EP3512968B1 - Method for producing a flat steel product made of a manganese-containing steel, and such a flat steel product - Google Patents
Method for producing a flat steel product made of a manganese-containing steel, and such a flat steel product Download PDFInfo
- Publication number
- EP3512968B1 EP3512968B1 EP17768090.7A EP17768090A EP3512968B1 EP 3512968 B1 EP3512968 B1 EP 3512968B1 EP 17768090 A EP17768090 A EP 17768090A EP 3512968 B1 EP3512968 B1 EP 3512968B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- particularly preferably
- hot
- less
- cold
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 62
- 239000010959 steel Substances 0.000 title claims description 62
- 239000011572 manganese Substances 0.000 title claims description 23
- 229910052748 manganese Inorganic materials 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title claims description 12
- 238000005096 rolling process Methods 0.000 claims description 35
- 230000000694 effects Effects 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 24
- 238000000137 annealing Methods 0.000 claims description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 15
- 229910001566 austenite Inorganic materials 0.000 claims description 15
- 238000005097 cold rolling Methods 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910000734 martensite Inorganic materials 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 6
- 229910000617 Mangalloy Inorganic materials 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 230000000717 retained effect Effects 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000009440 infrastructure construction Methods 0.000 claims description 2
- 238000005065 mining Methods 0.000 claims 1
- 239000000047 product Substances 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 239000010936 titanium Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000010955 niobium Substances 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- 238000005266 casting Methods 0.000 description 7
- 239000011651 chromium Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 239000011574 phosphorus Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000005275 alloying Methods 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000005246 galvanizing Methods 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- 239000000161 steel melt Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- 235000013619 trace mineral Nutrition 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000794 TRIP steel Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- -1 aluminum nitrides Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- VCTOKJRTAUILIH-UHFFFAOYSA-N manganese(2+);sulfide Chemical class [S-2].[Mn+2] VCTOKJRTAUILIH-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000006223 plastic coating Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0268—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0242—Flattening; Dressing; Flexing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/02—Superplasticity
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the invention relates to a method for producing a flat steel product from a medium-manganese steel with a TRIP / TWIP effect, and a use for a flat steel product produced by this method.
- a flat steel product made from a manganese-containing steel which has a tensile strength of 900 to 1500 MPa and consists of the following elements (contents in percent by weight and based on the steel melt): C: up to 0.5; Mn: 4 to 12.0; Si: up to 1.0; AI: up to 3.0; Cr: 0.1 to 4.0; Cu: up to 4.0; Ni: up to 2.0; N: up to 0.05; P: up to 0.05; S: up to 0.01 plus the remainder iron and unavoidable impurities.
- one or more elements from the group “V, Nb, Ti” are provided, the sum of the contents of these elements being at most equal to 0.5.
- This steel is said to be characterized by the fact that it is more cost-effective to manufacture than steels with a high manganese content and at the same time has high elongation at break and, as a result, significantly improved formability.
- TRIP steels have already been described, which have a predominantly ferritic basic structure with embedded retained austenite, which can convert to martensite during forming (TRIP effect). Because of its strong work hardening, TRIP steel achieves high values of uniform elongation and tensile strength. TRIP steels are suitable for use in structural, chassis and crash-relevant components of vehicles, as sheet metal blanks and as welded blanks.
- German patent application DE 10 2015 111 866 A1 discloses a formable lightweight steel with a manganese content of 3 to 30% by weight and TRIP / TWIP properties, which is obtained by adding up to 0.8% by weight of antimony (Sb) and targeted heat treatment at 480 to 770 ° C exhibits improved material properties for 1 minute to 48 hours.
- this steel has, in addition to improved tensile strength and elongation at break, increased resistance to hydrogen-induced cracking and hydrogen embrittlement.
- This forming process with high elongation should have the advantage that, despite the high strength values, a plasticity reserve is retained, which enables subsequent final shaping into a finished component using conventional forming technology.
- the steels selected for this are characterized by an Mn content in% by weight of 10 to 30.
- Such high-manganese alloyed steels are more costly than medium-manganese steels due to their high alloying element content.
- the present invention is based on the object of creating a method for producing a flat steel product from a steel with medium manganese content, and a use for a flat steel product produced by this method, which is achieved by improving the yield point while maintaining a sufficient residual deformability of the flat steel product produced distinguish.
- a method for producing a flat steel product from a medium-manganese steel with a manganese content of 4 to 12, preferably greater than 5 to less than 10, wt .-% and with TRIP / TWIP effect comprising the steps: Cold strip, - Annealing the cold-rolled hot or cold strip at 500 to 840 ° C for 1 min. To 24 h, - Rerolling or skin-passing the annealed hot or cold strip to a flat steel product with a degree of deformation between 0.3% and 60% and with a yield point that is at least 50 MPa higher than that achieved before re-rolling or skin-passing, so that the re-rolling or skin-passing of the flat steel product increases its yield point.
- the degree of deformation is usually related to the thickness direction of the flat steel product. By increasing the yield point, this flat steel product can be converted into optimized components with lower Sheet thickness can be produced.
- the rerolling or skin passage causes a partial conversion of the metastable austenite of the annealed hot or cold strip into deformation twins (TWIP effect) and martensite (TRIP effect), whereby at least 3% of the austenite has to be converted into martensite and at least a proportion of 10% of the austenite is retained as a face-centered cubic phase.
- the annealed hot or cold strip is re-rolled with a degree of deformation between 10 to 40%.
- the annealed hot or cold strip is passaged with a degree of deformation between 0.6 and 2.2%.
- the annealed hot or cold strip is re-rolled or skin-pass at a temperature of 0 to 400 ° C.
- deformation twins are formed (TWIP effect) which, analogous to the dislocation density of other types of steel, increase the yield strength and / or yield strength.
- the flat steel product has a tensile strength of greater than 1300 MPa and an elongation at break A80 of greater than 3%.
- the hot or cold strip is cold-rolled with a first rolling pass at a temperature of the hot or cold strip from 60 ° C to below Ac3, preferably from 60 ° C to 450 ° C.
- the hot or cold strip is then intermediately heated or intermediately cooled between the further rolling passes following the first rolling pass to temperatures from 60 ° C to below Ac3, preferably from 60 ° C to 450 ° C.
- the increase in temperature before the first rolling pass there is also a reduction in the required forming forces.
- An increase in the residual deformability of the cold-rolled hot or cold strip with tensile strengths of greater than 800 MPa to 2000 MPa with elongations at break of greater than 3% is brought about in the most heavily formed areas.
- the hot or cold strip can be preheated for a coil or unwound strip or sheet material.
- Cold rolling with preheating of the hot or cold strip prior to the first forming step converts metastable austenite into martensite (TRIP effect) during the rolling process. completely or partially suppressed, whereby deformation twins (TWIP effect) can form in the austenite. This results in an advantageous reduction in the rolling forces and increases the overall formability.
- deformation twins are specifically introduced, which further convert to martensite at room temperature and thus increase the energy absorption capacity and allow a higher degree of deformation.
- the flat steel product mentioned is to be understood as meaning cold re-rolled heavy plate, hot and / or cold strip.
- This flat steel product made from the medium-manganese-containing TRIP (TRansformation Induced Plasticity) and / or TWIP (TWinning Induced Plasticity) steel has excellent cold and warm formability, increased resistance to hydrogen-induced delayed fracture, and hydrogen embrittlement. as well as against liquid metal embrittlement when welding in the galvanized state.
- the usual thickness ranges for pre-strip are 1 mm to 35 mm and for slabs and thin slabs 35 mm to 450 mm. It is preferably provided that the slab or thin slab is hot rolled into a hot strip with a thickness of 20 mm to 0.8 mm or the pre-strip cast close to its final dimensions is hot rolled into a hot strip with a thickness of 8 mm to 0.8 mm.
- the cold strip has a thickness of usually less than 3 mm, preferably 0.1 to 1.4 mm.
- a pre-strip produced near net dimensions using the two-roll casting method with a thickness of less than or equal to 3 mm, preferably 1 mm to 3 mm, is already understood as hot strip.
- the pre-strip produced in this way as hot strip does not have a cast structure due to the reshaping of the two counter-rotating rolls. Hot rolling thus already takes place inline during the two-roll casting process, so that separate heating and hot rolling can optionally be omitted.
- the cold rolling of the hot strip can take place at room temperature or advantageously at an elevated temperature with heating before the first rolling pass and / or heating in a further or between several rolling passes.
- Cold rolling at elevated temperatures is advantageous in order to reduce the rolling forces and to promote the formation of deformation twins (TWIP effect).
- Advantageous temperatures of the rolling stock before the first rolling pass are 60 ° C to below the Ac3 temperature, preferably 60 to 450 ° C.
- the cold rolling takes place in several rolling passes, it is advantageous to temporarily heat or cool the steel strip between the rolling passes to a temperature of 60 ° C to below Ac3 temperature, preferably 60 ° C to 450 ° C, since the TWIP effect in this area particularly advantageous for Carry comes.
- both intermediate heating e.g. at very low degrees of deformation and rolling speeds, as well as additional cooling, due to the heating of the material during fast rolling and high degrees of deformation, can be carried out.
- the steel strip After cold rolling the hot strip at room temperature, the steel strip should be annealed in a continuous annealing plant, hood annealing plant or other continuous or discontinuous annealing plant with an annealing time of 1 min. To 24 h and temperatures of 500 to 840 ° C to restore sufficient forming properties. If necessary to achieve certain material properties, this annealing process can also be carried out with the steel strip rolled at an elevated temperature.
- the steel strip is advantageously cooled to a temperature of 250 ° C to room temperature and then, if necessary, to set the required mechanical properties, in the course of an aging treatment, heated again to a temperature of 300 to 450 ° C at this temperature held for up to 5 minutes and then cooled to room temperature.
- the aging treatment can advantageously be carried out in a continuous annealing plant.
- the flat steel product produced in this way can optionally be electrolytically galvanized or hot-dip galvanized.
- the steel strip produced in this way receives a coating on an organic or inorganic basis instead of or after electrolytic galvanizing or hot-dip galvanizing.
- These can be, for example, organic coatings, plastic coatings or lacquers or other inorganic coatings such as iron oxide layers.
- a component manufactured according to the above-described method can advantageously be used in motor vehicle construction, rail vehicle construction, shipbuilding, plant construction, infrastructure construction, in aerospace, domestic appliance technology and in welded blanks (tailored welded blanks).
- a flat steel product produced by the process according to the invention advantageously has a yield strength Rp0.2 of 300 to 1350 MPa, a tensile strength Rm of 1100 to 2200 MPa and an elongation at break A80 of more than 4 to 41%, with high strengths tending to be associated with lower elongations at break and vice versa: - Rm from over 1100 to 1200 MPa: Rm x A80 ⁇ 25,000 up to 45,000 - Rm from over 1200 to 1400 MPa: Rm x A80 ⁇ 20,000 up to 42,000 - Rm from over 1400 to 1800 MPa: Rm x A80 ⁇ 10,000 up to 40,000 - Rm of over 1800 MPa: Rm x A80 ⁇ 7200 up to 20000
- specimen form 2 with an initial gauge length of A80 was used in accordance with DIN 50 125.
- Alloy elements are usually added to steel in order to specifically influence certain properties.
- An alloy element can influence different properties in different steels. The effect and interaction generally depends heavily on the amount, the presence of other alloying elements and the state of solution in the material. The relationships are varied and complex. In the following, the effect of the alloying elements in the alloy according to the invention will be discussed in more detail. The positive effects of the alloying elements used according to the invention are described below.
- Carbon C Is required for the formation of carbides, stabilizes the austenite and increases the strength. Higher contents of C worsen the welding properties and lead to a deterioration in the elongation and toughness properties, which is why a maximum content of 0.9% by weight, preferably 0.35% by weight, is specified. In order to achieve the desired combination of strength and elongation properties of the material, a minimum addition of 0.0005% by weight, preferably 0.05% by weight, is required.
- Manganese Mn Stabilizes austenite, increases strength and toughness and enables deformation-induced martensite and / or twin formation in the alloy according to the invention. Contents of less than 4% by weight are not sufficient to stabilize the austenite and thus worsen the elongation properties, while with contents of 12% by weight and more the austenite is too strongly stabilized and thus the strength properties, in particular the 0.2% yield strength, be reduced. For the manganese steel according to the invention with medium manganese contents, a range from greater than 5 to less than 10% by weight is preferred.
- Aluminum Al improves the strength and elongation properties, lowers the specific density and influences the transformation behavior of the alloy according to the invention. Too high a content of Al worsens the elongation properties. Higher Al contents also significantly worsen the casting behavior in continuous casting. This results in a higher effort when potting. High Al contents delay the precipitation of carbides in the alloy according to the invention.
- Silicon Si The optional addition of Si in higher contents hinders the carbon diffusion, reduces the specific density and increases the strength and the elongation and toughness properties. Furthermore, an improvement in cold rollability could be observed through the addition of Si. Higher Si contents lead to embrittlement of the material and have a negative effect on hot and cold rollability and coatability, for example through galvanizing.
- Chromium Cr The optional addition of Cr improves the strength and reduces the corrosion rate, delays the formation of ferrite and pearlite and forms carbides. Higher contents lead to a deterioration in the elongation properties.
- Micro-alloy elements are usually only used in very small quantities admitted. In contrast to the alloying elements, they work mainly through the formation of precipitates, but can also influence the properties in a dissolved state. Even small amounts of the micro-alloying elements have a considerable influence on the processing and final properties. In hot forming in particular, micro-alloy elements have an advantageous effect on the recrystallization behavior and cause grain refinement.
- Typical micro-alloy elements are vanadium, niobium and titanium. These elements can be dissolved in the iron lattice and form carbides, nitrides and carbonitrides with carbon and nitrogen.
- Vanadium V and niobium Nb These have a grain-refining effect due to the formation of carbides, which at the same time improves strength, toughness and elongation properties. Contents of more than 1.5% by weight or 1% by weight have no further advantages.
- Titanium Ti Has a grain-refining effect as a carbide former, which at the same time improves strength, toughness and elongation properties and reduces intergranular corrosion. Contents of Ti of more than 1.5% by weight deteriorate the elongation properties, which is why a maximum content of 1.5% by weight, preferably 0.6% by weight, particularly preferably 0.3% by weight, is optionally specified . Minimum contents of 0.005% by weight, preferably 0.01% by weight, can be provided in order to bind nitrogen and advantageously precipitate Ti.
- Molybdenum Mo Acts as a carbide former, increases the strength and increases the resistance against delayed crack formation and hydrogen embrittlement. High contents of Mo impair the elongation properties.
- Tin Sn Tin increases the strength, but, like copper, accumulates under the scale and at the grain boundaries at higher temperatures. Penetrating into the grain boundaries leads to the formation of low-melting phases and the associated cracks in the structure and solder brittleness, which is why an optional maximum content of 0.5% by weight, preferably less than 0.2% by weight, particularly preferably less 0.05 wt%, is provided.
- Copper Cu Reduces the rate of corrosion and increases strength. Contents above 3 wt .-% worsen the manufacturability by the formation of low-melting phases during casting and hot rolling, which is why optionally a maximum content of 3 wt .-%, preferably less than 0.5 wt .-%, particularly preferably less than 0.1 wt. -%, is determined.
- Tungsten W Acts as a carbide former and increases strength and heat resistance. W contents of more than 5% by weight impair the elongation properties, which is why a maximum content of 5% by weight is optionally specified. A content of 0.01% by weight to 3% by weight is preferably provided, and particularly preferably 0.2 to 1.5% by weight.
- Cobalt Co Increases the strength of the steel, stabilizes the austenite and improves the high temperature strength. Contents of more than 8% by weight impair the elongation properties.
- the Co content is therefore set at a maximum of 8% by weight, preferably from 0.01 to 5% by weight, particularly preferably from 0.3 to 2% by weight.
- Zirconium Zr Acts as a carbide former and improves strength. Zr contents of more than 0.5% by weight deteriorate the elongation properties. A Zr content of 0 to 0.5% by weight, preferably 0.005 to 0.3% by weight, particularly preferably 0.01 to 0.2% by weight, is therefore specified.
- Tantalum Ta Like niobium, tantalum has a grain-refining effect as a carbide former and thereby improves strength, toughness and elongation properties at the same time. Contents of more than 0.5% by weight do not bring about any further improvement in the properties. A maximum content of 0.5% by weight is therefore optionally specified. A minimum content of 0.005 and a maximum content of 0.3% by weight are preferably specified, in which the grain refinement can advantageously be effected. To improve the A content of 0.01% by weight to 0.1% by weight is particularly preferred for economy and optimization of the grain refinement.
- Tellurium Te improves the corrosion resistance and the mechanical properties as well as the machinability. Furthermore, Te increases the strength of manganese sulfides (MnS), which is less elongated in the rolling direction during hot and cold rolling. Contents above 0.5% by weight impair the elongation and toughness properties, which is why a maximum content of 0.5% by weight is specified. Optionally, a minimum content of 0.005% by weight and a maximum content of 0.3% by weight are specified, which advantageously improve the mechanical properties and increase the strength of the MnS present. Furthermore, a minimum content of 0.01% by weight and a maximum content of 0.1% by weight are preferred, which enable the mechanical properties to be optimized with a simultaneous reduction in alloy costs.
- MnS manganese sulfides
- Boron B Boron retards the austenite transformation, improves the hot forming properties of steels and increases the strength at room temperature. It develops its effect even with very low alloy contents. Contents above 0.15% by weight greatly impair the elongation and toughness properties, which is why the maximum content is set at 0.15% by weight.
- a minimum content of 0.001% by weight and a maximum content of 0.08, preferably a minimum content of 0.002% by weight and a maximum content of 0.01, are specified in order to advantageously use the strength-increasing effect of boron.
- Phosphorus P is a trace element, comes mainly from iron ore and is dissolved in the iron lattice as a substitution atom. Phosphorus increases hardness through solid solution strengthening and improves hardenability. As a rule, however, the aim is to lower the phosphorus content as much as possible, since, among other things, due to its low diffusion rate, it is very susceptible to segregation and to a great extent reduces the toughness. The accumulation of phosphorus at the grain boundaries can cause cracks to appear along the grain boundaries during hot rolling. In addition, phosphorus increases the transition temperature from tough to brittle behavior by up to 300 ° C. For the aforementioned reasons, the phosphorus content is less than 0.1% by weight, preferably less than 0.04% by weight, limited.
- Sulfur S Like phosphorus, it is bound in coke as a trace element in iron ore but especially during the production route via the blast furnace process. It is generally undesirable in steel because it tends to segregate strongly and has a strong embrittling effect, as a result of which the elongation and toughness properties are impaired. Attempts are therefore made to achieve the lowest possible amounts of sulfur in the melt (for example by means of deep desulphurisation). For the reasons mentioned above, the sulfur content is limited to values less than 0.1% by weight, preferably less than 0.02% by weight.
- N is also an accompanying element in steel production. In the dissolved state, it improves the strength and toughness properties of steels with a higher manganese content with greater than or equal to 4% by weight Mn. Lower Mn-alloyed steels with less than 4% by weight tend to have a strong aging effect in the presence of free nitrogen. The nitrogen diffuses at dislocations even at low temperatures and blocks them. It thus causes an increase in strength combined with a rapid loss of toughness.
- the nitrogen can be set in the form of nitrides, for example, by adding titanium or aluminum to the alloy, with aluminum nitrides in particular having a negative effect on the forming properties of the alloy according to the invention. For the reasons mentioned above, the nitrogen content is limited to less than 0.1% by weight, preferably less than 0.05% by weight.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Herstellung eines Stahlflachprodukts aus einem mittelmanganhaltigen Stahl mit TRIP/TWIP-Effekt, und eine Verwendung für ein nach diesem Verfahren hergestelltes Stahlflachprodukt.The invention relates to a method for producing a flat steel product from a medium-manganese steel with a TRIP / TWIP effect, and a use for a flat steel product produced by this method.
Aus der
Auch sind in der
Die
Aus der
Des Weiteren ist aus der
Außerdem ist aus der internationalen Offenlegungsschrift
Ferner ist in der
Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zu Grunde, ein Verfahren zur Herstellung eines Stahlflachprodukts aus einem mittelmanganhaltigen Stahl, und eine Verwendung für ein nach diesem Verfahren hergestelltes Stahlflachprodukt zu schaffen, die sich durch eine Verbesserung der Streckgrenze bei Erhalt eines ausreichenden Restumformvermögens des hergestellten Stahlflachprodukts auszeichnen.Proceeding from this, the present invention is based on the object of creating a method for producing a flat steel product from a steel with medium manganese content, and a use for a flat steel product produced by this method, which is achieved by improving the yield point while maintaining a sufficient residual deformability of the flat steel product produced distinguish.
Diese Aufgabe wird durch ein Verfahren zur Herstellung eines Stahlflachprodukts aus einem mittelmanganhaltigen Stahl mit TRIP/TWIP-Effekt mit den Merkmalen des Anspruchs 1 und eine Verwendung für ein nach diesem Verfahren hergestelltes Stahlflachprodukt gemäß Anspruch 11 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.This object is achieved by a method for producing a flat steel product from a medium-manganese steel with TRIP / TWIP effect having the features of claim 1 and a use for a flat steel product produced by this method according to claim 11. Advantageous refinements of the invention are specified in the subclaims.
Erfindungsgemäß wird durch ein Verfahren zur Herstellung eines Stahlflachprodukts aus einem mittelmanganhaltigen Stahl mit einem Mangangehalt von 4 bis 12, vorzugsweise größer 5 bis kleiner 10, Gew.-% und mit TRIP/TWIP-Effekt, umfassend die Schritte: - Kaltwalzen eines Warm- oder Kaltbands, - Glühen des kaltgewalzten Warm- oder Kaltbands bei 500 bis 840 °C für 1 min. bis 24 h, - Nachwalzen oder Dressieren des geglühten Warm- oder Kaltbands zu einem Stahlflachprodukt mit einem Umformgrad zwischen 0,3 % und 60 % und mit einer um mindestens 50 MPa erhöhten Streckgrenze gegenüber vor dem Nachwalzen oder Dressieren erreicht, dass durch das Nachwalzen oder Dressieren des Stahlflachprodukts dessen Streckgrenze erhöht wird. In üblicher Weise ist der Umformgrad auf die Dickenrichtung des Stahlflachprodukts bezogen. Über die Erhöhung der Streckgrenze, können aus diesem Stahlflachprodukt optimierte Bauteile mit geringerer Blechdicke hergestellt werden. Das Nachwalzen oder Dressieren bewirkt eine teilweise Umwandlung des metastabilen Austenits des geglühten Warm- oder Kaltbands in Verformungszwillinge (TWIP-Effekt) und Martensit (TRIP-Effekt), wobei mindestens ein Anteil von 3 % des Austenits in Martensit umwandeln muss und mindestens ein Anteil von 10 % des Austenits als kubisch-flächenzentrierte Phase erhalten bleibt.According to the invention, a method for producing a flat steel product from a medium-manganese steel with a manganese content of 4 to 12, preferably greater than 5 to less than 10, wt .-% and with TRIP / TWIP effect, comprising the steps: Cold strip, - Annealing the cold-rolled hot or cold strip at 500 to 840 ° C for 1 min. To 24 h, - Rerolling or skin-passing the annealed hot or cold strip to a flat steel product with a degree of deformation between 0.3% and 60% and with a yield point that is at least 50 MPa higher than that achieved before re-rolling or skin-passing, so that the re-rolling or skin-passing of the flat steel product increases its yield point. The degree of deformation is usually related to the thickness direction of the flat steel product. By increasing the yield point, this flat steel product can be converted into optimized components with lower Sheet thickness can be produced. The rerolling or skin passage causes a partial conversion of the metastable austenite of the annealed hot or cold strip into deformation twins (TWIP effect) and martensite (TRIP effect), whereby at least 3% of the austenite has to be converted into martensite and at least a proportion of 10% of the austenite is retained as a face-centered cubic phase.
In Bezug auf das Nachwalzen ist bevorzugt vorgesehen, dass das geglühte Warm-oder Kaltband mit einem Umformgrad zwischen 10 bis 40 % nachgewalzt wird.With regard to the re-rolling, it is preferably provided that the annealed hot or cold strip is re-rolled with a degree of deformation between 10 to 40%.
In Bezug auf das Dressieren ist bevorzugt vorgesehen, dass das geglühte Warm-oder Kaltband mit einem Umformgrad zwischen 0,6 bis 2,2 % dressiert wird.With regard to skin passaging, it is preferably provided that the annealed hot or cold strip is passaged with a degree of deformation between 0.6 and 2.2%.
Vorzugsweise ist vorgesehen, dass das geglühte Warm- oder Kaltband bei einer Temperatur von 0 bis 400 °C nachgewalzt oder dressiert wird. Hierdurch werden Verformungszwillinge gebildet (TWIP-Effekt), welche analog der Versetzungsdichte anderer Stahlsorten die Streck- und/oder Dehngrenze erhöhen.
Besonders bevorzugt ist vorgesehen, dass das Stahlflachprodukt über eine Zugfestigkeit von größer 1300 MPa und über eine Bruchdehnung A80 von größer 3 % verfügt.It is preferably provided that the annealed hot or cold strip is re-rolled or skin-pass at a temperature of 0 to 400 ° C. As a result, deformation twins are formed (TWIP effect) which, analogous to the dislocation density of other types of steel, increase the yield strength and / or yield strength.
It is particularly preferably provided that the flat steel product has a tensile strength of greater than 1300 MPa and an elongation at break A80 of greater than 3%.
In einer vorteilhaften Ausgestaltung des Verfahrens wird das Warm- oder Kaltband mit einem ersten Walzstich bei einer Temperatur des Warm- oder Kaltbands von 60 °C bis unterhalb Ac3, vorzugsweise von 60 °C bis 450 °C, kaltgewalzt. Optional wird dann das Warm- oder Kaltband zwischen den dem ersten Walzstich folgenden weiteren Walzstichen auf Temperaturen von 60 °C bis unterhalb Ac3, vorzugsweise von 60 °C bis 450 °C, zwischenerwärmt oder zwischengekühlt. Mit der Erhöhung der Temperatur vor dem ersten Walzstich geht auch eine Verringerung der erforderlichen Umformkräfte einher. Auch wird eine Erhöhung des Restumformvermögens des kaltgewalzten Warm- oder Kaltbands mit Zugfestigkeiten von größer 800 MPa bis 2000 MPa bei Bruchdehnungen von größer 3 % in den am stärksten umgeformten Bereichen bewirkt. Das Vorwärmen des Warm- oder Kaltbands kann für ein Coil oder abgewickeltes Band- oder Tafelmaterial erfolgen. Durch das Kaltwalzen mit dem Vorwärmen des Warm- oder Kaltbands vor dem ersten Umformschritt wird während des Walzvorgangs eine Umwandlung von metastabilen Austenit in Martensit (TRIP-Effekt) ganz oder teilweise unterdrückt, wobei sich im Austenit Verformungszwillinge (TWIP-Effekt) bilden können. Hierdurch wird eine vorteilhafte Reduktion der Walzkräfte erreicht und das Gesamtumformvermögen erhöht. Durch die weiteren Walzstiche bei erhöhten Temperaturen werden gezielt Verformungszwillinge eingebracht, welche bei Raumtemperatur weiter in Martensit umwandeln und dadurch das Energieaufnahmevermögen erhöhen und einen höheren Umformgrad zulassen.In an advantageous embodiment of the method, the hot or cold strip is cold-rolled with a first rolling pass at a temperature of the hot or cold strip from 60 ° C to below Ac3, preferably from 60 ° C to 450 ° C. Optionally, the hot or cold strip is then intermediately heated or intermediately cooled between the further rolling passes following the first rolling pass to temperatures from 60 ° C to below Ac3, preferably from 60 ° C to 450 ° C. With the increase in temperature before the first rolling pass, there is also a reduction in the required forming forces. An increase in the residual deformability of the cold-rolled hot or cold strip with tensile strengths of greater than 800 MPa to 2000 MPa with elongations at break of greater than 3% is brought about in the most heavily formed areas. The hot or cold strip can be preheated for a coil or unwound strip or sheet material. Cold rolling with preheating of the hot or cold strip prior to the first forming step converts metastable austenite into martensite (TRIP effect) during the rolling process. completely or partially suppressed, whereby deformation twins (TWIP effect) can form in the austenite. This results in an advantageous reduction in the rolling forces and increases the overall formability. Through the further rolling passes at elevated temperatures, deformation twins are specifically introduced, which further convert to martensite at room temperature and thus increase the energy absorption capacity and allow a higher degree of deformation.
Unter dem genanntenStahlflachprodukt ist ein kaltnachgewalztes Grobblech, Warm-und/oder Kaltband zu verstehen.The flat steel product mentioned is to be understood as meaning cold re-rolled heavy plate, hot and / or cold strip.
Besonders bevorzugt ist vorgesehen, dass das Stahlflachprodukt mit folgender chemischer Zusammensetzung (in Gew.-%) hergestellt wird, um insbesondere die beschriebenen Vorteile zu erreichen:
- C: 0,0005 bis 0,9, vorzugsweise 0,05 bis 0,35
- Mn: 4 bis 12, vorzugsweise größer 5 bis kleiner 10
- Rest Eisen einschließlich unvermeidbarer stahlbegleitender Elemente, mit optionaler Zulegierung von:
- AI: 0 bis 10, bevorzugt 0,05 bis 5, insbesondere bevorzugt größer 0,5 bis 3
- Si: 0 bis 6, bevorzugt 0,05 bis 3, insbesondere bevorzugt 0,1 bis 1,5
- Cr: 0 bis 6, bevorzugt 0,1 bis 4, insbesondere bevorzugt größer 0,5 bis 2,5
- Nb: 0 bis 1, bevorzugt 0,005 bis 0,4, insbesondere bevorzugt 0,01 bis 0,1
- V: 0 bis 1,5, bevorzugt 0,005 bis 0,6, insbesondere bevorzugt 0,01 bis 0,3
- Ti: 0 bis 1,5, bevorzugt 0,005 bis 0,6, insbesondere bevorzugt 0,01 bis 0,3
- Mo: 0 bis 3, bevorzugt 0,005 bis 1,5, insbesondere bevorzugt 0,01 bis 0,6
- Sn: 0 bis 0,5, bevorzugt kleiner 0,2, insbesondere bevorzugt kleiner 0,05
- Cu: 0 bis 3, bevorzugt kleiner 0,5, insbesondere bevorzugt kleiner 0,1
- W: 0 bis 5, bevorzugt 0,01 bis 3, insbesondere bevorzugt 0,2 bis 1,5
- Co: 0 bis 8, bevorzugt 0,01 bis 5, insbesondere bevorzugt 0,3 bis 2
- Zr: 0 bis 0,5, bevorzugt 0,005 bis 0,3, insbesondere bevorzugt 0,01 bis 0,2
- Ta: 0 bis 0,5, bevorzugt 0,005 bis 0,3, insbesondere bevorzugt 0,01 bis 0,1
- Te: 0 bis 0,5, bevorzugt 0,005 bis 0,3, insbesondere bevorzugt 0,01 bis 0,1
- B: 0 bis 0,15, bevorzugt 0,001 bis 0,08, insbesondere bevorzugt 0,002 bis 0,01
- P: kleiner 0,1, bevorzugt kleiner 0,04
- S: kleiner 0,1, bevorzugt kleiner 0,02
- N: kleiner 0,1, bevorzugt kleiner 0,05.
- C: 0.0005 to 0.9, preferably 0.05 to 0.35
- Mn: 4 to 12, preferably greater than 5 to less than 10
- Remaining iron including unavoidable steel-accompanying elements, with optional addition of:
- AI: 0 to 10, preferably 0.05 to 5, particularly preferably greater than 0.5 to 3
- Si: 0 to 6, preferably 0.05 to 3, particularly preferably 0.1 to 1.5
- Cr: 0 to 6, preferably 0.1 to 4, particularly preferably greater than 0.5 to 2.5
- Nb: 0 to 1, preferably 0.005 to 0.4, particularly preferably 0.01 to 0.1
- V: 0 to 1.5, preferably 0.005 to 0.6, particularly preferably 0.01 to 0.3
- Ti: 0 to 1.5, preferably 0.005 to 0.6, particularly preferably 0.01 to 0.3
- Mo: 0 to 3, preferably 0.005 to 1.5, particularly preferably 0.01 to 0.6
- Sn: 0 to 0.5, preferably less than 0.2, particularly preferably less than 0.05
- Cu: 0 to 3, preferably less than 0.5, particularly preferably less than 0.1
- W: 0 to 5, preferably 0.01 to 3, particularly preferably 0.2 to 1.5
- Co: 0 to 8, preferably 0.01 to 5, particularly preferably 0.3 to 2
- Zr: 0 to 0.5, preferably 0.005 to 0.3, particularly preferably 0.01 to 0.2
- Ta: 0 to 0.5, preferably 0.005 to 0.3, particularly preferably 0.01 to 0.1
- Te: 0 to 0.5, preferably 0.005 to 0.3, particularly preferably 0.01 to 0.1
- B: 0 to 0.15, preferably 0.001 to 0.08, particularly preferably 0.002 to 0.01
- P: less than 0.1, preferably less than 0.04
- S: less than 0.1, preferably less than 0.02
- N: less than 0.1, preferably less than 0.05.
Dieses Stahlflachprodukt aus dem mittel-manganhaltigen TRIP(TRansformation Induced Plasticity)- und/oder TWIP (TWinning Induced Plasticity)-Stahl weist eine hervorragender Kalt- und Halbwarmumformbarkeit, erhöhten Widerstand gegen wasserstoffinduzierte verzögerte Rissbildung (delayed fracture), gegen Wasserstoffversprödung (hydrogen embrittlement) sowie gegen Flüssigmetallversprödung beim Schweißen im verzinkten Zustand auf.This flat steel product made from the medium-manganese-containing TRIP (TRansformation Induced Plasticity) and / or TWIP (TWinning Induced Plasticity) steel has excellent cold and warm formability, increased resistance to hydrogen-induced delayed fracture, and hydrogen embrittlement. as well as against liquid metal embrittlement when welding in the galvanized state.
In üblicher Weise wird das vorbeschriebene Stahlflachprodukt mit einer nachfolgend angeführten Erzeugungsroute hergestellt:
- Erschmelzen einer Stahlschmelze mit der vorstehend beschriebenen chemischen Zusammensetzung in einem über die Prozessroute Hochofen-Stahlwerk oder Elektrolichtbogenofen-Stahlwerk mit optionaler Vakuumbehandlung der Schmelze;
- Vergießen der Stahlschmelze zu einem Vorband mittels eines endabmessungsnahen horizontalen oder vertikalen Bandgießverfahrens oder Vergießen der Stahlschmelze zu einer Bramme oder Dünnbramme mittels eines horizontalen oder vertikalen Brammen- oder Dünnbrammengießverfahrens,
- Erwärmen des Vorbandes auf eine Walztemperatur von 1050 bis 1250°C oder Inlinewalzen aus der Gießhitze (erste Hitze) heraus,
- Warmwalzen des Vorbandes oder der Bramme oder der Dünnbramme zu einem Warmband mit einer Dicke von 20 bis 0,8 mm mit einer Walzendtemperatur von 1050 bis 800°C,
- Aufhaspeln des Warmbandes bei einer Temperatur von mehr als 100 bis 800°C,
- Beizen des Warmbandes,
- Glühen des Warmbandes in einer Durchlauf- oder Haubenglühanlage beziehungsweise in einer kontinuierlichen oder diskontinuierlichen Glühanlage bei einer Glühzeit von 1 min. bis 24 h und Temperaturen von 500 °C bis 840°C,
- Kaltwalzen des Warmbandes bei Raumtemperatur, bevorzugt mit einem Vorwärmen auf 60 °C bis unterhalb Ac3-Temperatur, bevorzugt 60 °C bis 450 °C vor dem ersten Walzstich zur Verringerung der Walzkräfte und Bildung von Verformungszwillingen im Austenit und bedarfsweisem Kühlen oder Erwärmen zwischen den Walzstichen auf 60 °C bis unterhalb der Ac3-Temperatur, bevorzugt 60 °C bis 450 °C,
- Glühen des kaltgewalzten Warm- oder Kaltbands bei 500 bis 840 °C für 1 min bis 24 h über Durchlauf- oder Haubenglühung,
- Nachwalzen oder Dressieren des geglühten Warm- oder Kaltbands zur Erhöhung der Streckgrenze mit glatten oder texturierten Walzen (beispielsweise mit PretexTexturieru ng),
- optionales elektrolytisches Verzinken oder Feuerverzinken des Stahlbandes oder Aufbringen einer anderweitigen organischen oder anorganischen Beschichtung,
- optionales Glühen bei 500 bis 840 °C für 1 min bis 24 h in einer Durchlaufglühanlage, Haubenglühanlage oder sonstigen kontinuierlichen oder diskontinuierlichen Glühanlagen.
- Melting a steel melt with the chemical composition described above in a blast furnace steelworks or electric arc furnace steelworks via the process route with optional vacuum treatment of the melt;
- Pouring the steel melt into a pre-strip by means of a near-net-shape horizontal or vertical strip casting process or casting the steel melt into a slab or thin slab by means of a horizontal or vertical slab or thin slab casting process,
- Heating of the pre-strip to a rolling temperature of 1050 to 1250 ° C or inline rolling from the casting heat (first heat),
- Hot rolling of the pre-strip or the slab or the thin slab to form a hot strip with a thickness of 20 to 0.8 mm with a final rolling temperature of 1050 to 800 ° C,
- Coiling of the hot strip at a temperature of more than 100 to 800 ° C,
- Pickling of the hot strip,
- Annealing the hot strip in a continuous or hood annealing plant or in a continuous or discontinuous annealing plant with an annealing time of 1 min. To 24 hours and temperatures of 500 ° C to 840 ° C,
- Cold rolling of the hot strip at room temperature, preferably with preheating to 60 ° C to below Ac3 temperature, preferably 60 ° C to 450 ° C before the first rolling pass to reduce the rolling forces and formation of deformation twins in the austenite and, if necessary, cooling or heating between the rolling passes to 60 ° C to below the Ac3 temperature, preferably 60 ° C to 450 ° C,
- Annealing the cold-rolled hot or cold strip at 500 to 840 ° C for 1 min to 24 hours using continuous or hood annealing,
- Rerolling or skin-passing of the annealed hot or cold strip to increase it the yield point with smooth or textured rollers (e.g. with pretex texturing),
- optional electrolytic galvanizing or hot-dip galvanizing of the steel strip or application of another organic or inorganic coating,
- optional annealing at 500 to 840 ° C for 1 min to 24 h in a continuous annealing system, hood annealing system or other continuous or discontinuous annealing systems.
Übliche Dickenbereiche für Vorband sind 1 mm bis 35 mm sowie für Brammen und Dünnbrammen 35 mm bis 450 mm. Vorzugsweise ist vorgesehen, dass die Bramme oder Dünnbramme zu einem Warmband mit einer Dicke von 20 mm bis 0,8 mm warmgewalzt wird oder das endabmessungsnah gegossene Vorband zu einem Warmband mit einer Dicke von 8 mm bis 0,8 mm warmgewalzt wird. Das Kaltband hat eine Dicke von üblicherweise unter 3 mm, vorzugsweise 0,1 bis 1,4 mm.The usual thickness ranges for pre-strip are 1 mm to 35 mm and for slabs and thin slabs 35 mm to 450 mm. It is preferably provided that the slab or thin slab is hot rolled into a hot strip with a thickness of 20 mm to 0.8 mm or the pre-strip cast close to its final dimensions is hot rolled into a hot strip with a thickness of 8 mm to 0.8 mm. The cold strip has a thickness of usually less than 3 mm, preferably 0.1 to 1.4 mm.
Im Zusammenhang mit dem vorstehenden erfindungsgemäßen Verfahren wird ein endabmessungsnah mit dem Zwei-Rollen Gießverfahren erzeugtes Vorband mit einer Dicke von kleiner gleich 3 mm, vorzugsweise 1 mm bis 3 mm, bereits als Warmband verstanden. Das so als Warmband produzierte Vorband weist, bedingt durch die eingebrachte Umformung der beiden gegenläufigen Walzen, keine Gussstruktur auf. Ein Warmwalzen findet somit bereits inline während des Zwei-Rollen-Gießverfahrens statt, so dass ein separates Erwärmen und Warmwalzen optional entfallen kann.In connection with the above method according to the invention, a pre-strip produced near net dimensions using the two-roll casting method with a thickness of less than or equal to 3 mm, preferably 1 mm to 3 mm, is already understood as hot strip. The pre-strip produced in this way as hot strip does not have a cast structure due to the reshaping of the two counter-rotating rolls. Hot rolling thus already takes place inline during the two-roll casting process, so that separate heating and hot rolling can optionally be omitted.
Das Kaltwalzen des Warmbandes kann bei Raumtemperatur oder vorteilhaft bei erhöhter Temperatur mit einer Erwärmung vor dem ersten Walzstich und/oder Erwärmungen in einem weiteren oder zwischen mehreren Walzstichen stattfinden. Das Kaltwalzen bei erhöhter Temperatur ist vorteilhaft, um die Walzkräfte zu reduzieren und die Bildung von Verformungszwillingen (TWIP-Effekt) zu begünstigen. Vorteilhafte Temperaturen des Walzgutes vor dem ersten Walzstich betragen 60°C bis unterhalb Ac3-Temperatur, bevorzugt 60 bis 450°C.The cold rolling of the hot strip can take place at room temperature or advantageously at an elevated temperature with heating before the first rolling pass and / or heating in a further or between several rolling passes. Cold rolling at elevated temperatures is advantageous in order to reduce the rolling forces and to promote the formation of deformation twins (TWIP effect). Advantageous temperatures of the rolling stock before the first rolling pass are 60 ° C to below the Ac3 temperature, preferably 60 to 450 ° C.
Erfolgt das Kaltwalzen in mehreren Walzstichen ist es vorteilhaft, das Stahlband zwischen den Walzstichen auf eine Temperatur von 60°C bis unterhalb Ac3-Temperatur, bevorzugt 60 °C bis 450°C, zwischenzuerwärmen bzw. herunterzukühlen, da der TWIP-Effekt in diesem Bereich besonders vorteilhaft zum Tragen kommt. Je nach Walzgeschwindigkeit und Umformgrad kann sowohl ein Zwischenerwärmen, bspw. bei sehr niedrigen Umformgraden und Walzgeschwindigkeiten, als auch eine zusätzliche Kühlung, bedingt durch die Erwärmung des Werkstoffs beim schnellen Walzen und hohen Umformgraden, vorgenommen werden.If the cold rolling takes place in several rolling passes, it is advantageous to temporarily heat or cool the steel strip between the rolling passes to a temperature of 60 ° C to below Ac3 temperature, preferably 60 ° C to 450 ° C, since the TWIP effect in this area particularly advantageous for Carry comes. Depending on the rolling speed and degree of deformation, both intermediate heating, e.g. at very low degrees of deformation and rolling speeds, as well as additional cooling, due to the heating of the material during fast rolling and high degrees of deformation, can be carried out.
Nach einem Kaltwalzen des Warmbandes bei Raumtemperatur ist das Stahlband zur Wiederherstellung ausreichender Umformeigenschaften in einer Durchlaufglühanlage, Haubenglühanlage oder sonstigen kontinuierlichen oder diskontinuierlichen Glühanlage vorteilhaft bei einer Glühzeit von 1 min. bis 24 h und Temperaturen von 500 bis 840°C zu glühen. Falls zur Erzielung bestimmter Werkstoffeigenschaften erforderlich, kann dieser Glühvorgang auch bei dem bei erhöhter Temperatur gewalzten Stahlband erfolgen.After cold rolling the hot strip at room temperature, the steel strip should be annealed in a continuous annealing plant, hood annealing plant or other continuous or discontinuous annealing plant with an annealing time of 1 min. To 24 h and temperatures of 500 to 840 ° C to restore sufficient forming properties. If necessary to achieve certain material properties, this annealing process can also be carried out with the steel strip rolled at an elevated temperature.
Nach der Glühbehandlung wird das Stahlband vorteilhaft auf eine Temperatur von 250°C bis Raumtemperatur abgekühlt und anschließend, falls erforderlich, zur Einstellung der geforderten mechanischen Eigenschaften, im Zuge einer Alterungsbehandlung, auf eine Temperatur von 300 bis 450°C wieder erwärmt, bei dieser Temperatur für bis zu 5 min. gehalten und anschließend auf Raumtemperatur abgekühlt. Die Alterungsbehandlung kann vorteilhaft in einer Durchlaufglühanlage durchgeführt werden.After the annealing treatment, the steel strip is advantageously cooled to a temperature of 250 ° C to room temperature and then, if necessary, to set the required mechanical properties, in the course of an aging treatment, heated again to a temperature of 300 to 450 ° C at this temperature held for up to 5 minutes and then cooled to room temperature. The aging treatment can advantageously be carried out in a continuous annealing plant.
Das so hergestellte Stahlflachprodukt kann optional elektrolytisch verzinkt oder feuerverzinkt werden. In einer vorteilhaften Weiterbildung erhält das so hergestellte Stahlband anstelle oder nach dem elektrolytischen Verzinken oder Feuerverzinken eine Beschichtung auf organischer oder anorganischer Basis. Dies können zum Beispiel organische Beschichtungen, Kunststoffbeschichtungen oder Lacke oder anderweitige anorganische Beschichtungen wie beispielsweise Eisenoxidschichten sein.The flat steel product produced in this way can optionally be electrolytically galvanized or hot-dip galvanized. In an advantageous development, the steel strip produced in this way receives a coating on an organic or inorganic basis instead of or after electrolytic galvanizing or hot-dip galvanizing. These can be, for example, organic coatings, plastic coatings or lacquers or other inorganic coatings such as iron oxide layers.
Erfindungsgemäß bietet sich vorteilhaft eine Verwendung eines nach dem vorbeschriebenen Verfahren hergestellten Bauteils im Kraftfahrzeugbau, Schienenfahrzeugbau, Schiffsbau, Anlagenbau, Infrastrukturbau, in der Luft- und Raumfahrt, Hausgerätetechnik und in geschweißten Platinen (tailored welded blanks) an.According to the invention, a component manufactured according to the above-described method can advantageously be used in motor vehicle construction, rail vehicle construction, shipbuilding, plant construction, infrastructure construction, in aerospace, domestic appliance technology and in welded blanks (tailored welded blanks).
Ein nach dem erfindungsgemäßen Verfahren hergestelltes Stahlflachprodukt weist vorteilhaft eine Dehngrenze Rp0,2 von 300 bis 1350 MPa, eine Zugfestigkeit Rm von 1100 bis 2200 MPa und eine Bruchdehnung A80 von mehr als 4 bis 41% auf, wobei hohen Festigkeiten tendenziell niedrigere Bruchdehnungen zuzuordnen sind und umgekehrt:
Für die Bruchdehnungsuntersuchungen wurde gemäß DIN 50 125 die Probenform 2 mit einer Anfangsmesslänge von A80 verwendet.
Die Verwendung des Begriffs "bis" in der Definition der Gehaltsbereiche, wie beispielsweise 0,01 bis 1 Gew.-%, bedeutet, dass die Eckwerte - im Beispiel 0,01 und 1 - mit eingeschlossen sind.For the elongation at break investigations, specimen form 2 with an initial gauge length of A80 was used in accordance with DIN 50 125.
The use of the term “to” in the definition of the content ranges, such as 0.01 to 1% by weight, means that the benchmarks - in the example 0.01 and 1 - are included.
Legierungselemente werden dem Stahl in der Regel zugegeben, um gezielt bestimmte Eigenschaften zu beeinflussen. Dabei kann ein Legierungselement in verschiedenen Stählen unterschiedliche Eigenschaften beeinflussen. Die Wirkung und Wechselwirkung hängt im Allgemeinen stark von der Menge, der Anwesenheit weiterer Legierungselemente und dem Lösungszustand im Werkstoff ab. Die Zusammenhänge sind vielseitig und komplex. Im Folgenden soll auf die Wirkung der Legierungselemente in der erfindungsgemäßen Legierung näher eingegangen werden. Nachfolgend werden die positiven Effekte der erfindungsgemäß verwendeten Legierungselemente beschrieben.Alloy elements are usually added to steel in order to specifically influence certain properties. An alloy element can influence different properties in different steels. The effect and interaction generally depends heavily on the amount, the presence of other alloying elements and the state of solution in the material. The relationships are varied and complex. In the following, the effect of the alloying elements in the alloy according to the invention will be discussed in more detail. The positive effects of the alloying elements used according to the invention are described below.
Kohlenstoff C: Wird benötigt zur Bildung von Karbiden, stabilisiert den Austenit und erhöht die Festigkeit. Höhere Gehalte an C verschlechtern die Schweißeigenschaften und führen zur Verschlechterung der Dehnungs- und Zähigkeitseigenschaften, weshalb ein maximaler Gehalt von 0,9 Gew.-%, bevorzugt 0,35 Gew.-%, festgelegt wird. Um die gewünschte Kombination von Festigkeits- und Dehnungseigenschaften des Werkstoffs zu erreichen, ist eine Mindestzugabe von 0,0005 Gew.-%, bevorzugt 0,05 Gew.-%, erforderlich.Carbon C: Is required for the formation of carbides, stabilizes the austenite and increases the strength. Higher contents of C worsen the welding properties and lead to a deterioration in the elongation and toughness properties, which is why a maximum content of 0.9% by weight, preferably 0.35% by weight, is specified. In order to achieve the desired combination of strength and elongation properties of the material, a minimum addition of 0.0005% by weight, preferably 0.05% by weight, is required.
Mangan Mn: Stabilisiert den Austenit, erhöht die Festigkeit und die Zähigkeit und ermöglicht eine verformungsinduzierte Martensit- und/oder Zwillingsbildung in der erfindungsgemäßen Legierung. Gehalte kleiner 4 Gew.-% sind nicht ausreichend zur Stabilisierung des Austenits und verschlechtern somit die Dehnungseigenschaften, während bei Gehalten von 12 Gew.-% und mehr der Austenit zu stark stabilisiert wird und dadurch die Festigkeitseigenschaften, insbesondere die 0,2 % Dehngrenze, verringert werden. Für den erfindungsgemäßen Manganstahl mit mittleren Mangangehalten wird ein Bereich von größer 5 bis kleiner 10 Gew.-% bevorzugt.Manganese Mn: Stabilizes austenite, increases strength and toughness and enables deformation-induced martensite and / or twin formation in the alloy according to the invention. Contents of less than 4% by weight are not sufficient to stabilize the austenite and thus worsen the elongation properties, while with contents of 12% by weight and more the austenite is too strongly stabilized and thus the strength properties, in particular the 0.2% yield strength, be reduced. For the manganese steel according to the invention with medium manganese contents, a range from greater than 5 to less than 10% by weight is preferred.
Aluminium AI: Al verbessert die Festigkeits- und Dehnungseigenschaften, senkt die spezifische Dichte und beeinflusst das Umwandlungsverhalten der erfindungsgemäßen Legierung. Zu hohe Gehalte an Al verschlechtern die Dehnungseigenschaften. Auch verschlechtern höhere AI-Gehalte das Gießverhalten im Strangguss deutlich. Hierdurch entsteht ein höherer Aufwand beim Vergießen. Hohe AI-Gehalte verzögern die Ausscheidung von Karbiden in der erfindungsgemäßen Legierung. Daher wird ein AI-Gehalt von 0 bis 10 Gew.-%, bevorzugt 0,05 bis 5 Gew.-%, besonders bevorzugt von größer 0,5 bis 3 Gew.-%, festgelegt.Aluminum Al: Al improves the strength and elongation properties, lowers the specific density and influences the transformation behavior of the alloy according to the invention. Too high a content of Al worsens the elongation properties. Higher Al contents also significantly worsen the casting behavior in continuous casting. This results in a higher effort when potting. High Al contents delay the precipitation of carbides in the alloy according to the invention. An Al content of 0 to 10% by weight, preferably 0.05 to 5% by weight, particularly preferably greater than 0.5 to 3% by weight, is therefore specified.
Silizium Si: Die optionale Zugabe von Si in höheren Gehalten behindert die Kohlenstoffdiffusion, verringert die spezifische Dichte und erhöht die Festigkeit und die Dehnungs- sowie Zähigkeitseigenschaften. Des Weiteren konnte eine Verbesserung der Kaltwalzbarkeit durch Zulegieren von Si beobachtet werden. Höhere Si-Gehalte führen zu einer Versprödung des Werkstoffs und beeinflussen die Warm- und Kaltwalzbarkeit sowie die Beschichtbarkeit beispielsweise durch Verzinken negativ. Daher wird ein Si-Gehalt von 0 bis 6 Gew.-%, bevorzugt 0,05 bis 3 Gew.-%, besonders bevorzugt von 0,1 bis 1,5 Gew.-%, festgelegt.Silicon Si: The optional addition of Si in higher contents hinders the carbon diffusion, reduces the specific density and increases the strength and the elongation and toughness properties. Furthermore, an improvement in cold rollability could be observed through the addition of Si. Higher Si contents lead to embrittlement of the material and have a negative effect on hot and cold rollability and coatability, for example through galvanizing. An Si content of 0 to 6% by weight, preferably 0.05 to 3% by weight, particularly preferably 0.1 to 1.5% by weight, is therefore specified.
Chrom Cr: Die optionale Zugabe von Cr verbessert die Festigkeit und verringert die Korrosionsrate, verzögert die Ferrit- und Perlitbildung und bildet Karbide. Höhere Gehalte führen zu einer Verschlechterung der Dehnungseigenschaften. Daher wird ein Cr-Gehalt von 0 bis 6 Gew.-%, bevorzugt 0,1 bis 4 Gew.-%, besonders bevorzugt von größer 0,5 bis 2,5 Gew.-%, festgelegt.Chromium Cr: The optional addition of Cr improves the strength and reduces the corrosion rate, delays the formation of ferrite and pearlite and forms carbides. Higher contents lead to a deterioration in the elongation properties. A Cr content of 0 to 6% by weight, preferably 0.1 to 4% by weight, particularly preferably greater than 0.5 to 2.5% by weight, is therefore specified.
Mikrolegierungselemente werden in der Regel nur in sehr geringen Mengen zugegeben. Sie wirken im Gegensatz zu den Legierungselementen hauptsächlich durch Ausscheidungsbildung können aber auch in gelöstem Zustand die Eigenschaften beeinflussen. Bereits geringe Mengenzugaben der Mikrolegierungselemente beeinflussen die Verarbeitungs- und Endeigenschaften erheblich. Insbesondere bei der Warmumformung beeinflussen Mikrolegierungselemente das Rekristallisationsverhalten vorteilhaft und bewirken eine Kornfeinung.Micro-alloy elements are usually only used in very small quantities admitted. In contrast to the alloying elements, they work mainly through the formation of precipitates, but can also influence the properties in a dissolved state. Even small amounts of the micro-alloying elements have a considerable influence on the processing and final properties. In hot forming in particular, micro-alloy elements have an advantageous effect on the recrystallization behavior and cause grain refinement.
Typische Mikrolegierungselemente sind Vanadium, Niob und Titan. Diese Elemente können im Eisengitter gelöst werden und bilden mit Kohlenstoff und Stickstoff Carbide, Nitride und Carbonitride.Typical micro-alloy elements are vanadium, niobium and titanium. These elements can be dissolved in the iron lattice and form carbides, nitrides and carbonitrides with carbon and nitrogen.
Vanadium V und Niob Nb: Diese wirken insbesondere durch die Bildung von Karbiden kornfeinend, wodurch gleichzeitig die Festigkeit, Zähigkeit und Dehnungseigenschaften verbessert werden. Gehalte von über 1,5 Gew.-% beziehungsweise 1 Gew.-% bringen keine weiteren Vorteile. Für Vanadium und Niob wird optional bevorzugt ein Mindestgehalt von 0,005 Gew.-% und ein Maximalgehalt von 0,6 Gew.-% beziehungsweise 0,4 Gew.-%, besonders bevorzugt ein Mindestgehalt von 0,01 Gew.-% und ein Maximalgehalt von 0,3 Gew.-% beziehungsweise 0,1 Gew.-%, vorgesehen.Vanadium V and niobium Nb: These have a grain-refining effect due to the formation of carbides, which at the same time improves strength, toughness and elongation properties. Contents of more than 1.5% by weight or 1% by weight have no further advantages. For vanadium and niobium, a minimum content of 0.005% by weight and a maximum content of 0.6% by weight or 0.4% by weight, particularly preferably a minimum content of 0.01% by weight and a maximum content, are optionally preferred of 0.3% by weight and 0.1% by weight, respectively, are provided.
Titan Ti: Wirkt als Karbidbildner kornfeinend, wodurch gleichzeitig die Festigkeit, Zähigkeit und Dehnungseigenschaften verbessert werden und vermindert die interkristalline Korrosion. Gehalte an Ti von über 1,5 Gew.-% verschlechtern die Dehnungseigenschaften, weshalb optional ein Maximalgehalt von 1,5 Gew.-%, bevorzugt 0,6 Gew.-%, besonders bevorzugt 0,3 Gew.-%, festgelegt wird. Mindestgehalte von 0,005 Gew.-%, bevorzugt von 0,01 Gew.-%, können vorgesehen werden, um Stickstoff abzubinden und Ti vorteilhaft auszuscheiden.Titanium Ti: Has a grain-refining effect as a carbide former, which at the same time improves strength, toughness and elongation properties and reduces intergranular corrosion. Contents of Ti of more than 1.5% by weight deteriorate the elongation properties, which is why a maximum content of 1.5% by weight, preferably 0.6% by weight, particularly preferably 0.3% by weight, is optionally specified . Minimum contents of 0.005% by weight, preferably 0.01% by weight, can be provided in order to bind nitrogen and advantageously precipitate Ti.
Molybdän Mo: Wirkt als Karbidbildner, erhöht die Festigkeit und erhöht den Widerstand gegen verzögerte Rissbildung und Wasserstoffversprödung. Hohe Gehalte an Mo verschlechtern die Dehnungseigenschaften. Daher wird optional ein Mo-Gehalt von 0 bis 3 Gew.-%, bevorzugt 0,005 bis 1,5 Gew.-%, besonders bevorzugt von größer 0,01 bis 0,6 Gew.-%, festgelegt.Molybdenum Mo: Acts as a carbide former, increases the strength and increases the resistance against delayed crack formation and hydrogen embrittlement. High contents of Mo impair the elongation properties. An Mo content of 0 to 3% by weight, preferably 0.005 to 1.5% by weight, particularly preferably greater than 0.01 to 0.6% by weight, is therefore optionally specified.
Zinn Sn: Zinn steigert die Festigkeit, reichert sich jedoch ähnlich Kupfer bei höheren Temperaturen unter der Zunderschicht und an den Korngrenzen an. Es führt durch Eindringen in die Korngrenzen zur Bildung niedrig schmelzender Phasen und damit verbunden zu Rissen im Gefüge und zu Lotbrüchigkeit, weshalb optional ein Maximalgehalt 0,5 Gew.-%, bevorzugt von kleiner 0,2 Gew.-%, besonders bevorzugt von kleiner 0,05 Gew.-%, vorgesehen ist.Tin Sn: Tin increases the strength, but, like copper, accumulates under the scale and at the grain boundaries at higher temperatures. Penetrating into the grain boundaries leads to the formation of low-melting phases and the associated cracks in the structure and solder brittleness, which is why an optional maximum content of 0.5% by weight, preferably less than 0.2% by weight, particularly preferably less 0.05 wt%, is provided.
Kupfer Cu: Verringert die Korrosionsrate und steigert die Festigkeit. Gehalte oberhalb 3 Gew.-% verschlechtern die Herstellbarkeit durch Bildung niedrig schmelzender Phasen beim Vergießen und Warmwalzen weshalb optional ein Maximalgehalt von 3 Gew.-%, bevorzugt von kleiner 0,5 Gew.-%, besonders bevorzugt von kleiner 0,1 Gew.-%, festgelegt wird.Copper Cu: Reduces the rate of corrosion and increases strength. Contents above 3 wt .-% worsen the manufacturability by the formation of low-melting phases during casting and hot rolling, which is why optionally a maximum content of 3 wt .-%, preferably less than 0.5 wt .-%, particularly preferably less than 0.1 wt. -%, is determined.
Wolfram W: Wirkt als Karbidbildner und erhöht die Festigkeit und Warmfestigkeit. Gehalte an W von über 5 Gew.-% verschlechtern die Dehnungseigenschaften, weshalb optional ein Maximalgehalt von 5 Gew.-% festgelegt wird. Bevorzugt ist ein Gehalt von 0,01 Gew.-% bis 3 Gew.-% vorgesehen und besonders bevorzugt von 0,2 bis 1,5 Gew.-%.Tungsten W: Acts as a carbide former and increases strength and heat resistance. W contents of more than 5% by weight impair the elongation properties, which is why a maximum content of 5% by weight is optionally specified. A content of 0.01% by weight to 3% by weight is preferably provided, and particularly preferably 0.2 to 1.5% by weight.
Kobalt Co: Erhöht die Festigkeit des Stahls, stabilisiert den Austenit und verbessert die Warmfestigkeit. Gehalte von über 8 Gew.-% verschlechtern die Dehnungseigenschaften. Der Co-Gehalt wird daher mit maximal 8 Gew.-%, bevorzugt von 0,01 bis 5 Gew.-%, besonders bevorzugt von 0,3 bis 2 Gew.-%, festgelegt.Cobalt Co: Increases the strength of the steel, stabilizes the austenite and improves the high temperature strength. Contents of more than 8% by weight impair the elongation properties. The Co content is therefore set at a maximum of 8% by weight, preferably from 0.01 to 5% by weight, particularly preferably from 0.3 to 2% by weight.
Zirkonium Zr: Wirkt als Karbidbildner und verbessert die Festigkeit. Gehalte an Zr von über 0,5 Gew-% verschlechtern die Dehnungseigenschaften. Daher wird ein Zr-Gehalt von 0 bis 0,5 Gew.-%, bevorzugt 0,005 bis 0,3 Gew.-%, besonders bevorzugt von 0,01 bis 0,2 Gew.-%, festgelegt.Zirconium Zr: Acts as a carbide former and improves strength. Zr contents of more than 0.5% by weight deteriorate the elongation properties. A Zr content of 0 to 0.5% by weight, preferably 0.005 to 0.3% by weight, particularly preferably 0.01 to 0.2% by weight, is therefore specified.
Tantal Ta: Tantal wirkt ähnlich wie Niob als Karbidbildner kornfeinend und verbessert dadurch gleichzeitig die Festigkeit, Zähigkeit und Dehnungseigenschaften. Gehalte von über 0,5 Gew.-% bewirken keine weitere Verbesserung der Eigenschaften. Daher wird optional ein Maximalgehalt von 0,5 Gew.-% festgelegt. Bevorzugt werden ein Minimalgehalt von 0,005 und ein Maximalgehalt von 0,3 Gew.-% festgelegt, in welchem die Kornfeinung vorteilhaft bewirkt werden kann. Zur Verbesserung der Wirtschaftlichkeit und Optimierung der Kornfeinung wird insbesondere bevorzugt ein Gehalt von 0,01 Gew.-% bis 0,1 Gew.-% angestrebt.Tantalum Ta: Like niobium, tantalum has a grain-refining effect as a carbide former and thereby improves strength, toughness and elongation properties at the same time. Contents of more than 0.5% by weight do not bring about any further improvement in the properties. A maximum content of 0.5% by weight is therefore optionally specified. A minimum content of 0.005 and a maximum content of 0.3% by weight are preferably specified, in which the grain refinement can advantageously be effected. To improve the A content of 0.01% by weight to 0.1% by weight is particularly preferred for economy and optimization of the grain refinement.
Tellur Te: Tellur verbessert die Korrosionsbeständigkeit und die mechanischen Eigenschaften sowie die spanende Bearbeitbarkeit. Des Weiteren erhöht Te die Festigkeit von Mangansulfiden (MnS), welches dadurch beim Warm- und Kaltwalzen weniger stark in Walzrichtung gelängt wird. Gehalte oberhalb 0,5 Gew.-% verschlechtern die Dehnungs- und Zähigkeitseigenschaften, weshalb ein Maximalgehalt von 0,5 Gew.-% festgelegt wird. Optional wird ein Minimalgehalt von 0,005 Gew.-% und ein Maximalgehalt von 0,3 Gew.-% festgelegt, welche die mechanischen Eigenschaften vorteilhaft verbessern und die Festigkeit vorhandener MnS erhöht. Weiterhin wird ein Minimalgehalt von 0,01 Gew.-% und ein Maximalgehalt von 0,1 Gew.-% bevorzugt, welche eine Optimierung der mechanischen Eigenschaften bei gleichzeitiger Reduktion der Legierungskosten ermöglichen.Tellurium Te: Tellurium improves the corrosion resistance and the mechanical properties as well as the machinability. Furthermore, Te increases the strength of manganese sulfides (MnS), which is less elongated in the rolling direction during hot and cold rolling. Contents above 0.5% by weight impair the elongation and toughness properties, which is why a maximum content of 0.5% by weight is specified. Optionally, a minimum content of 0.005% by weight and a maximum content of 0.3% by weight are specified, which advantageously improve the mechanical properties and increase the strength of the MnS present. Furthermore, a minimum content of 0.01% by weight and a maximum content of 0.1% by weight are preferred, which enable the mechanical properties to be optimized with a simultaneous reduction in alloy costs.
Bor B: Bor verzögert die Austenitumwandlung, verbessert die Warmumformeigenschaften von Stählen und erhöht die Festigkeit bei Raumtemperatur. Es entfaltet seine Wirkung bereits bei sehr geringen Legierungsgehalten. Gehalte oberhalb 0,15 Gew.-% verschlechtern die Dehnungs-und Zähigkeitseigenschaften stark, weshalb der Maximalgehalt auf 0,15 Gew.-% festgelegt wird. Optional wird ein Minimalgehalt von 0,001 Gew.-% und Maximalgehalt von 0,08, vorzugsweise ein Minimalgehalt von 0,002 Gew.-% und Maximalgehalt von 0,01 festgelegt, um die festigkeitssteigernde Wirkung von Bor vorteilhaft zu nutzen.Boron B: Boron retards the austenite transformation, improves the hot forming properties of steels and increases the strength at room temperature. It develops its effect even with very low alloy contents. Contents above 0.15% by weight greatly impair the elongation and toughness properties, which is why the maximum content is set at 0.15% by weight. Optionally, a minimum content of 0.001% by weight and a maximum content of 0.08, preferably a minimum content of 0.002% by weight and a maximum content of 0.01, are specified in order to advantageously use the strength-increasing effect of boron.
Phosphor P: Ist ein Spurenelement, stammt überwiegend aus dem Eisenerz und wird im Eisengitter als Substitutionsatom gelöst. Phosphor steigert durch Mischkristallverfestigung die Härte und verbessert die Härtbarkeit. Es wird allerdings in der Regel angestrebt, den Phosphorgehalt soweit wie möglich abzusenken, da er unter anderem durch seine geringe Diffusionsgeschwindigkeit stark seigerungsanfällig ist und im hohen Maße die Zähigkeit vermindert. Durch die Anlagerung von Phosphor an den Korngrenzen können Risse entlang der Korngrenzen beim Warmwalzen auftreten. Zudem setzt Phosphor die Übergangstemperatur von zähem zu sprödem Verhalten um bis zu 300 °C herauf. Aus vorgenannten Gründen ist der Phosphorgehalt auf Werte kleiner 0,1 Gew.-%, bevorzugt kleiner 0,04 Gew.-%, begrenzt.Phosphorus P: is a trace element, comes mainly from iron ore and is dissolved in the iron lattice as a substitution atom. Phosphorus increases hardness through solid solution strengthening and improves hardenability. As a rule, however, the aim is to lower the phosphorus content as much as possible, since, among other things, due to its low diffusion rate, it is very susceptible to segregation and to a great extent reduces the toughness. The accumulation of phosphorus at the grain boundaries can cause cracks to appear along the grain boundaries during hot rolling. In addition, phosphorus increases the transition temperature from tough to brittle behavior by up to 300 ° C. For the aforementioned reasons, the phosphorus content is less than 0.1% by weight, preferably less than 0.04% by weight, limited.
Schwefel S: Ist wie Phosphor als Spurenelement im Eisenerz aber insbesondere bei der Erzeugungsroute über den Hochofenprozess im Koks gebunden. Er ist im Stahl im Allgemeinen unerwünscht, da er zu starker Seigerung neigt und stark versprödend wirkt, wodurch die Dehnungs- und Zähigkeitseigenschaften verschlechtert werden. Es wird daher versucht, möglichst geringe Mengen an Schwefel in der Schmelze zu erreichen (beispielsweise durch eine Tiefentschwefelung). Aus vorgenannten Gründen ist der Schwefelgehalt auf Werte kleiner 0,1 Gew.-%, bevorzugt kleiner 0,02 Gew.-%, begrenzt.Sulfur S: Like phosphorus, it is bound in coke as a trace element in iron ore but especially during the production route via the blast furnace process. It is generally undesirable in steel because it tends to segregate strongly and has a strong embrittling effect, as a result of which the elongation and toughness properties are impaired. Attempts are therefore made to achieve the lowest possible amounts of sulfur in the melt (for example by means of deep desulphurisation). For the reasons mentioned above, the sulfur content is limited to values less than 0.1% by weight, preferably less than 0.02% by weight.
Stickstoff N: N ist ebenfalls ein Begleitelement aus der Stahlherstellung. Er verbessert im gelösten Zustand bei höher manganhaltigen Stählen mit größer oder gleich 4 Gew.-% Mn die Festigkeits- und Zähigkeitseigenschaften. Niedriger Mn-legierte Stähle mit weniger als 4 Gew.-% neigen in Gegenwart von freiem Stickstoff zu einem starken Alterungseffekt. Der Stickstoff diffundiert schon bei geringen Temperaturen an Versetzungen und blockiert diese. Er bewirkt damit einen Festigkeitsanstieg verbunden mit einem rapiden Zähigkeitsverlust. Ein Abbinden des Stickstoffes in Form von Nitriden ist beispielsweise durch Zulegieren von Titan oder Aluminium möglich, wobei sich insbesondere Aluminiumnitride negativ auf die Umformeigenschaften der erfindungsgemäßen Legierung auswirken. Aus vorgenannten Gründen ist der Stickstoffgehalt auf weniger als 0,1 Gew.-%, bevorzugt kleiner 0,05 Gew.-%, begrenzt.Nitrogen N: N is also an accompanying element in steel production. In the dissolved state, it improves the strength and toughness properties of steels with a higher manganese content with greater than or equal to 4% by weight Mn. Lower Mn-alloyed steels with less than 4% by weight tend to have a strong aging effect in the presence of free nitrogen. The nitrogen diffuses at dislocations even at low temperatures and blocks them. It thus causes an increase in strength combined with a rapid loss of toughness. The nitrogen can be set in the form of nitrides, for example, by adding titanium or aluminum to the alloy, with aluminum nitrides in particular having a negative effect on the forming properties of the alloy according to the invention. For the reasons mentioned above, the nitrogen content is limited to less than 0.1% by weight, preferably less than 0.05% by weight.
Claims (11)
- Method for producing a flat steel product from a medium manganese steel having a manganese content of 4 to 12, preferably more than 5 to less than 10 wt.% and with a TRIP/TWIP effect, comprising the steps of:- cold-rolling a hot or cold strip,- annealing the cold-rolled hot or cold strip at 500 to 840°C for 1 min. to 24 h,- rerolling or skin-pass rolling the annealed hot or cold strip to form a flat steel product with a degree of deformation between 0.3% and 60% and with a yield strength that is at least 50 MPa higher than before the rerolling or skin-passing.
- Method according to claim 1, characterised in that the annealed hot or cold strip is rerolled with a degree of deformation between 10 and 40%.
- Method according to either claim 1 or claim 2, characterised in that the annealed hot or cold strip is skin-pass rolled with a degree of deformation between 0.6 and 2.2%.
- Method according to at least one of claims 1 to 3, characterised in that the hot or cold strip is cold-rolled with a first rolling pass at a temperature of the hot or cold strip of from 60°C to below Ac3, preferably from 60°C to 450°C.
- Method according to claim 4, characterised in that the hot or cold strip is intermediately heated or intermediately cooled to temperatures of from 60°C to below Ac3, preferably from 60°C to 450°C, between the further rolling passes following the first rolling pass.
- Method according to at least one of claims 1 to 5, characterised in that the annealed hot or cold strip is rerolled or skin-pass rolled at a temperature of from 0°C to 400°C.
- Method according to at least one of claims 1 to 6, characterised in that the flat steel product has a tensile strength of more than 1300 MPa and an elongation at break A80 of greater than 3%.
- Method according to at least one of claims 1 to 7, characterised in that the metastable austenite is partially converted into deformation twins (TWIP effect) and martensite (TRIP effect) by rerolling or skin-pass rolled to form a flat steel product, at least a proportion of 3% of the metastable austenite being converted into martensite and at least a proportion of 10% of the metastable austenite being retained as a face-centred cubic phase.
- Method according to at least one of claims 1 to 8, characterised in that the flat steel product is produced with the following chemical composition (in % by weight):C: 0.0005 to 0.9, preferably 0.05 to 0.35Mn: 4 to 12, preferably more than 5 to less than 10Remainder iron including unavoidable steel-accompanying elements, with optional addition of:Al: 0 to 10, preferably 0.05 to 5, particularly preferably more than 0.5 to 3Si: 0 to 6, preferably 0.05 to 3, particularly preferably 0.1 to 1.5Cr: 0 to 6, preferably 0.1 to 4, particularly preferably greater than 0.5 to 2.5Nb: 0 to 1, preferably 0.005 to 0.4, particularly preferably 0.01 to 0.1V: 0 to 1.5, preferably 0.005 to 0.6, particularly preferably 0.01 to 0.3Ti: 0 to 1.5, preferably 0.005 to 0.6, particularly preferably 0.01 to 0.3Mo: 0 to 3, preferably 0.005 to 1.5, particularly preferably 0.01 to 0.6Sn: 0 to 0.5, preferably less than 0.2, particularly preferably less than 0.05Cu: 0 to 3, preferably less than 0.5, particularly preferably less than 0.1W: 0 to 5, preferably 0.01 to 3, particularly preferably 0.2 to 1.5Co: 0 to 8, preferably 0.01 to 5, particularly preferably 0.3 to 2Zr: 0 to 0.5, preferably 0.005 to 0.3, particularly preferably 0.01 to 0.2Ta: 0 to 0.5, preferably 0.005 to 0.3, particularly preferably 0.01 to 0.1Te: 0 to 0.5, preferably 0.005 to 0.3, particularly preferably 0.01 to 0.1B: 0 to 0.15, preferably 0.001 to 0.08, particularly preferably 0.002 to 0.01P: less than 0.1, preferably less than 0.04S: less than 0.1, preferably less than 0.02N: less than 0.1, preferably less than 0.05.
- Method according to any of claims 1 to 9, characterised in that the flat steel product is coated with metal, in an inorganic manner, or in an organic manner.
- Use of a flat steel product produced according to a method according to at least one of the preceding claims 1 to 10 in motor vehicle construction, rail vehicle construction, shipbuilding, plant construction, infrastructure construction, mining, in aerospace, household appliance technology and in welded blanks.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016117508.0A DE102016117508B4 (en) | 2016-09-16 | 2016-09-16 | Process for producing a flat steel product from a medium manganese steel and such a flat steel product |
PCT/EP2017/072994 WO2018050683A1 (en) | 2016-09-16 | 2017-09-13 | Method for producing a flat steel product made of a manganese-containing stell, and such a flat steel product |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3512968A1 EP3512968A1 (en) | 2019-07-24 |
EP3512968B1 true EP3512968B1 (en) | 2021-08-25 |
Family
ID=59887258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17768090.7A Active EP3512968B1 (en) | 2016-09-16 | 2017-09-13 | Method for producing a flat steel product made of a manganese-containing steel, and such a flat steel product |
Country Status (6)
Country | Link |
---|---|
US (1) | US11261503B2 (en) |
EP (1) | EP3512968B1 (en) |
KR (1) | KR102298180B1 (en) |
DE (1) | DE102016117508B4 (en) |
RU (1) | RU2734216C9 (en) |
WO (1) | WO2018050683A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2903435T3 (en) * | 2016-09-29 | 2022-04-01 | Outokumpu Oy | Method for cold deformation of an austenitic steel |
CN108504959B (en) * | 2018-06-04 | 2019-11-12 | 福州大学 | A kind of austenitic medium manganese steel treated by composite alloying and preparation method thereof |
CN109440010B (en) * | 2018-12-20 | 2021-08-13 | 唐山钢铁集团高强汽车板有限公司 | 1100 MPa-grade high-strength strapping steel and production method thereof |
US11827961B2 (en) * | 2020-12-18 | 2023-11-28 | Vacuumschmelze Gmbh & Co. Kg | FeCoV alloy and method for producing a strip from an FeCoV alloy |
KR102699825B1 (en) * | 2022-03-15 | 2024-08-27 | 한양대학교 에리카산학협력단 | Medium-manganese steel containing nickel-aluminum-based precipitates and manufacturing method of the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10259230A1 (en) * | 2002-12-17 | 2004-07-15 | Thyssenkrupp Stahl Ag | Method of making a steel product |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69230447T3 (en) * | 1991-03-15 | 2006-07-13 | Nippon Steel Corp. | HIGH-FIXED, COLD-ROLLED STEEL PLATE WITH EXCELLENT FORMABILITY, FIRE-DIRECT, COLD-ROLLED STEEL PLATE AND METHOD FOR PRODUCING THIS PLATE |
FR2796083B1 (en) | 1999-07-07 | 2001-08-31 | Usinor | PROCESS FOR MANUFACTURING IRON-CARBON-MANGANESE ALLOY STRIPS, AND STRIPS THUS PRODUCED |
DE102004054444B3 (en) | 2004-08-10 | 2006-01-19 | Daimlerchrysler Ag | Method for making steel articles with high rigidity and plasticity comprises mechanical shaping of steel in which twinning induce plasticity or shearband induced plasticity is produced, to give increase in rigidity of at least 30 percent |
DE102005052774A1 (en) | 2004-12-21 | 2006-06-29 | Salzgitter Flachstahl Gmbh | Method of producing hot strips of lightweight steel |
EP1846584B2 (en) * | 2005-02-02 | 2022-12-14 | Tata Steel IJmuiden B.V. | Austenitic steel having high strength and formability method of producing said steel and use thereof |
KR20070085757A (en) * | 2007-06-04 | 2007-08-27 | 티센크루프 스틸 악티엔게젤샤프트 | Method for producing the strip by high strength steel strip or sheet and direct strip casting having TVP characteristics |
JP5365216B2 (en) * | 2008-01-31 | 2013-12-11 | Jfeスチール株式会社 | High-strength steel sheet and its manufacturing method |
KR101289518B1 (en) * | 2009-11-18 | 2013-07-24 | 신닛테츠스미킨 카부시키카이샤 | Austenite stainless steel sheet and method for producing same |
EP2383353B1 (en) | 2010-04-30 | 2019-11-06 | ThyssenKrupp Steel Europe AG | High tensile steel containing Mn, steel surface product made from such steel and method for producing same |
BR112012031466B1 (en) * | 2010-06-10 | 2019-07-09 | Tata Steel Ijmuiden Bv | METHOD OF PRODUCING AN EXCELLENT AUSTENTIC STEEL SHEET IN RESISTANCE TO DELAYED FRACTURE AND STRIP OR SHEET |
JP5729211B2 (en) * | 2010-08-31 | 2015-06-03 | Jfeスチール株式会社 | Cold rolled steel sheet manufacturing method, cold rolled steel sheet and automobile member |
KR20120065464A (en) * | 2010-12-13 | 2012-06-21 | 주식회사 포스코 | Austenitic lightweight high strength hot rolled steel sheet having excellent yield-ratio and ductility and method for manufacturing the same |
JP2013104114A (en) * | 2011-11-15 | 2013-05-30 | Jfe Steel Corp | Cold rolled steel sheet having excellent bending workability and method for producing the same |
JP2013224476A (en) * | 2012-03-22 | 2013-10-31 | Jfe Steel Corp | High-strength thin steel sheet excellent in workability and method for manufacturing the same |
DE102012013113A1 (en) | 2012-06-22 | 2013-12-24 | Salzgitter Flachstahl Gmbh | High strength multiphase steel and method of making a strip of this steel having a minimum tensile strength of 580 MPa |
KR101480497B1 (en) * | 2012-10-15 | 2015-01-09 | 주식회사 포스코 | Method for manufacturing twinning-induced plasticity steel sheet by utilizing dynamic recrystallization and twinning-induced plasticity steel manufactured by the same |
DE102013003516A1 (en) * | 2013-03-04 | 2014-09-04 | Outokumpu Nirosta Gmbh | Process for the production of an ultra-high-strength material with high elongation |
FI126798B (en) * | 2013-07-05 | 2017-05-31 | Outokumpu Oy | Delayed fracture resistant stainless steel and method for its production |
JP6237365B2 (en) * | 2014-03-17 | 2017-11-29 | 新日鐵住金株式会社 | High strength steel plate with excellent formability and impact properties |
EP3214196B1 (en) * | 2014-10-30 | 2019-07-31 | JFE Steel Corporation | High-strength steel sheet and method for manufacturing same |
DE102015111866A1 (en) | 2015-07-22 | 2017-01-26 | Salzgitter Flachstahl Gmbh | Formable lightweight structural steel with improved mechanical properties and process for the production of semi-finished products from this steel |
JP6635463B2 (en) | 2015-09-04 | 2020-01-22 | トヨタ車体株式会社 | Diffusion bonding method |
-
2016
- 2016-09-16 DE DE102016117508.0A patent/DE102016117508B4/en not_active Expired - Fee Related
-
2017
- 2017-09-13 KR KR1020197009397A patent/KR102298180B1/en active IP Right Grant
- 2017-09-13 US US16/333,947 patent/US11261503B2/en active Active
- 2017-09-13 EP EP17768090.7A patent/EP3512968B1/en active Active
- 2017-09-13 WO PCT/EP2017/072994 patent/WO2018050683A1/en unknown
- 2017-09-13 RU RU2019107482A patent/RU2734216C9/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10259230A1 (en) * | 2002-12-17 | 2004-07-15 | Thyssenkrupp Stahl Ag | Method of making a steel product |
Also Published As
Publication number | Publication date |
---|---|
RU2734216C9 (en) | 2020-11-12 |
EP3512968A1 (en) | 2019-07-24 |
WO2018050683A1 (en) | 2018-03-22 |
KR102298180B1 (en) | 2021-09-07 |
KR20190052683A (en) | 2019-05-16 |
WO2018050683A8 (en) | 2018-05-11 |
US11261503B2 (en) | 2022-03-01 |
DE102016117508B4 (en) | 2019-10-10 |
US20190203311A1 (en) | 2019-07-04 |
DE102016117508A1 (en) | 2018-03-22 |
RU2734216C1 (en) | 2020-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3535431B1 (en) | Steel product with an intermediate manganese content for low temperature application and production method thereof | |
EP3504349B1 (en) | Method for producing a high-strength steel strip with improved properties for further processing, and a steel strip of this type | |
EP3332047B1 (en) | Production method of a flexibly-rolled steel sheet product and its use | |
EP2489748B1 (en) | Hot-rolled steel surface product produced from a complex phase steel and method for the manufacture | |
EP3512968B1 (en) | Method for producing a flat steel product made of a manganese-containing steel, and such a flat steel product | |
EP3332046B1 (en) | High-tensile manganese steel containing aluminium, method for producing a sheet-steel product from said steel and sheet-steel product produced according to this method | |
EP3221484B1 (en) | Method for manufacturing a high-strength air-hardening multiphase steel strip having excellent processing properties | |
EP2855717A1 (en) | Steel, sheet steel product and process for producing a sheet steel product | |
EP3512967B1 (en) | Method for producing a re-shaped component from a manganese-containing flat steel product and such a component | |
EP3724359B1 (en) | High-strength, hot-rolled flat steel product with high edge crack resistance and simultaneously high bake-hardening potential and method for producing a flat steel product of this kind | |
WO2018083028A1 (en) | Seamless tube of a medium manganese steel and method for the production thereof | |
WO2019068560A1 (en) | Ultrahigh strength multiphase steel and method for producing a steel strip from said multiphase steel | |
DE102016115618A1 (en) | Process for producing a high-strength steel strip with improved properties during further processing and such a steel strip | |
EP3551776B1 (en) | Method for producing a hot or cold strip and/or a flexibly rolled flat steel product made of a high-strength manganese steel and flat steel product produced by said method | |
EP3512976A1 (en) | Method for producing a shaped component from a medium-manganese flat steel product and such a component | |
EP3469108B1 (en) | Method for producing a cold-rolled steel strip having trip-characteristics made of a high-strength mangan-containing steel | |
WO2019020169A1 (en) | Sheet metal component, produced by hot working a flat steel product, and method for the production thereof | |
WO2017157770A1 (en) | Method for producing a hot-formed steel component, and hot-formed steel component | |
EP3749469B1 (en) | Method for producing a component by hot-forming a precursor product made of steel containing manganese, and a hot-formed steel component | |
EP3964591A1 (en) | Hot-rolled steel sheet product and method for producing a hot-rolled steel sheet product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190408 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20201027 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502017011312 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C21D0008020000 Ipc: C21D0006000000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/60 20060101ALI20210331BHEP Ipc: C22C 38/38 20060101ALI20210331BHEP Ipc: C22C 38/32 20060101ALI20210331BHEP Ipc: C22C 38/30 20060101ALI20210331BHEP Ipc: C22C 38/04 20060101ALI20210331BHEP Ipc: C21D 8/02 20060101ALI20210331BHEP Ipc: C22C 38/28 20060101ALI20210331BHEP Ipc: C22C 38/26 20060101ALI20210331BHEP Ipc: C22C 38/24 20060101ALI20210331BHEP Ipc: C22C 38/22 20060101ALI20210331BHEP Ipc: C22C 38/20 20060101ALI20210331BHEP Ipc: C22C 38/18 20060101ALI20210331BHEP Ipc: C22C 38/16 20060101ALI20210331BHEP Ipc: C22C 38/14 20060101ALI20210331BHEP Ipc: C22C 38/12 20060101ALI20210331BHEP Ipc: C22C 38/10 20060101ALI20210331BHEP Ipc: C22C 38/06 20060101ALI20210331BHEP Ipc: C22C 38/02 20060101ALI20210331BHEP Ipc: C22C 38/00 20060101ALI20210331BHEP Ipc: C21D 9/46 20060101ALI20210331BHEP Ipc: C21D 6/00 20060101AFI20210331BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210510 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN Ref country code: AT Ref legal event code: REF Ref document number: 1423855 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017011312 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211125 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211125 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211227 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210930 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017011312 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210913 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210913 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
26N | No opposition filed |
Effective date: 20220527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211125 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170913 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1423855 Country of ref document: AT Kind code of ref document: T Effective date: 20220913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240918 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240925 Year of fee payment: 8 |