EP2510391B1 - Device for coupling an electromagnetic wave between a wave guide and a grooved metal guide, method for manufacturing said device, and optical electric coupler for an object using the optical coupling device - Google Patents
Device for coupling an electromagnetic wave between a wave guide and a grooved metal guide, method for manufacturing said device, and optical electric coupler for an object using the optical coupling device Download PDFInfo
- Publication number
- EP2510391B1 EP2510391B1 EP10799076.4A EP10799076A EP2510391B1 EP 2510391 B1 EP2510391 B1 EP 2510391B1 EP 10799076 A EP10799076 A EP 10799076A EP 2510391 B1 EP2510391 B1 EP 2510391B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- waveguide
- guide
- slit
- metal
- coupling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 229910052751 metal Inorganic materials 0.000 title description 102
- 230000008878 coupling Effects 0.000 title description 81
- 238000010168 coupling process Methods 0.000 title description 81
- 238000005859 coupling reaction Methods 0.000 title description 81
- 239000002184 metal Substances 0.000 title description 72
- 230000003287 optical effect Effects 0.000 title description 25
- 238000000034 method Methods 0.000 title description 19
- 238000004519 manufacturing process Methods 0.000 title description 8
- 229910052710 silicon Inorganic materials 0.000 description 31
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 30
- 239000010703 silicon Substances 0.000 description 29
- 239000000463 material Substances 0.000 description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 229910052709 silver Inorganic materials 0.000 description 15
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 14
- 239000004332 silver Substances 0.000 description 13
- 238000005530 etching Methods 0.000 description 9
- 239000003989 dielectric material Substances 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000002070 nanowire Substances 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000005672 electromagnetic field Effects 0.000 description 4
- 229910021389 graphene Inorganic materials 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000002159 nanocrystal Substances 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000002071 nanotube Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910017214 AsGa Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- -1 Erbium ions Chemical class 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000010905 molecular spectroscopy Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/1226—Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
Definitions
- the size of the electronic components is constantly decreasing, allowing the increase of the integration density of these components on the same chip.
- the coupling efficiency is substantially equal to the ratio between the optical mode surface carried by the waveguide and the characteristic surface of the device to be addressed.
- the slot 4 thus delimited is substantially coaxial with the central axis of the elements forming the silicon guide 1 a, 1 b, where the amplitude of the electromagnetic field generated by the wave is maximum.
- a device is complex to manufacture because it requires a perfect fit of the different elements put end-to-end.
- This structure forms a resonant device whose transmission rate is very sensitive to the incident wavelength.
- such a device induces a reflection problem, in fact, a portion of the incident wave moves in the silicon guide 1a and is transmitted in the silver guide 2 but another is reflected.
- a coupling is not satisfactory because it induces a significant decrease in the efficiency of the coupling of the electromagnetic wave.
- An object of the invention is to provide a compact and efficient coupling between a waveguide and a slot metal guide.
- the slotted metal guide is formed by two coplanar metal elements spaced from one another so as to define the slot, and in that the guide slit metal is disposed in a plane offset from the plane of the waveguide and partially overlaps said waveguide, said waveguide and slot guide being kept at a distance from each other by a dielectric.
- the invention also relates to a method of manufacturing a coupling device characterized by claims 11-15.
- the invention also relates to a claimed optical and electrical coupler of an object, said coupler comprises an optical coupling device and an electrical coupling element provided with two electrodes arranged at the slot of the slot guide, said object being in contact with at least one of the electrodes.
- this wave breaks down into two states of polarization.
- a first state forms a transverse electrical component (TE "Transverse Electric” in English) and a second state forms a transverse magnetic component (TM for "Transverse Magnetic”).
- the TM component comprises an electric field E perpendicular to the plane of the guide and a magnetic field H parallel to the plane of the guide.
- the TE component comprises a magnetic field H perpendicular to the plane of the guide and an electric field E parallel to the plane of the guide.
- the coupling device of an electromagnetic wave comprises a waveguide 1, for example formed by a silicon guide, which may be under the shape of a ribbon.
- a waveguide may be a type III or IV material or an alloy of these types of materials such as InP, GaS, InGaS.
- the waveguide 1 is transparent to the wave considered.
- the waveguide 1 may be a partially engraved (guide stops) and / or locally structured planar guide for containing, for example, networks for coupling the waveguide 1 to an optical fiber.
- the coupling device further comprises a slotted metal guide 2, preferably formed by two metallic elements 3a, 3b coplanar and spaced from each other so as to form said slot 4.
- the elements metal 3a, 3b may be formed of silver or copper.
- the slotted metal guide 2 is disposed in a plane P2 offset from the plane P1 of the waveguide 1 and partially covers said waveguide 1 ( figure 6 ). This overlap allows the interaction of the evanescent fields of the two guides to achieve the coupling.
- the two guides 1, 2 are kept at a distance from one another by a dielectric for limiting the reflection, diffusion or absorption of the wave.
- the waveguide 1 and the slot metal guide 2 can be separated by an interval D i .
- the dielectric may be in the form of a layer on the one hand in contact with the waveguide 1, and on the other hand in contact with the slotted metal guide 2, it can therefore have a thickness equal to Di. This dielectric may be a silicon oxide layer.
- the dielectric material used may have a low refractive index with respect to the refractive index of the silicon guide.
- this refractive index is between 1 and 2.5, and best confers the optical wave in the waveguide 1 to prevent the latter from diffusing outside said waveguide 1.
- the waveguide may have, by way of example, an index of the order of 3.55.
- the waveguide 1 is constituted by a single element forming a ribbon, preferably made of silicon.
- the metal slotted guide 2, for example made of silver, is formed by two metallic elements 3a, 3b, coplanar, and spaced from each other so as to delimit said slot 4.
- the slot 4 is preferably oriented along a longitudinal axis A1 of the waveguide 1.
- the slot 4 is centered so that it lies in a plane perpendicular to the plane of the waveguide 1 and passing through its center, the intersection of the two planes then forms the longitudinal axis A1 of the waveguide 1.
- the slotted metal guide 2 is disposed above the waveguide 1 so that the slotted metal guide 2 partially covers the waveguide 1.
- the waveguide 1 consists of two elements 1a and 1b which are not made on the same axis, the slot metal guide 2 is then bent to connect the two elements 1a and 1b.
- the two elements 1a and 1b are spaced from each other and their longitudinal axes are perpendicular.
- the electromagnetic field in the slotted guide being transverse, only the eigenmodes of the polarized waveguide 1 TE are coupled, that is to say that only the TE component propagates in the guide to slot 2 while the TM component remains confined to the waveguide 1.
- the coupling device is also called co-directional coupler.
- the coupling is performed between the fundamental modes (of higher effective index) TE of the two guides, this mode coupled to slotted metal guide 2 allows a confinement of the coupling in the slot of said slot guide 2.
- the power density obtained in the slot guide 2 is then exacerbated of the order of 100.
- the use of evanescent fields makes it possible to increase the efficiency of the coupling with respect to the end-to-end coupling of the prior art.
- the coupling mechanism between the waveguide 1 and the slot metal guide 2 can be illustrated using equations obtained in a perturbative approach of the Maxwell equations, for a simplified system where the two guides are identical. These equations will be sufficient to translate the propagation of the wave in a coupled system and the parameters that influence this coupling. A thorough description is made by A. Yariv in "coupled mode theory for guided wave optics", IEEEJ. As. Elec. 9, 919, 1973.
- the waveguide 1 and the slot metal guide 2 may be single-mode or multi-mode depending on the width and / or the height of the waveguide 1 and the width and / or thickness (or height) of the metallic elements 3a, 3b of the slot metal guide 2. It is also possible to play over the width of the slot to make a selection of mode (s) to be coupled and thus form a mode filter (s) .
- a mode of the waveguide 1 and a mode of the slotted metal guide 2 have the same effective index and are coupled.
- a mode corresponds to a spatial configuration of the electromagnetic field induced by the propagation of an electromagnetic wave in the guide associated with said mode. According to the distribution of the electromagnetic field, a given mode sees a different index of the materials constituting the guide and the index seen by each mode defines an effective index.
- An effective index can be defined as the ratio of the wavelength in the vacuum to the wavelength in the medium to be crossed.
- the power transfer from the first guide to the second guide is optimal for odd multiples of the coupling characteristic length L c .
- the efficiency of the coupling can be improved as a function of the distance separating the waveguide 1 from the slotted metal guide 2, their effective indices, the length of the slotted metal guide 2 or the partial overlap length between the guides.
- the ratio of the effective index of the waveguide 1 with the effective index of the slotted metal guide 2 is between 0.8 and 1.2, and preferably equal to 1.
- the effective index of a mode can vary according to the dimensions (width and thickness) of the guide considered, such a variation is described in "Silicon photonics" Reed, GT, Knights, AP, ed. Wiley (2004 ).
- the effective index of the modes supported by these guides can be calculated numerically by a mode solver by using the FDTD method (for finite-difference frequency-domain in English).
- the geometry, and thus the effective index n eff , of the slot guide 2 is set.
- the dimensions of the silicon waveguide 1 will be characterized by fixing, for example, its height, and by varying its width to obtain an effective index substantially equal to that of the slot metal guide 2.
- the effective index of the guide slit metal 2 depends on the width l 1 of the slot 4, the height h 1 of the slot 4 ( figure 6 ) and the type of material used.
- the slot metal guide 2 is made of silver, the width l 1 of the slot 4 is 25 nm and the height h 1 of the slot 4 is 50 nm, the effective index of such a guide is set at 2.25 at the figure 8 (Ag curve).
- a curve Si is also reported, this curve illustrates the evolution of the effective index n eff of the silicon guide with respect to its width Wsi. Therefore, the figure 8 allows to determine a point of intersection of the curves Ag and Si where the effective indices of the two guides are equal. So, for the silver slot metal guide 2 previously described, the preferential width of the associated silicon guide is 410 nm.
- the width of the silicon waveguide 1 thus depends on the effective index of the slot metal guide 2. This width of the silicon guide 1 will be different if the metal of the slot guide is changed or if the dimensions of the slot 4 vary.
- the interval Di separating the two guides 1, 2 is adjusted to optimize the length and the coupling efficiency.
- equation (1) is equal to one and the interval Di affects only the coupling length Lc and therefore the compactness of the device.
- the graph of the figure 8 illustrates the variations of the effective indices of the even and odd supermodes of the structure as a function of the width of the silicon guide.
- the curves C1, C2, C3, C4 are respectively associated with the distances 250nm, 150nm, 100nm, and 50nm in the odd supermode and the curves C1 ', C2', C3 ', C4' are respectively associated with the distances 250nm, 150nm, 100nm , and 50nm in the even supermode. Reading the graph obtained at the figure 8 determines that the closer the guides are, the larger the effective index difference between the even and the odd supermodes at the point of intersection.
- the coupling constant is all the greater as the effective index difference between the even and odd supermodes is important, in agreement with the relation previous (1).
- a low interval Di equivalent to an effective index difference of the large supermodes, is therefore preferable for increasing the efficiency of the coupling.
- the greater the effective index difference the greater the strength or coupling power increases.
- a small interval is therefore preferable to increase the efficiency of the coupling.
- the interval Di separating the two guides has a minimum of 10 nm and a maximum of the order of the working or operating wavelength, that is to say function of the length of the wavelength. wave that one seeks to couple.
- the separation interval could be zero and the guides in contact.
- Such contact between the two guides would generate a diffraction of the electromagnetic wave, and thus a loss of coupling efficiency.
- contacting the slot metal guide 2 with the silicon waveguide 1 could contaminate the optical properties by migration of the metal species in the silicon guide.
- the partial overlap length L r of the waveguide 1 by the slot metal guide 2 is an odd multiple of an effective coupling length Lc (equation (2)) between the two guides 1, 2
- the effective coupling length Lc is defined as being the shortest length for which the power injected into the waveguide 1 is maximum in the slot metal guide 2.
- the overlap length will preferably be equal to the coupling length or more generally to an odd multiple (2n + 1) * Lc for transmitting the electromagnetic wave from one guide to the other, with n a positive integer or no.
- a slotted metal guide 2 whose total length is equal to the overlap length which is an odd multiple of the coupling length Lc advantageously makes it possible to confine the TE component in the slot metal guide 2. , the TE component is found in the slotted guide 2 and the TM component continues to propagate in the waveguide 1.
- the coupling length and coupling efficiency can also be optimized by a parametric study performed using numerical simulations using for example the finite-difference frequency-domain (FDTD) method.
- This numerical method is used to simulate the propagation of electromagnetic waves in structures.
- the procedure of the example uses a Gaussian beam generated in the silicon ribbon guide 1 and propagating along k.
- the working wavelength was chosen around 1550nm.
- the coupling length Lc for which 75% of power is transmitted to the slot metal guide 2 is equal to 0.9 ⁇ m. It reflects a great difference in index of the two supermodes, that is to say a great coupling force which consequently allows a high compactness of the device.
- This characteristic also means that the phase shift between the two supermodes, in other words the coupling, will therefore be insensitive to the wavelength and the geometric dimensions of the guides (large manufacturing tolerance).
- the waveguide is formed by two elements 1a, 1b, preferably aligned along the same axis.
- the slotted metal guide 2 is arranged so as to cover partially two proximal portions 1a, 1b of said elements over lap lengths L r1 and L r2 .
- This makes it possible to produce a first coupling between the element 1a of the waveguide and the slot metal guide 2 in the direction of propagation k of the electromagnetic wave, and then a second coupling between the slotted metal guide 2 and the element 1b of the waveguide.
- only the TE components pass through the slot guide, the latter are the only ones to be coupled during the second coupling.
- recovery of the lengths L and L r1 r2 of the waveguide by the slotted guide 2 at each element portion 1 a, 1 b are respectively equal to an odd multiple of the effective coupling length L c .
- the methods for determining the effective coupling length L c previously described apply to this embodiment.
- the two proximal portions may optionally be thinned to reduce the section of the waveguide so that the signal not coupled to the slot metal guide 2 is not reflected. by the end of the waveguide.
- the coupling device may, in addition to allowing the coupling of the two guides, be used to produce optoelectronic components (detectors, emitters, nonlinear optical components) depending on the nature of the medium constituting In fact, such a coupling makes it possible to exacerbate the light-material interaction by confinement in the slot in order to make the devices more efficient (sensitivity, efficiency, non-linearity).
- the use of a slot metal guide 2 allows, depending on the application, to use the two metal elements 3a, 3b constituting it as electrodes for, for example, detecting or applying a voltage difference across said slot.
- the application of a voltage makes it possible, for example, to modulate the index of the material (for example SiOx) contained in the slot, that is to say between the two metallic elements 3a, 3b coplanar.
- Another application may be the detection or the stimulated emission of sub-micronic objects such as nano-wires, nano-antennas, quantum boxes, etc.
- TE components of the electromagnetic wave confined in the slot guide 2 can converge more easily to an object of a few nanometers placed in said slot.
- the metal elements 3a, 3b of the slot guide 2 can form electrodes able to apply a stimulus or to measure values.
- the slot may also be filled with a material having particular optical properties such as non-linearity with materials of the SiOx type (silica loaded with silicon nanocrystals) or of the polymer type.
- the material may also have emission properties and be SiOx type (Silicon nanocrystal-loaded silica) doped with Erbium ions or the III-V family (AsGa or InP).
- the material may also have modulation properties and be of the BST or PZT type (ferroelectric materials which possess piezoelectric properties).
- the slot can be filled by a non-linear material, a material with emission properties or a material with modulation properties.
- the slot 4 it is possible to fill the slot 4 with germanium or silica loaded with silicon nanocrystals and to use the metal elements 3a, 3b to apply a voltage to the material filling the slot to make it more or less transparent .
- This allows for example to form amplitude or phase modulation filters of the wave considered.
- FIG. 11 Another application may be the separation of TE and TM waves in two waveguides 1 a, 1 b.
- a device using the invention to achieve such function is illustrated at the figure 11 .
- Such a separation device comprises a first waveguide 1 coupled to a first slotted metal guide 2a.
- the overlap length L r1 of the first slotted metal guide 2a on the first waveguide 1a is an odd multiple of the coupling length, thereby allowing the TE component to be confined in the first slotted metal guide 2a.
- the waveguide 1a is continuous and the overlap length L r1 is equal to the length Lf of the first slotted metal guide 2a.
- the first slot guide 2a is coupled to a second slot guide 2b itself coupled to a second waveguide 1b.
- the overlap length L r2 of the second waveguide by the slot guide is preferably equal to an odd multiple of the coupling length Lc to allow the transfer of the TE component into the second waveguide 1b. .
- the electromagnetic wave can be brought into the coupling device by an optical fiber either by the network method, or by the typing method.
- the waveguide 1 has a plurality of ribs on its surface, each rib preferably being perpendicular to the longitudinal axis of the waveguide.
- the optical fiber is oriented in a direction close to normal to the plane containing the ribs, that is to say the plane of the guide.
- the waveguide 1 comprises, for example, a divergent or convergent end (inverted tap) abutting with the optical fiber in the plane of the guides.
- a divergent or convergent end inverted tap
- the latter is encapsulated or partially covered, before the formation of the slotted guide 2, by a dielectric material 8 of low refractive index with respect to the refractive index of the waveguide 1, this dielectric material 8 is preferably silicon oxide ( figure 14 ).
- Low index means a material whose refractive index is between 1 and 2.5. This encapsulation allows in particular to shift the two guides from one another and to participate in the formation of the slotted metal guide 2.
- the coupling device can advantageously be produced as illustrated in FIG. figure 12 from a substrate 5 of the SOI type (silicon 6 on insulator 7).
- the step of forming the waveguide 1 is performed by partial or total etching of the upper layer 6 of silicon.
- total etching is meant the etching of the upper silicon layer 6 to the insulating layer 7 to form the silicon waveguide 1.
- Partial etching makes it possible, for example, to form ribs for coupling to an optical fiber as described above.
- this layer will be germanium or silica loaded with nanocrystals.
- the cavities can then be made in this last layer and the slot will be automatically filled by the corresponding material.
- the slot guide 2 is made by the Damascene method, that is to say that the dielectric 8 encapsulating or partially covering the waveguide 1 is etched partially or totally above the waveguide 1 to make cavities of dimensions equal to the dimensions of the metal elements 3a, 3b and to define the slot 4 of the slot guide.
- the metal can then be deposited on the entire substrate before polishing comes, preferably, remove all the metal present outside said cavities 9a, 9b.
- the metal elements 3a, 3b are in contact with the waveguide 1.
- the method comprises an additional layer having particular optical properties, the latter may to be engraved to the dielectric 8 and the metal elements 3a, 3b are then in contact with the dielectric 8.
- the material in the slot that is to say separating the two elements 3a, 3b forming the slot metal guide 2 may be different from that which encapsulates the waveguide 1 or partially covers the waveguide 1.
- the material can also be removed after formation of the metal elements 3a, 3b to leave the slot free.
- the Damascene method has the advantage of allowing the production of a slot 4 between the two metallic elements 3a, 3b, preferably of copper and / or silver, the edges of which are more abrupt and less rough than those obtained by direct etching. metals.
- the metal used to form the metal elements 3a, 3b is a metal having a low refractive index. This improves the operation of the slotted metal guide by reducing the loss of dissipation that can be caused by the roughness of the slot. This method also allows the use of materials whose direct etching is not easily reproducible such as copper.
- the method comprises between the step of etching the cavities 9a, 9b and the cavity filling step 9a, 9b a chemical etching step at said cavities 9a, 9b to allow the thinning of the wall defining the dimensions of the slot.
- a step of selective etching of the material located between the two metallic elements is carried out in order to allow the filling of the slot by another material different from that encapsulating the waveguide 1.
- One of the applications of this embodiment is particle detection. These can be trapped in the vent slot, preferably by a microfluidic system, to modify the propagation constant of the electromagnetic wave in said slot guide and thus the coupling efficiency to the guide. wave. The variation of the efficiency then makes it possible to detect certain particles.
- a dielectric with a low refractive index for example silicon oxide.
- Such an index of refraction can be between 1 and 2.5
- the coupling device is preferably made based on non-contaminating metals (copper, aluminum, etc.) to be able to use the same manufacturing means as those used in the fields of microelectronics and photonics on silicon.
- the coupling device described above can serve as an elementary brick in an optical circuit and allows optical interconnections to be made at very small distances. It has the advantage of a very good efficiency and a high compactness.
- the coupling device to form an optical and electrical coupler of an object, for example a molecule preferably of nanometric dimensions.
- an object for example a molecule preferably of nanometric dimensions.
- a thin-film slot guide for example of the order of 50 nm thick, makes it possible to address objects of nanometric dimensions.
- Such a coupler makes it possible in particular to link the electrical transport properties of the object to its optical properties.
- Application examples can be molecular spectroscopy to study the electronic states of an unknown object. For a known object, it is possible to optically modulate the conductance of the object, and thus to produce a molecular transistor controlled by an optical gate.
- the invention may also be useful for coupling the luminescence of an object to a silicon waveguide.
- One solution to this approach is to combine an optical coupling as described using a waveguide, and a slot guide combined with an electrical coupling.
- an optical and electrical coupler comprises a coupling device as described above, according to its various embodiments and variants, and an electric coupling element provided with two electrodes arranged at the slot of the slot guide 2.
- the object is preferably in contact with at least one of the electrodes.
- the slot guide 2 is optically coupled to the waveguide 1.
- the object 11 may also be in contact with the two electrodes, in both cases the object in electrical contact with the electrode or electrodes may then be addressed electrically.
- the electrodes preferably comprise two microtips 10a, 10b, preferably metal, placed facing one another, one of the microtips 10a being oriented towards the other microtip 10b.
- the microtips are used to address objects of smaller dimensions than the slot. For objects larger than the slot (nanowires, graphene nanotubes, etc.) the electrodes may have any shape.
- the acute end of a microtip 10a, 10b is proximal to the sharp end of the other microtip.
- the object 11 may be in electrical contact with one of the microtips 10a, 10b, at its acute end, or be electrically clamped by the two microtips 10a, 10b ( Figures 17 and 18 ). Of more generally, the object 11 is in electrical contact with at least one of the electrodes.
- the electrodes are formed by the metallic elements 3a, 3b of the slotted guide 2, and each of the metal elements 3a, 3b comprises at the slot separating them a microtip, one of the microtips 10a, 10b being oriented towards the another microtip.
- the microtips 10a, 10b are useful for coupling nanoscale molecules.
- the two metal elements 3a, 3b may comprise two edges facing each other and delimiting the slot, a microtip may be made on one of the edges which locally forms a projection towards a substantially identical projection of the other edge.
- the microtips 10a, 10b are arranged in the slot, each of the metal elements 3a, 3b then comprises in the slot separating them a microtip 10a, 10b, one of the microtips being oriented towards the other microtip.
- the slot guide 2 makes it possible on the one hand to optically couple the wave to the object 11, and on the other hand to electrically couple the object 11, for example by connecting the two metal elements 3a, 3b to a measurement and / or polarization electronics.
- the metal elements 3a, 3b of the slot guide 2 are located between the waveguide 1 and the electrodes, preferably having microtips 10a, 10b.
- the electrodes are then distinct from the metal elements 3a, 3b but remain at the level, that is to say near the slot.
- Said electrodes may be between 0 nm and 500 nm of the metal elements 3 a, 3 b, and generally up to half the incident wavelength, and preferably at a minimum distance greater than the width of the slot.
- the electrodes are located in a plane shifted from the plane of the metal elements 3a, 3b, and are preferably arranged above the slot 4.
- the electrodes are distinct from the metal elements 3a, 3b.
- the electrodes are separated from the metallic elements 3a, 3b by a layer of a dielectric material, for example silicon oxide, of low index relative to the waveguide 1, typically the refractive index of the dielectric material is between 1 and 2.5.
- the second embodiment has the advantage of not interfering with the optical coupling of the waveguide 1 with the slot guide 2 with respect to the first embodiment of the coupler.
- the thickness of the electrodes of the second embodiment in a direction perpendicular to the plane of the waveguide may be between a few nanometers at a zone intended for the electrical coupling of objects of nanometric size (molecules), and a hundred or so nanometers at a contact recovery zone to facilitate said resumption of electrical contact.
- each electrode may comprise an electrical coupling zone (addressing the object) whose thickness is less than a contact recovery zone of the electrodes.
- the thickness of the electrodes is equal to the thickness of the metal elements 3a, 3b.
- a thin thickness at the electrodes makes it possible to contact an object of nanometric size (for example a molecule). For large objects such as nanowires, nanotubes, graphene, the more the contact at the coupling zone will be thick the better it will be.
- the coupler comprising the microtips 10a, 10b
- the latter are preferably located at the median of the slot, said median being perpendicular to the longitudinal axis of the slot. This allows in particular to reduce the surface of the electrodes contained in or near the slot to disturb the propagation of the light signal to a minimum.
- the spacing between the two electrodes is preferably less than 200 nm.
- the electrodes may be offset from each other, and may be spaced apart larger than the width of the slot.
- these can be obtained by forming electrodes in electrical contact separated by a relatively thin bridge (for example about ten nanometers thick, and about 50 nm x 100 nm side dimensions) . Then these electrodes can be polarized in current so as to break the bridge, and space the two electrodes by a nanoscale gap. It can also be envisaged to apply mechanical stresses to the bridge to break it and delimit the microtips. For spacings greater than 30nm, lithography / engraving techniques will be used.
- the microtips 10a, 10b and the metal elements 3a, 3b of the slot guide 2 are made of different materials to ensure good ohmic contact of the points with the object.
- the microtips are formed by metal multilayers such as for example Al or Au.
- the object 11 may be an object of nanometric size such as a nanotube, graphene, or a quantum dot whose growth and then deposition can be made so as to bring said box into contact with the electrodes.
- An electrical contact between the object and the electrodes can be obtained by electromigration when the object is a molecule, or one or more metal particles (gold balls for example).
- electrodes comprising microtips will preferably be used, and for larger objects, such as nanowires, carbon nanotubes or graphene, conventional electrodes may be used.
- the electrodes When used, the electrodes will then preferably be arranged so as not to impede the propagation of the light signal in the slot guide.
- the metal elements alone can also serve as electrodes.
- the coupler offers a high optical coupling efficiency towards a nano-sized object, because the wave confined in the slit guide slot has a concentration one hundred times higher than the concentration that can be found in the prior art. .
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optical Integrated Circuits (AREA)
Description
L'invention est relative à un dispositif de couplage d'une onde électromagnétique comportant :
- un guide d'onde,
- un guide métallique à fente.
- a waveguide,
- a slotted metal guide.
La taille des composants électroniques est en constante diminution, permettant l'augmentation de la densité d'intégration de ces composants sur une même puce.The size of the electronic components is constantly decreasing, allowing the increase of the integration density of these components on the same chip.
Dans le domaine de l'optoélectronique, il a été nécessaire de diminuer en conséquence la taille des guides d'onde pour accéder optiquement à ces composants avec une bonne efficacité. Sans précautions particulières, l'efficacité de couplage est sensiblement égale au rapport entre la surface du mode optique véhiculé par le guide d'onde et la surface caractéristique du dispositif à adresser.In the field of optoelectronics, it has been necessary to reduce the size of the waveguides accordingly to optically access these components with good efficiency. Without particular precautions, the coupling efficiency is substantially equal to the ratio between the optical mode surface carried by the waveguide and the characteristic surface of the device to be addressed.
La miniaturisation des circuits optiques a déjà conduit à une miniaturisation des guides optiques planaires, dont la section peut descendre jusqu'à des dimensions de l'ordre de 200nm par 400nm. Cependant, ces diminutions ne sont pas suffisantes lorsque l'on cherche à accéder, par exemple, à un nanofil de 50nm.The miniaturization of optical circuits has already led to a miniaturization of planar optical guides, whose section can go down to dimensions of the order of 200 nm by 400 nm. However, these decreases are not sufficient when trying to access, for example, a 50nm nanowire.
Le document
Un objet de l'invention vise à réaliser un couplage compact et efficace entre un guide d'onde et un guide métallique à fente.An object of the invention is to provide a compact and efficient coupling between a waveguide and a slot metal guide.
On tend vers cet objectif par les revendications annexées et plus particulièrement par le fait que le guide métallique à fente est formé par deux éléments métalliques coplanaires et espacés l'un de l'autre de sorte à délimiter la fente, et en ce que le guide métallique à fente est disposé dans un plan décalé par rapport au plan du guide d'onde et recouvre partiellement ledit guide d'onde, ledit guide d'onde et le guide à fente étant maintenus à distance l'un de l'autre par un diélectrique.This object is attained by the appended claims and more particularly by the fact that the slotted metal guide is formed by two coplanar metal elements spaced from one another so as to define the slot, and in that the guide slit metal is disposed in a plane offset from the plane of the waveguide and partially overlaps said waveguide, said waveguide and slot guide being kept at a distance from each other by a dielectric.
L'invention est aussi relative à un procédé de fabrication d'un dispositif de couplage caractérisé par les revendications 11-15.The invention also relates to a method of manufacturing a coupling device characterized by claims 11-15.
L'invention est aussi relative à un coupleur électrique et optique revendiqué d'un objet, ledit coupleur comporte un dispositif de couplage optique et un élément de couplage électrique muni de deux électrodes disposées au niveau de la fente du guide à fente, ledit objet étant en contact avec au moins une des électrodes.The invention also relates to a claimed optical and electrical coupler of an object, said coupler comprises an optical coupling device and an electrical coupling element provided with two electrodes arranged at the slot of the slot guide, said object being in contact with at least one of the electrodes.
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
- La
figure 1 illustre un dispositif de couplage selon l'art antérieur. - La
figure 2 illustre le dispositif de couplage de lafigure 1 selon une coupe A-A. - La
figure 3 illustre le dispositif de couplage de lafigure 1 selon une coupe C-C. - La
figure 4 illustre respectivement la propagation d'une composante TM et TE d'une onde électromagnétique dans un guide d'onde. - La
figure 5 illustre une vue de dessus d'un mode de réalisation selon l'invention. - La
figure 6 illustre une vue en coupe selon A-A de lafigure 5 . - La
figure 7 illustre un autre mode de réalisation d'un dispositif selon l'invention. - La
figure 8 illustre des courbes représentatives de l'évolution de l'indice effectif en fonction de la largeur d'un guide d'onde en silicium. - La
figure 9 illustre un autre mode de réalisation de l'invention. - La
figure 10 illustre une vue de côté du dispositif de lafigure 9 . - La
figure 11 illustre un autre mode de réalisation de l'invention. - Les
figures 12 à 16 illustrent un procédé de fabrication d'un dispositif selon l'invention. - Les
figures 17 à 19 illustrent deux modes de réalisation d'un coupleur optique et électrique d'un objet.
- The
figure 1 illustrates a coupling device according to the prior art. - The
figure 2 illustrates the coupling device of thefigure 1 according to a AA cut. - The
figure 3 illustrates the coupling device of thefigure 1 according to a CC section. - The
figure 4 illustrates respectively the propagation of a TM and TE component of an electromagnetic wave in a waveguide. - The
figure 5 illustrates a top view of an embodiment according to the invention. - The
figure 6 illustrates a sectional view according to AA of thefigure 5 . - The
figure 7 illustrates another embodiment of a device according to the invention. - The
figure 8 illustrates representative curves of the evolution of the effective index as a function of the width of a silicon waveguide. - The
figure 9 illustrates another embodiment of the invention. - The
figure 10 illustrates a side view of the device of thefigure 9 . - The
figure 11 illustrates another embodiment of the invention. - The
Figures 12 to 16 illustrate a method of manufacturing a device according to the invention. - The
Figures 17 to 19 illustrate two embodiments of an optical and electrical coupler of an object.
Comme illustré à la
Comme illustré aux
Le guide métallique à fente 2 est disposé dans un plan P2 décalé par rapport au plan P1 du guide d'onde 1 et recouvre partiellement ledit guide d'onde 1 (
Lorsqu'une onde électromagnétique se propage dans un guide, une partie de cette onde pénètre dans le milieu environnant, générant ainsi un champ dit évanescent. Cette longueur de pénétration est proportionnelle au rapport d'indices de réfraction du guide et de son milieu environnant. Grâce au couplage d'un guide d'onde 1 avec un guide métallique à fente 2 tel que décrit, le champ évanescent du guide d'onde peut être progressivement accumulé par le guide métallique à fente 2 quand les deux guides sont proches l'un de l'autre. Ce processus est également réciproque.When an electromagnetic wave propagates in a guide, a part of this wave penetrates into the surrounding medium, thus generating a so-called evanescent field. This length of penetration is proportional to the ratio of refractive index of the guide and its surrounding environment. By coupling a
Dans un mode de réalisation illustré aux
Selon une variante de réalisation illustrée à la
Selon un mode particulier de réalisation le champ électromagnétique dans le guide à fente étant transverse, seuls les modes propres du guide d'onde 1 polarisés TE sont couplés, c'est-à-dire que seule la composante TE se propage dans le guide à fente 2 tandis que la composante TM reste cantonnée au guide d'onde 1. Ainsi, le dispositif de couplage est aussi appelé coupleur co-directionnel.According to one particular embodiment, the electromagnetic field in the slotted guide being transverse, only the eigenmodes of the
Dans l'exemple de réalisation à base de guide d'onde 1 en silicium et de guide métallique à fente 2 en argent, le couplage est réalisé entre les modes fondamentaux (de plus haut indice effectif) TE des deux guides, ce mode couplé au guide métallique à fente 2 permet un confinement du couplage dans la fente dudit guide à fente 2. La densité de puissance obtenue dans le guide à fente 2 est alors exacerbée de l'ordre de 100.In the exemplary embodiment based on
L'utilisation des champs évanescents permet d'augmenter l'efficacité du couplage par rapport au couplage bout-à-bout de l'art antérieur. Le mécanisme de couplage entre le guide d'onde 1 et le guide métallique à fente 2 peut être illustré à l'aide d'équations obtenues dans une approche perturbative des équations de Maxwell, pour un système simplifié où les deux guides sont identiques. Ces équations seront suffisantes pour traduire la propagation de l'onde dans un système couplé et les paramètres qui influencent ce couplage. Une description approfondie est effectuée par A. Yariv dans « coupled mode theory for guided wave optics », IEEEJ. Quant. Elec. 9, 919, 1973.The use of evanescent fields makes it possible to increase the efficiency of the coupling with respect to the end-to-end coupling of the prior art. The coupling mechanism between the
Le guide d'onde 1 et le guide métallique à fente 2 peuvent être mono-mode ou multi-modes en fonction de la largeur et/ou de la hauteur du guide d'onde 1 et de la largeur et/ou de l'épaisseur (ou hauteur) des éléments métalliques 3a, 3b du guide métallique à fente 2. Il est aussi possible de jouer sur la largeur de la fente pour faire une sélection de mode(s) à coupler et former ainsi un filtre de mode(s). Selon un développement, un mode du guide d'onde 1 et un mode du guide métallique à fente 2 ont un même indice effectif et sont couplés. Un mode correspond à une configuration spatiale du champ électromagnétique induit par la propagation d'une onde électromagnétique dans le guide associé audit mode. Selon la répartition du champ électromagnétique, un mode donné voit un indice différent des matériaux constituant le guide et l'indice vu par chaque mode défini un indice effectif. Un indice effectif peut être défini comme le rapport de la longueur d'onde dans le vide sur la longueur d'onde dans le milieu à traverser.The
L'efficacité de couplage optimal (F) est définie comme étant la fraction de puissance transmise d'un premier guide vers un second guide au bout d'une distance caractéristique Lc aussi appelée longueur de couplage effectif:
- où, λ est la longueur d'onde d'opération (onde se déplaçant dans le dispositif de couplage),
- Δneff, L est la différence entre les indices effectifs des modes supportés par les guides en l'absence de couplage. Ces modes sont appelés modes locaux.
- Δneff, S : est la différence entre les indices effectifs des modes (appelés supermodes) supportés par la structure de couplage comprenant les deux guides juxtaposés (guide d'onde et guide métallique à fente). Ces deux supermodes sont par construction de symétrie opposée. On parle alors de supermodes symétrique et antisymétrique. Cette quantité physique est dépendante de l'intervalle Di qui sépare les deux guides. Cette distance Di conditionne la longueur de couplage Lc ainsi que le taux de puissance transférée.
- where, λ is the operating wavelength (wave moving in the coupling device),
- Δ n eff, L is the difference between the effective indices of the modes supported by the guides in the absence of coupling. These modes are called local modes.
- Δ n eff, S : is the difference between the effective mode indices (called supermodes) supported by the coupling structure comprising the two juxtaposed guides (waveguide and slot metal guide). These two supermodes are by construction of opposite symmetry. This is called symmetric and antisymmetric supermodes. This physical quantity is dependent on the interval Di which separates the two guides. This distance Di conditions the coupling length L c as well as the transferred power rate.
Le transfert de puissance d'un guide à l'autre est un processus harmonique et donc réversible. En considérant une puissance nominale P 0 injectée dans le guide d'onde 1, la puissance collectée ou transmise dans le guide métallique à fente 2 à la position z s'exprime de la façon suivante :
D'après la relation (3), le transfert de puissance du premier guide vers le second guide est optimal pour des multiples impairs de la longueur caractéristique de couplage Lc.According to relation (3), the power transfer from the first guide to the second guide is optimal for odd multiples of the coupling characteristic length L c .
L'efficacité du couplage peut être perfectionnée en fonction de la distance séparant le guide d'onde 1 et le guide métallique à fente 2, de leurs indices effectifs, de la longueur du guide métallique à fente 2 ou encore la longueur de recouvrement partielle entre les guides.The efficiency of the coupling can be improved as a function of the distance separating the
Ainsi, selon un premier perfectionnement, il est préférable d'utiliser deux guides 1, 2 dont les indices effectifs neff, des modes non couplés, sont sensiblement égaux de sorte que le terme F de l'équation (1) tende vers l'unité. De préférence, le rapport de l'indice effectif du guide d'onde 1 avec l'indice effectif du guide métallique à fente 2 est compris entre 0,8 et 1,2, et préférentiellement égal à 1. L'indice effectif d'un mode peut varier en fonction des dimensions (largeur et épaisseur) du guide considéré, une telle variation est décrite dans
Dans l'exemple, l'indice effectif des modes supportés par ces guides peut être calculé numériquement par un solveur de mode en utilisant la méthode FDTD (pour finite-difference frequency-domain en anglais). Dans cet exemple particulier, la géométrie, et donc l'indice effectif neff, du guide à fente 2 est fixée. Les dimensions du guide d'onde 1 en silicium vont être caractérisées en fixant, par exemple, sa hauteur, et en faisant varier sa largueur pour obtenir un indice effectif sensiblement égal à celui du guide métallique à fente 2. L'indice effectif du guide métallique à fente 2 dépend de la largeur l1 de la fente 4, de la hauteur h1 de la fente 4 (
Dans cet exemple particulier, la largeur du guide d'onde en silicium 1 dépend donc de l'indice effectif du guide métallique à fente 2. Cette largeur du guide silicium 1 sera différente si l'on change le métal du guide à fente ou si les dimensions de la fente 4 varient.In this particular example, the width of the
Selon un deuxième perfectionnement, l'intervalle Di séparant les deux guides 1, 2 est ajusté pour optimiser la longueur et l'efficacité de couplage. Dans le cas particulier où les indices effectifs des deux guides lorsque ces derniers ne sont pas couplés sont rigoureusement identiques, l'équation (1) est égale à un et l'intervalle Di influe uniquement sur la longueur de couplage Lc et donc sur la compacité du dispositif.According to a second improvement, the interval Di separating the two
Selon l'exemple particulier utilisant un guide 1 ruban en silicium et un guide 2 en argent à fente, il a été réalisé quatre dispositifs de test chacun associé à un intervalle Di de séparation de 250nm, 150nm, 100nm, et 50nm. Le graphique de la
En effet, au point de croisement de la courbe Ag et Si, la constante de couplage est d'autant plus grande que l'écart d'indice effectif entre les supermodes pair et impair est important, en accord avec la relation précédente (1). Un intervalle Di faible, équivalent à un écart d'indice effectif des supermodes grand, est donc préférable pour augmenter l'efficacité du couplage. Or, plus l'écart d'indice effectif est important, plus la force ou puissance de couplage augmente. Un intervalle faible est donc préférable pour augmenter l'efficacité du couplage.Indeed, at the point of intersection of the Ag and Si curve, the coupling constant is all the greater as the effective index difference between the even and odd supermodes is important, in agreement with the relation previous (1). A low interval Di, equivalent to an effective index difference of the large supermodes, is therefore preferable for increasing the efficiency of the coupling. However, the greater the effective index difference, the greater the strength or coupling power increases. A small interval is therefore preferable to increase the efficiency of the coupling.
De préférence, l'intervalle Di séparant les deux guides a un minimum de 10nm et un maximum de l'ordre de la longueur d'onde de travail ou d'opération, c'est-à-dire fonction de la longueur de l'onde que l'on cherche à coupler. En effet, sans décalage, l'intervalle de séparation pourrait être nul et les guides en contact. Un tel contact entre les deux guides génèrerait une diffraction de l'onde électromagnétique, et donc une perte de l'efficacité du couplage. De plus, la mise en contact du guide métallique à fente 2 avec le guide d'onde 1 en silicium 1 risquerait de contaminer les propriétés optiques par migration des espèces métalliques dans le guide en silicium.Preferably, the interval Di separating the two guides has a minimum of 10 nm and a maximum of the order of the working or operating wavelength, that is to say function of the length of the wavelength. wave that one seeks to couple. Indeed, without offset, the separation interval could be zero and the guides in contact. Such contact between the two guides would generate a diffraction of the electromagnetic wave, and thus a loss of coupling efficiency. In addition, contacting the
Selon un troisième perfectionnement, la longueur de recouvrement partiel Lr du guide d'onde 1 par le guide métallique à fente 2 est un multiple impair d'une longueur de couplage effectif Lc (équation (2)) entre les deux guides 1, 2. La longueur de couplage effectif Lc est définie comme étant la longueur la plus courte pour laquelle la puissance injectée dans le guide d'onde 1 est maximale dans le guide métallique à fente 2. Ce transfert de puissance dans le guide métallique à fente 2 est périodique, ladite période étant de Lb =2Lc, Lb étant aussi appelée longueur de battement.According to a third improvement, the partial overlap length L r of the
Ainsi, la longueur de recouvrement sera de préférence égale à la longueur de couplage ou plus généralement à un multiple impair (2n+1)*Lc pour transmettre l'onde électromagnétique d'un guide à l'autre, avec n un entier positif ou nul.Thus, the overlap length will preferably be equal to the coupling length or more generally to an odd multiple (2n + 1) * Lc for transmitting the electromagnetic wave from one guide to the other, with n a positive integer or no.
L'utilisation d'un guide métallique à fente 2 dont la longueur totale est égale à la longueur de recouvrement qui est un multiple impair de la longueur de couplage Lc permet avantageusement de confiner la composante TE dans le guide métallique à fente 2. Dès lors, la composante TE se retrouve dans le guide à fente 2 et la composante TM continue de se propager dans le guide d'onde 1.The use of a slotted
La longueur de couplage et l'efficacité du couplage peuvent aussi être optimisées par une étude paramétrique réalisée à l'aide de simulations numériques en utilisant par exemple la méthode FDTD (finite-difference frequency-domain en anglais). Cette méthode numérique est utilisée pour simuler la propagation des ondes électromagnétique dans les structures. Le mode opératoire de l'exemple utilise un faisceau gaussien généré dans le guide ruban 1 en silicium et se propageant selon k. Là longueur d'onde de travail a été choisie autour de 1550nm. Selon l'exemple particulier du guide à fente 2 en argent et du guide silicium 1, la longueur de couplage Lc pour laquelle 75% de puissance est transmise au guide métallique à fente 2 est égale à 0,9µm. Elle traduit une grande différence d'indice des deux supermodes, c'est-à-dire une grande force de couplage qui en conséquence permet une forte compacité du dispositif. Cette caractéristique signifie aussi que le déphasage entre les deux supermodes, autrement dit le couplage, sera donc peu sensible à la longueur d'onde et aux dimensions géométriques des guides (grande tolérance de fabrication).The coupling length and coupling efficiency can also be optimized by a parametric study performed using numerical simulations using for example the finite-difference frequency-domain (FDTD) method. This numerical method is used to simulate the propagation of electromagnetic waves in structures. The procedure of the example uses a Gaussian beam generated in the
Bien entendu, les différents perfectionnements cités ci-dessus peuvent être utilisés en combinaison, leur synergie permet d'obtenir une efficacité optimale du dispositif de couplageOf course, the various improvements mentioned above can be used in combination, their synergy makes it possible to obtain optimum efficiency of the coupling device
Selon un mode de réalisation particulier illustré aux
Lorsque le guide d'onde est formé par deux éléments 1 a, 1b, les deux portions proximales peuvent optionnellement être amincies pour réduire la section du guide d'onde de sorte que le signal non couplé au guide métallique à fente 2 ne soit pas réfléchi par le bout du guide d'onde.When the waveguide is formed by two
Le dispositif de couplage, et ses modes de réalisation, peut, en plus de permettre le couplage des deux guides, être utilisé pour réaliser des composants optoélectroniques (détecteurs, émetteurs, composants d'optiques non linéaires) en fonction de la nature du milieu constituant la fente du guide métallique à fente 2. En effet, un tel couplage permet d'exacerber l'interaction lumière-matière par le confinement dans la fente pour rendre les dispositifs plus performants (sensibilité, efficacité, non-linéarité). L'utilisation d'un guide métallique à fente 2 permet selon les applications d'utiliser les deux éléments métalliques 3a, 3b le constituant comme des électrodes pour, par exemple, détecter ou appliquer une différence de tension aux bornes de ladite fente. L'application d'une tension permet, par exemple, de moduler l'indice du matériau (par exemple SiOx) contenu dans la fente, c'est-à-dire entre les deux éléments métalliques 3a, 3b coplanaires.The coupling device, and its embodiments, may, in addition to allowing the coupling of the two guides, be used to produce optoelectronic components (detectors, emitters, nonlinear optical components) depending on the nature of the medium constituting In fact, such a coupling makes it possible to exacerbate the light-material interaction by confinement in the slot in order to make the devices more efficient (sensitivity, efficiency, non-linearity). The use of a
Une autre application peut être la détection ou l'émission stimulée d'objets sub-microniques tels que des nano-fils, nano-antennes, boîtes quantiques, etc. En effet, les composantes TE de l'onde électromagnétique confinées dans le guide à fente 2 peuvent converger plus facilement vers un objet de quelques nanomètres placé dans ladite fente. Comme précédemment, les éléments métalliques 3a, 3b du guide à fente 2 peuvent former des électrodes aptes à appliquer un stimulus ou à mesurer des valeurs.Another application may be the detection or the stimulated emission of sub-micronic objects such as nano-wires, nano-antennas, quantum boxes, etc. Indeed, TE components of the electromagnetic wave confined in the
De manière générale, fente peut aussi être remplie par un matériau présentant des propriété optiques particulières telles que la non linéarité avec des matériaux du type SiOx (silice chargée en nanocristaux de silicium) ou du type polymère. Le matériau peut aussi avoir des propriétés d'émission et être de type SiOx (silice chargée en nanocristaux de silicium) dopé avec des ions Erbium ou de la famille III-V (AsGa ou InP). Le matériau peut aussi avoir des propriétés de modulation et être du type BST ou PZT (matériaux ferroélectriques qui possèdent des propriétés piezo-électriques). Autrement dit, la fente peut être comblée par un matériau non linéaire, un matériau à propriétés d'émission ou un matériau à propriétés de modulation.In general, the slot may also be filled with a material having particular optical properties such as non-linearity with materials of the SiOx type (silica loaded with silicon nanocrystals) or of the polymer type. The material may also have emission properties and be SiOx type (Silicon nanocrystal-loaded silica) doped with Erbium ions or the III-V family (AsGa or InP). The material may also have modulation properties and be of the BST or PZT type (ferroelectric materials which possess piezoelectric properties). In other words, the slot can be filled by a non-linear material, a material with emission properties or a material with modulation properties.
Dans une variante, il est possible de remplir la fente 4 avec du germanium ou de la silice chargée de nanocristaux de silicium et de se servir des éléments métalliques 3a, 3b pour appliquer une tension au matériau comblant la fente pour le rendre plus ou moins transparent. Ceci permet par exemple de former des filtres de modulation d'amplitude ou de phase de l'onde considérée.Alternatively, it is possible to fill the
Une autre application peut être la séparation des ondes TE et TM dans deux guides d'onde 1 a, 1 b. Un dispositif utilisant l'invention pour réaliser une telle fonction est illustré à la
A titre d'exemple de réalisation, l'onde électromagnétique peut être amenée dans le dispositif de couplage par une fibre optique soit par la méthode réseau, soit par la méthode taper.As an exemplary embodiment, the electromagnetic wave can be brought into the coupling device by an optical fiber either by the network method, or by the typing method.
Dans la méthode réseau, le guide d'onde 1 comporte une pluralité de nervures à sa surface, chaque nervure étant, de préférence, perpendiculaire à l'axe longitudinal du guide d'onde. La fibre optique est orientée dans une direction proche de la normale au plan contenant les nervures, c'est-à-dire au plan du guide.In the array method, the
Dans la méthode « taper » le guide d'onde 1 comporte, par exemple, une extrémité divergente ou convergente (taper inversé) mise en aboutement avec la fibre optique dans le plan des guides. Une telle réalisation est décrite dans le document
Un procédé de réalisation d'un dispositif de couplage illustré aux
- former un guide d'onde 1 (
figures 12 et 13 ), - former un guide métallique à fente 2 (
figures 15 et 16 ) dans un plan décalé par rapport au plan du guided'onde 1 de sorte que le guide métallique à fente recouvre partiellement le guided'onde 1 et que la fente 4 soit délimitée par deux éléments métalliques 3a, 3b coplanaires. De préférence, la fente 4 du guide à fente 2 est orientée selon un axe longitudinal A1 du guide d'onde. Comme indiqué précédemment, le décalage peut être réalisé par l'intermédiaire d'un matériau diélectrique.
- form a waveguide 1 (
Figures 12 and 13 ) - form a slotted metal guide 2 (
Figures 15 and 16 ) in a plane offset from the plane of thewaveguide 1 so that the slotted metal guide partially covers thewaveguide 1 and theslot 4 is delimited by two 3a, 3b coplanar. Preferably, themetal elements slot 4 of theslot guide 2 is oriented along a longitudinal axis A1 of the waveguide. As indicated above, the offset can be achieved via a dielectric material.
Selon un développement, après formation du guide d'onde 1, ce dernier est encapsulé ou recouvert en partie, avant la formation du guide à fente 2, par un matériau diélectrique 8 de faible indice de réfraction par rapport à l'indice de réfraction du guide d'onde 1, ce matériau diélectrique 8 est de préférence de l'oxyde de silicium (
De préférence, le dispositif de couplage peut être avantageusement réalisé comme illustré à la
Selon une variante, la formation du guide métallique à fente 2 est réalisée par les étapes successives suivantes :
- graver deux cavités 9a, 9b dans le matériau diélectrique 8 (
figure 15 ) encapsulant ou recouvrant en partie le guided'onde 1, à ce stade, les deux cavités 9a, 9b sont séparées par une paroi délimitant la largeur maximum et la hauteur maximum de la fente, - remplir les deux cavités par du métal, de préférence de l'argent ou du cuivre (
figure 16 ), l'épaisseur de métal déposée définissant la hauteur de la fente.
- to engrave two
9a, 9b in the dielectric material 8 (cavities figure 15 encapsulating or partially covering thewaveguide 1, at this stage, the two 9a, 9b are separated by a wall delimiting the maximum width and the maximum height of the slot,cavities - fill the two cavities with metal, preferably silver or copper (
figure 16 ), the deposited metal thickness defining the height of the slot.
Il est aussi possible d'encapsuler le guide d'onde 1 puis de réaliser sur l'encapsulation une couche ayant des propriétés optiques particulières tel que défini précédemment (émission, modulation, non-linéarité). De préférence, cette couche sera du germanium ou de la silice chargée en nanocristaux. Les cavités pourront alors être réalisées dans cette dernière couche et la fente sera automatiquement comblée par le matériau correspondant.It is also possible to encapsulate the
De préférence, le guide à fente 2 est réalisé par la méthode Damascène, c'est-à-dire que le diélectrique 8 encapsulant ou recouvrant en partie le guide d'onde 1 est gravé partiellement ou totalement au-dessus du guide d'onde 1 pour réaliser des cavités de dimensions égales aux dimensions des éléments métalliques 3a, 3b et pour délimiter la fente 4 du guide à fente. Le métal peut ensuite être déposé sur tout le substrat avant qu'un polissage ne vienne, de préférence, retirer tout le métal présent en dehors desdites cavités 9a, 9b. Dans le cas où il y a gravure totale, les éléments métalliques 3a, 3b se retrouvent en contact avec le guide d'onde 1. Dans le cas particulier précédemment décrit où le procédé comporte une couche supplémentaire ayant des propriétés optiques particulières, cette dernière peut être gravée jusqu'au diélectrique 8 et les élément métalliques 3a, 3b sont alors en contact avec le diélectrique 8.Preferably, the
Ainsi, le matériau dans la fente, c'est-à-dire séparant les deux éléments 3a, 3b formant le guide métallique à fente 2 peut être différent de celui qui encapsule le guide d'onde 1 ou recouvre partiellement le guide d'onde 1. Le matériau peut aussi être retiré après formation des éléments métalliques 3a, 3b pour laisser libre la fente.Thus, the material in the slot, that is to say separating the two
La méthode Damascène présente l'avantage de permettre la réalisation d'une fente 4 entre les deux éléments métalliques 3a, 3b, de préférence en cuivre et/ou argent, dont les bords sont plus abrupts et moins rugueux que ceux obtenus par une gravure directe des métaux. De préférence, le métal utilisé pour former les éléments métalliques 3a, 3b est un métal ayant un faible indice de réfraction. Ceci permet d'améliorer le fonctionnement du guide métallique à fente en diminuant les pertes de dissipation pouvant être causées par la rugosité de la fente. Cette méthode permet aussi l'utilisation de matériaux dont la gravure directe n'est pas facilement reproductible comme par exemple le cuivre.The Damascene method has the advantage of allowing the production of a
Selon un mode de réalisation, le procédé comporte entre l'étape de gravure des cavités 9a, 9b et l'étape de remplissage des cavités 9a, 9b une étape d'attaque chimique au niveau desdites cavités 9a, 9b pour permettre l'amincissement de la paroi définissant les dimensions de la fente.According to one embodiment, the method comprises between the step of etching the
Il est ainsi possible de réaliser une fente dont la largeur peut être comprise entre 10nm et 100nm grâce à une lithographie optique (DUV).It is thus possible to make a slot whose width can be between 10nm and 100nm thanks to optical lithography (DUV).
Selon un mode de réalisation particulier, après l'étape de remplissage des cavités pour former le guide à fente, une étape d'attaque chimique sélective du matériau situé entre les deux éléments métalliques est réalisée afin de permettre le remplissage de la fente par un autre matériau différent de celui encapsulant le guide d'onde 1.According to a particular embodiment, after the step of filling the cavities to form the slotted guide, a step of selective etching of the material located between the two metallic elements is carried out in order to allow the filling of the slot by another material different from that encapsulating the
Une des applications de ce mode de réalisation est la détection de particules. Ces dernières peuvent être piégées dans la fente mise à l'air, de préférence par un système micro-fluidique, pour modifier la constante de propagation de l'onde électromagnétique dans ledit guide à fente et ainsi l'efficacité du couplage au guide d'onde. La variation de l'efficacité permet alors de détecter certaines particules.One of the applications of this embodiment is particle detection. These can be trapped in the vent slot, preferably by a microfluidic system, to modify the propagation constant of the electromagnetic wave in said slot guide and thus the coupling efficiency to the guide. wave. The variation of the efficiency then makes it possible to detect certain particles.
Afin de protéger le guide à fente 2, il est possible de l'encapsuler par un diélectrique de faible indice de réfraction, par exemple de l'oxyde de silicium. Un tel indice de réfraction peut être compris entre 1 et 2,5In order to protect the
Le dispositif de couplage est, de préférence, réalisé à base de métaux non contaminants (cuivre, aluminium, etc.) pour pouvoir utiliser les mêmes moyens de fabrication que ceux utilisés dans les domaines de la microélectronique et la photonique sur silicium.The coupling device is preferably made based on non-contaminating metals (copper, aluminum, etc.) to be able to use the same manufacturing means as those used in the fields of microelectronics and photonics on silicon.
Le dispositif de couplage décrit ci-dessus peut servir de brique élémentaire dans un circuit optique et permet de réaliser des interconnexions optiques à des distances très faibles. Il présente l'avantage d'une très bonne efficacité et d'une compacité élevée.The coupling device described above can serve as an elementary brick in an optical circuit and allows optical interconnections to be made at very small distances. It has the advantage of a very good efficiency and a high compactness.
Selon une approche, on cherchera à utiliser le dispositif de couplage pour former un coupleur optique et électrique d'un objet, par exemple une molécule de préférence de dimensions nanométriques. En effet, l'utilisation d'un guide à fente en couche mince, par exemple de l'ordre de 50nm d'épaisseur permet d'adresser des objets de dimensions nanométriques. Un tel coupleur permet notamment de relier les propriétés de transport électrique de l'objet à ses propriétés optiques. Des exemples d'application peuvent être la spectroscopie moléculaire pour étudier les états électroniques d'un objet inconnu. Pour un objet connu, il est possible de moduler par voie optique la conductance de l'objet, et de réaliser ainsi un transistor moléculaire contrôlé par une grille optique. L'invention peut aussi être utile pour coupler la luminescence d'un objet vers un guide d'onde silicium.According to one approach, it will be sought to use the coupling device to form an optical and electrical coupler of an object, for example a molecule preferably of nanometric dimensions. Indeed, the use of a thin-film slot guide, for example of the order of 50 nm thick, makes it possible to address objects of nanometric dimensions. Such a coupler makes it possible in particular to link the electrical transport properties of the object to its optical properties. Application examples can be molecular spectroscopy to study the electronic states of an unknown object. For a known object, it is possible to optically modulate the conductance of the object, and thus to produce a molecular transistor controlled by an optical gate. The invention may also be useful for coupling the luminescence of an object to a silicon waveguide.
Une solution à cette approche est de combiner un couplage optique tel que décrit en utilisant un guide d'onde, et un guide à fente combiné à un couplage électrique.One solution to this approach is to combine an optical coupling as described using a waveguide, and a slot guide combined with an electrical coupling.
Comme illustré aux
Les électrodes comportent, de préférence, deux micropointes 10a, 10b, de préférence métalliques, placées en regard l'une de l'autre, l'une des micropointes 10a étant orientée vers l'autre micropointe 10b. Les micropointes permettent d'adresser des objets de dimensions inférieures à la fente. Pour des objets plus grands que la fente (nanofils, nanotubes graphène, etc.) les électrodes pourront avoir une forme quelconque.The electrodes preferably comprise two
En fait, le bout aigu d'une micropointe 10a, 10b est proximal au bout aigu de l'autre micropointe. L'objet 11 peut être en contact électrique avec l'une des micropointes 10a, 10b, au niveau de son bout aigu, ou être enserré électriquement par les deux micropointes 10a, 10b (
Selon un premier mode de réalisation du coupleur illustré à la
En fait, les deux élément métalliques 3a, 3b peuvent comporter deux bords se faisant face et délimitant la fente, une micropointe peut être réalisée sur un des bords qui forme localement une saillie en direction d'une saillie sensiblement identique de l'autre bord. Autrement dit, les micropointes 10a, 10b sont disposées dans la fente, chacun des éléments métalliques 3a, 3b comporte alors dans la fente les séparant une micropointe 10a, 10b, l'une des micropointes étant orientée vers l'autre micropointe. Dans ce cas, le guide à fente 2 permet d'une part de coupler optiquement l'onde à l'objet 11, et d'autre part de coupler électriquement l'objet 11, par exemple en reliant les deux éléments métalliques 3a, 3b à une électronique de mesure et/ou de polarisation.In fact, the two
Selon un second mode de réalisation illustré aux
L'épaisseur des électrodes du second mode de réalisation dans une direction perpendiculaire au plan du guide d'onde peut être comprise entre quelques nanomètres au niveau d'une zone destinée au couplage électrique d'objets de taille nanométrique (molécules), et une centaine de nanomètres au niveau d'une zone de reprise de contacts pour faciliter ladite reprise de contact électrique. Autrement dit, chaque électrode peut comporter une zone de couplage électrique (adressant l'objet) dont l'épaisseur est inférieure à une zone de reprise de contact des électrodes. Bien entendu, dans le premier mode de réalisation du coupleur, l'épaisseur des électrodes est égale à l'épaisseur des éléments métalliques 3a, 3b. En fait, une fine épaisseur au niveau des électrodes permet de contacter un objet de taille nanométrique (par exemple une molécule). Pour des grands objets comme des nanofils, nanotubes, graphène, plus le contact au niveau de la zone de couplage sera épais plus il sera meilleur.The thickness of the electrodes of the second embodiment in a direction perpendicular to the plane of the waveguide may be between a few nanometers at a zone intended for the electrical coupling of objects of nanometric size (molecules), and a hundred or so nanometers at a contact recovery zone to facilitate said resumption of electrical contact. In other words, each electrode may comprise an electrical coupling zone (addressing the object) whose thickness is less than a contact recovery zone of the electrodes. Of course, in the first embodiment of the coupler, the thickness of the electrodes is equal to the thickness of the
Dans les deux modes de réalisation du coupleur comportant les micropointes 10a, 10b, ces dernières sont, de préférence, situées au niveau de la médiane de la fente, ladite médiane étant perpendiculaire à l'axe longitudinal de la fente. Ceci permet notamment de diminuer la surface des électrodes contenues dans, ou à proximité de la fente pour perturber au minimum la propagation du signal lumineux. L'espacement entre les deux électrodes (par exemple via les micropointes) est, de préférence, inférieure à 200nm. Pour des objets plus grands que la fente, les électrodes peuvent être décalées l'une de l'autre, et peuvent être espacées d'une dimension plus grande que celle de la largeur de la fente.In both embodiments of the coupler comprising the
Afin de réaliser un espacement entre les micropointes inférieur à 30nm, ces dernières peuvent être obtenues en formant des électrodes en contact électrique séparées par un pont relativement fin (par exemple une dizaine de nanomètres d'épaisseur, et d'environ 50nmx100nm de dimensions latérales). Ensuite ces électrodes peuvent être polarisées en courant de sorte à casser le pont, et espacer les deux électrodes par un gap nanométrique. Il peut aussi être envisagé d'appliquer des contraintes mécaniques au pont pour le rompre et délimiter les micropointes. Pour des espacement supérieurs à 30nm, il sera utilisé des techniques de lithographie/gravure.In order to achieve a spacing between the microtips of less than 30 nm, these can be obtained by forming electrodes in electrical contact separated by a relatively thin bridge (for example about ten nanometers thick, and about 50 nm x 100 nm side dimensions) . Then these electrodes can be polarized in current so as to break the bridge, and space the two electrodes by a nanoscale gap. It can also be envisaged to apply mechanical stresses to the bridge to break it and delimit the microtips. For spacings greater than 30nm, lithography / engraving techniques will be used.
De préférence, les micropointes 10a, 10b et les éléments métalliques 3a, 3b du guide à fente 2 sont réalisés dans des matériaux différentes pour assurer un bon contact ohmique des pointes avec l'objet. En général, les micropointes sont formées par des multicouches métalliques comme par exemple l'Al ou l'Au.Preferably, the
L'objet 11 peut être un objet de taille nanométrique comme un nanotube, du graphène, ou une boîte quantique dont la croissance puis le dépôt peuvent être réalisés de sorte à mettre en contact ladite boîte avec les électrodes.The
Un contact électrique entre l'objet et les électrodes peut être obtenu par électromigration lorsque l'objet est une molécule, ou une ou des particules métalliques (billes d'or par exemple).An electrical contact between the object and the electrodes can be obtained by electromigration when the object is a molecule, or one or more metal particles (gold balls for example).
Pour résumer, si l'objet est de taille nanométrique comme par exemple une molécule, on utilisera de préférence des électrodes comportant des micropointes, et pour des objets plus grands, comme les nanofils, nanotubes de carbone ou de graphène, des électrodes classiques pourront être utilisées, les électrodes seront alors de préférence agencées pour ne pas gêner la propagation du signal lumineux dans le guide à fente. Les éléments métalliques seuls pourront aussi faire office d'électrodes.To summarize, if the object is of nanometric size, for example a molecule, electrodes comprising microtips will preferably be used, and for larger objects, such as nanowires, carbon nanotubes or graphene, conventional electrodes may be used. When used, the electrodes will then preferably be arranged so as not to impede the propagation of the light signal in the slot guide. The metal elements alone can also serve as electrodes.
Le coupleur offre une forte efficacité de couplage optique vers un objet de taille nanométrique, en effet, l'onde confinée dans la fente du guide à fente a une concentration cent fois supérieure à la concentration que l'on peut trouver dans l'art antérieur.The coupler offers a high optical coupling efficiency towards a nano-sized object, because the wave confined in the slit guide slot has a concentration one hundred times higher than the concentration that can be found in the prior art. .
Claims (18)
- Device for co-directional coupling an electromagnetic wave including:- a waveguide (1),- a slit metal guide (2),the slit metal guide (2) being formed by two metal elements (3a, 3b) which are coplanar and spaced out from one another so as to delimit the slit, and the slit metal guide (2) being arranged in a plane (P2) offset from the plane (P1) of the waveguide (1) and partially covering said waveguide (1), said waveguide (1) and the slit guide (2) being maintained at a distance from one another by a dielectric.
- Device according to claim 1, characterized in that the waveguide (1) and the slit metal guide (2) are separated by an interval (Di).
- Device according to anyone of the claims 1 and 2, wherein characterized in that the waveguide (1) and the slit metal guide (2) have effective indices whose ratio lies between 0.8 and 1.2.
- Device according to anyone of the claims 1 to 3, characterized in that the partial covering length (Lr) of the waveguide (1) by the slit metal guide (2) is an odd multiple of a effective coupling length (Lc) between the two guides.
- Device according to anyone of the claims 1 to 4, characterized in that, the waveguide being formed by two elements (1 a, 1 b), said slit metal guide (2) is arranged so as to partially cover two proximal portions of said elements (1 a, 1 b).
- Device according to claim 5, characterized in that the partial covering length (Lr1, Lr2) of the waveguide by the slit metal guide (2) at each portion is an odd multiple of a effective coupling length (Lc).
- Device according to anyone of the claims 1 to 6, characterized in the metal elements (3a, 3b) form electrodes.
- Device according to claim 7, characterized in that the slit (4) is filled with germanium.
- Device according to claim 7, characterized in that the slit is filled with a nonlinear material or a material with emission properties or a material of modulation properties.
- Device according to claim 7, characterized in that each of the metal elements (3a, 3b) comprises at the slit a microtip, one of the microtips being oriented towards the other microtip.
- Method for manufacturing a coupling device between a waveguide (1) and a slit metal guide (2), characterized in that it comprises on a substrate (5) the following successive steps:- forming the waveguide (1),- forming a dielectric material layer (8),- forming the slit metal guide (2) so as to be co-directional with the waveguide (1) in a plane offset from the plane of the waveguide (1) so that the slit (4) is delimited by two coplanar metal elements (3a, 3b) and the slit metal guide (2) partially covers the waveguide (1), the waveguide (1) and the slit metal guide (2) being separated from each other by the dielectric material layer (8).
- Method according to claim 11, characterized in that the waveguide (1) is encapsulated, or partly covered, by a dielectric material (8) whose refractive index lies between 1 and 2.5 before the formation of the slit guide (2).
- Method according to anyone of the claims 11 and 12, characterized in that, as the substrate (5) is a substrate provided with a silicon (6) on insulator layer (7), the waveguide (1) is a silicon guide delimited by etching the silicon layer (6) down to the insulating material layer (7).
- Method according to claim 12, characterized in that the formation of the slit metal guide (2) is carried out by the following successive steps:- etching two cavities (9a, 9b) into the dielectric material (8) encapsulating or partly covering the waveguide (1),- filling the two cavities (9a, 9b) with metal.
- Method according to the claim 14, characterized in that, between the step of etching the cavities (9a, 9b) and the step of filling the cavities (9a, 9b), it comprises a chemical etching step at said cavities (9a, 9b).
- Electric and optical coupler of an object, characterized in that it comprises coupler comprises a coupling device according to claim 1, and an electric coupling element provided with two electrodes arranged at the slit of the slit guide (2), said object being in contact with at least one of the electrodes.
- Coupler according to claim 16, characterized in that the electrodes are formed by the metal elements (3a, 3b) of the slit guide (2), and in that each metal element (3a, 3b) comprises in the slit thereb0etween a microtip (10a, 10b), one of the microtips (10a, 10b) being oriented towards the other microtip (10a, 10b).
- Coupler according to claim 16, characterized in that the metal elements (3a, 3b) of the slit guide are located between the waveguide (1) and the electrodes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0905965A FR2953607B1 (en) | 2009-12-09 | 2009-12-09 | DEVICE FOR COUPLING AN ELECTROMAGNETIC WAVE BETWEEN A WAVEGUIDE AND A SLOTTED METAL GUIDE, METHOD OF MANUFACTURING THE SAME |
PCT/FR2010/000817 WO2011070249A1 (en) | 2009-12-09 | 2010-12-07 | Device for coupling an electromagnetic wave between a wave guide and a grooved metal guide, method for manufacturing said device, and optical electric coupler for an object using the optical coupling device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2510391A1 EP2510391A1 (en) | 2012-10-17 |
EP2510391B1 true EP2510391B1 (en) | 2016-07-06 |
Family
ID=42245998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10799076.4A Not-in-force EP2510391B1 (en) | 2009-12-09 | 2010-12-07 | Device for coupling an electromagnetic wave between a wave guide and a grooved metal guide, method for manufacturing said device, and optical electric coupler for an object using the optical coupling device |
Country Status (4)
Country | Link |
---|---|
US (1) | US8958670B2 (en) |
EP (1) | EP2510391B1 (en) |
FR (1) | FR2953607B1 (en) |
WO (1) | WO2011070249A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130031597A (en) * | 2011-09-21 | 2013-03-29 | 한국전자통신연구원 | Polarizer |
FR3040500A1 (en) * | 2015-08-31 | 2017-03-03 | Commissariat Energie Atomique | RAMAN DIFFUSED DETECTION DEVICE WITH SURFACE AMPLIFIED |
JP6977669B2 (en) * | 2018-06-06 | 2021-12-08 | 日本電信電話株式会社 | Optical module |
US10262984B1 (en) | 2018-07-05 | 2019-04-16 | Stmicroelectronics S.R.L. | Optical integrated circuit systems, devices, and methods of fabrication |
WO2020180630A1 (en) | 2019-03-01 | 2020-09-10 | California Institute Of Technology | Waveguide integrated plasmon assisted field emission detector |
CN112255726B (en) * | 2020-11-17 | 2025-02-11 | 中国科学院上海微系统与信息技术研究所 | A micro-nanostructure sensitive to laser beams in a specific direction |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8718060D0 (en) * | 1987-07-30 | 1987-09-03 | Univ London | Optical fibre components |
JPH1090546A (en) * | 1996-09-17 | 1998-04-10 | Toyota Motor Corp | Manufacturing method of planar waveguide and planar waveguide |
WO1998049587A1 (en) * | 1997-05-01 | 1998-11-05 | Trustees Of The Stevens Institute Of Technology | Method and apparatus for modulation of guided plasmons |
JP3513448B2 (en) * | 1999-11-11 | 2004-03-31 | キヤノン株式会社 | Optical probe |
US6897498B2 (en) * | 2003-03-31 | 2005-05-24 | Sioptical, Inc. | Polycrystalline germanium-based waveguide detector integrated on a thin silicon-on-insulator (SOI) platform |
US7454095B2 (en) | 2004-04-27 | 2008-11-18 | California Institute Of Technology | Integrated plasmon and dielectric waveguides |
US20080225918A1 (en) * | 2007-03-14 | 2008-09-18 | Martin Achtenhagen | Index guided semiconductor laser with loss-coupled gratings and continuous waveguide |
US8290325B2 (en) * | 2008-06-30 | 2012-10-16 | Intel Corporation | Waveguide photodetector device and manufacturing method thereof |
JP2010081487A (en) * | 2008-09-29 | 2010-04-08 | Oki Electric Ind Co Ltd | Coplanar line and method of manufacturing the same |
US8417070B2 (en) * | 2009-09-30 | 2013-04-09 | Intel Corporation | Waveguide coupled surface plasmon polarition photo detector |
FR2956218B1 (en) * | 2010-02-09 | 2012-02-24 | Commissariat Energie Atomique | INTEGRATED OPTICAL COUPLER |
US8467632B2 (en) * | 2011-01-06 | 2013-06-18 | Oracle America, Inc. | Waveguide electro-absorption modulator |
-
2009
- 2009-12-09 FR FR0905965A patent/FR2953607B1/en not_active Expired - Fee Related
-
2010
- 2010-12-07 WO PCT/FR2010/000817 patent/WO2011070249A1/en active Application Filing
- 2010-12-07 US US13/514,830 patent/US8958670B2/en not_active Expired - Fee Related
- 2010-12-07 EP EP10799076.4A patent/EP2510391B1/en not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
FR2953607B1 (en) | 2012-05-18 |
FR2953607A1 (en) | 2011-06-10 |
WO2011070249A1 (en) | 2011-06-16 |
US8958670B2 (en) | 2015-02-17 |
US20120251030A1 (en) | 2012-10-04 |
EP2510391A1 (en) | 2012-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2641304B1 (en) | Heterogeneous laser with high efficiency and method of manufacturing the laser | |
EP3540878B1 (en) | Photonic device including a laser optically connected to a silicon waveguide and method for manufacturing such a photonic device | |
EP1247301B1 (en) | Vertical metal-semiconductor microresonator photodetecting device and production method thereof | |
EP2510391B1 (en) | Device for coupling an electromagnetic wave between a wave guide and a grooved metal guide, method for manufacturing said device, and optical electric coupler for an object using the optical coupling device | |
EP3460547A1 (en) | Optical coupling device for a photonic circuit | |
EP2337167B1 (en) | Hybrid laser coupled to a waveguide | |
FR2570839A1 (en) | DEVICE FOR COUPLING BETWEEN WAVEGUIDES, MONOLITHICALLY INTEGRATED WITH THESE ON SEMICONDUCTOR SUBSTRATE | |
FR3025056A1 (en) | LASER DEVICE AND METHOD FOR MANUFACTURING SUCH A LASER DEVICE | |
EP2141520A1 (en) | Coupling device with compensated birefringence | |
FR3069070A1 (en) | OPTICAL FOCUSING DEVICE WITH INDEX PSEUDO GRADIENT | |
EP2732515B1 (en) | Laser device having a ring cavity suitable to be functionalized | |
WO2010000824A1 (en) | Micro/nanostructured optical waveguiding structure for monitoring birefringence | |
EP4009456B1 (en) | Method for producing a distributed bragg mirror | |
FR2626082A1 (en) | INTEGRATED OPTICAL DEVICE FOR SEPARATING POLARIZED COMPONENTS FROM A GUIDED ELECTROMAGNETIC FIELD AND METHOD OF MAKING THE DEVICE | |
EP3926392B1 (en) | Optical device and manufacturing process | |
EP0350110B1 (en) | Integrated optoelectronic semiconductor device including a te/tm mode splitter | |
EP3764409B1 (en) | Single photon emission source with high indiscernibility factor | |
EP3314319B1 (en) | Optical guide | |
FR2779835A1 (en) | LIGHT DIFFRACTION DEVICE BURIED IN MATERIAL | |
FR3046853A1 (en) | OPTICAL CAVITY COUPLED OPTICALLY TO A WAVEGUIDE. | |
EP4034923B1 (en) | Optical system and method for the production thereof | |
WO2018055139A1 (en) | Device for coupling a first waveguide to a second waveguide | |
WO2025008545A1 (en) | Photonic chip having a heterogeneous iii-v semiconductor structure on a second semiconductor | |
FR2961320A1 (en) | AN ELECTRO-OPTICAL COMPONENT WITH NANOTUBES, INTEGRATED OPTRONIC OR OPTICAL LINKED INTEGRATED CIRCUIT INCORPORATING THIS COMPONENT, AND METHOD OF MANUFACTURING THE SAME. | |
EP1232550A1 (en) | Semiconductor optical amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120705 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BEN BAKIR, BADHISE Inventor name: TCHELNOKOV, ALEXEI Inventor name: DELACOUR, CECILE Inventor name: FEDELI, JEAN-MARC |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20150310 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160202 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 811110 Country of ref document: AT Kind code of ref document: T Effective date: 20160715 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010034540 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160706 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 811110 Country of ref document: AT Kind code of ref document: T Effective date: 20160706 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161106 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161006 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161007 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161107 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010034540 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161006 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 |
|
26N | No opposition filed |
Effective date: 20170407 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161207 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161207 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101207 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20191216 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20191231 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20191220 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602010034540 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20201207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210701 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201207 |