EP2577917A1 - Réseau et unité d'extension, et procédé permettant de faire fonctionner un réseau - Google Patents
Réseau et unité d'extension, et procédé permettant de faire fonctionner un réseauInfo
- Publication number
- EP2577917A1 EP2577917A1 EP11723408.8A EP11723408A EP2577917A1 EP 2577917 A1 EP2577917 A1 EP 2577917A1 EP 11723408 A EP11723408 A EP 11723408A EP 2577917 A1 EP2577917 A1 EP 2577917A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- network
- ports
- expansion unit
- port
- transmission line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005540 biological transmission Effects 0.000 claims abstract 10
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/20—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/46—Interconnection of networks
- H04L12/4604—LAN interconnection over a backbone network, e.g. Internet, Frame Relay
- H04L12/462—LAN interconnection over a bridge based backbone
- H04L12/4625—Single bridge functionality, e.g. connection of two networks over a single bridge
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0805—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
- H04L43/0811—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/10—Active monitoring, e.g. heartbeat, ping or trace-route
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/55—Prevention, detection or correction of errors
- H04L49/552—Prevention, detection or correction of errors by ensuring the integrity of packets received through redundant connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/55—Prevention, detection or correction of errors
- H04L49/557—Error correction, e.g. fault recovery or fault tolerance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/35—Switches specially adapted for specific applications
- H04L49/351—Switches specially adapted for specific applications for local area network [LAN], e.g. Ethernet switches
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
Definitions
- the invention relates to a network, in particular an Ethernet network.
- the network comprises at least two network components which are interconnected via a network transmission line.
- the invention applies an expansion unit for Reichwei ⁇ tenverinrung the network transmission line and a method for operating a network.
- nodes in the network technologies of office communication, networking usually takes place via nodes (so-called hubs, switches), from which star-shaped point-to-point connections are made to the individual terminals. This is disadvantageous for applications in the industrial environment in which often linear structures over long distances of over 100 m are present.
- a fiber is used as a network or transmission line (in the
- Network terminology also link or path called is not a ⁇ settable. Reasons for this may be connectors within the network transmission line, possibly even with the risk of contamination.
- Another reason for not using fiber optics is the increasing use of so-called hybrid cables, ie the network transmission line is integrated with other lines in a common cable. These hybrid cables can be between the endpoints the Ethernet transmission outlets and interruptions. Fiber optic cable here have the disadvantage that the Ver ⁇ connection between two optical fibers sensitive damping subject, and is difficult to produce locally.
- Ethernet Train bus He verbin ⁇ det network components of a zugüber wholly receives Ethernet Train bus.
- the network components are located several 100 m apart.
- the network transmission line is often part of a hybrid cable and has several
- redundancy protocols such as Rapid Spanning Tree Protocol (RSTP) or MRP (Media
- Redundancy Protocol are used. Common to all protocols is the basic principle that they only activate so many of all existing network connections that all network participants form a topological tree; H. There is exactly one transmission path or path between any two network participants in the network. All other existing redundant network connections are in an inactive or passive mode; H. via them no data transmission takes place. There is only an exchange of messages of the redundancy protocols over these passive ports.
- the network components or elements (such as Ethernet switches, network repeaters, network transmission lines), which If you are using a redundant network, you must support the appropriate redundancy protocol.
- the failure of the network transmission line also called ether net-Link
- the Ethernet switches reconfigure the network to rebuild the topological tree. Parallel to the reconfiguration of the network transmission line, the integrity of the network connections is monitored by sending cyclic telegrams.
- the invention is therefore based on the object, a generic network according ⁇ and a generic method for operating a network Be ⁇ develop such a way that it once easier and with little effort even with large transmission ⁇ distances quickly and safely allows switching in case of failure of one of the network transmission lines. Furthermore, the invention has the object of providing an expansion insurance unit to provide for network transmission lines of a network which enables rapid switching in the network in case of failure of a Netztechnikübertra ⁇ supply line. With regard to the network, the object is achieved by the features specified in claim 1. With respect to the expansion unit, the object is dung OF INVENTION ⁇ according ge solves ⁇ by the features specified in claim 10. As for the method for operating a network the object is solved by the given on ⁇ in claim 15 features.
- a network in particular an Ethernet network, comprises as network elements at least two network components which are connected to one another via a network transmission line.
- at least one expansion unit is arranged with two external ports in the network transmission line to de- ren range extension, the Extension C ⁇ approximation unit determines a failure of the network transmission line at one of its ports and to a port of the ssenfol ⁇ constricting network element, in particular the next ER- extender unit or the network component, forwards.
- the forwarding of the failure of the network transmission line is carried out until it is received at a port ei ⁇ nes network element redundancy function.
- a forwarding of the failure of the network transmission line or the link to the port of the expansion unit to the port of the next Netzwerkele ⁇ ment, z is carried out as a repeater.
- another extension a network component, such as a terminal, to a network element with redundancy function allows a rapid switching redundancy protocols.
- the failure of the network transmission line is forwarded independently of the redundancy protocol used within the network. Since all redundancy protocols automatically initiate a switch after a failure of a network transmission line, eliminating a complicated parameterization, Configu ⁇ ration or expensive redundancy protocol detection.
- a further advantage is that due to the simp ⁇ chen construction of the expansion unit (also Link Extender ge ⁇ Nannt) without redundancy function and independent of the redundancy protocol, the number of network elements is not increased with redundancy function.
- link failure the failure of the network transmission line or network connection.
- the external ports of the expansion unit are interconnected by means of a hard-wired connection circuit . This allows the use of expansion units in the network even in small quantities.
- the expansion unit comprises an electronically programmable circuit .
- the expansion unit comprises a so- ⁇ -called field programmable gate array (FPGA) or an elec- tronically programmable logic device (EPLD) or a switch coupling element.
- FPGA field programmable gate array
- EPLD elec- tronically programmable logic device
- a possible embodiment for forwarding the link failure provides that in case of failure of the network transmission ⁇ line at one of the ports of the expansion unit of the other Port of the expansion unit is disabled. Characterized the link failure continues from an expansion unit advances to the Next Tier ⁇ th extension unit, for example, at distances of several kilometers to the next network component or to the next terminal.
- Such a simple forwarding the link failure has the advantage that it can be executed regardless of the ver ⁇ applied redundancy protocol on the network with network components and without redundancy function and is in compliance with standards. A delay caused by the detection of a link failure can be neglected.
- the other port of the expansion unit of the ⁇ art can be deactivated, that a physical layer device of the out ⁇ incurred ports switched off or switched through in a sleep mode or the network transmission line by means of the physical layer device is switched.
- the extension unit generates at least one warning message at a Linkaus ⁇ case at one of its ports and sends it to downstream ports or receiving
- Network elements may persist all other network over ⁇ tragungs einen or links. Ie. the warning telegram is sent out only by the expansion unit or the network element which has recognized the link failure.
- the extension unit switches at a detected link failure at one of its ports the other port in the opposite direction in a predetermined error code and generates at least a warning telegram and sends it to ports of network elements that are downstream of this port in the opposite direction.
- the link failure is also forwarded to network ⁇ elements in the opposite direction and reported.
- the receiving a warning telegram ⁇ catching network element at least a warning telegram with error position identifier and sends it to ports downstream ter or receiving network elements.
- the error position identifier is realized, for example, in a simple manner by a distance counter.
- the warning telegram includes a counter.
- the counter is incremented by one from each further receiving network element, for example.
- the network element receiving the warning message with error position identifier can quickly and reliably determine the location or the error position between the extension units.
- the network is expediently configured in such a way that either the deactivation of the other port of the expansion unit or the sending of warning telegrams is carried out.
- the expansion unit is such forms being ⁇ that can be selected by a simple switching function one of the two functions, Port disabling or warning message dispatch.
- the expansion unit can be supplied with electrical energy via the network transmission line.
- the extension unit itself can be supplied with electrical energy by the terminal itself.
- the expansion unit according to the invention for a Reichwei ⁇ tenverinrung a network transmission line in a network comprises at least two external ports, which are connected to each other via a hard-wired connection circuit such that a failure of the Netztechnikübertragungslei ⁇ tion at one of the ports can be determined and output.
- Such an expansion unit according to the invention enables a simple implementation of several of these expansion units in a future or already existing network for extending the range of network connections from several hundred meters to several kilometers.
- the extension unit includes input and output side each data line in each case a separating element, for. B. transformers.
- the expansion unit which is independent of the redundancy protocol or function of the network, this comprises between the separation elements two physical layer devices (called PHY for short) with an electronically programmable circuit arranged therebetween, eg. As FPGA or EPLD.
- the electronically programmable circuit To implement the forwarding option of a link failure by sending warning telegrams, the electronically programmable circuit, z.
- each data line a telegram generator and a controller.
- the telegram generator In the event of an identified link failure, the telegram generator automatically generates warning telegrams with or without an error position identifier and sends them via the data line.
- the controller serves to identify the link failure and the control of the telegram generator and the telegram transmission and the switching of the network transmission line, in particular their data lines.
- the expansion ⁇ tion unit comprises a switch coupling element (switch ASIC) with microcontroller.
- switch ASIC switch coupling element
- This controlled switch ASIC solution of the expansion unit executes a deactivation of the other port of the expansion unit or a generation and transmission of warning telegrams analogous to the FPGA PHY solution for forwarding a link failure at one of the ports.
- a bypass line for switching the Netztechnikübertra ⁇ supply line is provided in parallel to each of the data lines of the network transmission line.
- Switching takes place by controlling a switching element by means of the controller.
- This includes at least one error detection.
- the switching element is arranged on the input side in front of the separating element in each of the data lines and on the output side after the separating element in each of the data lines.
- bypass circuit is optional and useful for a line network structure.
- FIG. 1 shows schematically in block form an extension unit 1 for a network transmission line 2.
- the extension unit 1 is used for range extension in a network 3.
- the network 3 may be an Ethernet network or another standard network. It will be in the
- Network 3 via the network transmission line 2 with data lines 2.1 and 2.2 (also called links) network components 4A, 4B, such. B. individual devices connected to each other.
- the network 3 can have a line structure or ring structure with a multiplicity of network components 4A, 4B connected via the data lines 2.1 and 2.2.
- the extension unit 1 By means of the extension unit 1, the Netztechnikübertra ⁇ supply line 2 without transmission losses, damping and signal naluxe individually, in particular, the maximum over ⁇ tragungsreichweite of the network, eg. For example, in an Ethernet network by 100m, be extended.
- a cascade connection of a plurality of expansion units 1 in a network transmission line 2 allows any distance.
- the expansion unit 1 comprises two external ports A and B for connection of the network transmission line 2, which is connected by means of conventional plug 5 with the ports A and B.
- the expansion unit 1 includes a not shown forth nä ⁇ internal port.
- the data lines 2.1 and 2.2 and network components 4A, 4B in the embodiment are such confi ⁇ riert that the data traffic is in the opposite direction. Ie.
- a data connection is made from the network component 4A connected to the port A to the network component 4B connected to the port B.
- the data line 2.2 the data connection is reversed, ie from the network component 4B connected to the port B to the network component 4A connected to the port A.
- a hard-wired Verbin ⁇ decision circuit 6 is provided for data-related compound of the ports A and B within the expansion unit 1.
- connection scarf ⁇ device 6 comprises for galvanic isolation port side each data line 2.1 and 2.2 as separators 7 z.
- the data lines 2.1 and 2.2 are connected in a first embodiment via so-called physical layer devices 8 (also called PHY for short) to the external ports A and B by means of the connection circuit 6.
- the physical layer de ⁇ vices 8 are for data transmission to enable physical data connections between the network components 4A, 4B, disable, maintain and transmit data.
- an electronically programmable circuit 9 is connected in the connection ⁇ circuit 6.
- the electronically programmable circuit 9 is also shown in detail in Figure 1 in exploded view with dashed frame closer.
- the electronically programmable circuit 9 can be designed as so-called field programmable ge ⁇ gat (FPGA) or as Electronically Programmable Logic Device (EPLD).
- the circuit 9 can also be designed as a permanently programmed integrated circuit, in particular as an ASIC with an additional microcontroller.
- Such an electronically programmable circuit 9 represents a simple parameterization, flexible and universal configuration and control of the data traffic as well as a simple data and port as well as link monitoring.
- the electronically programmable circuit 9 is formed from ⁇ such that this failure of the network transmission ⁇ line 2, also called link failure, determined at one of its external ports A or B and to an external port B or A of the next network element, eg. B. the network component 4B and 4A, forwards.
- the electronically programmable circuit 9 per port A and B comprises a controller 10A or 10B and a telegram generator I IA or I IB for generating telegrams D.
- the respective controller 10A and 10B monitors the data connection between port A and port B. based on an active or inactive data signal DSA or DSB on their state.
- the electronically programmable circuit 9 exceeds the data telegrams carries D on the data lines 2.1 and 2.2 with a delay, since the electronically programmable circuit 9 acts as a buffer to compensate for slightly different ⁇ Liche clock frequencies of the two physical layer device. 8 The delay is about a few 100 ns.
- the expansion unit 1 In the case of failure of the power supply of the expansion unit 1 or in case of detection of a failure of one of the components, e.g. As the circuit 9, the expansion unit 1, the incoming data lines 2.1 and 2.2 of the network line 2 are switched.
- parallel to the connecting circuit 6 comprises the Extension C ⁇ approximation unit 1, two bypass lines 12.1 and 12.2.
- the extension unit 1 For switching the data lines 2.1 and 2.2 on the bypass lines 12.1 and 12.2, the extension unit 1 comprises two switching elements 13, z. B. relay contacts. These are correspondingly controlled in the event of a power failure or in the event of an identified component fault, so that the data lines 2.1 and 2.2 are switched over to the bypass lines 12.1 and 12.2, respectively.
- 2 shows a block diagram of the expansion unit 1 according to FIG. 1 with link failure at the port A.
- one of the following two measures can be performed: deactivation of the other port B of the expansion unit 1 or
- warning telegrams W also called panic messages
- the link failure at the ports A and B of the detected downstream network component 4A and 4B On the basis of the deactivated port B or the reception of the warning telegrams W, the link failure at the ports A and B of the detected downstream network component 4A and 4B. If several expansion units 1 are integrated in the network transmission line 2, the recognition and reporting or forwarding of a link failure corresponding to the delay of the respective expansion unit 1 is delayed.
- the respective physical layer device 8 of port A of the link failure is switched off or put into a sleep mode.
- the invention provides to produce, instead of the deactivation of the other external port B, the warning messages W and send out.
- the warning telegrams W By means of the generated warning telegrams W, which are sent from port A to port B or from port B to port A of the next following network component 4A or 4B, it is possible to transmit a position identifier for determining the point of origin.
- the warning telegrams comprise W as Positi ⁇ onskennung z.
- the warning message W includes error message data "LF" for detecting a link failure.
- the controller 10B of the port B also switches to the error mode and he ⁇ generated warning telegrams W with the distance data "Dist 0" and the error message data "FEFI" .
- the warning telegrams W are used both by the controller 10A and the controller 10B, for example, as Ethernet telegrams with IP multicast Ethernet addresses, eg. 01-80-C2- xx.xx.xx) as the destination address.
- Each expansion unit 1 has in the network 3 its own Ethernet address with source address. Such generated IP multicast telegrams are not forwarded by designed as a switch network elements.
- FIG 3 schematically shows in block diagram the expansion unit 1 according to Figure 1 downstream expansion ⁇ unit 1 'at a link failure on the expansion unit 1 according to Figure 1.
- the controller 10A receiving the warning telegrams W switches the port A into an error forwarding mode ("panic forwards"
- the received distance data "Dist 0" are increased by the value “1” and the transmitted warning message W is forwarded with the distance data "Dist 1" and error message data "LF" to the next network element normal operation.
- the link failure from port A of the civilsein ⁇ uniform 1 in the network 3 is as long as from the network element passed to the next network element to this, a network element with a redundancy function.
- This network element with redundancy function automatically switches the network connection to an error-free data line.
- FIG. 4 schematically shows, in block form, an alternative embodiment for an expansion unit 1 "with a controlled switch coupling element 14 (also called Ethernet switch) without link failure.
- a controlled switch coupling element 14 also called Ethernet switch
- the switch coupling element 14 controlled by means of a microcontroller 15 is provided.
- the switch coupling element 14 is a conventional Ethernet switch without redundancy functionality.
- Port B transferred.
- the microcontroller 15 continuously monitors the link status based on port-related status registers 16A, 16B, d. H. the data connection of the network line 2 and its data lines 2.1, 2.2 at the external ports A and B.
- FIG. 5 schematically shows in block form the expansion unit 1 "according to FIG. 4 with a link failure on port A.
- the microcontroller 15 detects the link failure at port A and blocks the data or cross traffic from port A to port B and vice versa. Ie. All data telegrams D are processed via the microcontroller 15 controlled internal port C. Port B of expansion unit 1 is deactivated.
- warning messages W as so-called panic-telegrams with Entfer ⁇ planning data "Dist 0" and error data "LF” in the path with a link failure or "FEFI” in the path in opposite direction.
- FIG. 6 shows schematically in a block diagram of the expansion unit 1 '' according to Figure 4 downstream Extension C ⁇ approximation unit 1 '''at a link failure at the port A at the ER extender unit 1''according to FIG. 4
- the warning message functions are analogous reali ⁇ carbonized at a link failure, so that the link failure and its origin is detected ⁇ au tomatically.
- the expansion unit 1 can be designed for both a appreciatedtra ⁇ supply at Layer 1 and Layer 2 of the ISO / OSI reference model.
- the possibilities described here of forwarding a link failure by deactivating ports, generating warning telegrams W are identical.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- General Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Small-Scale Networks (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
L'invention concerne un réseau (3), en particulier un réseau de type Ethernet, comprenant, en tant qu'éléments de réseau, au moins deux composants de réseau (4A, 4B) qui sont reliés entre eux via une ligne de transmission réseau (2). L'invention est caractérisée en ce qu'il est prévu dans la ligne de transmission réseau (2), à son extension de plage, au moins une unité d'extension (1) présentant deux ports externes (A, B), et en ce que l'unité d'extension (1) transmet une défaillance de la ligne de transmission réseau (2) à l'un de ses ports (A, B), à un port (B ou A) de l'élément de réseau suivant (composant de réseau 4A ou 4B). L'invention concerne en outre une unité d'extension (1), et un procédé permettant de faire fonctionner un réseau (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15003490.8A EP3024180A1 (fr) | 2010-05-26 | 2011-05-23 | Reseau et procede destine au fonctionnement d'un reseau |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010029301.6A DE102010029301B4 (de) | 2010-05-26 | 2010-05-26 | Netzwerk und Erweiterungseinheit sowie Verfahren zum Betreiben eines Netzwerks |
PCT/EP2011/058316 WO2011147759A1 (fr) | 2010-05-26 | 2011-05-23 | Réseau et unité d'extension, et procédé permettant de faire fonctionner un réseau |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15003490.8A Division EP3024180A1 (fr) | 2010-05-26 | 2011-05-23 | Reseau et procede destine au fonctionnement d'un reseau |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2577917A1 true EP2577917A1 (fr) | 2013-04-10 |
Family
ID=44359798
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15003490.8A Withdrawn EP3024180A1 (fr) | 2010-05-26 | 2011-05-23 | Reseau et procede destine au fonctionnement d'un reseau |
EP11723408.8A Withdrawn EP2577917A1 (fr) | 2010-05-26 | 2011-05-23 | Réseau et unité d'extension, et procédé permettant de faire fonctionner un réseau |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15003490.8A Withdrawn EP3024180A1 (fr) | 2010-05-26 | 2011-05-23 | Reseau et procede destine au fonctionnement d'un reseau |
Country Status (7)
Country | Link |
---|---|
US (1) | US8959386B2 (fr) |
EP (2) | EP3024180A1 (fr) |
CN (1) | CN102918809B (fr) |
BR (1) | BR112012029987A2 (fr) |
DE (1) | DE102010029301B4 (fr) |
RU (1) | RU2536370C2 (fr) |
WO (1) | WO2011147759A1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010010074A1 (de) * | 2010-02-25 | 2011-08-25 | Siemens Aktiengesellschaft, 80333 | Spurgebundenes Fahrzeug |
EP2849388B1 (fr) * | 2013-09-11 | 2017-04-26 | Siemens Aktiengesellschaft | Réseau de gaines pour la communication entre des installations fixes et au moins une pièce d'installation située à un emplacement non fixe |
US9323627B1 (en) * | 2014-04-29 | 2016-04-26 | Juniper Networks, Inc. | System, method, and apparatus for detecting fault conditions experienced by remote physical ports |
CN106411740B (zh) * | 2016-08-31 | 2019-05-17 | 南京磐能电力科技股份有限公司 | 基于以太网控制器的网络端口扩展方法 |
BE1027084B1 (nl) * | 2019-02-28 | 2020-09-28 | Constell8 | Eenheid voor het regelen van datacommunicatie |
CN111478778B (zh) * | 2020-04-03 | 2021-11-02 | 中电科航空电子有限公司 | 一种降低rstp环网功耗方法及其应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090235001A1 (en) * | 2006-11-27 | 2009-09-17 | Holger Buttner | Communication System Having a Master/Slave Structure |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2784080B2 (ja) * | 1990-05-09 | 1998-08-06 | 富士通株式会社 | リングネットワーク及びその障害復旧方法並びにリングネットワークに用いられるノード |
US7002941B1 (en) | 1997-10-14 | 2006-02-21 | Alvarion Israel (2003) Ltd. | Method and apparatus for synchronizing fast ethernet data packets to radio frames in a wireless metropolitan area network |
EP1082840A1 (fr) * | 1998-05-22 | 2001-03-14 | Winnet Mcs, Inc. | Procede et dispositif pour la transmission en bande de base entre une unite sous toit et une unite exterieure dans un terminal de reseau metropolitain |
US6870814B1 (en) * | 1999-10-12 | 2005-03-22 | Hewlett-Packard Development Company, L.P. | Link extenders with error propagation and reporting |
US7126908B1 (en) * | 2001-07-31 | 2006-10-24 | Ciena Corporation | Method of protecting as against span failures in a communication network |
ATE303046T1 (de) | 2002-06-04 | 2005-09-15 | Betrieb einer vermittlungsknote in einem kommunikationsnetzwerk mit sowohl einer geschichteten als einer nicht-geschichteten architektonischen umgebung | |
EP1422968B1 (fr) * | 2002-11-19 | 2010-01-13 | Alcatel Lucent | Localisation d'une défaillance dans un réseau de transmission |
EP1673953A2 (fr) | 2003-10-01 | 2006-06-28 | LAIRD, Mark, D. | Systeme radio d'escorte virtuelle sur campus |
GB0324597D0 (en) | 2003-10-21 | 2003-11-26 | Nokia Corp | A communication system |
CN2711993Y (zh) | 2004-04-14 | 2005-07-20 | 青岛依爱通信设备有限公司 | 通信设备集中监控自动告警系统 |
US7619979B2 (en) * | 2004-06-15 | 2009-11-17 | International Business Machines Corporation | Fault isolation in a network |
US8671457B2 (en) | 2004-10-15 | 2014-03-11 | Maxxian Technology Inc. | Method and system for identifying and correcting location discrepancies for reception equipment in a content delivery network |
CN100502303C (zh) * | 2005-04-15 | 2009-06-17 | 华为技术有限公司 | 以太网与多协议标签交换网络互通的故障管理方法 |
US7331819B2 (en) * | 2005-07-11 | 2008-02-19 | Finisar Corporation | Media converter |
JP5002431B2 (ja) * | 2007-11-22 | 2012-08-15 | 株式会社日立製作所 | 光伝送システム |
US7801024B2 (en) * | 2008-02-12 | 2010-09-21 | At&T Intellectual Property Ii, L.P. | Restoring aggregated circuits with circuit integrity checks in a hierarchical network |
US7792046B2 (en) * | 2008-06-05 | 2010-09-07 | Vss Monitoring, Inc. | Ethernet switch-based network monitoring system and methods |
JP5292929B2 (ja) * | 2008-06-09 | 2013-09-18 | 富士通株式会社 | 監視装置 |
US8004964B2 (en) * | 2009-03-23 | 2011-08-23 | Cisco Technology, Inc. | Restoring multi-segment pseudowires following failure of a switching PE device |
-
2010
- 2010-05-26 DE DE102010029301.6A patent/DE102010029301B4/de not_active Expired - Fee Related
-
2011
- 2011-05-23 US US13/699,786 patent/US8959386B2/en not_active Expired - Fee Related
- 2011-05-23 EP EP15003490.8A patent/EP3024180A1/fr not_active Withdrawn
- 2011-05-23 EP EP11723408.8A patent/EP2577917A1/fr not_active Withdrawn
- 2011-05-23 WO PCT/EP2011/058316 patent/WO2011147759A1/fr active Application Filing
- 2011-05-23 CN CN201180026055.4A patent/CN102918809B/zh not_active Expired - Fee Related
- 2011-05-23 BR BR112012029987A patent/BR112012029987A2/pt not_active IP Right Cessation
- 2011-05-23 RU RU2012157096/08A patent/RU2536370C2/ru not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090235001A1 (en) * | 2006-11-27 | 2009-09-17 | Holger Buttner | Communication System Having a Master/Slave Structure |
Also Published As
Publication number | Publication date |
---|---|
CN102918809A (zh) | 2013-02-06 |
BR112012029987A2 (pt) | 2016-08-02 |
RU2536370C2 (ru) | 2014-12-20 |
DE102010029301B4 (de) | 2014-05-22 |
EP3024180A1 (fr) | 2016-05-25 |
CN102918809B (zh) | 2015-11-25 |
DE102010029301A1 (de) | 2011-12-01 |
WO2011147759A1 (fr) | 2011-12-01 |
US20130138996A1 (en) | 2013-05-30 |
US8959386B2 (en) | 2015-02-17 |
RU2012157096A (ru) | 2014-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1062787B1 (fr) | Reseau local, notamment reseau ethernet, ayant des proprietes de redondance et un gestionnaire de redondance | |
EP2688249B1 (fr) | Procédé de transmission de nouvelles dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour un réseau de communication industriel pouvant fonctionner de manière redondante | |
EP2034668B1 (fr) | Système de communication hautement disponible | |
EP2098019B1 (fr) | Système de communication présentant une structure maître-esclave | |
EP2693700B1 (fr) | Procédé de transmission de messages dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour un réseau de communication industriel pouvant fonctionner de manière redondante | |
DE102012209108B4 (de) | Netzwerkeinrichtung, Netzwerkanordnung und Verfahren zum Betreiben einer Netzwerkanordnung | |
DE102010029301B4 (de) | Netzwerk und Erweiterungseinheit sowie Verfahren zum Betreiben eines Netzwerks | |
EP2838220A1 (fr) | Procédé de transmission redondante de messages dans un réseau de communication industriel et appareil de communication | |
DE19643092A1 (de) | Feld-Datenbussystem | |
EP2637362B1 (fr) | Dispositif de participant bus pour le raccordement à un bus de données série à lignes redondantes et procédé de commande de la communication d'un participant bus avec un bus de données série à lignes redondantes | |
EP2594054B1 (fr) | Appareil de transport de transmission de données par câble entre deux véhicules reliés amovible l'un à l'autre | |
EP2634973A1 (fr) | Appareil de communication pour un réseau de communication industriel fonctionnant de manière redondante et procédé de fonctionnement d'un appareil de communication | |
WO2015058928A1 (fr) | Système de bus et procédé pour faire fonctionner un tel système de bus | |
DE102009023949A1 (de) | Datenübermittlungsgerät zur Fernüberwachung und-steuerung eines verteilten Prozesssystems | |
DE102011088724A1 (de) | Aderbruch-Diagnose | |
EP1687681A2 (fr) | Reseau, notamment reseau pa profibus, a proprietes de redondance, element de ramification pour appareil d'abonne dans un reseau de ce type, gestionnaire de redondance pour un reseau de ce type et procede pour faire fonctionner un reseau de ce type | |
WO2015031926A1 (fr) | Procédé de transmission de messages dans un réseau d'ordinateurs ainsi que réseau d'ordinateurs | |
EP2704370B1 (fr) | Procédé de transmission de nouvelles dans un réseau de communication industriel pouvant fonctionner de manière redondante et appareil de communication pour un réseau de communication industriel pouvant fonctionner de manière redondante | |
EP2938004B1 (fr) | Tête de bus et système et procédé de liaison résistante à la défaillance d'appareils d'extrémité de ligne de transport d'énergie - large bande à l'aide de ladite de tête de bus dans un réseau principal | |
DE102006060222B4 (de) | Redundante Ethernet-Verbindung | |
EP2750310A1 (fr) | Procédé de synchronisation d'horloges locales dans un réseau de communication d'un système d'automatisation industriel et appareil d'infrastructure de réseau | |
EP2466805B1 (fr) | Procédé de transmission de données entre deux participants, convertisseur d'émission et de réception de données et voie de transmission de données | |
EP3720007B1 (fr) | Groupe headend, répéteur et système de ligne électrique | |
EP2182680B1 (fr) | Procédé destiné au fonctionnement d'un réseau de communication et composants de communication | |
DE202010018237U1 (de) | Wandler zum Senden und Empfangen von Daten und Datenübertragungsstrecke |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121105 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20140129 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170712 |