EP2484183B1 - Electronic ballast and method for operating at least one discharge lamp - Google Patents
Electronic ballast and method for operating at least one discharge lamp Download PDFInfo
- Publication number
- EP2484183B1 EP2484183B1 EP10744908.4A EP10744908A EP2484183B1 EP 2484183 B1 EP2484183 B1 EP 2484183B1 EP 10744908 A EP10744908 A EP 10744908A EP 2484183 B1 EP2484183 B1 EP 2484183B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electronic switch
- electronic
- switch
- control device
- coupled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000000034 method Methods 0.000 title claims description 7
- 239000003990 capacitor Substances 0.000 claims abstract description 23
- 230000008878 coupling Effects 0.000 claims abstract description 16
- 238000010168 coupling process Methods 0.000 claims abstract description 16
- 238000005859 coupling reaction Methods 0.000 claims abstract description 16
- 230000001965 increasing effect Effects 0.000 claims description 9
- 230000001939 inductive effect Effects 0.000 description 5
- 125000000205 L-threonino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])[C@](C([H])([H])[H])([H])O[H] 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
- H05B41/282—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices
- H05B41/2825—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices by means of a bridge converter in the final stage
- H05B41/2828—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices by means of a bridge converter in the final stage using control circuits for the switching elements
Definitions
- the present invention relates to an electronic ballast for operating at least one discharge lamp having an input with a first and a second input terminal for coupling with a DC supply voltage, an output having a first and a second output terminal for coupling to the at least one discharge lamp, an inverter having a bridge circuit with at least a first and a second electronic switch and a control device for controlling at least the first and the second electronic switch such that the first and the second electronic switch are alternately turned on at a first frequency, the first and the second switch connected in series between the first and second input terminals are coupled, wherein the first electronic switch is coupled to the first input terminal and the second electronic switch is coupled to the second input terminal, wherein between the first and the second electronic switch, a first bridge center is formed, a current measuring device for measuring the current at least by the second electronic switch, a lamp inductor, which is serially coupled between the first bridge center and the first output terminal, at least one trapezoidal capacitor, which is parallel to a the two electronic switches is coupled and at least one coupling capacitor for coup
- multi-lamp electronic ballasts electronic ballasts on the market, which are designed to operate different lamps, especially lamps of different power.
- a problem in this context is to ensure a switch-relieved operation of the bridge circuit of the inverter at different loads.
- switching during the conducting phase of the free-wheeling diode via the second electronic switch is ensured as follows: Using a half-bridge shunt resistor, the current in the lower bridge branch is measured. Falling below a negative threshold of this current is equated with the time at which the freewheeling diode of the lower switching element becomes conductive. This event triggers the switching on of the lower half-bridge switch and thus determines the dead time of the drive signals for the switches of the half-bridge.
- the usually existing Resonant circuit can be designed with large resonance capacities.
- this measure leads to increased reactive currents and thus to undesirably large losses in the inverter.
- WO 2009/037613 A1 discloses an electronic ballast wherein the operating frequency is controlled.
- the present invention is therefore based on the object of developing a generic electronic ballast or a generic method such that even with an operation of the electronic ballast in the vicinity of the phase jump at different connected loads a switch-unloaded operation can be provided with minimum losses.
- the present invention is based on the finding that the above problem can be met if the frequency at which the switches of the half-bridge are operated is increased when a switching operation is detected after reaching the maximum dead time. By increasing this frequency, the operating frequency is shifted from inductive operation to a transient frequency between capacitive and inductive operation. This results in an increase of the negative current amplitude when taking over the current through the freewheeling diode of the lower switch. If the operating frequency of the two switches is increased so far that the specifiable negative threshold value of the current through the lower switch is exceeded again, so the known dead time control works again; a switch-unloaded operation of the switches of the inverter can be ensured.
- Each of the two electronic switches comprises a control electrode, a working electrode and a reference electrode. It can now be provided that the path working electrode reference electrode is connected in parallel with a discrete diode as a freewheeling diode or that the freewheeling diode is a body diode of the electronic switch. The latter is the case, for example, when mosfet transistors are used as switches.
- control device of an electronic ballast comprises a memory in which the predefinable period of time is stored. This opens up the possibility, in particular, of modifying these for specific lamps.
- control device comprises a time-measuring device which is designed to determine the time duration after the blocking-end switching of the first electronic switch until the second electronic switch is turned on.
- the control device is designed to carry out the following step: c1) If the measured time duration is equal to the predefinable time duration: Increase the first frequency by a predefinable step.
- the control device is preferably designed to carry out the following step: c2) Repeat step c1) at any rate until the measured time duration is less than the predefinable time duration. This results in the sum that the operating frequency of the switches of the half-bridge is increased in predetermined stages until the dead time no longer corresponds to the maximum dead time. Since too much increase in the operating frequency of the switches of the half-bridge would reduce the power transferable to the lamp, this approach represents an optimal compromise between a switch-unloaded operation of the switches of the half-bridge and a maximum transmitted to the connected lamp power.
- control device is designed to carry out the following step: d1) If the measured time duration is less than the predefinable time duration: decrease the first frequency by a predefinable step.
- control device is preferably designed to carry out the following step: d2) Repeat step d1) until a predefinable value for the first frequency has been reached.
- Fig. 1 shows a schematic representation of an embodiment of an electronic ballast according to the invention.
- the invention is presented below using the example of an inverter with a half-bridge circuit, it will be obvious to a person skilled in the art that the principles according to the invention can also be applied to an inverter with a full-bridge circuit.
- This in Fig. 1 illustrated electronic ballast has an input with a first E1 and a second input terminal E2 for coupling with a DC supply voltage.
- this is the so-called intermediate circuit voltage U Zw , which is usually obtained from an AC line voltage.
- This intermediate circuit voltage U Zw is applied to an inverter 10, comprising a first S1 and a second electronic switch S2 in a half-bridge arrangement.
- a control device 12 is provided for controlling the switches S1, S2, a control device 12 is provided.
- the control device 12 controls the switches S1, S2 in particular such that the first and the second switches S1, S2 are alternately turned on with a first frequency.
- control device 12 is coupled to a current measuring device, which in the present case comprises a shunt resistor R S , which is arranged in series with the first switch S1.
- the current flowing through the shunt resistor R S is denoted by I S.
- the switches S1, S2 are designed as Mosfet, wherein for simplification of the following explanations, the respective body diode D1, D2, which acts here in each case as a freewheeling diode, is located.
- a first half-bridge center HBM is formed, wherein the voltage dropping at the half-bridge center is designated U HBM .
- a trapezoidal capacitor C t is coupled.
- a lamp inductor ELF is coupled between the first half-bridge center HBM and a first output terminal A1 of the electronic ballast.
- an output voltage U R is provided to a load R L , which in the present case comprises at least one discharge lamp.
- a coupling capacitor C C is coupled.
- Parallel to the series connection of the load R L and the coupling capacitor C C is a resonant capacitor C R coupled.
- Fig. 2 shows a schematic representation of the dependence of the provided between the output terminals A1, A2 voltage U R of the operating frequency f R , with which the control device 12 controls the switches S1, S2, for two different loads R L.
- Curve 1) represents a low-impedance load 1) (low burning voltage, low output power) with a resonant frequency f R1 , curve 2) a higher-impedance load 2) with a resonant frequency f R2 .
- the frequency f R2 is greater than the frequency f R1 .
- the frequency f o of the resonant circuit with the first-mentioned load (curve 1)) would be operated inductively, with the second-mentioned load (curve 2)) capacitive.
- Fig. 3 shows the time courses of different sizes of the embodiment of Fig. 1 , It shows in particular the time course of the on and off state of the switch S2 (curve a)), the voltage U HBM (curve b)) and the on and off state of the switch S1 (curve c)).
- phase 1 the switch S2 is on, that is conductive. This is the reason Potential at the half-bridge center on the potential of the intermediate circuit voltage U Zw .
- the switch S1 is off during this time.
- the current through the shunt resistor R S is also zero. In phase 1, therefore, the current flows through the switch S2, the inductor L R to the load R L.
- phase 2 The transition to phase 2 is characterized in that the switch S2 goes into the off state, while the switch S1 is not yet turned on.
- the current driven by the inductor L R thus flows from the trapezoidal capacitor C t through the inductor L R to the load R L.
- the potential at the half-bridge center is linearly reduced to zero.
- the beginning of phase 2 corresponds to the beginning of the dead time t dead .
- phase 2 to phase 3 The transition from phase 2 to phase 3 is characterized in that the trapezoidal capacitor is discharged.
- the freewheeling diode D1 becomes conductive and clamps the voltage at the half-bridge center to approximately -0.7 V.
- the current now flows through the freewheeling diode D1, the inductor L R to the load R L. With reference to curve d), therefore, a negative current I S flows from the time when the freewheeling diode D1 has become conductive. If this reaches a Threshold I Thres , then this is used according to the prior art to trigger the switch-on of the switch S1.
- the switch-on operation of the switch S1 represents the beginning of the phase 4.
- the period between the beginning of the phase 2 and the end of the phase 3 represents the dead time t dead .
- the phase 3 designates the time interval within which the switch S1 can be switched switched-off ,
- the voltage U HBM dropping across the switch S1 is equal to zero within this period.
- phase 4 the current now begins to flow through the switch S1, as a result of which the current flow in phase 4, see curve d), runs approximately sinusoidally until the switch S1 is switched off.
- Fig. 4 shows a schematic representation of a signal flow graph for controlling the dead time t dead .
- the method starts in step 100.
- step 120 it is checked whether the dead time t dead measured by the time measuring device is equal to the predefinable time period t timeout .
- step 140 the frequency f R , with which the switches of the half-bridge are operated, increased. Subsequently, step 120 is repeated. By the action of step 140, see Fig. 2 , the resonant frequency again shifted into the inductive range. This results in a larger negative current amplitude when taken over by the freewheeling diode, whereby the dead time control works again.
- step 160 it is checked in step 160 whether the current operating frequency f R is greater than a nominal operating frequency f nom .
- the nominal operating frequency f nom represents a minimum operating frequency of the electronic ballast. If it is determined that the current operating frequency f R is above the nominal operating frequency f nom , the operating frequency f R is reduced in step 180 and then branched back to the start.
- step 160 if it is determined in step 160 that the nominal operating frequency f nom has been reached, then without a change in the current operating frequency f R, it is branched back to the start.
- steps 160, 180 is of particular importance when initially a lamp with a higher operating voltage has been operated on the electronic ballast and its burning voltage has subsequently dropped, for example due to thermal effects. Without regulation to the nominal operating frequency f nom , the lamp would in this case be operated permanently at increased frequency and thus at reduced power.
- the in Fig. 4 illustrated regulatory relationship on the one hand, a functioning of the dead time control, on the other hand, an operation of each connected to the electronic ballast lamp with the optimum operating frequency.
- the increase of the half-bridge frequency can be digital, for example by digital PWM registers for the switch-on times of the switching elements, or analogously by an offset at the input of a VCO or CCO.
- the trapezoidal capacitor C t and the coupling capacitor C C may also be located elsewhere.
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
- Inverter Devices (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein elektronisches Vorschaltgerät zum Betreiben mindestens einer Entladungslampe mit einem Eingang mit einem ersten und einem zweiten Eingangsanschluss zum Koppeln mit einer Versorgungsgleichspannung, einem Ausgang mit einem ersten und einem zweiten Ausgangsanschluss zum Koppeln mit der mindestens einen Entladungslampe, einem Wechselrichter mit einer Brückenschaltung mit mindestens einem ersten und einem zweiten elektronischen Schalter und einer Steuervorrichtung zur Ansteuerung zumindest des ersten und des zweiten elektronischen Schalters derart, dass der erste und der zweite elektronische Schalter abwechselnd mit einer ersten Frequenz leitend geschaltet werden, wobei der erste und der zweite Schalter seriell zwischen den ersten und den zweiten Eingangsanschluss gekoppelt sind, wobei der erste elektronische Schalter mit dem ersten Eingangsanschluss und der zweite elektronische Schalter mit dem zweiten Eingangsanschluss gekoppelt ist, wobei zwischen dem ersten und dem zweiten elektronischen Schalter ein erster Brückenmittelpunkt ausgebildet ist, einer Strommessvorrichtung zur Messung des Stroms zumindest durch den zweiten elektronischen Schalter, einer Lampendrossel, die seriell zwischen den ersten Brückenmittelpunkt und den ersten Ausgangsanschluss gekoppelt ist, zumindest einem Trapezkondensator, der parallel zu einem der beiden elektronischen Schalter gekoppelt ist und zumindest einem Koppelkondensator zum Ankoppeln der Last, wobei die Steuervorrichtung mit der Strommessvorrichtung gekoppelt ist und ausgelegt ist, den zweiten elektronischen Schalter leitend zu schalten und zwar entweder falls ein vorgebbarer negativer Schwellwert des Stroms durch den zweiten elektronischen Schalter nach dem Sperrend-Schalten des ersten elektronischen Schalters überschritten wird oder nach einer vorgebbaren Zeitdauer, falls der vorgebbare negative Schwellwert des Stroms durch den zweiten elektronischen Schalter nach dem Sperrend-Schalten des ersten elektronischen Schalters nicht überschritten wird. Sie betrifft überdies ein entsprechendes Verfahren zum Betreiben einer Entladungslampe.The present invention relates to an electronic ballast for operating at least one discharge lamp having an input with a first and a second input terminal for coupling with a DC supply voltage, an output having a first and a second output terminal for coupling to the at least one discharge lamp, an inverter having a bridge circuit with at least a first and a second electronic switch and a control device for controlling at least the first and the second electronic switch such that the first and the second electronic switch are alternately turned on at a first frequency, the first and the second switch connected in series between the first and second input terminals are coupled, wherein the first electronic switch is coupled to the first input terminal and the second electronic switch is coupled to the second input terminal, wherein between the first and the second electronic switch, a first bridge center is formed, a current measuring device for measuring the current at least by the second electronic switch, a lamp inductor, which is serially coupled between the first bridge center and the first output terminal, at least one trapezoidal capacitor, which is parallel to a the two electronic switches is coupled and at least one coupling capacitor for coupling the load, wherein the control device is coupled to the current measuring device and is designed to switch the second electronic switch conductive, either if a predetermined negative threshold value of the current is exceeded by the second electronic switch after the Sperrend switching of the first electronic switch or after a predetermined period of time, if the predetermined negative threshold value of the current is not exceeded by the second electronic switch after the Sperrend switching of the first electronic switch. It also relates to a corresponding method for operating a discharge lamp.
Schon seit einiger Zeit sind unter der Bezeichung Multilampen-EVGs elektronische Vorschaltgeräte auf dem Markt, die zum Betrieb von unterschiedlichen Lampen, insbesondere von Lampen unterschiedlicher Leistung ausgelegt sind. Ein Problem in diesem Zusammenhang besteht darin, einen schaltentlasteten Betrieb der Brückenschaltung des Wechselrichters bei unterschiedlichen Lasten sicherzustellen.For some time, the term multi-lamp electronic ballasts electronic ballasts on the market, which are designed to operate different lamps, especially lamps of different power. A problem in this context is to ensure a switch-relieved operation of the bridge circuit of the inverter at different loads.
In den nachfolgenden Ausführungen wird angenommen, dass der Wechselrichter mit einer Halbbrücke bestückt ist. Wie für den Fachmann ohne Weiteres erkennbar, sind die nachfolgenden Ausführungen auf Wechselrichter mit Schaltern in Vollbrückenanordnung übertragbar.In the following, it is assumed that the inverter is equipped with a half-bridge. As will be readily apparent to those skilled in the art, the following remarks are applicable to inverters having full bridge switches.
In einem aus dem Stand der Technik bekannten Controller für Entladungslampen der Firma Infineon wird ein Schalten während der Leitphase der Freilaufdiode über dem zweiten elektronischen Schalter wie folgt sichergestellt: Unter Verwendung eines Halbbrücken-Shunt-Widerstands wird der Strom im unteren Brückenzweig gemessen. Das Unterschreiten einer negativen Schwelle dieses Stroms wird dem Zeitpunkt gleichgesetzt, an dem die Freilaufdiode des unteren Schaltelements leitend wird. Dieses Ereignis triggert das Einschalten des unteren Halbbrückenschalters und bestimmt somit die Totzeit der Ansteuersignale für die Schalter der Halbbrücke.In an Infineon discharge lamp controller known from the prior art, switching during the conducting phase of the free-wheeling diode via the second electronic switch is ensured as follows: Using a half-bridge shunt resistor, the current in the lower bridge branch is measured. Falling below a negative threshold of this current is equated with the time at which the freewheeling diode of the lower switching element becomes conductive. This event triggers the switching on of the lower half-bridge switch and thus determines the dead time of the drive signals for the switches of the half-bridge.
Problematisch ist diese Regelung bei einem Betrieb der Brückenschaltung mit einer Frequenz unmittelbar oberhalb des Phasensprungs, das heißt oberhalb des Übergangs vom induktiven Betrieb zum kapazitiven Betrieb bei hohen Lasten. In dieser Betriebsart kann der verfügbare Strom für die Umladung des Trapezkondensators sehr gering sein. Dadurch besteht die Gefahr, dass die negative Schwelle des Stroms durch den Halbbrücken-Shunt-Widerstand nicht erreicht wird. Die aus dem Stand der Technik bekannte Totzeitregelung stellt in diesem Fall die maximale Totzeit, d.h. eine maximal vorgebbare Zeitdauer, ein. Dadurch wird der Schaltvorgang des unteren Halbbrückenschalters ausgeführt, nachdem der Stromfluss durch die Freilaufdiode bereits beendet wurde. Da zu diesem Zeitpunkt die Spannung über dem unteren Halbbrückenschalter ungleich Null ist, schaltet der untere Schalter der Halbbrücke nicht mehr schaltentlastet. Dies führt zu unerwünschten Schaltverlusten sowie zu einer Überbeanspruchung der beteiligten Transistoren. Letzteres resultiert unter anderem in einer Verkürzung der Lebensdauer derartiger elektronischer Vorschaltgeräte.This control is problematic in operation of the bridge circuit with a frequency immediately above the phase jump, that is above the transition from inductive operation to capacitive operation at high loads. In this operating mode, the available current for the recharging of the trapezoidal capacitor can be very low. As a result, there is the danger that the negative threshold of the current through the half-bridge shunt resistor will not be reached. The deadtime control known from the prior art in this case sets the maximum dead time, i. a maximum predefinable period of time. Thereby, the switching operation of the lower half-bridge switch is carried out after the current flow through the freewheeling diode has already ended. Since at this time, the voltage across the lower half-bridge switch is not equal to zero, the lower switch of the half-bridge is no longer switching-relieved. This leads to undesirable switching losses and overstressing of the transistors involved. The latter results inter alia in a shortening of the life of such electronic ballasts.
Um dennoch eine zuverlässige Schaltentlastung der Halbbrücke zu gewährleisten, kann der üblicherweise vorhandene Resonanzkreis mit großen Resonanz-Kapazitäten ausgelegt werden. Diese Maßnahme führt jedoch zu erhöhten Blindströmen und damit zu unerwünscht großen Verlusten im Wechselrichter.In order nevertheless to ensure a reliable switching discharge of the half-bridge, the usually existing Resonant circuit can be designed with large resonance capacities. However, this measure leads to increased reactive currents and thus to undesirably large losses in the inverter.
Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde ein gattungsgemäßes elektronisches Vorschaltgerät beziehungsweise ein gattungsgemäßes Verfahren derart weiterzubilden, dass auch bei einem Betrieb des elektronischen Vorschaltgeräts in der Nähe des Phasensprungs bei unterschiedlichen angeschlossenen Lasten ein schaltentlasteter Betrieb bei möglichst geringen Verlusten bereitgestellt werden kann.The present invention is therefore based on the object of developing a generic electronic ballast or a generic method such that even with an operation of the electronic ballast in the vicinity of the phase jump at different connected loads a switch-unloaded operation can be provided with minimum losses.
Diese Aufgabe wird gelöst durch ein elektronisches Vorschaltgerät mit den Merkmalen von Patentanspruch 1 sowie durch ein Verfahren mit den Merkmalen von Patentanspruch 11.This object is achieved by an electronic ballast with the features of
Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass dem obigen Problem begegnet werden kann, wenn bei Feststellung eines Schaltvorgangs nach Erreichen der maximalen Totzeit die Frequenz, mit der die Schalter der Halbbrücke betrieben werden, erhöht wird. Durch Erhöhen dieser Frequenz wird die Betriebsfrequenz ausgehend von einer Übergangsfrequenz zwischen kapazitivem und induktivem Betrieb in Richtung induktivem Betrieb verschoben. Dies resultiert in einer Vergrößerung der negativen Stromamplitude bei Übernahme des Stroms durch die Freilaufdiode des unteren Schalters. Wird die Betriebsfrequenz der beiden Schalter soweit erhöht, dass der vorgebbare negative Schwellwert des Stroms durch den unteren Schalter wieder überschritten wird, so funktioniert die bekannte Totzeitregelung wieder; ein schaltentlasteter Betrieb der Schalter des Wechselrichters kann sichergestellt werden.The present invention is based on the finding that the above problem can be met if the frequency at which the switches of the half-bridge are operated is increased when a switching operation is detected after reaching the maximum dead time. By increasing this frequency, the operating frequency is shifted from inductive operation to a transient frequency between capacitive and inductive operation. This results in an increase of the negative current amplitude when taking over the current through the freewheeling diode of the lower switch. If the operating frequency of the two switches is increased so far that the specifiable negative threshold value of the current through the lower switch is exceeded again, so the known dead time control works again; a switch-unloaded operation of the switches of the inverter can be ensured.
Diese Lösung funktioniert ohne eine Vergrößerung der Kapazität des Resonanzkondensators und geht daher mit nahezu keinen zusätzlichen Verlusten einher.This solution works without an increase in the capacitance of the resonant capacitor and therefore involves virtually no additional losses.
Jeder der beiden elektronischen Schalter umfasst eine Steuerelektrode, eine Arbeitselektrode und eine Bezugselektrode. Es kann nun vorgesehen werden, dass der Strecke Arbeitselektrode-Bezugselektrode eine diskrete Diode als Freilaufdiode parallel geschaltet ist oder dass die Freilaufdiode eine Bodydiode des elektronischen Schalters darstellt. Letzteres ist beispielsweise der Fall, wenn als Schalter Mosfet-Transistoren verwendet werden.Each of the two electronic switches comprises a control electrode, a working electrode and a reference electrode. It can now be provided that the path working electrode reference electrode is connected in parallel with a discrete diode as a freewheeling diode or that the freewheeling diode is a body diode of the electronic switch. The latter is the case, for example, when mosfet transistors are used as switches.
Bevorzugt umfasst die Steuervorrichtung eines erfindungsgemäßen elektronischen Vorschaltgeräts einen Speicher, in dem die vorgebbare Zeitdauer abgelegt ist. Dies eröffnet insbesondere die Möglichkeit, diese ggf. lampenspezifisch zu modifizieren.Preferably, the control device of an electronic ballast according to the invention comprises a memory in which the predefinable period of time is stored. This opens up the possibility, in particular, of modifying these for specific lamps.
Weiterhin ist bevorzugt, wenn die Steuervorrichtung eine Zeitmessvorrichtung umfasst, die ausgelegt ist, die Zeitdauer nach dem Sperrend-Schalten des ersten elektronischen Schalters bis zum Leitend-Schalten des zweiten elektronischen Schalters zu bestimmen.Furthermore, it is preferred if the control device comprises a time-measuring device which is designed to determine the time duration after the blocking-end switching of the first electronic switch until the second electronic switch is turned on.
Bevorzugt ist die Steuervorrichtung zur Durchführung des folgenden Schritts ausgelegt: c1) Falls die gemessene Zeitdauer gleich der vorgebbaren Zeitdauer ist: Erhöhe die erste Frequenz um einen vorgebbaren Schritt. Bevorzugt ist in diesem Zusammenhang die Steuervorrichtung weiterhin zur Durchführung des folgenden Schritts ausgelegt: c2) Wiederhole Schritt c1) jedenfalls solange, bis die gemessene Zeitdauer kleiner als die vorgebbare Zeitdauer ist. Dies resultiert in der Summe darin, dass die Betriebsfrequenz der Schalter der Halbbrücke in vorgebbaren Stufen solange erhöht wird, bis die Totzeit nicht mehr der maximalen Totzeit entspricht. Da eine zu weite Erhöhung der Betriebsfrequenz der Schalter der Halbbrücke die auf die Lampe übertragbare Leistung reduzieren würde, stellt diese Vorgehensweise einen optimalen Kompromiss zwischen einem schaltentlasteten Betrieb der Schalter der Halbbrücke sowie einer maximal an die angeschlossene Lampe übertragenen Leistung dar.Preferably, the control device is designed to carry out the following step: c1) If the measured time duration is equal to the predefinable time duration: Increase the first frequency by a predefinable step. In this context, the control device is preferably designed to carry out the following step: c2) Repeat step c1) at any rate until the measured time duration is less than the predefinable time duration. This results in the sum that the operating frequency of the switches of the half-bridge is increased in predetermined stages until the dead time no longer corresponds to the maximum dead time. Since too much increase in the operating frequency of the switches of the half-bridge would reduce the power transferable to the lamp, this approach represents an optimal compromise between a switch-unloaded operation of the switches of the half-bridge and a maximum transmitted to the connected lamp power.
Weiterhin bevorzugt ist die Steuervorrichtung zur Durchführung des folgenden Schritts ausgelegt: d1) Falls die gemessene Zeitdauer kleiner als die vorgebbare Zeitdauer ist: Erniedrige die erste Frequenz um einen vorgebbaren Schritt. Bevorzugt ist in diesem Zusammenhang die Steuervorrichtung weiterhin zur Durchführung des folgenden Schritts ausgelegt: d2) Wiederhole Schritt d1) solange, bis ein vorgebbarer Wert für die erste Frequenz erreicht ist. Diese Maßnahmen tragen insbesondere der Situation Rechnung, wenn zunächst eine Entladungslampe mit höherer Leistung bzw. höherer Brennspannung an den Ausgang des elektronischen Vorschaltgeräts angeschlossen wird, deren Brennspannung während des Betriebs infolge von Temperatureffekten wieder abnimmt. Würde die Betriebsfrequenz für die Schalter der Halbbrücke beibehalten, die sich beim Betrieb der Lampe mit höherer Leistung eingestellt hat, so würde weniger Leistung an die Lampe mit niedrigerer Brennspannung übertragen als tatsächlich möglich wäre. Durch das stufenweise Absenken der Betriebsfrequenz der Schalter der Halbbrücke kann sichergestellt werden, dass einerseits die Schalter schaltentlastet betrieben werden und dass andererseits eine maximale Leistung an die am Ausgang des elektronischen Vorschaltgeräts angeschlossene Entladungslampe übertragen wird. In diesem Zusammenhang können Algorithmen zur Wahl der Schrittweite implementiert sein, die ein nicht-schaltentlastetes Schalten der Schalter der Halbbrücke lediglich sehr selten provozieren, beispielsweise jeden 100sten oder 1000sten Schaltvorgang. Derart seltenes nicht-schaltentlastetes Schalten führt lediglich zu unrelevanten Verlusten, ermöglicht jedoch einen hinsichtlich der Leistungsübertragung optimierten Betrieb des elektronischen Vorschaltgeräts.Further preferably, the control device is designed to carry out the following step: d1) If the measured time duration is less than the predefinable time duration: decrease the first frequency by a predefinable step. In this context, the control device is preferably designed to carry out the following step: d2) Repeat step d1) until a predefinable value for the first frequency has been reached. These measures take into account in particular the situation when first a discharge lamp with higher power or higher operating voltage is connected to the output of the electronic ballast, the operating voltage decreases again during operation due to temperature effects. Would maintain the operating frequency for the switches of the half-bridge, which are set during operation of the lamp with higher power has, would transmit less power to the lamp with lower burning voltage than would actually be possible. By gradually reducing the operating frequency of the switches of the half-bridge can be ensured that on the one hand, the switches are operated switch relieved and that on the other hand, a maximum power is transmitted to the output of the electronic ballast connected discharge lamp. In this context, algorithms for selecting the step size can be implemented, which only very seldom provoke non-switch-relieved switching of the switches of the half-bridge, for example every 100th or 1000th switching operation. Such rare non-switching relieved switching leads only to unimportant losses, but allows an optimized in terms of power transmission operation of the electronic ballast.
Weitere vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.Further advantageous embodiments will become apparent from the dependent claims.
Die mit Bezug auf das erfindungsgemäße elektronische Vorschaltgerät vorgestellten bevorzugten Ausführungsformen und deren Vorteile gelten entsprechend, soweit anwendbar, für das erfindungsgemäße Verfahren.The preferred embodiments presented with reference to the electronic ballast according to the invention and their advantages apply correspondingly, as far as applicable, to the method according to the invention.
Im Nachfolgenden wird nunmehr ein Ausführungsbeispiel eines erfindungsgemäßen elektronischen Vorschaltgeräts unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Es zeigen:
- Fig. 1
- in schematischer Darstellung ein Ausführungsbeispiel eines erfindungsgemäßen elektronischen Vorschaltgeräts;
- Fig. 2
- in schematischer Darstellung die Abhängigkeit der Ausgangsspannung von der Betriebsfrequenz der Schalter des Wechselrichters für zwei unterschiedliche Lasten;
- Fig. 3
- den zeitlichen Verlauf verschiedener elektrischer Größen für das Ausführungsbeispiel von
Fig. 1 ; und - Fig. 4
- in schematischer Darstellung einen Signalflussgrafen eines Ausführungsbeispiels einer erfindungsgemäßen Totzeitregelung.
- Fig. 1
- a schematic representation of an embodiment of an electronic ballast according to the invention;
- Fig. 2
- a schematic representation of the dependence of the output voltage of the operating frequency of the switches of the inverter for two different loads;
- Fig. 3
- the time course of various electrical variables for the embodiment of
Fig. 1 ; and - Fig. 4
- a schematic representation of a signal flow graph of an embodiment of a dead time control according to the invention.
Das in
Zwischen den Schaltern S1, S2 ist ein erster Halbbrückenmittelpunkt HBM ausgebildet, wobei die am Halbbrückenmittelpunkt abfallende Spannung mit UHBM bezeichnet ist. Parallel zum unteren Halbbrückenzweig ist ein Trapezkondensator Ct gekoppelt. Zwischen den ersten Halbbrückenmittelpunkt HBM und einen ersten Ausgangsanschluss A1 des elektronischen Vorschaltgeräts ist eine Lampendrossel ELF gekoppelt. Zwischen den ersten Ausgangsanschluss A1 und einen zweiten Ausgangsanschluss A2, der hier einen zweiten Halbbrückenmittelpunkt darstellt, wird eine Ausgangsspannung UR an eine Last RL bereitgestellt, die vorliegend mindestens eine Entladungslampe umfasst. Zwischen den zweiten Ausgangsanschluss A2 und das Bezugspotenzial, dargestellt durch den Anschluss E2, ist ein Koppelkondensator CC gekoppelt. Parallel zur Serienschaltung der Last RL und dem Koppelkondensator CC ist ein Resonanzkondensator CR gekoppelt.Between the switches S1, S2, a first half-bridge center HBM is formed, wherein the voltage dropping at the half-bridge center is designated U HBM . Parallel to the lower half-bridge branch a trapezoidal capacitor C t is coupled. A lamp inductor ELF is coupled between the first half-bridge center HBM and a first output terminal A1 of the electronic ballast. Between the first output terminal A1 and a second output terminal A2, which here represents a second half-bridge center, an output voltage U R is provided to a load R L , which in the present case comprises at least one discharge lamp. Between the second output terminal A2 and the reference potential, represented by the terminal E2, a coupling capacitor C C is coupled. Parallel to the series connection of the load R L and the coupling capacitor C C is a resonant capacitor C R coupled.
Die jeweiligen zeitlichen Verläufe sind gegliedert in vier unterschiedliche Phasen. In der Phase 1 ist der Schalter S2 ein, also leitend. Dadurch befindet sich das Potenzial am Halbbrückenmittelpunkt auf dem Potenzial der Zwischenkreisspannung UZw. Der Schalter S1 ist während dieser Zeit aus. Der Strom durch den Shunt-Widerstand RS ebenfalls Null. In Phase 1 fließt demnach der Strom über den Schalter S2, die Drossel LR zur Last RL.The respective temporal courses are divided into four different phases. In
Der Übergang zur Phase 2 ist dadurch gekennzeichnet, dass der Schalter S2 in den Aus-Zustand übergeht, während der Schalter S1 jedoch noch nicht eingeschaltet wird. Der von der Drossel LR weiterhin getriebene Strom fließt demnach aus dem Trapezkondensator Ct durch die Drossel LR zur Last RL. Das Potenzial am Halbbrückenmittelpunkt wird linear auf Null abgebaut. Der Beginn der Phase 2 entspricht dem Beginn der Totzeit tdead.The transition to
Der Übergang von Phase 2 auf Phase 3 ist dadurch gekennzeichnet, dass der Trapez-Kondensator entladen ist. Die Freilaufdiode D1 wird leitend und klemmt die Spannung am Halbbrückenmittelpunkt auf circa -0,7 V. Der Strom fließt nunmehr über die Freilaufdiode D1, die Drossel LR zur Last RL. Mit Bezug auf Kurvenzug d) fließt demnach ein negativer Strom IS ab dem Zeitpunkt, ab dem die Freilaufdiode D1 leitend geworden ist. Erreicht dieser eine Schwelle IThres, so wird dies gemäß dem Stand der Technik verwendet, um den Einschaltvorgang des Schalters S1 auszulösen. Der Einschaltvorgang des Schalters S1 stellt den Beginn der Phase 4 dar. Der Zeitraum zwischen dem Beginn der Phase 2 und dem Ende der Phase 3 stellt die Totzeit tdead dar. Die Phase 3 bezeichnet das Zeitintervall, innerhalb dessen der Schalter S1 schaltentlastet geschaltet werden kann. Die über dem Schalter S1 abfallende Spannung UHBM ist innerhalb dieses Zeitraums gleich Null.The transition from
In der Phase 4 beginnt nun der Strom durch den Schalter S1 zu fließen, wodurch der Stromfluss in der Phase 4, siehe Kurvenzug d), bis zum Abschalten des Schalters S1 näherungsweise sinusförmig verläuft.In phase 4, the current now begins to flow through the switch S1, as a result of which the current flow in phase 4, see curve d), runs approximately sinusoidally until the switch S1 is switched off.
Die mit jeweiligem hochgestellten Strich gekennzeichneten Kurvenverläufe ergeben sich bei einer Vergrößerung der Last RL, d.h. mit Bezug auf
Beim Einschalten des Schalters S1, siehe Verlauf S1', tritt nun ein nadelförmiger Strom I'S auf, der aus der Entladung des Trapezkondensators Ct herrührt. Da zu diesem Zeitpunkt U'HBM nicht mehr gleich Null ist, wird der Schalter S1 nicht schaltentlastet geschaltet.When switching on the switch S1, see the course S1 ', now occurs a needle-shaped current I' S , which results from the discharge of the trapezoidal capacitor C t . Since U ' HBM is no longer equal to zero at this point in time, the switch S1 is not switched switched-off.
Während Kurvenzug d) und e), wie erwähnt, bei einer ersten Betriebsfrequenz fR gleich fR2 für die Schalter der Halbbrücke aufgezeichnet wurden, wird nunmehr für Kurvenzug f) eine zweite Betriebsfrequenz fR größer fR2 gewählt. Durch die Erhöhung der Frequenz fR steigt der negative Stromimpuls zu dem Zeitpunkt, zu dem das Potenzial am Halbbrückenmittelpunkt auf Null geht, an, vergleiche Kurvenzug f) mit Kurvenzug e). Die Schwelle IThres wird wieder erreicht und ein schaltentlastetes Einschalten des Schalters S1 ermöglicht.While curves d) and e), as mentioned, were recorded at a first operating frequency f R equal to f R2 for the switches of the half bridge, a second operating frequency f R greater than R2 is now selected for curve f). By increasing the frequency f R , the negative current pulse increases at the time when the potential at the half-bridge center goes to zero, compare curve f) with curve e). The threshold I Thres will be back achieved and a switch-relieved switching on the switch S1 allows.
Ist dies der Fall, so wird im Schritt 140 die Frequenz fR, mit der die Schalter der Halbbrücke betrieben werden, erhöht. Anschließend wird Schritt 120 wiederholt. Durch die Maßnahme von Schritt 140 wird, siehe
Wird im Schritt 120 jedoch festgestellt, dass die Totzeit tdead kleiner als die vorgegebene Zeitdauer ttimeout ist, so wird in Schritt 160 geprüft, ob die aktuelle Betriebsfrequenz fR größer als eine nominale Betriebsfrequenz fnom ist. Die nominale Betriebsfrequenz fnom stellt eine minimale Betriebsfrequenz des elektronischen Vorschaltgeräts dar. Wird festgestellt, dass die aktuelle Betriebsfrequenz fR über der nominalen Betriebsfrequenz fnom liegt, so wird im Schritt 180 die Betriebsfrequenz fR reduziert und anschließend zum Start zurückverzweigt.However, if it is determined in
Wird in Schritt 160 jedoch festgestellt, dass die nominale Betriebsfrequenz fnom erreicht wurde, so wird ohne eine Änderung der aktuellen Betriebsfrequenz fR zum Start zurückverzweigt.However, if it is determined in
Die Ausführung der Schritte 160, 180 ist insbesondere von Bedeutung, wenn zunächst eine Lampe mit einer höheren Brennspannung an dem elektronischen Vorschaltgerät betrieben wurde und deren Brennspannung anschließend, beispielsweise durch thermische Effekte, abgesunken ist. Ohne eine Regelung auf die nominale Betriebsfrequenz fnom würde die Lampe in diesem Fall dauerhaft bei erhöhter Frequenz und somit bei reduzierter Leistung betrieben werden. So ermöglicht der in
Das jeweilige Erreichen der vorgebbaren Zeitdauer ttimeout lässt sich besonders einfach digital erfassen. Die Erhöhung der Halbbrückenfrequenz kann je nach Implementation digital erfolgen, beispielsweise durch digitale PWM-Register für die Einschaltzeiten der Schaltelemente, oder analog durch einen Offset am Eingang eines VCO oder CCO.The respective achievement of the predefinable time duration t timeout can be detected particularly simply digitally. Depending on the implementation, the increase of the half-bridge frequency can be digital, for example by digital PWM registers for the switch-on times of the switching elements, or analogously by an offset at the input of a VCO or CCO.
Der in
Wie für den Fachmann offensichtlich, kann der Trapezkondensator Ct und der Koppelkondensator CC auch an anderer Stelle angeordnet sein. Überdies können auch mehrere Trapezkondensatoren und Koppelkondensatoren, wie für den Fachmann offensichtlich, vorgesehen sein.As is apparent to those skilled in the art, the trapezoidal capacitor C t and the coupling capacitor C C may also be located elsewhere. Moreover, it is also possible to provide a plurality of trapezoidal capacitors and coupling capacitors, as is obvious to a person skilled in the art.
Claims (11)
- Electronic ballast for operating at least one discharge lamp (RL) comprising- an input having a first (E1) and a second input terminal (E2) for coupling to a direct supply voltage (UZw);- one output having a first (A1) and a second output terminal (A2) for coupling to the at least one discharge lamp (RL);- an inverter (10) having a bridge circuit with at least one first (S1) and one second electronic switch (S2) and a control device (12) for driving at least the first (S1) and the second electronic switch (S2) in such a manner that the first (S1) and the second electronic switch (S2) are alternately switched to conduct with a first frequency (fR), wherein the first (S1) and the second switch (S2) are coupled serially between the first (E1) and the second input terminal (E2), wherein the second electronic switch (S2) is coupled to the first input terminal (E1) and the first electronic switch (S1) is coupled to the second input terminal (E2), wherein a first bridge centre (HBM) is formed between the first (E2) and the second electronic switch (E1);- a current measuring device (RS) for measuring the current (Is) at least through the first electronic switch (S1);- a lamp choke (LR) which is coupled serially between the first bridge centre (HBM) and the first output terminal (A1);- at least one trapezoidal capacitor (Ct) which is coupled in parallel with one of the two electronic switches (S1; S2); and- at least one coupling capacitor (CC) for connecting the
load;
wherein the control device (12) is coupled to the current measuring device (RS) and is designed for switching the first electronic switch (S1) to conduct,a) if a predeterminable negative threshold value (IThres) of the current (IS) through the first electronic switch (S1) is exceeded after the second electronic switch (S2) has been switched to block; orb) if the predeterminable negative threshold value (IThres) of the current (IS) is not exceeded by the first electronic switch (S1) after the second electronic switch (S2) has been switched to block: after a predeterminable period (ttimeout);characterized in that the control device (12) is designed for increasing the first frequency (fR) in case b). - Electronic ballast according to Claim 1, characterized in that each of the two electronic switches (S1, S2) comprises a control electrode, an operating electrode and a reference electrode, wherein a free running diode (D2, D1) is connected in parallel with the operating electrode - reference electrode path.
- Electronic ballast according to Claim 2, characterized in that the free running diode (D2, D1) represents a body diode of the electronic switch (S2, S1).
- Electronic ballast according to Claim 2, characterized in that the free running diode (D2, D1) represents a discrete diode.
- Electronic ballast according to one of the preceding claims, characterized in that the control device (12) comprises a memory in which the predeterminable period (ttimeout) is deposited.
- Electronic ballast according to one of the preceding claims, characterized in that the control device (12) comprises a time measuring device which is designed to determine the period after the second electronic switch (S2) has been switched to block up to when the first electronic switch (S1) has been switched to conduct.
- Electronic ballast according to Claim 6, characterized in that the control device (12) is designed for carrying out the following step:c1) if the measured period (tdead) is equal to the
predeterminable period (ttimeout) (step 120) :increase the first frequency (fR) by a predeterminable step (step 140). - Electronic ballast according to Claim 7, characterized in that the control device (12) is also designed for carrying out the following step:c2) repeat step c1), in any case until the measured
period (tdead) is shorter than the predeterminable period (ttimeout). - Electronic ballast according to one of Claims 7 and 8, characterized in that the control device (12) is also designed for carrying out the following step:d1) if the measured period (tdead) is shorter than the
predeterminable period (ttimeout) (step 160) :reduce the first frequency (fR) by a predeterminable step (step 180). - Electronic ballast according to Claim 9, characterized in that the control device (12) is also designed for carrying out the following step:d2) repeat step d1) until a predeterminable value for the
first frequency (fR) is reached. - Method for operating a discharge lamp (RL) at an electronic ballast having an input with a first (E1) and a second input terminal (E2) for coupling to a direct supply voltage (UZw); an output having a first (A1) and a second output terminal (A2) for coupling to the at least one discharge lamp (RL); an inverter (10) having a bridge circuit with at least one first (S1) and a second electronic switch (S2) and a control device (12) for driving at least the first (S1) and the second electronic switch (S2) in such a manner that the first (S1) and the second electronic switch (S2) are alternately switched to conduct at a first frequency (fR), wherein the first (S1) and the second switch (S2) are coupled serially between the first (E1) and the second input terminal (E2), wherein the second electronic switch (S2) is coupled to the first input terminal (E1) and the first electronic switch (S1) is coupled to the second input terminal (E2), wherein a first bridge centre (HBM) is formed between the first (S1) and the second electronic switch (S2); a current measuring device (RS) for measuring the current (Is) at least through the first electronic switch (S1); a lamp choke (LR) which is coupled serially between the first bridge centre (HBM) and the first output terminal (A1); at least one trapezoidal capacitor (Ct) which is coupled in parallel with one of the two electronic switches (S1; S2); and at least one coupling capacitor (CC) for connecting the load; wherein the control device (12) is coupled to the current measuring device (RS) and is designed for switching the first electronic switch (S1) to conducta) if a predeterminable negative threshold value (IThres) of the current (Is) is exceeded by the first electronic switch (S1) after the second electronic switch (S2) has been switched to block; orb) if the predeterminable negative threshold value (IThres) of the current (IS) is not exceeded by the first electronic switch (S1) after the second electronic switch (S2) has been switched to block: after a predeterminable period (ttimeout);characterized by the following step:increase the first frequency (fR) in case b) (step 140).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200910043611 DE102009043611A1 (en) | 2009-09-29 | 2009-09-29 | Electronic ballast and method for operating at least one discharge lamp |
PCT/EP2010/061769 WO2011038974A1 (en) | 2009-09-29 | 2010-08-12 | Electronic ballast and method for operating at least one discharge lamp |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2484183A1 EP2484183A1 (en) | 2012-08-08 |
EP2484183B1 true EP2484183B1 (en) | 2013-12-25 |
Family
ID=43125468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10744908.4A Not-in-force EP2484183B1 (en) | 2009-09-29 | 2010-08-12 | Electronic ballast and method for operating at least one discharge lamp |
Country Status (5)
Country | Link |
---|---|
US (1) | US8994285B2 (en) |
EP (1) | EP2484183B1 (en) |
CN (1) | CN102577626B (en) |
DE (1) | DE102009043611A1 (en) |
WO (1) | WO2011038974A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8947893B2 (en) * | 2010-11-11 | 2015-02-03 | Fairchild Korea Semiconductor Ltd. | Switch controller and converter including the same for prevention of damage |
DE102016124116A1 (en) * | 2016-12-12 | 2018-06-14 | Sml Verwaltungs Gmbh | Device for controlling a radiation source for curing lining hoses |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5604411A (en) * | 1995-03-31 | 1997-02-18 | Philips Electronics North America Corporation | Electronic ballast having a triac dimming filter with preconditioner offset control |
CN1179077A (en) | 1996-09-19 | 1998-04-15 | 通用电气公司 | High-voltage integrated circuit driving half-bridge gas discharge lamp ballast |
US5925990A (en) * | 1997-12-19 | 1999-07-20 | Energy Savings, Inc. | Microprocessor controlled electronic ballast |
US6466456B2 (en) * | 1999-12-18 | 2002-10-15 | Koninklijke Philips Electronics N.V. | Converter with resonant circuit elements for determing load type |
CN1389088A (en) * | 2000-08-28 | 2003-01-01 | 皇家菲利浦电子有限公司 | Circuit device |
WO2003019780A1 (en) | 2001-08-28 | 2003-03-06 | Koninklijke Philips Electronics N.V. | Half-bridge circuit |
DE102006022819A1 (en) * | 2005-05-23 | 2007-01-04 | Infineon Technologies Ag | Circuit for supplying load with output current has converter for producing a.c. signal from energy from energy source, piezotransformer, load coupled to piezotransformer output for converting output current to another form of useful energy |
DE102006061357B4 (en) | 2006-12-22 | 2017-09-14 | Infineon Technologies Austria Ag | Method for controlling a fluorescent lamp |
JP2008159382A (en) * | 2006-12-22 | 2008-07-10 | Koito Mfg Co Ltd | Discharge lamp lighting circuit |
EP2201669B1 (en) | 2007-09-18 | 2017-06-21 | Nxp B.V. | Control method for a half bridge resonant converter for avoiding capacitive mode |
-
2009
- 2009-09-29 DE DE200910043611 patent/DE102009043611A1/en not_active Withdrawn
-
2010
- 2010-08-12 EP EP10744908.4A patent/EP2484183B1/en not_active Not-in-force
- 2010-08-12 US US13/498,150 patent/US8994285B2/en not_active Expired - Fee Related
- 2010-08-12 CN CN201080043652.3A patent/CN102577626B/en not_active Expired - Fee Related
- 2010-08-12 WO PCT/EP2010/061769 patent/WO2011038974A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN102577626B (en) | 2014-12-10 |
DE102009043611A1 (en) | 2011-04-07 |
US20120181945A1 (en) | 2012-07-19 |
EP2484183A1 (en) | 2012-08-08 |
CN102577626A (en) | 2012-07-11 |
WO2011038974A1 (en) | 2011-04-07 |
US8994285B2 (en) | 2015-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1333707B1 (en) | Electronic ballast for a discharge lamp | |
DE4109325C2 (en) | Circuit arrangement for operating a high-pressure discharge lamp | |
DE3319739C2 (en) | Ballast for gas discharge lamps | |
EP2011217B1 (en) | Boost power factor correction circuit (boost pfc) | |
EP1603219B1 (en) | Method and device for power factor correction | |
EP1705961A2 (en) | Circuit and method for operating lamps | |
DE102006018576A1 (en) | Step-up Power Factor Correction Circuit (Boost PFC) | |
EP3202235B1 (en) | Clocked electronic energy converter | |
EP0637118B1 (en) | Circuit for limiting inrush current and overvoltage of an electronic ballast | |
DE19843643B4 (en) | Circuit arrangement for starting and operating a high-pressure discharge lamp | |
EP0439240B1 (en) | Electronic ballast | |
AT14074U1 (en) | Operating circuit for LED | |
DE102010002226A1 (en) | Method and circuit for power factor correction | |
EP2138015B1 (en) | Circuit configuration for generating an auxiliary voltage and for operating at least one discharge lamp | |
EP2484183B1 (en) | Electronic ballast and method for operating at least one discharge lamp | |
EP2327276B1 (en) | Circuit arrangement and method for operation of a discharge lamp | |
WO2009010098A1 (en) | Circuit arrangement comprising a voltage transformer and associated method | |
WO2005091502A1 (en) | Control circuitry for controlling a power electronic circuit and method therefor | |
DE69709604T2 (en) | CIRCUIT | |
EP0389847B1 (en) | Circuit | |
DE102004037389C5 (en) | Method for controlling a load having a fluorescent lamp for optimizing the ignition process | |
DE19933161A1 (en) | Circuit arrangement | |
EP1395094A1 (en) | Apparatus and method for operating a lamp | |
EP2208401B1 (en) | Electronic ballast and method for operating at least one first and second discharge lamp | |
EP2224792B1 (en) | Electronic pre-switching device and lighting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120202 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OSRAM GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OSRAM GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20130906 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 647172 Country of ref document: AT Kind code of ref document: T Effective date: 20140115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010005772 Country of ref document: DE Effective date: 20140220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140325 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20131225 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140428 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010005772 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 |
|
26N | No opposition filed |
Effective date: 20140926 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010005772 Country of ref document: DE Effective date: 20140926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140812 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140831 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140901 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140326 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100812 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 647172 Country of ref document: AT Kind code of ref document: T Effective date: 20150812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150812 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170822 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131225 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502010005772 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190301 |