[go: up one dir, main page]

EP2556236B1 - Stirling machine - Google Patents

Stirling machine Download PDF

Info

Publication number
EP2556236B1
EP2556236B1 EP11718884.7A EP11718884A EP2556236B1 EP 2556236 B1 EP2556236 B1 EP 2556236B1 EP 11718884 A EP11718884 A EP 11718884A EP 2556236 B1 EP2556236 B1 EP 2556236B1
Authority
EP
European Patent Office
Prior art keywords
piston
machine
stirling machine
pistons
stirling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11718884.7A
Other languages
German (de)
French (fr)
Other versions
EP2556236A1 (en
Inventor
Jean-Pierre Budliger
Rolf Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BUDLIGER, JEAN-PIERRE
SCHMID, ROLF
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2556236A1 publication Critical patent/EP2556236A1/en
Application granted granted Critical
Publication of EP2556236B1 publication Critical patent/EP2556236B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/0435Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/045Controlling
    • F02G1/047Controlling by varying the heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/0535Seals or sealing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/02Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having pistons and displacers in the same cylinder
    • F02G2243/20Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having pistons and displacers in the same cylinder each having a single free piston, e.g. "Beale engines"
    • F02G2243/202Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having pistons and displacers in the same cylinder each having a single free piston, e.g. "Beale engines" resonant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/50Double acting piston machines
    • F02G2244/52Double acting piston machines having interconnecting adjacent cylinders constituting a single system, e.g. "Rinia" engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2253/00Seals
    • F02G2253/02Reciprocating piston seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2253/00Seals
    • F02G2253/04Displacer seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/30Displacer assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/40Piston assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/80Engines without crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2280/00Output delivery
    • F02G2280/10Linear generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2280/00Output delivery
    • F02G2280/20Rotary generators

Definitions

  • the present invention relates to a Stirling machine comprising a transfer piston and a movable member of a generator or an electric motor, the transfer piston being mounted in a cylinder, in which it periodically moves a working gas between a an expansion chamber and a compression chamber constituting the working volume of said Stirling machine, respectively associated with two working faces of said transfer piston by passing said gas through a heat exchanger, connected to a heat source, a regenerator and a cooling exchanger connected to a heat sink and resilient biasing means exerting a force on said transfer piston, the ratio of section a C / a E between the two working faces of said piston being ⁇ 0.35 so that its displacement along an axis oriented towards the expansion volume generates a pressure component of said working gas in phase opposite said displacement of said udder ton, so as to transmit between the transfer piston and said movable member all of said mechanical energy produced.
  • this invention relates to a Stirling machine as defined by claim 1.
  • the essential advantage of the invention over two-piston Stirling machines according to the state of the art lies in the fact that the resonant piston no longer needs to be controlled, to eliminate any active servocontrol requiring electronics complex.
  • the volume located between the transfer piston 6, 6a and the outer end of the housing 5 communicates with a hot heat exchanger 7 connected to a hot source (not shown) and constitutes the hot chamber or expansion volume V E of the Stirling engine, while the volume located at the other end of this cylindrical housing 5 communicates with a cold exchanger 8 connected to a cold source (not shown), which is the cold room or compression volume V C Stirling engine.
  • a regenerator 9 is disposed between the heat exchanger 7 and cold 8.
  • the internal volume of the cylindrical portion 3 encloses a movable member 14 of an electric generator, here constituted by a cylindrical element carrying permanent magnets.
  • This movable element 14 is integral with the periphery of an annular support 15, whose inner edge is integral with an annular elastic suspension member 16, similar to the member 12.
  • the periphery of this member 12 is fixed to the frame 4 and its center is secured to a rod 17, one end of which is fixed to the transfer piston 6, 6a.
  • the armature of the generator is formed of an assembly of plates 18 arranged radially and in which are housed one or more windings 19 of annular shape.
  • the movable element 14 of the electric generator is surrounded by an armature 20, formed here of an assembly of plates arranged in radial planes.
  • the interior of the piston 10 is hollow, providing a housing 26 serving as a gas reservoir for supplying nozzles 27 opening into the annular slots between the two pistons 6a and 10, respectively between the pistons and the adjacent surfaces of the housing elongated 1, respectively of the wall of the piston 6a.
  • the compartment 26 is fed through a non-return valve 28 from the working volume and maintained permanently at the maximum pressure prevailing in this volume.
  • Compartment 26 can also placed in the transfer piston 6, 6a or in the frame 4, to feed the nozzles 27 of the static gas bearings.
  • the moving part of the electric generator may be provided with a flywheel 34, to balance the rotary movement and thus to smooth the superimposed waves to the generated voltage. Moreover, a mass 35 makes it possible to attenuate the vibrations due to the reciprocating movement of the pistons.
  • the operation of the Stirling machine described is as follows:
  • the movement of the second resonant piston 10 is dictated by the forces communicated by the elastic elements and the gas pressure exerted on its axial surfaces. By its movement, the pressure of the working gas varies.
  • This transfer-motor piston can be designed as a free piston. Its elastic suspension must then be tuned so that the piston oscillates at the same frequency as the resonant piston. Its amplitude is controlled by the forces electric powered by the generator; it remains fixed if a constant electric charge is applied to the terminals of the electric generator.
  • the figure 5 compares the mechanical energy released by a Stirling engine comprising a transfer piston and a working piston, as a function of the temperature T H of the heating tubes (curve 1) with that of an engine according to the invention (curve 2).
  • the hot exchanger In order to start the Stirling machine which is the subject of the invention, the hot exchanger must first be brought to a relatively high temperature T H (for example 600 ° C.), which threshold depends on the ratio a C / a E chosen.
  • the transfer-motor piston 6, 6a is then oscillated using the electric generator associated therewith.
  • the resonant piston 10 first oscillates with a small amplitude, which gradually increases with the heating temperature T H.
  • the amplitude of the working gas pressure also increases, as well as the mechanical power supplied by this machine. The nominal power is reached when the heat exchanger is heated to about 700 ° C.
  • the resonant piston 10 receives at each cycle a small amount of energy which serves to compensate for its friction losses and keep it in oscillating motion.
  • the amplitude of its movement Y determines the pressure variation of the working gas and therefore the engine speed. Fine tuning is possible insofar as piston friction remains relatively constant over time as can be achieved using the aforementioned static gas bearings.
  • the control valve 24 makes it possible to adjust the pressure amplitude of the working gas, and therefore the amplitude of the resonant piston.
  • temperatures T H of the heat exchanger vary only slightly with the engine load is particularly advantageous in units heated with fuel.
  • the operation of a burner depends strongly on the temperature conditions which settle there; complete combustion with a minimum of pollutants can only be achieved if the temperature conditions remain sufficiently stable.
  • the two pistons 10a and 10b are arranged coaxially in a common cylinder disposed laterally to the main axis of the machine.
  • the two external volumes 45a and 45b of the common cylinder are connected to the compression volume V C of the Stirling engine by ducts 29.
  • the central volume 45c can be connected by a duct 44 to a volume 48 exposed to an almost constant mean pressure, through example that of the volume of the electric generator.
  • the central volume 45c can be connected to the cold room V C and the external volumes 45a and 45c to the volume 48.
  • the present invention proposes another system for attenuating the vibrations transmitted to the enclosure of the machine, illustrated by the figure 10 .
  • the additional mass 41 is elastically connected to the transfer piston 6, 6a and to the frame 4 of the machine.
  • the elastic suspensions 42a, b and c are adjusted so that at the operating frequency of the machine, these two masses oscillate in opposite directions with respect to each other, so that the vibratory forces transmitted to the enclosure or frame of the machine are canceled.
  • the vibrations generated by the movement of the pistons are thus reduced at the source.
  • the elastic means 42a, b and c may consist of spiral or flat mechanical springs, electromagnets, pneumatic means or combinations of these various elastic supports.
  • This vibration suppression system effectively compensates for the action of a single oscillator. It is therefore particularly suitable for Stirling machines with opposite resonant masses, since only vibrations generated by the transfer piston must be compensated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Wind Motors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

La présente invention se rapporte à une machine Stirling comprenant un piston de transfert et un organe mobile d'un générateur ou d'un moteur électrique, le piston de transfert étant monté dans un cylindre, dans lequel il déplace périodiquement un gaz de travail entre une chambre d'expansion et une chambre de compression constituant le volume de travail de ladite machine Stirling, associées respectivement à deux faces de travail dudit piston de transfert en faisant passer ledit gaz à travers un échangeur chaud, relié à une source de chaleur, un régénérateur et un échangeur de refroidissement relié à un puits de chaleur et des moyens de rappel élastique exerçant une force sur ce piston de transfert, le rapport de section aC/aE entre les deux faces de travail dudit piston étant ≥0,35 pour que son déplacement selon un axe orienté vers le volume d'expansion engendre une composante de pression dudit gaz de travail en phase opposée audit déplacement dudit piston, de manière à transmettre entre ce piston de transfert et ledit organe mobile la totalité de ladite énergie mécanique produite.The present invention relates to a Stirling machine comprising a transfer piston and a movable member of a generator or an electric motor, the transfer piston being mounted in a cylinder, in which it periodically moves a working gas between a an expansion chamber and a compression chamber constituting the working volume of said Stirling machine, respectively associated with two working faces of said transfer piston by passing said gas through a heat exchanger, connected to a heat source, a regenerator and a cooling exchanger connected to a heat sink and resilient biasing means exerting a force on said transfer piston, the ratio of section a C / a E between the two working faces of said piston being ≥0.35 so that its displacement along an axis oriented towards the expansion volume generates a pressure component of said working gas in phase opposite said displacement of said udder ton, so as to transmit between the transfer piston and said movable member all of said mechanical energy produced.

Un type de moteurs Stirling est constitué d'un piston de transfert qui déplace périodiquement le gaz de travail entre un volume chaud et un volume froid et d'un piston moteur qui ferme le volume de travail et assure le transfert de l'énergie mécanique produite vers la partie mobile d'un générateur électrique. Dans les moteurs cinématiques, les deux pistons sont reliés par un système mécanique avec un vilebrequin, qui leur impose un mouvement périodiques répétitif, avec un décalage fixe.One type of Stirling engine consists of a transfer piston that periodically moves the working gas between a hot and a cold volume and a motor piston that closes the working volume and ensures the transfer of mechanical energy produced to the moving part of an electric generator. In kinematic motors, the two pistons are connected by a mechanical system with a crankshaft, which imposes a repetitive periodic movement with a fixed offset.

Dans les moteurs à pistons libres, les deux pistons sont pourvus de suspensions élastiques, dimensionnées de manière à conférer aux deux pistons un mouvement périodique à la fréquence désirée, avec un déphasage prescrit. L'absence d'embiellages simplifie la construction de ces moteurs : en éliminant les articulations les problèmes de lubrification de celles-ci sont supprimés. En revanche, ces moteurs nécessitent souvent des systèmes de contrôle complexes pour assurer leur démarrage et pour stabiliser le mouvement oscillant des deux pistons avec des amplitudes et des angles de phase déterminés.In free piston engines, the two pistons are provided with elastic suspensions, dimensioned so as to give the two pistons a periodic movement at the frequency desired, with a prescribed phase shift. The absence of linkages simplifies the construction of these engines: by eliminating the joints the lubrication problems of these are removed. However, these engines often require complex control systems to ensure their startup and to stabilize the oscillating movement of the two pistons with amplitudes and phase angles determined.

Un moteur Stirling, développé par la firme américaine Sunpower Inc. Athens, Ohio est décrit dans un article intitulé « Development of a 3kW free-piston Stirling Engine » de G. Chen et J. McEntee, Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, vol. 5, p.233-238 , où une partie de l'énergie motrice est induite par les forces du gaz sur le piston de transfert, puis transmis par un ressort pneumatique au piston moteur. Dans ce moteur, le piston de transfert sert donc non seulement à transférer le gaz entre les volumes chaud et froid situés aux deux extrémités du cylindre dans lequel se déplace le piston, mais aussi à engendrer une partie de l'énergie motrice.A Stirling engine, developed by the American firm Sunpower Inc. Athens, Ohio is described in an article entitled "Development of a 3kW Free-piston Stirling Engine" by G. Chen and J. McEntee, Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, vol. 5, pp.233-238 , where part of the motive power is induced by the forces of the gas on the transfer piston, then transmitted by a pneumatic spring to the engine piston. In this engine, the transfer piston therefore not only serves to transfer the gas between the hot and cold volumes located at both ends of the cylinder in which the piston moves, but also to generate a portion of the motive power.

Le EP 1'165'955 décrit un moteur où la totalité de l'énergie motrice est produite à l'aide du piston de transfert, auquel est associé la partie mobile du générateur électrique. Un tube de résonance est accouplé à ce dispositif, dans lequel une onde de pression s'établit qui est déphasée par rapport à l'onde d'excitation produite par le piston de transfert. L'inconvénient de cette solution réside essentiellement dans les pertes d'énergie engendrées par le frottement du gaz dans le tube qui limitent les performances de ces moteurs. Par ailleurs, l'encombrement du tube de résonance présente, dans beaucoup d'applications un inconvénient non négligeable.The EP 1'165'955 discloses an engine where all the motive power is produced by means of the transfer piston, which is associated with the moving part of the electric generator. A resonance tube is coupled to this device, in which a pressure wave is established which is out of phase with the excitation wave produced by the transfer piston. The disadvantage of this solution lies mainly in the energy losses generated by the friction of the gas in the tube which limit the performance of these engines. Moreover, the bulk of the resonance tube has, in many applications a significant disadvantage.

Le JP 2127758 U illustre à la figure 3 une machine Stirling dans laquelle le piston de transfert est relié par un embiellage à un moteur électrique. Avec cette disposition, l'amplitude du piston de transfert est contrôlée mécaniquement, rendant ainsi l'utilisation d'une butée flexible superflue. Cette machine comprend par ailleurs un piston de travail et une charge. Dans cette configuration, seule une fraction de l'énergie produite peut être transmise au moteur électrique associé au piston de transfert.The JP 2127758 U illustrates the figure 3 a Stirling machine in which the transfer piston is connected by a linkage to an electric motor. With this arrangement, the amplitude of the transfer piston is controlled mechanically, thus making the use of a flexible stop superfluous. This machine also comprises a working piston and a load. In this configuration, only a fraction of the energy produced can be transmitted to the electric motor associated with the transfer piston.

Le but de la présente invention est de remédier, au moins en partie, à ces inconvénients, de simplifier le contrôle du cycle de la machine Stirling et d'augmenter sa stabilité de fonctionnement, ainsi que d'améliorer ses performances.The object of the present invention is to remedy, at least in part, these drawbacks, to simplify the control cycle of the Stirling machine and increase its stability of operation, as well as improve its performance.

A cet effet, cette invention a pour objet une machine Stirling telle que définie par la revendication 1.For this purpose, this invention relates to a Stirling machine as defined by claim 1.

L'avantage essentiel de l'invention par rapport aux machines Stirling à deux pistons selon l'état de la technique réside dans le fait que le piston résonant n'a plus besoin d'être asservi, permettant de supprimer tout asservissement actif nécessitant une électronique complexe.The essential advantage of the invention over two-piston Stirling machines according to the state of the art lies in the fact that the resonant piston no longer needs to be controlled, to eliminate any active servocontrol requiring electronics complex.

Avantageusement, le piston résonant de la machine objet de l'invention est un piston libre, suspendu par un ressort mécanique et qui délimite le volume de travail. Ce piston résonant remplit donc une fonction similaire à celle du tube de résonance décrit dans le brevet EP 1'165'955 . Les pertes mécaniques et thermiques occasionnées par les frottements et les fuites à travers les joints des pistons sont nettement plus réduites que celles d'un tube de résonance. Par son mouvement la pression du gaz de travail varie. Ce piston résonant peut être incorporé de manière compacte dans le volume de la machine Stirling.Advantageously, the resonant piston of the machine object of the invention is a free piston, suspended by a mechanical spring and which delimits the working volume. This resonant piston thus fulfills a function similar to that of the resonance tube described in the patent EP 1'165'955 . The mechanical and thermal losses caused by friction and leakage through the piston seals are much smaller than those of a resonance tube. By its movement the pressure of the working gas varies. This resonant piston can be compactly incorporated into the volume of the Stirling machine.

Avec un dimensionnement approprié, les deux pistons oscillent de manière stable. Le fonctionnement du système peut facilement être contrôlé, aussi bien dans la phase de démarrage qu'en régime fixe, comme on l'expliquera en détail par la suite.With proper sizing, both pistons oscillate stably. The operation of the system can easily be controlled, both in the phase of starting in steady state, as will be explained in detail later.

D'autres particularités et avantages de la machine objet de l'invention apparaîtront à la lecture de la description qui suit, ainsi que des dessins annexés, qui illustrent, schématiquement et à titre d'exemple, deux formes d'exécutions et diverses variantes de cette machine.

  • La figure 1 est une vue en coupe diamétrale d'une forme d'exécution;
  • la figure 2 est une vue en coupe diamétrale partielle d'une variante de la machine;
  • la figure 3 est une vue en coupe diamétrale d'une variante hybride;
  • la figure 3A est une vue partielle d'une variante des figures 1 ou 3;
  • la figure 4 est un diagramme vectoriel relatif au processus de fonctionnement;
  • la figure 5 est un diagramme relatif au travail fourni par cycle en fonction de la température de l'échangeur chaud, pour un moteur selon l'invention, comparé à un moteur comportant un piston de transfert et un piston moteur;
  • la figure 6 est un diagramme relatif au rendement thermique du moteur Stirling en fonction du travail fourni par cycle, pour un moteur selon l'invention comparé à un moteur comportant un piston de transfert et un piston moteur ;
  • la figure 7 est une vue en coupe diamétrale d'une autre forme d'exécution de la machine, comportant deux pistons résonants oscillant en directions opposées;
  • la figure 8 est une vue en coupe transversale d'une variante de la figure 7;
  • la figure 9 est un schéma de principe illustrant une coupe transversale de la machine, au niveau des pistons résonants ;
  • la figure 10 est un schéma de principe illustrant un dispositif servant à réduire les vibrations induites par le mouvement périodique du piston de transfert à l'aide d'une masse additionnelle ;
  • la figure 11 est une vue en coupe diamétrale partielle d'une variante de la machine ;
  • la figure 12 est une variante de la coupe diamétrale de la figure 11.
Other features and advantages of the machine which is the subject of the invention will become apparent on reading the description which follows, as well as the appended drawings, which illustrate, schematically and by way of example, two embodiments and various variants of this machine.
  • The figure 1 is a diametrical sectional view of an embodiment;
  • the figure 2 is a partial sectional view of a variant of the machine;
  • the figure 3 is a diametrical sectional view of a hybrid variant;
  • the figure 3A is a partial view of a variant of figures 1 or 3 ;
  • the figure 4 is a vector diagram relating to the operating process;
  • the figure 5 is a diagram relating to the work supplied per cycle as a function of the temperature of the hot exchanger, for an engine according to the invention, compared to a motor comprising a transfer piston and a motor piston;
  • the figure 6 is a diagram relating to the thermal efficiency of the Stirling engine according to the work supplied per cycle, for an engine according to the invention compared to a motor comprising a transfer piston and a driving piston;
  • the figure 7 is a diametrical sectional view of another embodiment of the machine, comprising two resonant pistons oscillating in opposite directions;
  • the figure 8 is a cross-sectional view of a variant of the figure 7 ;
  • the figure 9 is a block diagram illustrating a cross section of the machine, at the level of the resonant pistons;
  • the figure 10 is a block diagram illustrating a device for reducing the vibrations induced by the periodic movement of the transfer piston by means of an additional mass;
  • the figure 11 is a partial sectional view of a variant of the machine;
  • the figure 12 is a variant of the diametrical section of the figure 11 .

La machine Stirling illustrée par la figure 1 comporte un carter allongé 1 formé de deux parties cylindriques 2, 3, assemblés par un élément 4, jouant le rôle de bâti. L'intérieur de ce carter 1 est rempli d'un gaz de travail sous pression. Le logement cylindrique 5 de la partie 2, constitue un volume de travail d'un moteur Stirling, dans lequel un piston de transfert en deux parties 6, 6a est monté, libre de se déplacer longitudinalement. Le volume situé entre le piston de transfert 6, 6a et l'extrémité externe du logement 5 communique avec un échangeur chaud 7 relié à une source chaude (non représentée) et constitue la chambre chaude ou volume d'expansion VE du moteur Stirling, tandis que le volume situé à l'autre extrémité de ce logement cylindrique 5 communique avec un échangeur froid 8 relié à une source froide (non représentée), qui constitue la chambre froide ou volume de compression VC du moteur Stirling. Un régénérateur 9 est disposé entre les échangeurs chaud 7 et froid 8.The Stirling machine illustrated by the figure 1 comprises an elongate casing 1 formed of two cylindrical parts 2, 3, assembled by an element 4, acting as a frame. The interior of this casing 1 is filled with a pressurized working gas. The cylindrical housing 5 of the part 2, constitutes a working volume of a Stirling engine, in which a two-part transfer piston 6, 6a is mounted, free to move longitudinally. The volume located between the transfer piston 6, 6a and the outer end of the housing 5 communicates with a hot heat exchanger 7 connected to a hot source (not shown) and constitutes the hot chamber or expansion volume V E of the Stirling engine, while the volume located at the other end of this cylindrical housing 5 communicates with a cold exchanger 8 connected to a cold source (not shown), which is the cold room or compression volume V C Stirling engine. A regenerator 9 is disposed between the heat exchanger 7 and cold 8.

La partie tubulaire 6a du piston de transfert 6, 6a adjacente à la chambre de compression VC est engagée dans l'ouverture cylindrique d'un second piston résonant 10 annulaire et axisymétrique par rapport au piston 6, 6a. Ce second piston 10, solidaire d'un support 11 est libre de se déplacer selon l'axe longitudinal du logement cylindrique 5.The tubular portion 6a of the transfer piston 6, 6a adjacent to the compression chamber V C is engaged in the cylindrical opening of a second ring-shaped and axisymmetrical resonant piston 10 with respect to the piston 6, 6a. This second piston 10, secured to a support 11 is free to move along the longitudinal axis of the cylindrical housing 5.

Un organe de suspension élastique 12, est fixé par sa partie centrale au support 11 et par sa périphérie à un support 13 solidaire du bâti 4. Cet organe de suspension élastique 12 est un organe plat à bras en forme de spirale. Dans la variante illustrée par la figure 3A, le piston résonant 10 est suspendu au bâti 4 par des ressorts hélicoïdaux 12a, disposés symétriquement autour de l'axe et exerçant une force axiale sur le piston, centrée par rapport à celui-ci.An elastic suspension member 12 is fixed by its central portion to the support 11 and by its periphery to a support 13 secured to the frame 4. This elastic suspension member 12 is a flat member with a spiral-shaped arm. In the variant illustrated by the figure 3A , the resonant piston 10 is suspended from the frame 4 by helical springs 12a, arranged symmetrically about the axis and exerting an axial force on the piston, centered relative thereto.

Des joints d'étanchéité 25 disposés entre les pistons 6a et 10 d'une part et entre ces pistons et le logement cylindrique 5 d'autre part, servent à contenir les fuites de gaz à des niveaux tolérables.Seals 25 disposed between the pistons 6a and 10 on the one hand and between these pistons and the cylindrical housing 5 on the other hand, serve to contain the gas leaks to tolerable levels.

Le volume intérieur de la partie cylindrique 3 renferme un organe mobile 14 d'un générateur électrique, ici constitué par un élément cylindrique portant des aimants permanents. Cet élément mobile 14 est solidaire de la périphérie d'un support annulaire 15, dont le bord interne est solidaire d'un organe de suspension élastique annulaire 16, semblable à l'organe 12. La périphérie de cet organe 12 est fixée au bâti 4 et son centre est solidaire d'une tige 17 dont une extrémité est fixée au piston de transfert 6, 6a. L'induit du générateur est formé d'un assemblage de tôles 18, disposées radialement et dans lesquels sont logés un ou plusieurs enroulements 19 de forme annulaire. L'élément mobile 14 du générateur électrique est entouré d'une armature 20, formée ici d'un assemblage de tôles disposées dans des plans radiaux.The internal volume of the cylindrical portion 3 encloses a movable member 14 of an electric generator, here constituted by a cylindrical element carrying permanent magnets. This movable element 14 is integral with the periphery of an annular support 15, whose inner edge is integral with an annular elastic suspension member 16, similar to the member 12. The periphery of this member 12 is fixed to the frame 4 and its center is secured to a rod 17, one end of which is fixed to the transfer piston 6, 6a. The armature of the generator is formed of an assembly of plates 18 arranged radially and in which are housed one or more windings 19 of annular shape. The movable element 14 of the electric generator is surrounded by an armature 20, formed here of an assembly of plates arranged in radial planes.

La suspension élastique du piston de transfert 6, 6a peut être renforcée par un ou plusieurs ressorts hélicoïdaux 21, disposés entre des supports fixes 22, solidaires du bâti 4 et des supports mobiles 23, solidaires de la tige 17.The elastic suspension of the transfer piston 6, 6a can be reinforced by one or more helical springs 21, arranged between fixed supports 22, integral with the frame 4 and movable supports 23, integral with the rod 17.

Un conduit comportant une vanne de réglage 24 placée entre le volume de compression froid et le volume du générateur permet d'ajuster l'amplitude de pression du gaz de travail, donc la puissance du moteur. Cette vanne permet également d'ajuster l'amplitude du mouvement décrit par le piston résonant.A conduit having an adjustment valve 24 placed between the cold compression volume and the generator volume makes it possible to adjust the pressure amplitude of the working gas, thus the power of the engine. This valve also makes it possible to adjust the amplitude of the movement described by the resonant piston.

La figure 2 montre une coupe diamétrale partielle à travers le second piston résonant 10, illustrant une solution alternative des surfaces de paliers cylindriques des deux pistons 6a et 10. A la place des joints d'étanchéité, il est avantageux de prévoir entre les surfaces cylindriques des pistons et leurs enceintes des fentes annulaires avec des jeux de l'ordre de 20 à 50 microns, comme moyen de guidage et de sustentation. Ces jeux sont parfaitement acceptables aussi bien du point de vue des tolérances de fabrication que de l'influence des fuites de gaz de travail sur le rendement énergétique de ces dispositifs. Les frottements mécaniques des pistons peuvent être réduits avec des revêtements de surface résistants à l'usure et autolubrifiants apte à réduire le frottement statique et dynamique. Dans une forme d'exécution préférée, il est également prévu d'utiliser des paliers à gaz statiques, tels qu'ils sont décrits dans le US 3'127'955.The figure 2 shows a partial diametrical section through the second resonant piston 10, illustrating an alternative solution of the cylindrical bearing surfaces of the two pistons 6a and 10. In place of the seals, it is advantageous to provide between the cylindrical surfaces of the pistons and their enclosures annular slots with games of the order of 20 to 50 microns, as a means of guiding and levitation. These sets are perfectly acceptable both from the point of view of manufacturing tolerances and the influence of working gas leaks on the energy efficiency of these devices. The mechanical friction of the pistons can be reduced with wear-resistant and self-lubricating surface coatings able to reduce static and dynamic friction. In a preferred embodiment, it is also intended to use static gas bearings as described in US 3'127'955.

A cet effet, l'intérieur du piston 10 est creux, ménageant un logement 26 servant de réservoir de gaz pour alimenter des buses 27 débouchant dans les fentes annulaires entre les deux pistons 6a et 10, respectivement entre les pistons et les surfaces adjacentes du carter allongé 1, respectivement de la paroi du piston 6a. Le compartiment 26 est alimenté à travers un clapet non-retour 28 depuis le volume de travail et maintenu en permanence à la pression maximale régnant dans ce volume. Le compartiment 26 peut également être placé dans le piston de transfert 6, 6a ou dans le bâti 4, pour alimenter les buses 27 des paliers à gaz statiques.For this purpose, the interior of the piston 10 is hollow, providing a housing 26 serving as a gas reservoir for supplying nozzles 27 opening into the annular slots between the two pistons 6a and 10, respectively between the pistons and the adjacent surfaces of the housing elongated 1, respectively of the wall of the piston 6a. The compartment 26 is fed through a non-return valve 28 from the working volume and maintained permanently at the maximum pressure prevailing in this volume. Compartment 26 can also placed in the transfer piston 6, 6a or in the frame 4, to feed the nozzles 27 of the static gas bearings.

La figure 3 représente une variante hybride où le logement 5 de la partie 2 avec les pistons 6, 6a et 10 formant la partie motrice du Stirling sont similaires à la forme d'exécution décrite ci-dessus. La partie 2 est reliée à un compartiment 30, comprenant un générateur électrique rotatif 31. Le piston de transfert-moteur 6, 6a est relié par une tige 17 à un embiellage 32 qui transmet les mouvements et forces axiaux du piston 6, 6a à un vilebrequin 33, solidaire de la partie mobile d'un générateur électrique rotatif 31.The figure 3 represents a hybrid variant where the housing 5 of the part 2 with the pistons 6, 6a and 10 forming the driving part of the Stirling are similar to the embodiment described above. Part 2 is connected to a compartment 30, comprising a rotary electric generator 31. The transfer-motor piston 6, 6a is connected by a rod 17 to a linkage 32 which transmits the axial movements and forces of the piston 6, 6a to a crankshaft 33 secured to the movable portion of a rotary electric generator 31.

Différentes formes d'exécution des embiellages sont envisageables. Dans la figure 3, un embiellage du type Ross est esquissé, comme il est décrit en détail p. ex. dans les Proceedings de la 8e Conférence Internationale des moteurs Stirling tenue les 27-30 mai 1997 à Ancona . A la page 519ff est décrit le calcul de l'embiellage, permettant de minimiser le déplacement latéral de la tige par rapport à son axe de mouvement. D'autres formes d'exécution des embiellages sont envisageables, comme par exemple l'embiellage trapézoïdal utilisé par Philips (p. ex. représenté à la page 60 des Proceedings du séminaire « Stirling Cycle Prime Movers » des 14-15 juin 1978).Different forms of execution of linkages can be envisaged. In the figure 3 a crankshaft type Ross is sketched, as described in detail p. ex. in the Proceedings of the 8th International Conference of Stirling Engines held May 27-30, 1997 in Ancona . On page 519ff is described the calculation of the linkage, allowing to minimize the lateral displacement of the rod with respect to its axis of movement. Other embodiments of the linkages are possible, such as the trapezoidal linkage used by Philips (eg, shown on page 60 of the Proceedings of the seminar "Stirling Cycle Prime Movers" of June 14-15, 1978).

La partie mobile du générateur électrique peut être munie d'un volant d'inertie 34, permettant d'équilibrer le mouvement rotatif et ainsi de lisser les ondes superposées à la tension électrique générée. Par ailleurs, une masse 35 permet d'atténuer les vibrations dues au mouvement alternatif des pistons.The moving part of the electric generator may be provided with a flywheel 34, to balance the rotary movement and thus to smooth the superimposed waves to the generated voltage. Moreover, a mass 35 makes it possible to attenuate the vibrations due to the reciprocating movement of the pistons.

Le fonctionnement de la machine Stirling décrite est le suivant : Le mouvement du second piston résonant 10 est dicté par les forces communiquées par les éléments élastiques et la pression du gaz qui s'exerce sur ses surfaces axiales. Par son mouvement, la pression du gaz de travail varie.The operation of the Stirling machine described is as follows: The movement of the second resonant piston 10 is dictated by the forces communicated by the elastic elements and the gas pressure exerted on its axial surfaces. By its movement, the pressure of the working gas varies.

Le piston de transfert 6, 6a joue alors le double rôle de transfert du gaz de travail entre la chambre d'expansion VE et la chambre de compression VC et de production de toute l'énergie motrice transmise à l'organe mobile 14 du générateur linéaire, pour autant que certaines conditions, dont nous allons parler maintenant, soient remplies.The transfer piston 6, 6a then plays the dual role of transferring the working gas between the expansion chamber V E and the compression chamber V C and producing all the motive power transmitted to the movable member 14 of the linear generator, provided that certain conditions, which we are going to talk about now, are fulfilled.

Pour atteindre cet objectif, il est nécessaire de déterminer le rapport entre la surface aC du piston de transfert 6, 6a, délimitant le volume de compression VC et la surface aE de ce même piston de transfert 6, 6a, délimitant le volume d'expansion VE.To achieve this objective, it is necessary to determine the ratio between the surface a C of the transfer piston 6, 6a, delimiting the compression volume V C and the surface a E of the same transfer piston 6, 6a, delimiting the volume expansion V E.

L'analyse du cycle isotherme montre que la pression du gaz de travail dans le volume de travail devient indépendante de la position du piston de transfert 6, 6a si : a C a E = T C T H

Figure imgb0001
The analysis of the isothermal cycle shows that the pressure of the working gas in the working volume becomes independent of the position of the transfer piston 6, 6a if: at VS at E = T VS T H
Figure imgb0001

Exemple :Example:

Température TH du volume chaud VE,Temperature T H of the hot volume V E , TH = 923°K = 650°CT H = 923 ° K = 650 ° C Température TC du volume froid VC,Temperature T C of the cold volume V C , TC = 323°K = 50°CT C = 323 ° K = 50 ° C a C / a E 0.35

Figure imgb0002
at VS / at E 0.35
Figure imgb0002

Le fonctionnement du moteur est possible seulement si le rapport de surface aC/aE est supérieur à cette limite, c'est-à-dire que le déplacement du piston de transfert 6, 6a (Figure 4) doit induire une composante de pression PX qui doit être opposée au déplacement X de ce piston 6, 6a. Le déplacement du piston de transfert 6, 6a est positif si celui-ci se déplace en direction du volume VE.The operation of the motor is possible only if the surface ratio at C / a E is greater than this limit, that is to say that the displacement of the transfer piston 6, 6a ( Figure 4 ) must induce a pressure component P X which must be opposed to the displacement X of this piston 6, 6a. The displacement of the transfer piston 6, 6a is positive if it moves towards the volume V E.

Ce piston de transfert-moteur peut être conçu comme un piston libre. Sa suspension élastique doit alors être accordée pour que le piston oscille à la même fréquence que le piston résonant. Son amplitude est contrôlée par les forces électriques exercées par le générateur ; elle reste fixe si une charge électrique constante est appliquée aux bornes du générateur électrique.This transfer-motor piston can be designed as a free piston. Its elastic suspension must then be tuned so that the piston oscillates at the same frequency as the resonant piston. Its amplitude is controlled by the forces electric powered by the generator; it remains fixed if a constant electric charge is applied to the terminals of the electric generator.

Dans une machine hybride, le piston 6, 6a est lié mécaniquement à l'axe de la partie mobile d'un générateur électrique rotatif par un embiellage. La course du piston 6, 6a est alors fixée par la géométrie de cet embiellage. Sa vitesse de rotation est contrôlée électriquement par le générateur électrique et sa fréquence doit correspondre à celle du second piston résonant 10.In a hybrid machine, the piston 6, 6a is mechanically connected to the axis of the moving part of a rotary electrical generator by a linkage. The stroke of the piston 6, 6a is then fixed by the geometry of this linkage. Its rotation speed is electrically controlled by the electric generator and its frequency must correspond to that of the second resonant piston 10.

La figure 4 représente un schéma vectoriel illustrant les caractéristiques les plus importantes du système, le temps t se déroulant dans le sens des aiguilles d'une montre. Le vecteur X représente le déplacement du piston de transfert -moteur 6, 6a, le vecteur Y celui du piston résonant 10. Sous conditions de résonance, Y est en retard par rapport à X. Par son déplacement, le piston de transfert-moteur 6, 6a crée une faible variation de pression PX, opposée à X. Le déplacement Y du piston résonant 10 crée une variation de pression PY dans la direction de Y, la variation de pression P du gaz de travail étant la somme des deux composants PX et PY.The figure 4 represents a vector diagram illustrating the most important characteristics of the system, the time t running in the direction of clockwise. The vector X represents the displacement of the engine-transfer piston 6, 6a, the vector Y that of the resonant piston 10. Under resonance conditions, Y is delayed with respect to X. By its displacement, the transfer-motor piston 6 , 6a creates a small pressure variation P X , opposite to X. The displacement Y of the resonant piston 10 creates a pressure variation P Y in the direction of Y, the pressure variation P of the working gas being the sum of the two components P X and P Y.

A chaque cycle, le piston résonant 10 reçoit une certaine quantité d'énergie, proportionnelle à la composante de pression PX qui maintient ce piston en mouvement. Comme PX dépend de la température de chauffage TH, l'amplitude Y du piston résonant 10 varie en fonction de cette température TH. L'amplitude de pression PY étant proportionnelle à Y, celle-ci et la puissance mécanique générée par le moteur Stirling augmentent fortement avec la température de chauffage TH.At each cycle, the resonant piston 10 receives a certain amount of energy proportional to the pressure component P X which keeps the piston moving. Since P X depends on the heating temperature T H , the amplitude Y of the resonant piston 10 varies as a function of this temperature T H. Since the pressure amplitude P Y is proportional to Y, this and the mechanical power generated by the Stirling engine increase sharply with the heating temperature T H.

La figure 5 compare l'énergie mécanique dégagée par un moteur Stirling comportant un piston de transfert et un piston de travail, en fonction de la température TH des tubes de chauffage (courbe 1) avec celle d'un moteur selon l'invention (courbe 2). Pour démarrer la machine Stirling objet de l'invention, l'échangeur chaud doit d'abord être porté à une température TH relativement élevée (p. ex. 600°C), seuil qui dépend du rapport aC/aE choisi. Le piston de transfert-moteur 6, 6a est alors mis en oscillation à l'aide du générateur électrique qui lui est associé. Le piston résonant 10 se met d'abord à osciller avec une faible amplitude, qui augmente progressivement avec la température de chauffage TH. L'amplitude de la pression du gaz de travail augmente également, ainsi que la puissance mécanique fournie par cette machine. La puissance nominale est atteinte quand l'échangeur chaud est porté à environ 700°C.The figure 5 compares the mechanical energy released by a Stirling engine comprising a transfer piston and a working piston, as a function of the temperature T H of the heating tubes (curve 1) with that of an engine according to the invention (curve 2). In order to start the Stirling machine which is the subject of the invention, the hot exchanger must first be brought to a relatively high temperature T H (for example 600 ° C.), which threshold depends on the ratio a C / a E chosen. The transfer-motor piston 6, 6a is then oscillated using the electric generator associated therewith. The resonant piston 10 first oscillates with a small amplitude, which gradually increases with the heating temperature T H. The amplitude of the working gas pressure also increases, as well as the mechanical power supplied by this machine. The nominal power is reached when the heat exchanger is heated to about 700 ° C.

Les moteurs Stirling avec un piston de transfert et un piston-moteur, démarrent déjà à des températures de chauffage nettement plus basses (environ 300 à 400°C selon leur conception). La puissance augmente alors progressivement avec la température TH, pour atteindre, sous conditions nominales comparables, une puissance similaire à celle de la machine objet de l'invention.Stirling engines with a transfer piston and a piston engine start at significantly lower heating temperatures (around 300 to 400 ° C depending on their design). The power then increases gradually with the temperature T H , to achieve, under comparable nominal conditions, a power similar to that of the machine object of the invention.

Dans la machine objet de l'invention, une faible augmentation de la température de l'échangeur chaud entraîne une forte augmentation de la puissance développée par ce moteur. Par la détente du gaz dans cette partie chaude, la puissance thermique soutirée augmente également fortement avec cette température. La stabilité du régime du moteur dépend donc précisément de l'apport de chaleur à l'échangeur chaud et son réglage peut être effectué par des moyens simples. La température TH étant contrôlée avec précision par la puissance dégagée par le moteur, le risque de surchauffe de la partie chaude est minime.In the machine object of the invention, a small increase in the temperature of the hot exchanger causes a sharp increase in the power developed by this engine. By the relaxation of the gas in this hot part, the thermal power withdrawn also increases strongly with this temperature. The stability of the engine speed therefore depends precisely on the heat input to the hot heat exchanger and its adjustment can be carried out by simple means. The temperature T H being precisely controlled by the power released by the engine, the risk of overheating of the hot part is minimal.

La figure 6 compare le rendement thermique ETA de la machine conventionnelle (courbe 1) avec celui de la machine selon l'invention (courbe 2), tracés en fonction de l'énergie produite par cycle (WRK). Au régime nominal, les deux machines ont des performances comparables. A charge partielle, la machine Stirling selon l'invention travaille à des niveaux de température de chauffage TH nettement plus élevés que la machine conventionnelle, donc sous des conditions qui favorisent la conversion de l'énergie thermique en énergie mécanique. Ainsi, la machine selon l'invention permet d'atteindre des rendements thermiques ETA plus élevés dans une large gamme de charges partielles.The figure 6 compares the thermal efficiency ETA of the conventional machine (curve 1) with that of the machine according to the invention (curve 2), plotted as a function of the energy produced per cycle (WRK). At rated speed, both machines have comparable performance. At partial load, the Stirling machine according to the invention operates at heating temperature T H levels significantly higher than the conventional machine, so under conditions that promote the conversion of thermal energy into mechanical energy. Thus, the machine according to the invention achieves higher ETA thermal efficiencies in a wide range of partial loads.

Dans la machine selon l'invention, le piston résonant 10 reçoit à chaque cycle une faible quantité d'énergie qui sert à compenser ses pertes par frottement et à le maintenir en mouvement oscillant. L'amplitude de son mouvement Y détermine la variation de pression du gaz de travail et donc le régime du moteur. Un réglage fin est possible dans la mesure où le frottement du piston reste relativement constant dans le temps comme on peut l'obtenir en utilisant des paliers à gaz statiques susmentionnés. Par ailleurs, la vanne de réglage 24 permet d'ajuster l'amplitude de pression du gaz de travail, donc l'amplitude du piston résonant.In the machine according to the invention, the resonant piston 10 receives at each cycle a small amount of energy which serves to compensate for its friction losses and keep it in oscillating motion. The amplitude of its movement Y determines the pressure variation of the working gas and therefore the engine speed. Fine tuning is possible insofar as piston friction remains relatively constant over time as can be achieved using the aforementioned static gas bearings. Moreover, the control valve 24 makes it possible to adjust the pressure amplitude of the working gas, and therefore the amplitude of the resonant piston.

L'utilisation d'un piston résonant permet de faire fonctionner le système avec un gaz de travail léger, comme par exemple de l'hélium pur, alors qu'un tube de résonance fonctionne mieux avec un mélange de gaz plus lourd. Les pertes dans les organes d'échange thermiques de la machine Stirling (chauffage, régénérateur, refroidisseur) dépendent de la densité du gaz et sont plus faibles dans le cas de la présente invention.The use of a resonant piston allows the system to operate with a light working gas, such as pure helium, while a resonance tube works better with a heavier gas mixture. The losses in the heat exchange members of the Stirling machine (heating, regenerator, cooler) depend on the density of the gas and are lower in the case of the present invention.

Le fait que les températures TH de l'échangeur chaud ne varient que faiblement avec la charge du moteur s'avère particulièrement avantageux dans les unités chauffées avec des combustibles. D'une manière générale, le fonctionnement d'un brûleur dépend fortement des conditions de températures qui s'y installent ; une combustion complète avec un minimum de polluants ne peut être obtenue que si les conditions de température restent suffisamment stables.The fact that the temperatures T H of the heat exchanger vary only slightly with the engine load is particularly advantageous in units heated with fuel. In general, the operation of a burner depends strongly on the temperature conditions which settle there; complete combustion with a minimum of pollutants can only be achieved if the temperature conditions remain sufficiently stable.

Une étude approfondie a permis de mettre en évidence ces avantages pour des brûleurs utilisant une recirculation interne des gaz de combustion, une technique appliquée sous diverses formes pour les moteurs Stirling (voir DE 102'17913 A1). Par la dilution du comburant, une combustion sans flamme s'installe dans la chambre de combustion, occupant une grande partie de ce volume. Une combustion complète peut être obtenue avec un excès d'air très faible si plusieurs conditions sont satisfaites, en particulier :

  • la température du mélange formé par l'apport d'air frais et les gaz recyclés doit se situer au-dessus de la température d'inflammation du combustible ; pour le gaz naturel dans une atmosphère diluée ce seuil se situe au-dessus de 720°C ;
  • pour éviter la formation massive de NOX, la température des gaz ne doit nulle part dépasser la limite des 1300 à 1400°C ;
  • la température TH des surfaces de l'échangeur chaud s'établit comme un équilibre entre l'énergie libérée lors de la combustion et celle soutirée à l'échangeur chaud par la détente du gaz de travail du Stirling. Les conditions de fonctionnement sous le régime du DE 102'17913 restent satisfaites dans une plage de puissance étendue, à condition que TH ne varie que peu avec la puissance du moteur, comme c'est le cas avec le moteur Stirling objet de l'invention.
An in-depth study has highlighted these advantages for burners using internal recirculation of combustion gases, a technique applied in various forms for Stirling engines (see DE 102'17913 A1). By the dilution of the oxidizer, a flameless combustion settles in the combustion chamber, occupying a large part of this volume. Complete combustion can be achieved with very little excess air if several conditions are satisfied, in particular:
  • the temperature of the mixture formed by the supply of fresh air and the recycled gases must be above the ignition temperature of the fuel; for natural gas in a dilute atmosphere this threshold is above 720 ° C;
  • to avoid the massive formation of NO X , the temperature of the gases must nowhere exceed the limit of 1300 to 1400 ° C;
  • the temperature T H of the surfaces of the hot exchanger is established as an equilibrium between the energy released during combustion and that drawn off at the hot exchanger by the expansion of the Stirling working gas. Operating conditions under the regime of DE 102'17913 remain satisfied in an extended power range, provided that T H varies only slightly with the power of the engine, as is the case with the Stirling engine object of the invention.

Les machines Stirling à pistons libres conventionnelles demandent des moyens de réglages sophistiqués (par exemple US6'871'495 , ou US2008/0122408 ) pour maintenir le régime du moteur sous contrôle, aussi bien durant la phase de démarrage de la machine, que pour stabiliser le fonctionnement autour des conditions nominales. Dans ces machines, une déviation des conditions de fonctionnement optimales peut fortement réduire les performances de ces moteurs.Stirling machines with conventional free pistons require sophisticated adjustment means (for example US6'871'495 , or US2008 / 0122408 ) to keep the engine speed under control, both during the start-up phase of the machine and to stabilize the operation around the nominal conditions. In these machines, a deviation Optimum operating conditions can greatly reduce the performance of these engines.

Le contrôle de la machine Stirling objet de l'invention s'avère nettement plus simple, essentiellement pour les raisons suivantes : Les deux pistons sont avant tout couplés avec l'enceinte du système et qu'accessoirement entre eux. Le battement entre les deux pistons de la machine objet de l'invention peut ainsi facilement être amorti, voire totalement supprimé. Par ailleurs, le brûleur de cette machine Stirling répond plus rapidement à une variation de puissance puisque sa température ne change que peu avec la puissance thermique transférée. Toute variation de TH de la source chaude modifie PX et donc la puissance transférée au piston résonant, entraînant un changement rapide de son amplitude Y. L'amplitude de pression est ainsi modifiée, ce qui ajuste la puissance du moteur.The control of the Stirling machine object of the invention proves to be much simpler, essentially for the following reasons: The two pistons are above all coupled with the enclosure of the system and only incidentally between them. The beat between the two pistons of the machine object of the invention can thus be easily amortized, or even completely removed. In addition, the burner of this Stirling machine responds more quickly to a variation in power since its temperature changes little with the transferred thermal power. Any variation of T H of the hot source modifies P X and thus the power transferred to the resonant piston, causing a rapid change in its amplitude Y. The pressure amplitude is thus modified, which adjusts the power of the engine.

Dans les moteurs Stirling à pistons libres conçus selon l'état de l'art, le mouvement du piston de transfert dépend des variations de pression du gaz de travail. Une faible variation de son amplitude engendre une variation de la quantité d'énergie échangée entre le régénérateur et le gaz qui le traverse; ceci influence la pression instantanée du gaz de travail, laquelle influence à son tour le mouvement du piston de transfert. Une instabilité peut ainsi se produire, qui ne peut être contrôlée qu'indirectement par l'action du générateur électrique sur le piston-moteur.In free-piston Stirling engines designed according to the state of the art, the movement of the transfer piston depends on the pressure variations of the working gas. A small variation in its amplitude causes a change in the amount of energy exchanged between the regenerator and the gas that passes through it; this influences the instantaneous pressure of the working gas, which in turn influences the movement of the transfer piston. Instability can thus occur, which can only be controlled indirectly by the action of the electric generator on the engine piston.

Dans la présente invention, l'amplitude du mouvement du piston de transfert est directement contrôlée par le générateur électrique qui lui est associé. Les variations de son amplitude sont ainsi directement contrôlées par la charge appliquée au générateur électrique, empêchant ainsi toute perturbation notable par rapport au cycle nominal du moteur. Grâce à cette qualité de contrôle, ces moteurs peuvent fonctionner avec des amplitudes de pression importantes et ainsi atteindre des densités de puissance supérieures à celles qui sont maîtrisables dans les configurations connues.In the present invention, the amplitude of the movement of the transfer piston is directly controlled by the electrical generator associated therewith. The variations of its amplitude are thus directly controlled by the load applied to the electric generator, thus preventing any significant disturbance compared to the nominal cycle of the motor. Thanks to this quality of control, these engines can work with large pressure amplitudes and thus achieve power densities higher than those that are controllable in known configurations.

La figure 7 montre en coupe diamétrale une configuration de la machine Stirling comportant deux pistons résonants 10a, 10b arrangés dans des cylindres extérieurs et reliés au volume de compression VC du moteur Stirling. Les deux pistons résonants sont suspendus avec des moyens élastiques 40 dans leurs cylindres respectifs. La masse de chaque piston et les forces élastiques mécaniques et pneumatiques agissant sur celui-ci sont ajustées pour conférer à ces pistons une fréquence de résonance égale à la fréquence d'opération de la machine. Les deux sous-ensembles formés par ces pistons 10a, 10b et leurs cylindres sont identiques. Les deux pistons 10a, 10b sont coaxiaux et disposés symétriquement par rapport à l'axe de la machine. Sous l'action de la pression variable de la machine, les deux pistons de résonance oscillent en sens opposées et leurs forces d'inertie se compensent.The figure 7 shows in a diametral section a configuration of the Stirling machine comprising two resonant pistons 10a, 10b arranged in outer cylinders and connected to the compression volume V C of the Stirling engine. The two resonant pistons are suspended with elastic means 40 in their respective cylinders. The mass of each piston and the mechanical and pneumatic elastic forces acting on it are adjusted to give these pistons a resonant frequency equal to the operating frequency of the machine. The two subsets formed by these pistons 10a, 10b and their cylinders are identical. The two pistons 10a, 10b are coaxial and arranged symmetrically with respect to the axis of the machine. Under the action of the variable pressure of the machine, the two resonant pistons oscillate in opposite directions and their inertial forces counterbalance each other.

Dans la variante de la figure 8, les deux pistons 10a et 10b sont arrangés coaxialement dans un cylindre commun disposé latéralement à l'axe principal de la machine. Les deux volumes extérieurs 45a et 45b du cylindre commun sont reliés au volume de compression VC du moteur Stirling par des conduits 29. Le volume central 45c peut être relié par un conduit 44 à un volume 48 exposé à une pression moyenne quasiment constante, par exemple celle du volume du générateur électrique. Lorsque ces deux pistons 10a et 10b oscillent sous l'action d'une pression variable, leurs forces d'inertie s'annulent. Comme variante, le volume central 45c peut être relié à la chambre froide VC et les volumes extérieurs 45a et 45c au volume 48. En disposant plusieurs paires de pistons résonants coaxiaux 10a, 10b symétriquement par rapport à l'axe principal de la machine, la force latérale exercée par l'ensemble de ces pistons résonants 10a, 10b s'annule, pour autant que tous ces pistons résonants décrivent le même mouvement.In the variant of the figure 8 , the two pistons 10a and 10b are arranged coaxially in a common cylinder disposed laterally to the main axis of the machine. The two external volumes 45a and 45b of the common cylinder are connected to the compression volume V C of the Stirling engine by ducts 29. The central volume 45c can be connected by a duct 44 to a volume 48 exposed to an almost constant mean pressure, through example that of the volume of the electric generator. When these two pistons 10a and 10b oscillate under the action of a variable pressure, their inertial forces cancel each other out. As an alternative, the central volume 45c can be connected to the cold room V C and the external volumes 45a and 45c to the volume 48. By arranging several pairs of coaxial resonant pistons 10a, 10b symmetrically with respect to the main axis of the machine, lateral force exerted by all these resonant pistons 10a, 10b vanishes, provided that all these resonant pistons describe the same movement.

La figure 9 illustre, à titre d'exemple, un arrangement des pistons résonants 10a, 10b, 10c, 10d en losange. Ceci permet de les disposer avec leurs cylindres dans une enceinte de diamètre réduit. Aucune force latérale n'est exercée par ces pistons résonants sur l'ensemble de la machine pour autant que leurs mouvements soient identiques. De manière plus générale, les forces d'inertie de ces pistons résonants 10a, 10b, 10c, 10d s'annulent si ces pistons sont arrangés sous forme d'un agencement symétrique par rapport à l'axe principal de la machine.The figure 9 illustrates, by way of example, an arrangement of diamond resonant pistons 10a, 10b, 10c, 10d. This makes it possible to arrange them with their cylinders in an enclosure of reduced diameter. No lateral force is exerted by these resonant pistons on the whole machine as long as their movements are identical. More generally, the inertial forces of these resonant pistons 10a, 10b, 10c, 10d are canceled if these pistons are arranged in the form of a symmetrical arrangement with respect to the main axis of the machine.

Un problème récurrent des machines Stirling à pistons libre est causé par les forces vibratoires importantes transmises au bâti par les pistons oscillants. Pour réduire les nuisances sonores transmises à l'extérieur, ces machines doivent être placées dans des enceintes acoustiques et isolées du sol. Par ailleurs, les vibrations du bâti peuvent se répercuter sur le régime de ces machines et risquent ainsi de dérégler leur fonctionnement.A recurring problem with free-piston Stirling machines is caused by the large vibratory forces transmitted to the frame by the oscillating pistons. To reduce the noise pollution transmitted to the outside, these machines must be placed in acoustic speakers and isolated from the ground. In addition, the vibration of the frame can affect the speed of these machines and may disrupt their operation.

Ces vibrations peuvent être compensées avec 2 machines identiques, arrangées autour d'une chambre de combustion commune et orientés en sens opposés l'une par rapport à l'autre. Ces arrangements en ensembles tandem ont été proposés par exemple dans le papier ICSC 95 - 26 par la société Sunmachine ( Proceedings of the 7th International Conférence on Stirling Cycle Machines, Novembre 1995, Tokyo ). Ces solutions sont particulièrement adaptées pour des machines développant des puissances relativement élevées.These vibrations can be compensated with 2 identical machines, arranged around a common combustion chamber and oriented in opposite directions with respect to each other. These arrangements in tandem sets have been proposed for example in the paper ICSC 95-26 by the company Sunmachine ( Proceedings of the 7th International Conference on Stirling Cycle Machines, November 1995, Tokyo ). These solutions are particularly suitable for machines developing relatively high powers.

La figure 7 illustre un moyen d'atténuation connu des vibrations du bâti, comprenant une masse additionnelle 41, suspendue par des moyens élastiques 42 à l'enceinte 3, solidaire du bâti 4 de la machine. En ajustant la fréquence propre de ce résonateur sur la fréquence d'opération de la machine, il est possible de réduire les vibrations de celle-ci. Cependant, si l'accord n'est pas suffisamment précis, des battements peuvent en résulter qui risquent de créer des nuisances et de perturber le fonctionnement de la machine.The figure 7 illustrates a known means of attenuation of the vibrations of the frame, comprising an additional mass 41, suspended by elastic means 42 to the enclosure 3, integral with the frame 4 of the machine. By adjusting the natural frequency of this resonator on the frequency of operation of the machine, it is possible to reduce the vibrations thereof. However, if the agreement is not precise enough, beats can result which may create nuisance and disrupt the operation of the machine.

Pour remédier au moins en partie à cet inconvénient, la présente invention propose un autre système permettant d'atténuer les vibrations transmises à l'enceinte de la machine, illustré par la figure 10. Selon ce concept, la masse additionnelle 41 est reliée de manière élastique au piston de transfert 6, 6a et au bâti 4 de la machine. Les suspensions élastiques 42 a, b et c sont ajustées de manière à ce qu'à la fréquence d'opération de la machine, ces deux masses oscillent en sens opposés l'une par rapport à l'autre, en sorte que les forces vibratoires transmises à l'enceinte ou au bâti de la machine s'annulent. On diminue ainsi à la source les vibrations engendrées par le mouvement des pistons.To remedy at least part of this drawback, the present invention proposes another system for attenuating the vibrations transmitted to the enclosure of the machine, illustrated by the figure 10 . According to this concept, the additional mass 41 is elastically connected to the transfer piston 6, 6a and to the frame 4 of the machine. The elastic suspensions 42a, b and c are adjusted so that at the operating frequency of the machine, these two masses oscillate in opposite directions with respect to each other, so that the vibratory forces transmitted to the enclosure or frame of the machine are canceled. The vibrations generated by the movement of the pistons are thus reduced at the source.

Les moyens élastiques 42 a, b et c peuvent être constitués de ressorts mécaniques spiralés ou plats, des électroaimants, des moyens pneumatiques ou des combinaisons de ces différents supports élastiques. Ce système de suppression des vibrations permet de compenser de manière efficace l'action d'un seul oscillateur. Il est donc particulièrement adapté aux machines Stirling comportant des masses résonantes opposées, étant donné que seules les vibrations engendrées par le piston de transfert doivent être compensées.The elastic means 42a, b and c may consist of spiral or flat mechanical springs, electromagnets, pneumatic means or combinations of these various elastic supports. This vibration suppression system effectively compensates for the action of a single oscillator. It is therefore particularly suitable for Stirling machines with opposite resonant masses, since only vibrations generated by the transfer piston must be compensated.

La figure 11 illustre, à titre d'exemple, le compartiment cylindrique 3 d'une machine Stirling. Dans cette forme d'exécution, la masse additionnelle 41 forme un piston mobile, placé à l'intérieur d'un prolongement de l'élément tubulaire du piston 6a, délimitant un volume 46 d'un ressort pneumatique 42b. Cette masse additionnelle 41 en forme de piston peut être munie de segments d'étanchéité 25. En variante, l'étanchéité du volume 46 peut être assurée par les surfaces cylindriques du piston formé par la masse additionnelle 41 et par la paroi de son enceinte tubulaire, en ménageant un espace annulaire très faible entre la paroi cylindrique du piston et celle de l'enceinte tubulaire. Cet espace annulaire peut par ailleurs être muni d'un palier à gaz stationnaire pour stabiliser la position radiale entre la masse additionnelle 41 et le prolongement tubulaire du piston 6a, réduisant ainsi les frottements entre ces deux surfaces.The figure 11 illustrates, by way of example, the cylindrical compartment 3 of a Stirling machine. In this form of execution, the additional mass 41 forms a movable piston, placed inside an extension of the tubular element of the piston 6a, delimiting a volume 46 of a pneumatic spring 42b. This additional mass 41 in the form of a piston may be provided with sealing segments 25. In a variant, the sealing of the volume 46 may be ensured by the cylindrical surfaces of the piston formed by the additional mass 41 and by the wall of its tubular enclosure , by providing a very small annular space between the cylindrical wall of the piston and that of the tubular enclosure. This annular space can also be provided with a stationary gas bearing to stabilize the radial position between the additional mass 41 and the tubular extension of the piston 6a, thus reducing the friction between these two surfaces.

Cette masse additionnelle 41 est centrée et suspendue de manière élastique par un ressort mécanique, de préférence par un ressort plat à bras spiralés 42c. Une masse auxiliaire 41a, associée à la masse additionnelle 41 sert à ajuster les oscillations de cette masse additionnelle, de sorte que le piston de transfert 6, 6a et la masse additionnelle 41 oscillent en opposition de phase; les forces vibratoires transmises au bâti peuvent ainsi être réduites au minimum.This additional mass 41 is centered and resiliently suspended by a mechanical spring, preferably by a flat spring with spiral arms 42c. An auxiliary mass 41a, associated with the additional mass 41 serves to adjust the oscillations of this additional mass, so that the transfer piston 6, 6a and the additional mass 41 oscillate in phase opposition; vibratory forces transmitted to the frame can thus be reduced to a minimum.

Comme il est indiqué dans cette figure, l'induit et les enroulements peuvent entourer la partie mobile du générateur et l'armature peut être placée à l'intérieur de celui-ci.As indicated in this figure, the armature and the windings can surround the mobile part of the generator and the armature can be placed inside thereof.

La figure 12 illustre une variante de la figure 11 dans laquelle la masse additionnelle 41 est logée dans un cylindre auxiliaire 49 fixé à un support 47 relié de manière rigide au bâti 4 de la machine. Le ressort pneumatique 42b de la figure 10 se compose alors d'un premier volume variable 46a situé dans le prolongement du piston de transfert 6, 6a et délimité par un piston stationnaire 50. Ce volume 46a est relié par un tube 43 à un deuxième volume 46b, situé dans le cylindre auxiliaire 49. Le tube 43 est fixé de manière rigide au support 47, solidaire du bâti 4 de la machine, et il traverse le piston stationnaire 50.The figure 12 illustrates a variant of the figure 11 wherein the additional mass 41 is housed in an auxiliary cylinder 49 attached to a support 47 rigidly connected to the frame 4 of the machine. The air spring 42b of the figure 10 then consists of a first variable volume 46a located in the extension of the transfer piston 6, 6a and delimited by a stationary piston 50. This volume 46a is connected by a tube 43 to a second volume 46b, located in the cylinder 49. The tube 43 is fixed rigidly to the support 47, integral with the frame 4 of the machine, and it passes through the stationary piston 50.

Les deux volumes variables 46a et 46b sont fermés de manière étanche au moyen de pistons mobiles ou fixes, munis de joints d'étanchéités 25 ou de surfaces lisses avec un jeu radial très faible par rapport à leurs cylindres respectifs. Ces derniers peuvent être munis de paliers à gaz stationnaires pour réduire les pertes par frottement.The two variable volumes 46a and 46b are sealingly closed by means of movable or fixed pistons provided with seals 25 or smooth surfaces with a very small radial clearance with respect to their respective cylinders. These can be equipped with stationary gas bearings to reduce friction losses.

Dans la forme d'exécution selon la figure 12, les masses oscillantes 6, 6a et 41 sont guidées séparément par des supports respectifs. Cette solution assure une sustentation optimale de ces éléments mobiles, minimisant leurs mouvements radiaux ainsi que les pertes par frottement. L'inconvénient de cette solution réside dans l'encombrement relativement important.In the form of execution according to figure 12 the oscillating masses 6, 6a and 41 are guided separately by respective supports. This solution ensures optimum lift of these moving elements, minimizing their radial movements as well as friction losses. The disadvantage of this solution lies in the relatively large size.

De nombreuses variantes d'exécution du système à deux masses oscillantes sont envisageables. Par exemple, la variante selon fig. 12 peut comprendre une masse mobile 41 cylindrique qui entoure un piston stationnaire, solidaire du support 47. Par ailleurs, dans toutes ces variantes, des ressorts mécaniques supplémentaires peuvent être utilisées pour renforcer l'action du ressort pneumatique 42b.Many variants of the system with two oscillating masses are possible. For example, the variant according to Fig. 12 may comprise a cylindrical movable mass 41 which surrounds a stationary piston, integral with the support 47. Furthermore, in all these variants, additional mechanical springs may be used to enhance the action of the air spring 42b.

L'absence d'un système d'asservissement complexe et coûteux, la diminution des vibrations engendrées par ces machines ainsi que les conditions de fonctionnement favorables sous charges partielles présentent des avantages considérables dans beaucoup d'applications, comme par exemple :

  • pour le chauffage domestique, il peut fonctionner en mi-saison à charge partielle, avec un minimum d'arrêts/redémarrages de l'installation. On évite ainsi les pertes d'énergie liées à chaque démarrage et on réduit la fatigue des métaux soumis à de fréquents cycles thermiques. Par ailleurs, la flexibilité du système permet de mieux adapter le fonctionnement aux besoins en énergie électrique domestique et de mieux gérer le stockage d'eau chaude sanitaire.
  • Lors de la combustion de biomasse, le dégagement de chaleur peut fluctuer en fonction de la qualité du combustible. Avec la machine objet de l'invention, la température des tubes de chauffage varie peu, de sorte qu'une combustion stable est maintenue sous des conditions optimales.
  • La flexibilité du système et les bons rendements à charge partielle permettent de mieux convertir l'énergie solaire, par exemple le matin, le soir ou par temps couvert. En moyenne annuelle, la machine Stirling objet de l'invention permet donc un fonctionnement pendant une durée de temps plus longue que les systèmes conventionnels.
The absence of a complex and expensive servocontrol system, the reduction of the vibrations generated by these machines as well as the favorable operating conditions under partial loads have considerable advantages in many applications, for example:
  • for domestic heating, it can operate in mid-season at partial load, with a minimum of stops / restarts of the installation. This avoids the energy losses associated with each start and reduces the fatigue of metals subjected to frequent thermal cycles. Moreover, the flexibility of the system makes it possible to better adapt the operation to the needs of domestic electrical energy and to better manage the hot water storage.
  • When biomass is burned, the release of heat can fluctuate depending on the quality of the fuel. With the machine object of the invention, the temperature of the heating tubes varies little, so that a stable combustion is maintained under optimal conditions.
  • The flexibility of the system and the good yields at partial load make it possible to convert solar energy better, for example in the morning, in the evening or on cloudy days. In annual average, the Stirling machine object of the invention therefore allows operation for a longer period of time than conventional systems.

L'utilisation de générateurs rotatifs permet de générer du courant tri phasique qui peut facilement être injecté dans un réseau électrique.The use of rotary generators makes it possible to generate tri-phase current which can easily be injected into an electrical network.

Les moteurs hybrides décrits ci-dessus se distinguent également par de bons rendements à charge partielle. Ils peuvent avantageusement être utilisés dans toutes les applications demandant une grande flexibilité d'opération.The hybrid engines described above are also distinguished by good yields at partial load. They can advantageously be used in all applications requiring great flexibility of operation.

Lors du démarrage, le mouvement de la masse résonante et l'amplitude de pression ainsi générées sont faibles. La machine peut alors être mise en marche sans équilibrer les pressions entre les différents volumes: le recours à une vanne de court-circuit qui est généralement utilisée dans les machines cinématiques conventionnelles n'est donc plus nécessaire.When starting, the movement of the resonant mass and the pressure amplitude thus generated are low. The machine can then be started without balancing the pressures between the different volumes: the use of a short circuit valve which is generally used in conventional kinematic machines is no longer necessary.

Claims (17)

  1. A Stirling machine comprising a displacer piston (6, 6a) and a moving member (14) of a generator or of an electric motor, the displacer piston (6, 6a) being mounted in a cylinder (2), in which it periodically displaces a working gas between an expansion chamber (VE) and a compression chamber (VC) which constitute the working volume of said Stirling machine, respectively associated with two working faces of said displacer piston (6, 6a) and causing said gas to pass through a hot side heat exchanger (7), linked to a heat source, a regenerator (9) and a cooling exchanger (8) linked to a heat sink, the cross-sectional area ratio (aC/aE) between the two working faces of said piston (6, 6a) being ≥ 0.35 so that its displacement along an axis X oriented toward the expansion volume VE generates an in-phase pressure component Px of said working gas opposing said displacement of said piston (6, 6a), so as to transmit all of said mechanical energy produced between this displacer piston (6, 6a) and said moving member (14), characterized in that the ratio of cross-sectional area aC/aE is less than 0.70 and in that it includes at least one resonant piston (10), coupled to said displacer piston (6, 6a), intended to receive a certain quantity of energy, proportional to said pressure component Px, which is used to compensate its losses by friction and to maintain its oscillating movement.
  2. The Stirling machine as claimed in claim 1, in which said resonant piston is a free piston guided via support means.
  3. The Stirling machine as claimed in one of the preceding claims, in which said resonant piston has no active servocontrol.
  4. The Stirling machine as claimed in one of the preceding claims, in which the displacer piston is suspended by elastic means, thus forming a free piston, said moving member exhibiting linear displacement.
  5. The Stirling machine as claimed in one of claims 1 to 3, in which the displacer piston is linked to said rotary moving member by a mechanical linkage.
  6. The Stirling machine as claimed in one of the preceding claims, in which the ratio of the working surfaces aC/aE of the displacer piston (6, 6a) is between 35 and 60%, preferably between 40 and 55%.
  7. The Stirling machine as claimed in one of the preceding claims, in which each piston is guided in a radial direction by a dynamic seal formed by a radial gap of between 20 µm and 50 pm, at least one of the two surfaces of which being provided with a wear-resistant and self-lubricating coating capable of reducing the static and dynamic friction.
  8. The Stirling machine as claimed in one of the preceding claims, in which the dynamic seals formed between the pistons and the cylinders which surround them are pressurized with the working gas contained in at least one volume of gas formed in the walls of the cylinder or in the pistons.
  9. The Stirling machine as claimed in claim 8, in which said volume of gas is provided with at least one non-return valve placed in proximity to a volume exposed to pressures that are variable in time, and supplied with working gas when this volume is exposed to the highest cyclic pressures.
  10. The Stirling machine as claimed in one of the preceding claims, in which each piston is a free piston suspended from the cylinder by a flat spring with spiral-shaped arms.
  11. The Stirling machine as claimed in one of claims 1 to 9, in which the resonant piston (10) and/or the displacer piston are suspended from the frame (4) by helical springs, positioned symmetrically about the axis of said piston or pistons and exerting an axial force on said piston or pistons, centered in relation to this or these pistons.
  12. The Stirling machine as claimed in one of the preceding claims, in which an adjustment valve is provided on a duct which links the cold working volume with the volume of the electrical generator.
  13. The Stirling machine as claimed in one of the preceding claims, comprising at least one pair of similar coaxial resonant pistons, positioned symmetrically in relation to the axis of the machine and oscillating in opposite directions.
  14. The Stirling machine as claimed in one of the preceding claims, comprising at least two pairs of similar resonant pistons (10a, 10b, 10c, 10d), positioned in the form of a symmetrical arrangement in relation to the main axis of said machine.
  15. The Stirling machine as claimed in one of the preceding claims, in which an additional mass (41a) is suspended from the frame by elastic means (42c), so that its natural frequency is adjusted to that of the displacer piston (6, 6a) of the machine and that its oscillating movement compensates the vibrations of said displacer piston (6, 6a).
  16. The Stirling machine as claimed in one of claims 1 to 14, in which the additional mass (41a) is suspended from the frame of the machine and from said displacer piston (6, 6a) by elastic means (42c) adjusted so that, at the operating frequency of said displacer piston (6, 6a) of the machine, this mass oscillates in direction opposite to that of the displacer piston.
  17. The Stirling machine as claimed in claim 16, in which a pneumatic spring (46a) links the displacer piston (6, 6a) to the pneumatic spring (46b) of the additional mass (41) and is at least partly incorporated in a tubular element (6a) situated in an extension of the displacer piston (6, 6a).
EP11718884.7A 2010-04-06 2011-03-29 Stirling machine Not-in-force EP2556236B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00496/10A CH702965A2 (en) 2010-04-06 2010-04-06 STIRLING MACHINE.
PCT/CH2011/000065 WO2011123961A1 (en) 2010-04-06 2011-03-29 Stirling machine

Publications (2)

Publication Number Publication Date
EP2556236A1 EP2556236A1 (en) 2013-02-13
EP2556236B1 true EP2556236B1 (en) 2018-07-04

Family

ID=44279131

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11718884.7A Not-in-force EP2556236B1 (en) 2010-04-06 2011-03-29 Stirling machine

Country Status (7)

Country Link
US (1) US9109533B2 (en)
EP (1) EP2556236B1 (en)
JP (1) JP5852095B2 (en)
KR (1) KR101749164B1 (en)
CN (1) CN102918249B (en)
CH (1) CH702965A2 (en)
WO (1) WO2011123961A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011122071B4 (en) * 2011-12-22 2013-10-31 Eads Deutschland Gmbh Stirling engine with flapping wing for an emission-free aircraft
FR3007077B1 (en) * 2013-06-18 2017-12-22 Boostheat DEVICE FOR THE THERMAL COMPRESSION OF A GASEOUS FLUID
FR3030629B1 (en) 2014-12-23 2017-02-03 Ge Energy Products France Snc INSTALLATION AND METHOD FOR SUPPLYING A COMBUSTION CHAMBER HAVING A VENTILATED CAVITY BY HOT AIR FROM PURGE
CN105484896A (en) * 2015-12-04 2016-04-13 西安交通大学 Small free piston type solar generator system
US10323604B2 (en) * 2016-10-21 2019-06-18 Sunpower, Inc. Free piston stirling engine that remains stable by limiting stroke
CN107806927B (en) * 2017-10-16 2023-11-07 中国电子科技集团公司第十六研究所 Stirling refrigerator micro-vibration output multi-point suspension system and detection method thereof
WO2019084527A1 (en) 2017-10-27 2019-05-02 Quantum Industrial Development Corporation External combustion engine series hybrid electric drivetrain
CN109854407B (en) * 2019-04-11 2024-02-02 江苏克劳特低温技术有限公司 Free piston Stirling generator with additional disturbance mechanism and starting method thereof
WO2020236881A1 (en) * 2019-05-21 2020-11-26 General Electric Company Engine apparatus and method for operation
EP3973164A1 (en) * 2019-05-21 2022-03-30 General Electric Company Energy conversion apparatus
CN110274407A (en) * 2019-06-28 2019-09-24 上海理工大学 A kind of split type sterlin refrigerator with novel cold head structure
CN110274406B (en) * 2019-06-28 2021-05-11 上海理工大学 Cold head structure and split type free piston Stirling refrigerating machine
US11384964B2 (en) 2019-07-08 2022-07-12 Cryo Tech Ltd. Cryogenic stirling refrigerator with mechanically driven expander
CN114370353B (en) * 2021-07-09 2023-10-24 中国科学院理化技术研究所 Free piston Stirling heat engine phase modulator mechanism

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2033489B (en) * 1978-10-20 1982-11-17 Aga Ab Power output control of hot gas engines
CH664799A5 (en) * 1985-10-07 1988-03-31 Battelle Memorial Institute STIRLING FREE PISTON HEAT PUMP ASSEMBLY.
JPH02127758A (en) 1988-11-08 1990-05-16 Matsushita Graphic Commun Syst Inc Data processor
EP1043491A1 (en) 1999-04-07 2000-10-11 Jean-Pierre Budliger Process and device for generating and transferring mechanical energy from a Stirling engine to an energy consuming element
KR100549489B1 (en) * 2000-12-27 2006-02-08 샤프 가부시키가이샤 Stirring freezer and its operation control method
DE10217913B4 (en) 2002-04-23 2004-10-07 WS Wärmeprozesstechnik GmbH Gas turbine with combustion chamber for flameless oxidation
US20060254270A1 (en) * 2003-04-10 2006-11-16 Shohzoh Tanaka Resonance frequency adjusting method and stirling engine
US6871495B2 (en) 2003-05-08 2005-03-29 The Boeing Company Thermal cycle engine boost bridge power interface
JP3806730B2 (en) * 2003-08-14 2006-08-09 独立行政法人 宇宙航空研究開発機構 Free piston type Stirling engine
US7453241B2 (en) 2006-11-29 2008-11-18 Sunpower, Inc. Electronic controller matching engine power to alternator power and maintaining engine frequency for a free-piston stirling engine driving a linear alternator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20130031899A1 (en) 2013-02-07
CH702965A2 (en) 2011-10-14
KR20130094188A (en) 2013-08-23
JP5852095B2 (en) 2016-02-03
KR101749164B1 (en) 2017-06-20
US9109533B2 (en) 2015-08-18
CN102918249A (en) 2013-02-06
EP2556236A1 (en) 2013-02-13
CN102918249B (en) 2015-07-01
WO2011123961A1 (en) 2011-10-13
JP2013524079A (en) 2013-06-17
WO2011123961A8 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
EP2556236B1 (en) Stirling machine
EP0070780A1 (en) Electrical-mechanical energy converter with an integrated Stirling engine and an electric generator
EP1366280B1 (en) Power unit with reciprocating linear movement based on stirling motor, and method used in said power plant
EP0218554B1 (en) Stirling machine
EP2031234B1 (en) Generation of electricity in a turbomachine by means of a stirling engine
WO2001063729A1 (en) Self-contained (heat and electricity) cogeneration system comprising a flywheel
EP1165955B1 (en) Method and device for transmitting mechanical energy between a stirling engine and a generator or an electric motor
EP2434135A1 (en) Rotary expansion engine
FR2871526A1 (en) ENGINE STIRLING
FR2871527A1 (en) ENGINE STIRLING
EP0360350A1 (en) Fluid film bearing and method of making the same
WO2008122861A1 (en) Power transmission mechanism and exhaust heat recovery apparatus
FR3031135B1 (en) AXIAL PISTON RELIEF MACHINE
EP2808528B1 (en) Fluid expansion motor
FR3032749A1 (en) THERMOACOUSTIC ENGINE
EP3099919B1 (en) External combustion engine
FR3132737A1 (en) ALTERNATIVE THERMAL ENGINE
JP5120232B2 (en) Automatic phase difference Stirling engine
EP0078561A2 (en) Free piston internal-combustion engine with an independently driven cam
FR3070479B1 (en) THERMO-ACOUSTIC SYSTEM
FR2965014A1 (en) Generating device i.e. power generating unit, for use in generating system of motor vehicle, has disengaging units arranged between connector and rotor for driving rotor in rotation along only one direction of translation of rod
FR3025254B1 (en) MOTOR WITH DIFFERENTIAL EVAPORATION PRESSURES
FR2972481A1 (en) Alternative heat engine for driving e.g. two-stage variable displacement compressor, has control unit controlling opening and closing of flow channels according to predetermined operation cycle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170927

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BUDLIGER, JEAN-PIERRE

Owner name: SCHMID, ROLF

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMID, ROLF

Inventor name: BUDLIGER, JEAN-PIERRE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1014771

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011049735

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MOINAS AND SAVOYE SARL, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1014771

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181104

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181004

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181004

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181005

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011049735

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

26N No opposition filed

Effective date: 20190405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190329

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220316

Year of fee payment: 12

Ref country code: DE

Payment date: 20220307

Year of fee payment: 12

Ref country code: CH

Payment date: 20220321

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220225

Year of fee payment: 12

Ref country code: FR

Payment date: 20220331

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011049735

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230329

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331