A (en) * 2019-09-05 2019-11-29 首钢集团有限公司 A kind of low-carbon-equivalent low yield strength ratio cold-rolled biphase steel and its preparation method and application
CN113994016A (en) * 2019-06-03 2022-01-28 蒂森克虏伯钢铁欧洲股份公司 Method for producing a sheet metal component from a flat steel product provided with a corrosion protection coating
CN114752851A (en) * 2022-03-07 2022-07-15 江阴兴澄特种钢铁有限公司 Low-crack sensitivity steel plate with yield strength of 960MPa and manufacturing method thereof
CN114774651A (en) * 2022-04-18 2022-07-22 营口中车型钢新材料有限公司 Heat treatment design of YZ25SiMnMoV flat steel for railway bearing
WO2022228574A1 (en) * 2021-04-30 2022-11-03 宝山钢铁股份有限公司 Hot stamping component having tensile strength ≥1000 mpa and fabrication method therefor
CN116445820A (en) * 2023-04-23 2023-07-18 常熟理工学院 Niobium-vanadium-titanium composite microalloyed hot forming steel for automobiles and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006019395A1 (en) 2006-04-24 2007-10-25 Thyssenkrupp Steel Ag Apparatus and method for forming blanks of higher and highest strength steels
WO2007124781A1 (en) 2006-04-26 2007-11-08 Thyssenkrupp Steel Ag Hot dip coating process for a steel plate product made of high strengthheavy-duty steel
DE102006053819A1 (en) * 2006-11-14 2008-05-15 Thyssenkrupp Steel Ag Production of a steel component used in the chassis construction comprises heating a sheet metal part and hot press quenching the heated sheet metal part
WO2008132303A1 (en) 2007-03-14 2008-11-06 Arcelormittal France Steel for tool-less hot forming or quenching with improved ductility
US20090098408A1 (en) * 2007-10-10 2009-04-16 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
EP2157203A1 (en) * 2008-08-12 2010-02-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength steel sheet superior in formability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006019395A1 (en) 2006-04-24 2007-10-25 Thyssenkrupp Steel Ag Apparatus and method for forming blanks of higher and highest strength steels
WO2007124781A1 (en) 2006-04-26 2007-11-08 Thyssenkrupp Steel Ag Hot dip coating process for a steel plate product made of high strengthheavy-duty steel
DE102006053819A1 (en) * 2006-11-14 2008-05-15 Thyssenkrupp Steel Ag Production of a steel component used in the chassis construction comprises heating a sheet metal part and hot press quenching the heated sheet metal part
WO2008132303A1 (en) 2007-03-14 2008-11-06 Arcelormittal France Steel for tool-less hot forming or quenching with improved ductility
US20090098408A1 (en) * 2007-10-10 2009-04-16 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
EP2157203A1 (en) * 2008-08-12 2010-02-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength steel sheet superior in formability

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3112488A4 (en) * 2014-02-27 2017-03-22 JFE Steel Corporation High-strength hot-rolled steel sheet and manufacturing method therefor
US11345972B2 (en) 2014-02-27 2022-05-31 Jfe Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing the same
WO2016095721A1 (en) * 2014-12-19 2016-06-23 宝山钢铁股份有限公司 Quenched-tempered high-strength steel with yield strength of 900 mpa to 1000 mpa grade, and manufacturing method therefor
CN113994016A (en) * 2019-06-03 2022-01-28 蒂森克虏伯钢铁欧洲股份公司 Method for producing a sheet metal component from a flat steel product provided with a corrosion protection coating
CN110512142A (en) * 2019-09-05 2019-11-29 首钢集团有限公司 A kind of low-carbon-equivalent low yield strength ratio cold-rolled biphase steel and its preparation method and application
WO2022228574A1 (en) * 2021-04-30 2022-11-03 宝山钢铁股份有限公司 Hot stamping component having tensile strength ≥1000 mpa and fabrication method therefor
CN114752851A (en) * 2022-03-07 2022-07-15 江阴兴澄特种钢铁有限公司 Low-crack sensitivity steel plate with yield strength of 960MPa and manufacturing method thereof
CN114752851B (en) * 2022-03-07 2023-09-15 江阴兴澄特种钢铁有限公司 A low crack sensitivity steel plate with a yield strength of 960MPa and its manufacturing method
CN114774651A (en) * 2022-04-18 2022-07-22 营口中车型钢新材料有限公司 Heat treatment design of YZ25SiMnMoV flat steel for railway bearing
CN116445820A (en) * 2023-04-23 2023-07-18 常熟理工学院 Niobium-vanadium-titanium composite microalloyed hot forming steel for automobiles and preparation method thereof

Similar Documents

Publication Publication Date Title
EP2553133B1 (en) Steel, flat steel product, steel component and method for producing a steel component
DE102008035714B4 (en) Hot stamping steel sheet having low-temperature tempering property, methods for producing the same, methods of producing parts using the same, and parts made therewith
EP2446064B1 (en) Method for producing a hot press hardened component and use of a steel product for producing a hot press hardened component
EP2297367B1 (en) Method for producing a formed steel part having a predominantly ferritic-bainitic structure
DE60133493T2 (en) Hot-dip galvanized steel sheet and process for its production
EP3221478B1 (en) Hot or cold rolled strip of a high-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production a hot or cold rolled strip from said air-hardening multi-phase steel
EP3976838B1 (en) Component from a flat steel product, and method of making a method for such component
EP2664682A1 (en) Steel for the production of a steel component, flat steel product comprising same, component comprised of same and method for producing same
EP2489748B1 (en) Hot-rolled steel surface product produced from a complex phase steel and method for the manufacture
EP3221484B1 (en) Method for manufacturing a high-strength air-hardening multiphase steel strip having excellent processing properties
EP3221483B1 (en) High strength air hardenable multi phase steel with excellent workability and sheet manufacturing process thereof
EP3320120A1 (en) Ultrahigh strength multiphase steel and method for producing a cold-rolled steel strip therefrom
EP1939308A1 (en) Method for manufacturing a component through hot press hardening and highly rigid component with improved breaking strain
EP3724359B1 (en) High-strength, hot-rolled flat steel product with high edge crack resistance and simultaneously high bake-hardening potential and method for producing a flat steel product of this kind
EP3692178B1 (en) Method for producing a steel strip from an ultrahigh strength multiphase steel
EP3512968B1 (en) Method for producing a flat steel product made of a manganese-containing steel, and such a flat steel product
DE102019101546A1 (en) MICRO-LAYERED MANGAN-BOR-STEEL
DE112017007714T5 (en) STEEL MATERIAL FOR A WELDED TAILOR BLANK AND METHOD FOR PRODUCING A HOT PRESSING PART USING THE SAME STEEL
EP1865086B1 (en) Use of a steel flat product produced from a manganese boron steel and method of its production
EP3658307B1 (en) Sheet metal component, produced by hot working a flat steel product, and method for the production thereof
WO2017157770A1 (en) Method for producing a hot-formed steel component, and hot-formed steel component
EP3749469B1 (en) Method for producing a component by hot-forming a precursor product made of steel containing manganese, and a hot-formed steel component
EP3964591A1 (en) Hot-rolled steel sheet product and method for producing a hot-rolled steel sheet product
EP4283003A1 (en) Method for producing a sheet metal part

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20140311