[go: up one dir, main page]

EP2577917A1 - Réseau et unité d'extension, et procédé permettant de faire fonctionner un réseau - Google Patents

Réseau et unité d'extension, et procédé permettant de faire fonctionner un réseau

Info

Publication number
EP2577917A1
EP2577917A1 EP11723408.8A EP11723408A EP2577917A1 EP 2577917 A1 EP2577917 A1 EP 2577917A1 EP 11723408 A EP11723408 A EP 11723408A EP 2577917 A1 EP2577917 A1 EP 2577917A1
Authority
EP
European Patent Office
Prior art keywords
network
ports
expansion unit
port
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11723408.8A
Other languages
German (de)
English (en)
Inventor
Ralf Beyer
Harald Karl
Michael Wilding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Priority to EP15003490.8A priority Critical patent/EP3024180A1/fr
Publication of EP2577917A1 publication Critical patent/EP2577917A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • H04L12/4625Single bridge functionality, e.g. connection of two networks over a single bridge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/55Prevention, detection or correction of errors
    • H04L49/552Prevention, detection or correction of errors by ensuring the integrity of packets received through redundant connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/55Prevention, detection or correction of errors
    • H04L49/557Error correction, e.g. fault recovery or fault tolerance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/351Switches specially adapted for specific applications for local area network [LAN], e.g. Ethernet switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them

Definitions

  • the invention relates to a network, in particular an Ethernet network.
  • the network comprises at least two network components which are interconnected via a network transmission line.
  • the invention applies an expansion unit for Reichwei ⁇ tenverinrung the network transmission line and a method for operating a network.
  • nodes in the network technologies of office communication, networking usually takes place via nodes (so-called hubs, switches), from which star-shaped point-to-point connections are made to the individual terminals. This is disadvantageous for applications in the industrial environment in which often linear structures over long distances of over 100 m are present.
  • a fiber is used as a network or transmission line (in the
  • Network terminology also link or path called is not a ⁇ settable. Reasons for this may be connectors within the network transmission line, possibly even with the risk of contamination.
  • Another reason for not using fiber optics is the increasing use of so-called hybrid cables, ie the network transmission line is integrated with other lines in a common cable. These hybrid cables can be between the endpoints the Ethernet transmission outlets and interruptions. Fiber optic cable here have the disadvantage that the Ver ⁇ connection between two optical fibers sensitive damping subject, and is difficult to produce locally.
  • Ethernet Train bus He verbin ⁇ det network components of a zugüber wholly receives Ethernet Train bus.
  • the network components are located several 100 m apart.
  • the network transmission line is often part of a hybrid cable and has several
  • redundancy protocols such as Rapid Spanning Tree Protocol (RSTP) or MRP (Media
  • Redundancy Protocol are used. Common to all protocols is the basic principle that they only activate so many of all existing network connections that all network participants form a topological tree; H. There is exactly one transmission path or path between any two network participants in the network. All other existing redundant network connections are in an inactive or passive mode; H. via them no data transmission takes place. There is only an exchange of messages of the redundancy protocols over these passive ports.
  • the network components or elements (such as Ethernet switches, network repeaters, network transmission lines), which If you are using a redundant network, you must support the appropriate redundancy protocol.
  • the failure of the network transmission line also called ether net-Link
  • the Ethernet switches reconfigure the network to rebuild the topological tree. Parallel to the reconfiguration of the network transmission line, the integrity of the network connections is monitored by sending cyclic telegrams.
  • the invention is therefore based on the object, a generic network according ⁇ and a generic method for operating a network Be ⁇ develop such a way that it once easier and with little effort even with large transmission ⁇ distances quickly and safely allows switching in case of failure of one of the network transmission lines. Furthermore, the invention has the object of providing an expansion insurance unit to provide for network transmission lines of a network which enables rapid switching in the network in case of failure of a Netztechnikübertra ⁇ supply line. With regard to the network, the object is achieved by the features specified in claim 1. With respect to the expansion unit, the object is dung OF INVENTION ⁇ according ge solves ⁇ by the features specified in claim 10. As for the method for operating a network the object is solved by the given on ⁇ in claim 15 features.
  • a network in particular an Ethernet network, comprises as network elements at least two network components which are connected to one another via a network transmission line.
  • at least one expansion unit is arranged with two external ports in the network transmission line to de- ren range extension, the Extension C ⁇ approximation unit determines a failure of the network transmission line at one of its ports and to a port of the ssenfol ⁇ constricting network element, in particular the next ER- extender unit or the network component, forwards.
  • the forwarding of the failure of the network transmission line is carried out until it is received at a port ei ⁇ nes network element redundancy function.
  • a forwarding of the failure of the network transmission line or the link to the port of the expansion unit to the port of the next Netzwerkele ⁇ ment, z is carried out as a repeater.
  • another extension a network component, such as a terminal, to a network element with redundancy function allows a rapid switching redundancy protocols.
  • the failure of the network transmission line is forwarded independently of the redundancy protocol used within the network. Since all redundancy protocols automatically initiate a switch after a failure of a network transmission line, eliminating a complicated parameterization, Configu ⁇ ration or expensive redundancy protocol detection.
  • a further advantage is that due to the simp ⁇ chen construction of the expansion unit (also Link Extender ge ⁇ Nannt) without redundancy function and independent of the redundancy protocol, the number of network elements is not increased with redundancy function.
  • link failure the failure of the network transmission line or network connection.
  • the external ports of the expansion unit are interconnected by means of a hard-wired connection circuit . This allows the use of expansion units in the network even in small quantities.
  • the expansion unit comprises an electronically programmable circuit .
  • the expansion unit comprises a so- ⁇ -called field programmable gate array (FPGA) or an elec- tronically programmable logic device (EPLD) or a switch coupling element.
  • FPGA field programmable gate array
  • EPLD elec- tronically programmable logic device
  • a possible embodiment for forwarding the link failure provides that in case of failure of the network transmission ⁇ line at one of the ports of the expansion unit of the other Port of the expansion unit is disabled. Characterized the link failure continues from an expansion unit advances to the Next Tier ⁇ th extension unit, for example, at distances of several kilometers to the next network component or to the next terminal.
  • Such a simple forwarding the link failure has the advantage that it can be executed regardless of the ver ⁇ applied redundancy protocol on the network with network components and without redundancy function and is in compliance with standards. A delay caused by the detection of a link failure can be neglected.
  • the other port of the expansion unit of the ⁇ art can be deactivated, that a physical layer device of the out ⁇ incurred ports switched off or switched through in a sleep mode or the network transmission line by means of the physical layer device is switched.
  • the extension unit generates at least one warning message at a Linkaus ⁇ case at one of its ports and sends it to downstream ports or receiving
  • Network elements may persist all other network over ⁇ tragungs einen or links. Ie. the warning telegram is sent out only by the expansion unit or the network element which has recognized the link failure.
  • the extension unit switches at a detected link failure at one of its ports the other port in the opposite direction in a predetermined error code and generates at least a warning telegram and sends it to ports of network elements that are downstream of this port in the opposite direction.
  • the link failure is also forwarded to network ⁇ elements in the opposite direction and reported.
  • the receiving a warning telegram ⁇ catching network element at least a warning telegram with error position identifier and sends it to ports downstream ter or receiving network elements.
  • the error position identifier is realized, for example, in a simple manner by a distance counter.
  • the warning telegram includes a counter.
  • the counter is incremented by one from each further receiving network element, for example.
  • the network element receiving the warning message with error position identifier can quickly and reliably determine the location or the error position between the extension units.
  • the network is expediently configured in such a way that either the deactivation of the other port of the expansion unit or the sending of warning telegrams is carried out.
  • the expansion unit is such forms being ⁇ that can be selected by a simple switching function one of the two functions, Port disabling or warning message dispatch.
  • the expansion unit can be supplied with electrical energy via the network transmission line.
  • the extension unit itself can be supplied with electrical energy by the terminal itself.
  • the expansion unit according to the invention for a Reichwei ⁇ tenverinrung a network transmission line in a network comprises at least two external ports, which are connected to each other via a hard-wired connection circuit such that a failure of the Netztechnikübertragungslei ⁇ tion at one of the ports can be determined and output.
  • Such an expansion unit according to the invention enables a simple implementation of several of these expansion units in a future or already existing network for extending the range of network connections from several hundred meters to several kilometers.
  • the extension unit includes input and output side each data line in each case a separating element, for. B. transformers.
  • the expansion unit which is independent of the redundancy protocol or function of the network, this comprises between the separation elements two physical layer devices (called PHY for short) with an electronically programmable circuit arranged therebetween, eg. As FPGA or EPLD.
  • the electronically programmable circuit To implement the forwarding option of a link failure by sending warning telegrams, the electronically programmable circuit, z.
  • each data line a telegram generator and a controller.
  • the telegram generator In the event of an identified link failure, the telegram generator automatically generates warning telegrams with or without an error position identifier and sends them via the data line.
  • the controller serves to identify the link failure and the control of the telegram generator and the telegram transmission and the switching of the network transmission line, in particular their data lines.
  • the expansion ⁇ tion unit comprises a switch coupling element (switch ASIC) with microcontroller.
  • switch ASIC switch coupling element
  • This controlled switch ASIC solution of the expansion unit executes a deactivation of the other port of the expansion unit or a generation and transmission of warning telegrams analogous to the FPGA PHY solution for forwarding a link failure at one of the ports.
  • a bypass line for switching the Netztechnikübertra ⁇ supply line is provided in parallel to each of the data lines of the network transmission line.
  • Switching takes place by controlling a switching element by means of the controller.
  • This includes at least one error detection.
  • the switching element is arranged on the input side in front of the separating element in each of the data lines and on the output side after the separating element in each of the data lines.
  • bypass circuit is optional and useful for a line network structure.
  • FIG. 1 shows schematically in block form an extension unit 1 for a network transmission line 2.
  • the extension unit 1 is used for range extension in a network 3.
  • the network 3 may be an Ethernet network or another standard network. It will be in the
  • Network 3 via the network transmission line 2 with data lines 2.1 and 2.2 (also called links) network components 4A, 4B, such. B. individual devices connected to each other.
  • the network 3 can have a line structure or ring structure with a multiplicity of network components 4A, 4B connected via the data lines 2.1 and 2.2.
  • the extension unit 1 By means of the extension unit 1, the Netztechnikübertra ⁇ supply line 2 without transmission losses, damping and signal naluxe individually, in particular, the maximum over ⁇ tragungsreichweite of the network, eg. For example, in an Ethernet network by 100m, be extended.
  • a cascade connection of a plurality of expansion units 1 in a network transmission line 2 allows any distance.
  • the expansion unit 1 comprises two external ports A and B for connection of the network transmission line 2, which is connected by means of conventional plug 5 with the ports A and B.
  • the expansion unit 1 includes a not shown forth nä ⁇ internal port.
  • the data lines 2.1 and 2.2 and network components 4A, 4B in the embodiment are such confi ⁇ riert that the data traffic is in the opposite direction. Ie.
  • a data connection is made from the network component 4A connected to the port A to the network component 4B connected to the port B.
  • the data line 2.2 the data connection is reversed, ie from the network component 4B connected to the port B to the network component 4A connected to the port A.
  • a hard-wired Verbin ⁇ decision circuit 6 is provided for data-related compound of the ports A and B within the expansion unit 1.
  • connection scarf ⁇ device 6 comprises for galvanic isolation port side each data line 2.1 and 2.2 as separators 7 z.
  • the data lines 2.1 and 2.2 are connected in a first embodiment via so-called physical layer devices 8 (also called PHY for short) to the external ports A and B by means of the connection circuit 6.
  • the physical layer de ⁇ vices 8 are for data transmission to enable physical data connections between the network components 4A, 4B, disable, maintain and transmit data.
  • an electronically programmable circuit 9 is connected in the connection ⁇ circuit 6.
  • the electronically programmable circuit 9 is also shown in detail in Figure 1 in exploded view with dashed frame closer.
  • the electronically programmable circuit 9 can be designed as so-called field programmable ge ⁇ gat (FPGA) or as Electronically Programmable Logic Device (EPLD).
  • the circuit 9 can also be designed as a permanently programmed integrated circuit, in particular as an ASIC with an additional microcontroller.
  • Such an electronically programmable circuit 9 represents a simple parameterization, flexible and universal configuration and control of the data traffic as well as a simple data and port as well as link monitoring.
  • the electronically programmable circuit 9 is formed from ⁇ such that this failure of the network transmission ⁇ line 2, also called link failure, determined at one of its external ports A or B and to an external port B or A of the next network element, eg. B. the network component 4B and 4A, forwards.
  • the electronically programmable circuit 9 per port A and B comprises a controller 10A or 10B and a telegram generator I IA or I IB for generating telegrams D.
  • the respective controller 10A and 10B monitors the data connection between port A and port B. based on an active or inactive data signal DSA or DSB on their state.
  • the electronically programmable circuit 9 exceeds the data telegrams carries D on the data lines 2.1 and 2.2 with a delay, since the electronically programmable circuit 9 acts as a buffer to compensate for slightly different ⁇ Liche clock frequencies of the two physical layer device. 8 The delay is about a few 100 ns.
  • the expansion unit 1 In the case of failure of the power supply of the expansion unit 1 or in case of detection of a failure of one of the components, e.g. As the circuit 9, the expansion unit 1, the incoming data lines 2.1 and 2.2 of the network line 2 are switched.
  • parallel to the connecting circuit 6 comprises the Extension C ⁇ approximation unit 1, two bypass lines 12.1 and 12.2.
  • the extension unit 1 For switching the data lines 2.1 and 2.2 on the bypass lines 12.1 and 12.2, the extension unit 1 comprises two switching elements 13, z. B. relay contacts. These are correspondingly controlled in the event of a power failure or in the event of an identified component fault, so that the data lines 2.1 and 2.2 are switched over to the bypass lines 12.1 and 12.2, respectively.
  • 2 shows a block diagram of the expansion unit 1 according to FIG. 1 with link failure at the port A.
  • one of the following two measures can be performed: deactivation of the other port B of the expansion unit 1 or
  • warning telegrams W also called panic messages
  • the link failure at the ports A and B of the detected downstream network component 4A and 4B On the basis of the deactivated port B or the reception of the warning telegrams W, the link failure at the ports A and B of the detected downstream network component 4A and 4B. If several expansion units 1 are integrated in the network transmission line 2, the recognition and reporting or forwarding of a link failure corresponding to the delay of the respective expansion unit 1 is delayed.
  • the respective physical layer device 8 of port A of the link failure is switched off or put into a sleep mode.
  • the invention provides to produce, instead of the deactivation of the other external port B, the warning messages W and send out.
  • the warning telegrams W By means of the generated warning telegrams W, which are sent from port A to port B or from port B to port A of the next following network component 4A or 4B, it is possible to transmit a position identifier for determining the point of origin.
  • the warning telegrams comprise W as Positi ⁇ onskennung z.
  • the warning message W includes error message data "LF" for detecting a link failure.
  • the controller 10B of the port B also switches to the error mode and he ⁇ generated warning telegrams W with the distance data "Dist 0" and the error message data "FEFI" .
  • the warning telegrams W are used both by the controller 10A and the controller 10B, for example, as Ethernet telegrams with IP multicast Ethernet addresses, eg. 01-80-C2- xx.xx.xx) as the destination address.
  • Each expansion unit 1 has in the network 3 its own Ethernet address with source address. Such generated IP multicast telegrams are not forwarded by designed as a switch network elements.
  • FIG 3 schematically shows in block diagram the expansion unit 1 according to Figure 1 downstream expansion ⁇ unit 1 'at a link failure on the expansion unit 1 according to Figure 1.
  • the controller 10A receiving the warning telegrams W switches the port A into an error forwarding mode ("panic forwards"
  • the received distance data "Dist 0" are increased by the value “1” and the transmitted warning message W is forwarded with the distance data "Dist 1" and error message data "LF" to the next network element normal operation.
  • the link failure from port A of the civilsein ⁇ uniform 1 in the network 3 is as long as from the network element passed to the next network element to this, a network element with a redundancy function.
  • This network element with redundancy function automatically switches the network connection to an error-free data line.
  • FIG. 4 schematically shows, in block form, an alternative embodiment for an expansion unit 1 "with a controlled switch coupling element 14 (also called Ethernet switch) without link failure.
  • a controlled switch coupling element 14 also called Ethernet switch
  • the switch coupling element 14 controlled by means of a microcontroller 15 is provided.
  • the switch coupling element 14 is a conventional Ethernet switch without redundancy functionality.
  • Port B transferred.
  • the microcontroller 15 continuously monitors the link status based on port-related status registers 16A, 16B, d. H. the data connection of the network line 2 and its data lines 2.1, 2.2 at the external ports A and B.
  • FIG. 5 schematically shows in block form the expansion unit 1 "according to FIG. 4 with a link failure on port A.
  • the microcontroller 15 detects the link failure at port A and blocks the data or cross traffic from port A to port B and vice versa. Ie. All data telegrams D are processed via the microcontroller 15 controlled internal port C. Port B of expansion unit 1 is deactivated.
  • warning messages W as so-called panic-telegrams with Entfer ⁇ planning data "Dist 0" and error data "LF” in the path with a link failure or "FEFI” in the path in opposite direction.
  • FIG. 6 shows schematically in a block diagram of the expansion unit 1 '' according to Figure 4 downstream Extension C ⁇ approximation unit 1 '''at a link failure at the port A at the ER extender unit 1''according to FIG. 4
  • the warning message functions are analogous reali ⁇ carbonized at a link failure, so that the link failure and its origin is detected ⁇ au tomatically.
  • the expansion unit 1 can be designed for both a appreciatedtra ⁇ supply at Layer 1 and Layer 2 of the ISO / OSI reference model.
  • the possibilities described here of forwarding a link failure by deactivating ports, generating warning telegrams W are identical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

L'invention concerne un réseau (3), en particulier un réseau de type Ethernet, comprenant, en tant qu'éléments de réseau, au moins deux composants de réseau (4A, 4B) qui sont reliés entre eux via une ligne de transmission réseau (2). L'invention est caractérisée en ce qu'il est prévu dans la ligne de transmission réseau (2), à son extension de plage, au moins une unité d'extension (1) présentant deux ports externes (A, B), et en ce que l'unité d'extension (1) transmet une défaillance de la ligne de transmission réseau (2) à l'un de ses ports (A, B), à un port (B ou A) de l'élément de réseau suivant (composant de réseau 4A ou 4B). L'invention concerne en outre une unité d'extension (1), et un procédé permettant de faire fonctionner un réseau (3).
EP11723408.8A 2010-05-26 2011-05-23 Réseau et unité d'extension, et procédé permettant de faire fonctionner un réseau Withdrawn EP2577917A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15003490.8A EP3024180A1 (fr) 2010-05-26 2011-05-23 Reseau et procede destine au fonctionnement d'un reseau

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010029301.6A DE102010029301B4 (de) 2010-05-26 2010-05-26 Netzwerk und Erweiterungseinheit sowie Verfahren zum Betreiben eines Netzwerks
PCT/EP2011/058316 WO2011147759A1 (fr) 2010-05-26 2011-05-23 Réseau et unité d'extension, et procédé permettant de faire fonctionner un réseau

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP15003490.8A Division EP3024180A1 (fr) 2010-05-26 2011-05-23 Reseau et procede destine au fonctionnement d'un reseau

Publications (1)

Publication Number Publication Date
EP2577917A1 true EP2577917A1 (fr) 2013-04-10

Family

ID=44359798

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15003490.8A Withdrawn EP3024180A1 (fr) 2010-05-26 2011-05-23 Reseau et procede destine au fonctionnement d'un reseau
EP11723408.8A Withdrawn EP2577917A1 (fr) 2010-05-26 2011-05-23 Réseau et unité d'extension, et procédé permettant de faire fonctionner un réseau

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15003490.8A Withdrawn EP3024180A1 (fr) 2010-05-26 2011-05-23 Reseau et procede destine au fonctionnement d'un reseau

Country Status (7)

Country Link
US (1) US8959386B2 (fr)
EP (2) EP3024180A1 (fr)
CN (1) CN102918809B (fr)
BR (1) BR112012029987A2 (fr)
DE (1) DE102010029301B4 (fr)
RU (1) RU2536370C2 (fr)
WO (1) WO2011147759A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010010074A1 (de) * 2010-02-25 2011-08-25 Siemens Aktiengesellschaft, 80333 Spurgebundenes Fahrzeug
EP2849388B1 (fr) * 2013-09-11 2017-04-26 Siemens Aktiengesellschaft Réseau de gaines pour la communication entre des installations fixes et au moins une pièce d'installation située à un emplacement non fixe
US9323627B1 (en) * 2014-04-29 2016-04-26 Juniper Networks, Inc. System, method, and apparatus for detecting fault conditions experienced by remote physical ports
CN106411740B (zh) * 2016-08-31 2019-05-17 南京磐能电力科技股份有限公司 基于以太网控制器的网络端口扩展方法
BE1027084B1 (nl) * 2019-02-28 2020-09-28 Constell8 Eenheid voor het regelen van datacommunicatie
CN111478778B (zh) * 2020-04-03 2021-11-02 中电科航空电子有限公司 一种降低rstp环网功耗方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090235001A1 (en) * 2006-11-27 2009-09-17 Holger Buttner Communication System Having a Master/Slave Structure

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2784080B2 (ja) * 1990-05-09 1998-08-06 富士通株式会社 リングネットワーク及びその障害復旧方法並びにリングネットワークに用いられるノード
US7002941B1 (en) 1997-10-14 2006-02-21 Alvarion Israel (2003) Ltd. Method and apparatus for synchronizing fast ethernet data packets to radio frames in a wireless metropolitan area network
EP1082840A1 (fr) * 1998-05-22 2001-03-14 Winnet Mcs, Inc. Procede et dispositif pour la transmission en bande de base entre une unite sous toit et une unite exterieure dans un terminal de reseau metropolitain
US6870814B1 (en) * 1999-10-12 2005-03-22 Hewlett-Packard Development Company, L.P. Link extenders with error propagation and reporting
US7126908B1 (en) * 2001-07-31 2006-10-24 Ciena Corporation Method of protecting as against span failures in a communication network
ATE303046T1 (de) 2002-06-04 2005-09-15 Betrieb einer vermittlungsknote in einem kommunikationsnetzwerk mit sowohl einer geschichteten als einer nicht-geschichteten architektonischen umgebung
EP1422968B1 (fr) * 2002-11-19 2010-01-13 Alcatel Lucent Localisation d'une défaillance dans un réseau de transmission
EP1673953A2 (fr) 2003-10-01 2006-06-28 LAIRD, Mark, D. Systeme radio d'escorte virtuelle sur campus
GB0324597D0 (en) 2003-10-21 2003-11-26 Nokia Corp A communication system
CN2711993Y (zh) 2004-04-14 2005-07-20 青岛依爱通信设备有限公司 通信设备集中监控自动告警系统
US7619979B2 (en) * 2004-06-15 2009-11-17 International Business Machines Corporation Fault isolation in a network
US8671457B2 (en) 2004-10-15 2014-03-11 Maxxian Technology Inc. Method and system for identifying and correcting location discrepancies for reception equipment in a content delivery network
CN100502303C (zh) * 2005-04-15 2009-06-17 华为技术有限公司 以太网与多协议标签交换网络互通的故障管理方法
US7331819B2 (en) * 2005-07-11 2008-02-19 Finisar Corporation Media converter
JP5002431B2 (ja) * 2007-11-22 2012-08-15 株式会社日立製作所 光伝送システム
US7801024B2 (en) * 2008-02-12 2010-09-21 At&T Intellectual Property Ii, L.P. Restoring aggregated circuits with circuit integrity checks in a hierarchical network
US7792046B2 (en) * 2008-06-05 2010-09-07 Vss Monitoring, Inc. Ethernet switch-based network monitoring system and methods
JP5292929B2 (ja) * 2008-06-09 2013-09-18 富士通株式会社 監視装置
US8004964B2 (en) * 2009-03-23 2011-08-23 Cisco Technology, Inc. Restoring multi-segment pseudowires following failure of a switching PE device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090235001A1 (en) * 2006-11-27 2009-09-17 Holger Buttner Communication System Having a Master/Slave Structure

Also Published As

Publication number Publication date
CN102918809A (zh) 2013-02-06
BR112012029987A2 (pt) 2016-08-02
RU2536370C2 (ru) 2014-12-20
DE102010029301B4 (de) 2014-05-22
EP3024180A1 (fr) 2016-05-25
CN102918809B (zh) 2015-11-25
DE102010029301A1 (de) 2011-12-01
WO2011147759A1 (fr) 2011-12-01
US20130138996A1 (en) 2013-05-30
US8959386B2 (en) 2015-02-17
RU2012157096A (ru) 2014-07-10

Similar Documents

Publication Publication Date Title
EP1062787B1 (fr) Reseau local, notamment reseau ethernet, ayant des proprietes de redondance et un gestionnaire de redondance
EP2688249B1 (fr) Procédé de transmission de nouvelles dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour un réseau de communication industriel pouvant fonctionner de manière redondante
EP2034668B1 (fr) Système de communication hautement disponible
EP2098019B1 (fr) Système de communication présentant une structure maître-esclave
EP2693700B1 (fr) Procédé de transmission de messages dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour un réseau de communication industriel pouvant fonctionner de manière redondante
DE102012209108B4 (de) Netzwerkeinrichtung, Netzwerkanordnung und Verfahren zum Betreiben einer Netzwerkanordnung
DE102010029301B4 (de) Netzwerk und Erweiterungseinheit sowie Verfahren zum Betreiben eines Netzwerks
EP2838220A1 (fr) Procédé de transmission redondante de messages dans un réseau de communication industriel et appareil de communication
DE19643092A1 (de) Feld-Datenbussystem
EP2637362B1 (fr) Dispositif de participant bus pour le raccordement à un bus de données série à lignes redondantes et procédé de commande de la communication d'un participant bus avec un bus de données série à lignes redondantes
EP2594054B1 (fr) Appareil de transport de transmission de données par câble entre deux véhicules reliés amovible l'un à l'autre
EP2634973A1 (fr) Appareil de communication pour un réseau de communication industriel fonctionnant de manière redondante et procédé de fonctionnement d'un appareil de communication
WO2015058928A1 (fr) Système de bus et procédé pour faire fonctionner un tel système de bus
DE102009023949A1 (de) Datenübermittlungsgerät zur Fernüberwachung und-steuerung eines verteilten Prozesssystems
DE102011088724A1 (de) Aderbruch-Diagnose
EP1687681A2 (fr) Reseau, notamment reseau pa profibus, a proprietes de redondance, element de ramification pour appareil d'abonne dans un reseau de ce type, gestionnaire de redondance pour un reseau de ce type et procede pour faire fonctionner un reseau de ce type
WO2015031926A1 (fr) Procédé de transmission de messages dans un réseau d'ordinateurs ainsi que réseau d'ordinateurs
EP2704370B1 (fr) Procédé de transmission de nouvelles dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour un réseau de communication industriel pouvant fonctionner de manière redondante
EP2938004B1 (fr) Tête de bus et système et procédé de liaison résistante à la défaillance d'appareils d'extrémité de ligne de transport d'énergie - large bande à l'aide de ladite de tête de bus dans un réseau principal
DE102006060222B4 (de) Redundante Ethernet-Verbindung
EP2750310A1 (fr) Procédé de synchronisation d'horloges locales dans un réseau de communication d'un système d'automatisation industriel et appareil d'infrastructure de réseau
EP2466805B1 (fr) Procédé de transmission de données entre deux participants, convertisseur d'émission et de réception de données et voie de transmission de données
EP3720007B1 (fr) Groupe headend, répéteur et système de ligne électrique
EP2182680B1 (fr) Procédé destiné au fonctionnement d'un réseau de communication et composants de communication
DE202010018237U1 (de) Wandler zum Senden und Empfangen von Daten und Datenübertragungsstrecke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140129

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170712