[go: up one dir, main page]

EP2484183B1 - Electronic ballast and method for operating at least one discharge lamp - Google Patents

Electronic ballast and method for operating at least one discharge lamp Download PDF

Info

Publication number
EP2484183B1
EP2484183B1 EP10744908.4A EP10744908A EP2484183B1 EP 2484183 B1 EP2484183 B1 EP 2484183B1 EP 10744908 A EP10744908 A EP 10744908A EP 2484183 B1 EP2484183 B1 EP 2484183B1
Authority
EP
European Patent Office
Prior art keywords
electronic switch
electronic
switch
control device
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10744908.4A
Other languages
German (de)
French (fr)
Other versions
EP2484183A1 (en
Inventor
Arwed Storm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2484183A1 publication Critical patent/EP2484183A1/en
Application granted granted Critical
Publication of EP2484183B1 publication Critical patent/EP2484183B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2828Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices by means of a bridge converter in the final stage using control circuits for the switching elements

Definitions

  • the present invention relates to an electronic ballast for operating at least one discharge lamp having an input with a first and a second input terminal for coupling with a DC supply voltage, an output having a first and a second output terminal for coupling to the at least one discharge lamp, an inverter having a bridge circuit with at least a first and a second electronic switch and a control device for controlling at least the first and the second electronic switch such that the first and the second electronic switch are alternately turned on at a first frequency, the first and the second switch connected in series between the first and second input terminals are coupled, wherein the first electronic switch is coupled to the first input terminal and the second electronic switch is coupled to the second input terminal, wherein between the first and the second electronic switch, a first bridge center is formed, a current measuring device for measuring the current at least by the second electronic switch, a lamp inductor, which is serially coupled between the first bridge center and the first output terminal, at least one trapezoidal capacitor, which is parallel to a the two electronic switches is coupled and at least one coupling capacitor for coup
  • multi-lamp electronic ballasts electronic ballasts on the market, which are designed to operate different lamps, especially lamps of different power.
  • a problem in this context is to ensure a switch-relieved operation of the bridge circuit of the inverter at different loads.
  • switching during the conducting phase of the free-wheeling diode via the second electronic switch is ensured as follows: Using a half-bridge shunt resistor, the current in the lower bridge branch is measured. Falling below a negative threshold of this current is equated with the time at which the freewheeling diode of the lower switching element becomes conductive. This event triggers the switching on of the lower half-bridge switch and thus determines the dead time of the drive signals for the switches of the half-bridge.
  • the usually existing Resonant circuit can be designed with large resonance capacities.
  • this measure leads to increased reactive currents and thus to undesirably large losses in the inverter.
  • WO 2009/037613 A1 discloses an electronic ballast wherein the operating frequency is controlled.
  • the present invention is therefore based on the object of developing a generic electronic ballast or a generic method such that even with an operation of the electronic ballast in the vicinity of the phase jump at different connected loads a switch-unloaded operation can be provided with minimum losses.
  • the present invention is based on the finding that the above problem can be met if the frequency at which the switches of the half-bridge are operated is increased when a switching operation is detected after reaching the maximum dead time. By increasing this frequency, the operating frequency is shifted from inductive operation to a transient frequency between capacitive and inductive operation. This results in an increase of the negative current amplitude when taking over the current through the freewheeling diode of the lower switch. If the operating frequency of the two switches is increased so far that the specifiable negative threshold value of the current through the lower switch is exceeded again, so the known dead time control works again; a switch-unloaded operation of the switches of the inverter can be ensured.
  • Each of the two electronic switches comprises a control electrode, a working electrode and a reference electrode. It can now be provided that the path working electrode reference electrode is connected in parallel with a discrete diode as a freewheeling diode or that the freewheeling diode is a body diode of the electronic switch. The latter is the case, for example, when mosfet transistors are used as switches.
  • control device of an electronic ballast comprises a memory in which the predefinable period of time is stored. This opens up the possibility, in particular, of modifying these for specific lamps.
  • control device comprises a time-measuring device which is designed to determine the time duration after the blocking-end switching of the first electronic switch until the second electronic switch is turned on.
  • the control device is designed to carry out the following step: c1) If the measured time duration is equal to the predefinable time duration: Increase the first frequency by a predefinable step.
  • the control device is preferably designed to carry out the following step: c2) Repeat step c1) at any rate until the measured time duration is less than the predefinable time duration. This results in the sum that the operating frequency of the switches of the half-bridge is increased in predetermined stages until the dead time no longer corresponds to the maximum dead time. Since too much increase in the operating frequency of the switches of the half-bridge would reduce the power transferable to the lamp, this approach represents an optimal compromise between a switch-unloaded operation of the switches of the half-bridge and a maximum transmitted to the connected lamp power.
  • control device is designed to carry out the following step: d1) If the measured time duration is less than the predefinable time duration: decrease the first frequency by a predefinable step.
  • control device is preferably designed to carry out the following step: d2) Repeat step d1) until a predefinable value for the first frequency has been reached.
  • Fig. 1 shows a schematic representation of an embodiment of an electronic ballast according to the invention.
  • the invention is presented below using the example of an inverter with a half-bridge circuit, it will be obvious to a person skilled in the art that the principles according to the invention can also be applied to an inverter with a full-bridge circuit.
  • This in Fig. 1 illustrated electronic ballast has an input with a first E1 and a second input terminal E2 for coupling with a DC supply voltage.
  • this is the so-called intermediate circuit voltage U Zw , which is usually obtained from an AC line voltage.
  • This intermediate circuit voltage U Zw is applied to an inverter 10, comprising a first S1 and a second electronic switch S2 in a half-bridge arrangement.
  • a control device 12 is provided for controlling the switches S1, S2, a control device 12 is provided.
  • the control device 12 controls the switches S1, S2 in particular such that the first and the second switches S1, S2 are alternately turned on with a first frequency.
  • control device 12 is coupled to a current measuring device, which in the present case comprises a shunt resistor R S , which is arranged in series with the first switch S1.
  • the current flowing through the shunt resistor R S is denoted by I S.
  • the switches S1, S2 are designed as Mosfet, wherein for simplification of the following explanations, the respective body diode D1, D2, which acts here in each case as a freewheeling diode, is located.
  • a first half-bridge center HBM is formed, wherein the voltage dropping at the half-bridge center is designated U HBM .
  • a trapezoidal capacitor C t is coupled.
  • a lamp inductor ELF is coupled between the first half-bridge center HBM and a first output terminal A1 of the electronic ballast.
  • an output voltage U R is provided to a load R L , which in the present case comprises at least one discharge lamp.
  • a coupling capacitor C C is coupled.
  • Parallel to the series connection of the load R L and the coupling capacitor C C is a resonant capacitor C R coupled.
  • Fig. 2 shows a schematic representation of the dependence of the provided between the output terminals A1, A2 voltage U R of the operating frequency f R , with which the control device 12 controls the switches S1, S2, for two different loads R L.
  • Curve 1) represents a low-impedance load 1) (low burning voltage, low output power) with a resonant frequency f R1 , curve 2) a higher-impedance load 2) with a resonant frequency f R2 .
  • the frequency f R2 is greater than the frequency f R1 .
  • the frequency f o of the resonant circuit with the first-mentioned load (curve 1)) would be operated inductively, with the second-mentioned load (curve 2)) capacitive.
  • Fig. 3 shows the time courses of different sizes of the embodiment of Fig. 1 , It shows in particular the time course of the on and off state of the switch S2 (curve a)), the voltage U HBM (curve b)) and the on and off state of the switch S1 (curve c)).
  • phase 1 the switch S2 is on, that is conductive. This is the reason Potential at the half-bridge center on the potential of the intermediate circuit voltage U Zw .
  • the switch S1 is off during this time.
  • the current through the shunt resistor R S is also zero. In phase 1, therefore, the current flows through the switch S2, the inductor L R to the load R L.
  • phase 2 The transition to phase 2 is characterized in that the switch S2 goes into the off state, while the switch S1 is not yet turned on.
  • the current driven by the inductor L R thus flows from the trapezoidal capacitor C t through the inductor L R to the load R L.
  • the potential at the half-bridge center is linearly reduced to zero.
  • the beginning of phase 2 corresponds to the beginning of the dead time t dead .
  • phase 2 to phase 3 The transition from phase 2 to phase 3 is characterized in that the trapezoidal capacitor is discharged.
  • the freewheeling diode D1 becomes conductive and clamps the voltage at the half-bridge center to approximately -0.7 V.
  • the current now flows through the freewheeling diode D1, the inductor L R to the load R L. With reference to curve d), therefore, a negative current I S flows from the time when the freewheeling diode D1 has become conductive. If this reaches a Threshold I Thres , then this is used according to the prior art to trigger the switch-on of the switch S1.
  • the switch-on operation of the switch S1 represents the beginning of the phase 4.
  • the period between the beginning of the phase 2 and the end of the phase 3 represents the dead time t dead .
  • the phase 3 designates the time interval within which the switch S1 can be switched switched-off ,
  • the voltage U HBM dropping across the switch S1 is equal to zero within this period.
  • phase 4 the current now begins to flow through the switch S1, as a result of which the current flow in phase 4, see curve d), runs approximately sinusoidally until the switch S1 is switched off.
  • Fig. 4 shows a schematic representation of a signal flow graph for controlling the dead time t dead .
  • the method starts in step 100.
  • step 120 it is checked whether the dead time t dead measured by the time measuring device is equal to the predefinable time period t timeout .
  • step 140 the frequency f R , with which the switches of the half-bridge are operated, increased. Subsequently, step 120 is repeated. By the action of step 140, see Fig. 2 , the resonant frequency again shifted into the inductive range. This results in a larger negative current amplitude when taken over by the freewheeling diode, whereby the dead time control works again.
  • step 160 it is checked in step 160 whether the current operating frequency f R is greater than a nominal operating frequency f nom .
  • the nominal operating frequency f nom represents a minimum operating frequency of the electronic ballast. If it is determined that the current operating frequency f R is above the nominal operating frequency f nom , the operating frequency f R is reduced in step 180 and then branched back to the start.
  • step 160 if it is determined in step 160 that the nominal operating frequency f nom has been reached, then without a change in the current operating frequency f R, it is branched back to the start.
  • steps 160, 180 is of particular importance when initially a lamp with a higher operating voltage has been operated on the electronic ballast and its burning voltage has subsequently dropped, for example due to thermal effects. Without regulation to the nominal operating frequency f nom , the lamp would in this case be operated permanently at increased frequency and thus at reduced power.
  • the in Fig. 4 illustrated regulatory relationship on the one hand, a functioning of the dead time control, on the other hand, an operation of each connected to the electronic ballast lamp with the optimum operating frequency.
  • the increase of the half-bridge frequency can be digital, for example by digital PWM registers for the switch-on times of the switching elements, or analogously by an offset at the input of a VCO or CCO.
  • the trapezoidal capacitor C t and the coupling capacitor C C may also be located elsewhere.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

In various embodiments, ballast for a discharge lamp includes input and output connections; inverter with bridge circuit with electronic switches and control device for controlling electronic switches, wherein switches are connected in series between input connections, wherein one electronic switch is coupled to first input connection and second electronic switch to second input connection, wherein a bridge midpoint is between electronic switches; including a current measuring device for measuring second electronic switch current; lamp choke series-connected between bridge midpoint and first output connection; capacitor parallel-connected with one of electronic switches; and coupling capacitor; wherein control device is coupled to current measuring device and renders an electronic switch conducting, if negative threshold value is exceeded when electronic switch is rendered nonconducting; or if negative threshold value of current through electronic switch is not exceeded after another electronic switch is rendered nonconducting, wherein control device increases first frequency in second case.

Description

Technisches GebietTechnical area

Die vorliegende Erfindung betrifft ein elektronisches Vorschaltgerät zum Betreiben mindestens einer Entladungslampe mit einem Eingang mit einem ersten und einem zweiten Eingangsanschluss zum Koppeln mit einer Versorgungsgleichspannung, einem Ausgang mit einem ersten und einem zweiten Ausgangsanschluss zum Koppeln mit der mindestens einen Entladungslampe, einem Wechselrichter mit einer Brückenschaltung mit mindestens einem ersten und einem zweiten elektronischen Schalter und einer Steuervorrichtung zur Ansteuerung zumindest des ersten und des zweiten elektronischen Schalters derart, dass der erste und der zweite elektronische Schalter abwechselnd mit einer ersten Frequenz leitend geschaltet werden, wobei der erste und der zweite Schalter seriell zwischen den ersten und den zweiten Eingangsanschluss gekoppelt sind, wobei der erste elektronische Schalter mit dem ersten Eingangsanschluss und der zweite elektronische Schalter mit dem zweiten Eingangsanschluss gekoppelt ist, wobei zwischen dem ersten und dem zweiten elektronischen Schalter ein erster Brückenmittelpunkt ausgebildet ist, einer Strommessvorrichtung zur Messung des Stroms zumindest durch den zweiten elektronischen Schalter, einer Lampendrossel, die seriell zwischen den ersten Brückenmittelpunkt und den ersten Ausgangsanschluss gekoppelt ist, zumindest einem Trapezkondensator, der parallel zu einem der beiden elektronischen Schalter gekoppelt ist und zumindest einem Koppelkondensator zum Ankoppeln der Last, wobei die Steuervorrichtung mit der Strommessvorrichtung gekoppelt ist und ausgelegt ist, den zweiten elektronischen Schalter leitend zu schalten und zwar entweder falls ein vorgebbarer negativer Schwellwert des Stroms durch den zweiten elektronischen Schalter nach dem Sperrend-Schalten des ersten elektronischen Schalters überschritten wird oder nach einer vorgebbaren Zeitdauer, falls der vorgebbare negative Schwellwert des Stroms durch den zweiten elektronischen Schalter nach dem Sperrend-Schalten des ersten elektronischen Schalters nicht überschritten wird. Sie betrifft überdies ein entsprechendes Verfahren zum Betreiben einer Entladungslampe.The present invention relates to an electronic ballast for operating at least one discharge lamp having an input with a first and a second input terminal for coupling with a DC supply voltage, an output having a first and a second output terminal for coupling to the at least one discharge lamp, an inverter having a bridge circuit with at least a first and a second electronic switch and a control device for controlling at least the first and the second electronic switch such that the first and the second electronic switch are alternately turned on at a first frequency, the first and the second switch connected in series between the first and second input terminals are coupled, wherein the first electronic switch is coupled to the first input terminal and the second electronic switch is coupled to the second input terminal, wherein between the first and the second electronic switch, a first bridge center is formed, a current measuring device for measuring the current at least by the second electronic switch, a lamp inductor, which is serially coupled between the first bridge center and the first output terminal, at least one trapezoidal capacitor, which is parallel to a the two electronic switches is coupled and at least one coupling capacitor for coupling the load, wherein the control device is coupled to the current measuring device and is designed to switch the second electronic switch conductive, either if a predetermined negative threshold value of the current is exceeded by the second electronic switch after the Sperrend switching of the first electronic switch or after a predetermined period of time, if the predetermined negative threshold value of the current is not exceeded by the second electronic switch after the Sperrend switching of the first electronic switch. It also relates to a corresponding method for operating a discharge lamp.

Stand der TechnikState of the art

Schon seit einiger Zeit sind unter der Bezeichung Multilampen-EVGs elektronische Vorschaltgeräte auf dem Markt, die zum Betrieb von unterschiedlichen Lampen, insbesondere von Lampen unterschiedlicher Leistung ausgelegt sind. Ein Problem in diesem Zusammenhang besteht darin, einen schaltentlasteten Betrieb der Brückenschaltung des Wechselrichters bei unterschiedlichen Lasten sicherzustellen.For some time, the term multi-lamp electronic ballasts electronic ballasts on the market, which are designed to operate different lamps, especially lamps of different power. A problem in this context is to ensure a switch-relieved operation of the bridge circuit of the inverter at different loads.

In den nachfolgenden Ausführungen wird angenommen, dass der Wechselrichter mit einer Halbbrücke bestückt ist. Wie für den Fachmann ohne Weiteres erkennbar, sind die nachfolgenden Ausführungen auf Wechselrichter mit Schaltern in Vollbrückenanordnung übertragbar.In the following, it is assumed that the inverter is equipped with a half-bridge. As will be readily apparent to those skilled in the art, the following remarks are applicable to inverters having full bridge switches.

In einem aus dem Stand der Technik bekannten Controller für Entladungslampen der Firma Infineon wird ein Schalten während der Leitphase der Freilaufdiode über dem zweiten elektronischen Schalter wie folgt sichergestellt: Unter Verwendung eines Halbbrücken-Shunt-Widerstands wird der Strom im unteren Brückenzweig gemessen. Das Unterschreiten einer negativen Schwelle dieses Stroms wird dem Zeitpunkt gleichgesetzt, an dem die Freilaufdiode des unteren Schaltelements leitend wird. Dieses Ereignis triggert das Einschalten des unteren Halbbrückenschalters und bestimmt somit die Totzeit der Ansteuersignale für die Schalter der Halbbrücke.In an Infineon discharge lamp controller known from the prior art, switching during the conducting phase of the free-wheeling diode via the second electronic switch is ensured as follows: Using a half-bridge shunt resistor, the current in the lower bridge branch is measured. Falling below a negative threshold of this current is equated with the time at which the freewheeling diode of the lower switching element becomes conductive. This event triggers the switching on of the lower half-bridge switch and thus determines the dead time of the drive signals for the switches of the half-bridge.

Problematisch ist diese Regelung bei einem Betrieb der Brückenschaltung mit einer Frequenz unmittelbar oberhalb des Phasensprungs, das heißt oberhalb des Übergangs vom induktiven Betrieb zum kapazitiven Betrieb bei hohen Lasten. In dieser Betriebsart kann der verfügbare Strom für die Umladung des Trapezkondensators sehr gering sein. Dadurch besteht die Gefahr, dass die negative Schwelle des Stroms durch den Halbbrücken-Shunt-Widerstand nicht erreicht wird. Die aus dem Stand der Technik bekannte Totzeitregelung stellt in diesem Fall die maximale Totzeit, d.h. eine maximal vorgebbare Zeitdauer, ein. Dadurch wird der Schaltvorgang des unteren Halbbrückenschalters ausgeführt, nachdem der Stromfluss durch die Freilaufdiode bereits beendet wurde. Da zu diesem Zeitpunkt die Spannung über dem unteren Halbbrückenschalter ungleich Null ist, schaltet der untere Schalter der Halbbrücke nicht mehr schaltentlastet. Dies führt zu unerwünschten Schaltverlusten sowie zu einer Überbeanspruchung der beteiligten Transistoren. Letzteres resultiert unter anderem in einer Verkürzung der Lebensdauer derartiger elektronischer Vorschaltgeräte.This control is problematic in operation of the bridge circuit with a frequency immediately above the phase jump, that is above the transition from inductive operation to capacitive operation at high loads. In this operating mode, the available current for the recharging of the trapezoidal capacitor can be very low. As a result, there is the danger that the negative threshold of the current through the half-bridge shunt resistor will not be reached. The deadtime control known from the prior art in this case sets the maximum dead time, i. a maximum predefinable period of time. Thereby, the switching operation of the lower half-bridge switch is carried out after the current flow through the freewheeling diode has already ended. Since at this time, the voltage across the lower half-bridge switch is not equal to zero, the lower switch of the half-bridge is no longer switching-relieved. This leads to undesirable switching losses and overstressing of the transistors involved. The latter results inter alia in a shortening of the life of such electronic ballasts.

Um dennoch eine zuverlässige Schaltentlastung der Halbbrücke zu gewährleisten, kann der üblicherweise vorhandene Resonanzkreis mit großen Resonanz-Kapazitäten ausgelegt werden. Diese Maßnahme führt jedoch zu erhöhten Blindströmen und damit zu unerwünscht großen Verlusten im Wechselrichter.In order nevertheless to ensure a reliable switching discharge of the half-bridge, the usually existing Resonant circuit can be designed with large resonance capacities. However, this measure leads to increased reactive currents and thus to undesirably large losses in the inverter.

WO 2009/037613 A1 offenbart ein elektronisches Vorschaltgerät, wobei die Betriebsfrequenz gesteuert wird. WO 2009/037613 A1 discloses an electronic ballast wherein the operating frequency is controlled.

Darstellung der ErfindungPresentation of the invention

Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde ein gattungsgemäßes elektronisches Vorschaltgerät beziehungsweise ein gattungsgemäßes Verfahren derart weiterzubilden, dass auch bei einem Betrieb des elektronischen Vorschaltgeräts in der Nähe des Phasensprungs bei unterschiedlichen angeschlossenen Lasten ein schaltentlasteter Betrieb bei möglichst geringen Verlusten bereitgestellt werden kann.The present invention is therefore based on the object of developing a generic electronic ballast or a generic method such that even with an operation of the electronic ballast in the vicinity of the phase jump at different connected loads a switch-unloaded operation can be provided with minimum losses.

Diese Aufgabe wird gelöst durch ein elektronisches Vorschaltgerät mit den Merkmalen von Patentanspruch 1 sowie durch ein Verfahren mit den Merkmalen von Patentanspruch 11.This object is achieved by an electronic ballast with the features of claim 1 and by a method having the features of claim 11.

Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass dem obigen Problem begegnet werden kann, wenn bei Feststellung eines Schaltvorgangs nach Erreichen der maximalen Totzeit die Frequenz, mit der die Schalter der Halbbrücke betrieben werden, erhöht wird. Durch Erhöhen dieser Frequenz wird die Betriebsfrequenz ausgehend von einer Übergangsfrequenz zwischen kapazitivem und induktivem Betrieb in Richtung induktivem Betrieb verschoben. Dies resultiert in einer Vergrößerung der negativen Stromamplitude bei Übernahme des Stroms durch die Freilaufdiode des unteren Schalters. Wird die Betriebsfrequenz der beiden Schalter soweit erhöht, dass der vorgebbare negative Schwellwert des Stroms durch den unteren Schalter wieder überschritten wird, so funktioniert die bekannte Totzeitregelung wieder; ein schaltentlasteter Betrieb der Schalter des Wechselrichters kann sichergestellt werden.The present invention is based on the finding that the above problem can be met if the frequency at which the switches of the half-bridge are operated is increased when a switching operation is detected after reaching the maximum dead time. By increasing this frequency, the operating frequency is shifted from inductive operation to a transient frequency between capacitive and inductive operation. This results in an increase of the negative current amplitude when taking over the current through the freewheeling diode of the lower switch. If the operating frequency of the two switches is increased so far that the specifiable negative threshold value of the current through the lower switch is exceeded again, so the known dead time control works again; a switch-unloaded operation of the switches of the inverter can be ensured.

Diese Lösung funktioniert ohne eine Vergrößerung der Kapazität des Resonanzkondensators und geht daher mit nahezu keinen zusätzlichen Verlusten einher.This solution works without an increase in the capacitance of the resonant capacitor and therefore involves virtually no additional losses.

Jeder der beiden elektronischen Schalter umfasst eine Steuerelektrode, eine Arbeitselektrode und eine Bezugselektrode. Es kann nun vorgesehen werden, dass der Strecke Arbeitselektrode-Bezugselektrode eine diskrete Diode als Freilaufdiode parallel geschaltet ist oder dass die Freilaufdiode eine Bodydiode des elektronischen Schalters darstellt. Letzteres ist beispielsweise der Fall, wenn als Schalter Mosfet-Transistoren verwendet werden.Each of the two electronic switches comprises a control electrode, a working electrode and a reference electrode. It can now be provided that the path working electrode reference electrode is connected in parallel with a discrete diode as a freewheeling diode or that the freewheeling diode is a body diode of the electronic switch. The latter is the case, for example, when mosfet transistors are used as switches.

Bevorzugt umfasst die Steuervorrichtung eines erfindungsgemäßen elektronischen Vorschaltgeräts einen Speicher, in dem die vorgebbare Zeitdauer abgelegt ist. Dies eröffnet insbesondere die Möglichkeit, diese ggf. lampenspezifisch zu modifizieren.Preferably, the control device of an electronic ballast according to the invention comprises a memory in which the predefinable period of time is stored. This opens up the possibility, in particular, of modifying these for specific lamps.

Weiterhin ist bevorzugt, wenn die Steuervorrichtung eine Zeitmessvorrichtung umfasst, die ausgelegt ist, die Zeitdauer nach dem Sperrend-Schalten des ersten elektronischen Schalters bis zum Leitend-Schalten des zweiten elektronischen Schalters zu bestimmen.Furthermore, it is preferred if the control device comprises a time-measuring device which is designed to determine the time duration after the blocking-end switching of the first electronic switch until the second electronic switch is turned on.

Bevorzugt ist die Steuervorrichtung zur Durchführung des folgenden Schritts ausgelegt: c1) Falls die gemessene Zeitdauer gleich der vorgebbaren Zeitdauer ist: Erhöhe die erste Frequenz um einen vorgebbaren Schritt. Bevorzugt ist in diesem Zusammenhang die Steuervorrichtung weiterhin zur Durchführung des folgenden Schritts ausgelegt: c2) Wiederhole Schritt c1) jedenfalls solange, bis die gemessene Zeitdauer kleiner als die vorgebbare Zeitdauer ist. Dies resultiert in der Summe darin, dass die Betriebsfrequenz der Schalter der Halbbrücke in vorgebbaren Stufen solange erhöht wird, bis die Totzeit nicht mehr der maximalen Totzeit entspricht. Da eine zu weite Erhöhung der Betriebsfrequenz der Schalter der Halbbrücke die auf die Lampe übertragbare Leistung reduzieren würde, stellt diese Vorgehensweise einen optimalen Kompromiss zwischen einem schaltentlasteten Betrieb der Schalter der Halbbrücke sowie einer maximal an die angeschlossene Lampe übertragenen Leistung dar.Preferably, the control device is designed to carry out the following step: c1) If the measured time duration is equal to the predefinable time duration: Increase the first frequency by a predefinable step. In this context, the control device is preferably designed to carry out the following step: c2) Repeat step c1) at any rate until the measured time duration is less than the predefinable time duration. This results in the sum that the operating frequency of the switches of the half-bridge is increased in predetermined stages until the dead time no longer corresponds to the maximum dead time. Since too much increase in the operating frequency of the switches of the half-bridge would reduce the power transferable to the lamp, this approach represents an optimal compromise between a switch-unloaded operation of the switches of the half-bridge and a maximum transmitted to the connected lamp power.

Weiterhin bevorzugt ist die Steuervorrichtung zur Durchführung des folgenden Schritts ausgelegt: d1) Falls die gemessene Zeitdauer kleiner als die vorgebbare Zeitdauer ist: Erniedrige die erste Frequenz um einen vorgebbaren Schritt. Bevorzugt ist in diesem Zusammenhang die Steuervorrichtung weiterhin zur Durchführung des folgenden Schritts ausgelegt: d2) Wiederhole Schritt d1) solange, bis ein vorgebbarer Wert für die erste Frequenz erreicht ist. Diese Maßnahmen tragen insbesondere der Situation Rechnung, wenn zunächst eine Entladungslampe mit höherer Leistung bzw. höherer Brennspannung an den Ausgang des elektronischen Vorschaltgeräts angeschlossen wird, deren Brennspannung während des Betriebs infolge von Temperatureffekten wieder abnimmt. Würde die Betriebsfrequenz für die Schalter der Halbbrücke beibehalten, die sich beim Betrieb der Lampe mit höherer Leistung eingestellt hat, so würde weniger Leistung an die Lampe mit niedrigerer Brennspannung übertragen als tatsächlich möglich wäre. Durch das stufenweise Absenken der Betriebsfrequenz der Schalter der Halbbrücke kann sichergestellt werden, dass einerseits die Schalter schaltentlastet betrieben werden und dass andererseits eine maximale Leistung an die am Ausgang des elektronischen Vorschaltgeräts angeschlossene Entladungslampe übertragen wird. In diesem Zusammenhang können Algorithmen zur Wahl der Schrittweite implementiert sein, die ein nicht-schaltentlastetes Schalten der Schalter der Halbbrücke lediglich sehr selten provozieren, beispielsweise jeden 100sten oder 1000sten Schaltvorgang. Derart seltenes nicht-schaltentlastetes Schalten führt lediglich zu unrelevanten Verlusten, ermöglicht jedoch einen hinsichtlich der Leistungsübertragung optimierten Betrieb des elektronischen Vorschaltgeräts.Further preferably, the control device is designed to carry out the following step: d1) If the measured time duration is less than the predefinable time duration: decrease the first frequency by a predefinable step. In this context, the control device is preferably designed to carry out the following step: d2) Repeat step d1) until a predefinable value for the first frequency has been reached. These measures take into account in particular the situation when first a discharge lamp with higher power or higher operating voltage is connected to the output of the electronic ballast, the operating voltage decreases again during operation due to temperature effects. Would maintain the operating frequency for the switches of the half-bridge, which are set during operation of the lamp with higher power has, would transmit less power to the lamp with lower burning voltage than would actually be possible. By gradually reducing the operating frequency of the switches of the half-bridge can be ensured that on the one hand, the switches are operated switch relieved and that on the other hand, a maximum power is transmitted to the output of the electronic ballast connected discharge lamp. In this context, algorithms for selecting the step size can be implemented, which only very seldom provoke non-switch-relieved switching of the switches of the half-bridge, for example every 100th or 1000th switching operation. Such rare non-switching relieved switching leads only to unimportant losses, but allows an optimized in terms of power transmission operation of the electronic ballast.

Weitere vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.Further advantageous embodiments will become apparent from the dependent claims.

Die mit Bezug auf das erfindungsgemäße elektronische Vorschaltgerät vorgestellten bevorzugten Ausführungsformen und deren Vorteile gelten entsprechend, soweit anwendbar, für das erfindungsgemäße Verfahren.The preferred embodiments presented with reference to the electronic ballast according to the invention and their advantages apply correspondingly, as far as applicable, to the method according to the invention.

Kurze Beschreibung der Zeichnung(en)Short description of the drawing (s)

Im Nachfolgenden wird nunmehr ein Ausführungsbeispiel eines erfindungsgemäßen elektronischen Vorschaltgeräts unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Es zeigen:

Fig. 1
in schematischer Darstellung ein Ausführungsbeispiel eines erfindungsgemäßen elektronischen Vorschaltgeräts;
Fig. 2
in schematischer Darstellung die Abhängigkeit der Ausgangsspannung von der Betriebsfrequenz der Schalter des Wechselrichters für zwei unterschiedliche Lasten;
Fig. 3
den zeitlichen Verlauf verschiedener elektrischer Größen für das Ausführungsbeispiel von Fig. 1; und
Fig. 4
in schematischer Darstellung einen Signalflussgrafen eines Ausführungsbeispiels einer erfindungsgemäßen Totzeitregelung.
In the following, an embodiment of an electronic ballast according to the invention will now be described in more detail with reference to the accompanying drawings. Show it:
Fig. 1
a schematic representation of an embodiment of an electronic ballast according to the invention;
Fig. 2
a schematic representation of the dependence of the output voltage of the operating frequency of the switches of the inverter for two different loads;
Fig. 3
the time course of various electrical variables for the embodiment of Fig. 1 ; and
Fig. 4
a schematic representation of a signal flow graph of an embodiment of a dead time control according to the invention.

Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention

Fig. 1 zeigt in schematischer Darstellung ein Ausführungsbeispiel eines erfindungsgemäßen elektronischen Vorschaltgeräts. Wenngleich im Nachfolgenden die Erfindung am Beispiel eines Wechselrichters mit einer Halbbrückenschaltung vorgestellt wird, so ist für den Fachmann offensichtlich, dass die erfindungsgemäßen Prinzipien auch bei einem Wechselrichter mit Vollbrückenschaltung anwendbar sind. Fig. 1 shows a schematic representation of an embodiment of an electronic ballast according to the invention. Although the invention is presented below using the example of an inverter with a half-bridge circuit, it will be obvious to a person skilled in the art that the principles according to the invention can also be applied to an inverter with a full-bridge circuit.

Das in Fig. 1 dargestellte elektronische Vorschaltgerät weist einen Eingang mit einem ersten E1 und einem zweiten Eingangsanschluss E2 auf zum Koppeln mit einer Versorgungsgleichspannung. Vorliegend ist dies die so genannte Zwischenkreisspannung UZw, die üblicherweise aus einer Netzwechselspannung gewonnen wird. Diese Zwischenkreisspannung UZw wird an einen Wechselrichter 10 angelegt, der einen ersten S1 und einen zweiten elektronischen Schalter S2 in Halbbrückenanordnung umfasst. Zur Ansteuerung der Schalter S1, S2 ist eine Steuervorrichtung 12 vorgesehen. Die Steuervorrichtung 12 steuert die Schalter S1, S2 insbesondere derart, dass der erste und der zweite Schalter S1, S2 abwechselnd mit einer ersten Frequenz leitend geschaltet werden. Zu diesem Zweck ist die Steuervorrichtung 12 mit einer Strommessvorrichtung gekoppelt, die vorliegend einen Shunt-Widerstand RS umfasst, der seriell zum ersten Schalter S1 angeordnet ist. Der durch den Shunt-Widerstand RS fließende Strom ist mit IS bezeichnet. Die Schalter S1, S2 sind als Mosfet ausgebildet, wobei zur Vereinfachung der nachfolgenden Erklärungen die jeweilige Bodydiode D1, D2, die hier jeweils als Freilaufdiode wirkt, eingezeichnet ist.This in Fig. 1 illustrated electronic ballast has an input with a first E1 and a second input terminal E2 for coupling with a DC supply voltage. In the present case, this is the so-called intermediate circuit voltage U Zw , which is usually obtained from an AC line voltage. This intermediate circuit voltage U Zw is applied to an inverter 10, comprising a first S1 and a second electronic switch S2 in a half-bridge arrangement. For controlling the switches S1, S2, a control device 12 is provided. The control device 12 controls the switches S1, S2 in particular such that the first and the second switches S1, S2 are alternately turned on with a first frequency. For this purpose, the control device 12 is coupled to a current measuring device, which in the present case comprises a shunt resistor R S , which is arranged in series with the first switch S1. The current flowing through the shunt resistor R S is denoted by I S. The switches S1, S2 are designed as Mosfet, wherein for simplification of the following explanations, the respective body diode D1, D2, which acts here in each case as a freewheeling diode, is located.

Zwischen den Schaltern S1, S2 ist ein erster Halbbrückenmittelpunkt HBM ausgebildet, wobei die am Halbbrückenmittelpunkt abfallende Spannung mit UHBM bezeichnet ist. Parallel zum unteren Halbbrückenzweig ist ein Trapezkondensator Ct gekoppelt. Zwischen den ersten Halbbrückenmittelpunkt HBM und einen ersten Ausgangsanschluss A1 des elektronischen Vorschaltgeräts ist eine Lampendrossel ELF gekoppelt. Zwischen den ersten Ausgangsanschluss A1 und einen zweiten Ausgangsanschluss A2, der hier einen zweiten Halbbrückenmittelpunkt darstellt, wird eine Ausgangsspannung UR an eine Last RL bereitgestellt, die vorliegend mindestens eine Entladungslampe umfasst. Zwischen den zweiten Ausgangsanschluss A2 und das Bezugspotenzial, dargestellt durch den Anschluss E2, ist ein Koppelkondensator CC gekoppelt. Parallel zur Serienschaltung der Last RL und dem Koppelkondensator CC ist ein Resonanzkondensator CR gekoppelt.Between the switches S1, S2, a first half-bridge center HBM is formed, wherein the voltage dropping at the half-bridge center is designated U HBM . Parallel to the lower half-bridge branch a trapezoidal capacitor C t is coupled. A lamp inductor ELF is coupled between the first half-bridge center HBM and a first output terminal A1 of the electronic ballast. Between the first output terminal A1 and a second output terminal A2, which here represents a second half-bridge center, an output voltage U R is provided to a load R L , which in the present case comprises at least one discharge lamp. Between the second output terminal A2 and the reference potential, represented by the terminal E2, a coupling capacitor C C is coupled. Parallel to the series connection of the load R L and the coupling capacitor C C is a resonant capacitor C R coupled.

Fig. 2 zeigt in schematischer Darstellung die Abhängigkeit der zwischen den Ausgangsanschlüssen A1, A2 bereitgestellten Spannung UR von der Betriebsfrequenz fR, mit der die Steuervorrichtung 12 die Schalter S1, S2 ansteuert, für zwei unterschiedliche Lasten RL. Kurvenzug 1) repräsentiert eine niederohmige Last 1) (geringe Brennspannung, geringe Ausgangsleistung) mit einer Resonanzfrequenz fR1, Kurvenzug 2) eine höherohmige Last 2) mit einer Resonanzfrequenz fR2. Wie deutlich zu erkennen, ist die Frequenz fR2 größer als die Frequenz fR1. Im Betrieb mit der Frequenz fo würde der Resonanzkreis mit der erstgenannten Last (Kurvenzug 1)) induktiv betrieben, mit der zweitgenannten Last (Kurvenzug 2)) kapazitiv. Fig. 2 shows a schematic representation of the dependence of the provided between the output terminals A1, A2 voltage U R of the operating frequency f R , with which the control device 12 controls the switches S1, S2, for two different loads R L. Curve 1) represents a low-impedance load 1) (low burning voltage, low output power) with a resonant frequency f R1 , curve 2) a higher-impedance load 2) with a resonant frequency f R2 . As can be clearly seen, the frequency f R2 is greater than the frequency f R1 . In operation with the frequency f o of the resonant circuit with the first-mentioned load (curve 1)) would be operated inductively, with the second-mentioned load (curve 2)) capacitive.

Fig. 3 zeigt die zeitlichen Verläufe verschiedener Größen des Ausführungsbeispiels von Fig. 1. Sie zeigt insbesondere den zeitlichen Verlauf des Ein- und Ausschaltzustands des Schalters S2 (Kurvenzug a)), der Spannung UHBM (Kurvenzug b)) sowie des Ein- und Ausschaltzustands des Schalters S1 (Kurvenzug c)). Darüber hinaus ist der Verlauf des Stroms IS dargestellt und zwar zunächst für einen induktiven Betrieb (fR=fR2) bei Last 1) (Kurvenzug d)), für einen kapazitiven Betrieb im Phasensprung bei Last 2) (fR=fR2) (Kurvenzug e)), sowie für dieselbe Last wie Kurvenzug e), jedoch nunmehr bei Betrieb mit einer Frequenz fR größer fR2 (Kurvenzug f)). Fig. 3 shows the time courses of different sizes of the embodiment of Fig. 1 , It shows in particular the time course of the on and off state of the switch S2 (curve a)), the voltage U HBM (curve b)) and the on and off state of the switch S1 (curve c)). In addition, the course of the current I S is shown, first for an inductive operation (f R = f R2 ) at load 1) (curve d)), for a capacitive operation in the phase jump at load 2) (f R = f R2 ) (Curve e)), and for the same load as curve e), but now when operating at a frequency f R greater f R2 (curve f)).

Die jeweiligen zeitlichen Verläufe sind gegliedert in vier unterschiedliche Phasen. In der Phase 1 ist der Schalter S2 ein, also leitend. Dadurch befindet sich das Potenzial am Halbbrückenmittelpunkt auf dem Potenzial der Zwischenkreisspannung UZw. Der Schalter S1 ist während dieser Zeit aus. Der Strom durch den Shunt-Widerstand RS ebenfalls Null. In Phase 1 fließt demnach der Strom über den Schalter S2, die Drossel LR zur Last RL.The respective temporal courses are divided into four different phases. In phase 1, the switch S2 is on, that is conductive. This is the reason Potential at the half-bridge center on the potential of the intermediate circuit voltage U Zw . The switch S1 is off during this time. The current through the shunt resistor R S is also zero. In phase 1, therefore, the current flows through the switch S2, the inductor L R to the load R L.

Der Übergang zur Phase 2 ist dadurch gekennzeichnet, dass der Schalter S2 in den Aus-Zustand übergeht, während der Schalter S1 jedoch noch nicht eingeschaltet wird. Der von der Drossel LR weiterhin getriebene Strom fließt demnach aus dem Trapezkondensator Ct durch die Drossel LR zur Last RL. Das Potenzial am Halbbrückenmittelpunkt wird linear auf Null abgebaut. Der Beginn der Phase 2 entspricht dem Beginn der Totzeit tdead.The transition to phase 2 is characterized in that the switch S2 goes into the off state, while the switch S1 is not yet turned on. The current driven by the inductor L R thus flows from the trapezoidal capacitor C t through the inductor L R to the load R L. The potential at the half-bridge center is linearly reduced to zero. The beginning of phase 2 corresponds to the beginning of the dead time t dead .

Der Übergang von Phase 2 auf Phase 3 ist dadurch gekennzeichnet, dass der Trapez-Kondensator entladen ist. Die Freilaufdiode D1 wird leitend und klemmt die Spannung am Halbbrückenmittelpunkt auf circa -0,7 V. Der Strom fließt nunmehr über die Freilaufdiode D1, die Drossel LR zur Last RL. Mit Bezug auf Kurvenzug d) fließt demnach ein negativer Strom IS ab dem Zeitpunkt, ab dem die Freilaufdiode D1 leitend geworden ist. Erreicht dieser eine Schwelle IThres, so wird dies gemäß dem Stand der Technik verwendet, um den Einschaltvorgang des Schalters S1 auszulösen. Der Einschaltvorgang des Schalters S1 stellt den Beginn der Phase 4 dar. Der Zeitraum zwischen dem Beginn der Phase 2 und dem Ende der Phase 3 stellt die Totzeit tdead dar. Die Phase 3 bezeichnet das Zeitintervall, innerhalb dessen der Schalter S1 schaltentlastet geschaltet werden kann. Die über dem Schalter S1 abfallende Spannung UHBM ist innerhalb dieses Zeitraums gleich Null.The transition from phase 2 to phase 3 is characterized in that the trapezoidal capacitor is discharged. The freewheeling diode D1 becomes conductive and clamps the voltage at the half-bridge center to approximately -0.7 V. The current now flows through the freewheeling diode D1, the inductor L R to the load R L. With reference to curve d), therefore, a negative current I S flows from the time when the freewheeling diode D1 has become conductive. If this reaches a Threshold I Thres , then this is used according to the prior art to trigger the switch-on of the switch S1. The switch-on operation of the switch S1 represents the beginning of the phase 4. The period between the beginning of the phase 2 and the end of the phase 3 represents the dead time t dead . The phase 3 designates the time interval within which the switch S1 can be switched switched-off , The voltage U HBM dropping across the switch S1 is equal to zero within this period.

In der Phase 4 beginnt nun der Strom durch den Schalter S1 zu fließen, wodurch der Stromfluss in der Phase 4, siehe Kurvenzug d), bis zum Abschalten des Schalters S1 näherungsweise sinusförmig verläuft.In phase 4, the current now begins to flow through the switch S1, as a result of which the current flow in phase 4, see curve d), runs approximately sinusoidally until the switch S1 is switched off.

Die mit jeweiligem hochgestellten Strich gekennzeichneten Kurvenverläufe ergeben sich bei einer Vergrößerung der Last RL, d.h. mit Bezug auf Fig. 2 bei Last 2). Demnach fällt nach einem Ausschaltvorgang des Schalters S2 das Potenzial am Halbbrückenmittelpunkt deutlich langsamer, siehe U'HBM in Kurvenzug b). Zum Zeitpunkt, zu dem die Spannung U'HBM das Massepotenzial erreicht, ist der negative Strompeak des Stroms I's, siehe Kurvenzug e), jedoch nicht negativ genug, um den Schwellwert IThres zu erreichen. Dadurch wird ein Schaltvorgang des Schalter S1, siehe den Verlauf S1' in Kurvenzug c), erst nach Erreichen der maximalen vorgebbaren Zeitdauer ttimeout ausgelöst.The marked with respective superscript curve curves result in an increase in the load R L , ie with reference to Fig. 2 at load 2). Accordingly, after a switch-off operation of the switch S2, the potential at the half-bridge center falls much slower, see U ' HBM in curve b). However, at the instant when the voltage U ' HBM reaches the ground potential, the negative current peak of the current I's, see curve e), is not negative enough to reach the threshold I Thres . As a result, a switching operation of the switch S1, see the course S1 'in curve c), only after reaching the maximum predetermined time t timeout triggered.

Beim Einschalten des Schalters S1, siehe Verlauf S1', tritt nun ein nadelförmiger Strom I'S auf, der aus der Entladung des Trapezkondensators Ct herrührt. Da zu diesem Zeitpunkt U'HBM nicht mehr gleich Null ist, wird der Schalter S1 nicht schaltentlastet geschaltet.When switching on the switch S1, see the course S1 ', now occurs a needle-shaped current I' S , which results from the discharge of the trapezoidal capacitor C t . Since U ' HBM is no longer equal to zero at this point in time, the switch S1 is not switched switched-off.

Während Kurvenzug d) und e), wie erwähnt, bei einer ersten Betriebsfrequenz fR gleich fR2 für die Schalter der Halbbrücke aufgezeichnet wurden, wird nunmehr für Kurvenzug f) eine zweite Betriebsfrequenz fR größer fR2 gewählt. Durch die Erhöhung der Frequenz fR steigt der negative Stromimpuls zu dem Zeitpunkt, zu dem das Potenzial am Halbbrückenmittelpunkt auf Null geht, an, vergleiche Kurvenzug f) mit Kurvenzug e). Die Schwelle IThres wird wieder erreicht und ein schaltentlastetes Einschalten des Schalters S1 ermöglicht.While curves d) and e), as mentioned, were recorded at a first operating frequency f R equal to f R2 for the switches of the half bridge, a second operating frequency f R greater than R2 is now selected for curve f). By increasing the frequency f R , the negative current pulse increases at the time when the potential at the half-bridge center goes to zero, compare curve f) with curve e). The threshold I Thres will be back achieved and a switch-relieved switching on the switch S1 allows.

Fig. 4 zeigt in schematischer Darstellung einen Signalflussgrafen zur Regelung der Totzeit tdead. Das Verfahren startet im Schritt 100. Im Schritt 120 wird geprüft, ob die mittels der Zeitmessvorrichtung gemessene Totzeit tdead gleich der vorgebbaren Zeitdauer ttimeout ist. Fig. 4 shows a schematic representation of a signal flow graph for controlling the dead time t dead . The method starts in step 100. In step 120, it is checked whether the dead time t dead measured by the time measuring device is equal to the predefinable time period t timeout .

Ist dies der Fall, so wird im Schritt 140 die Frequenz fR, mit der die Schalter der Halbbrücke betrieben werden, erhöht. Anschließend wird Schritt 120 wiederholt. Durch die Maßnahme von Schritt 140 wird, siehe Fig. 2, die Resonanzfrequenz wieder weiter in den induktiven Bereich verschoben. Dies resultiert in einer größeren negativen Stromamplitude bei einer Übernahme durch die Freilaufdiode, wodurch die Totzeitregelung wieder funktioniert.If this is the case, then in step 140, the frequency f R , with which the switches of the half-bridge are operated, increased. Subsequently, step 120 is repeated. By the action of step 140, see Fig. 2 , the resonant frequency again shifted into the inductive range. This results in a larger negative current amplitude when taken over by the freewheeling diode, whereby the dead time control works again.

Wird im Schritt 120 jedoch festgestellt, dass die Totzeit tdead kleiner als die vorgegebene Zeitdauer ttimeout ist, so wird in Schritt 160 geprüft, ob die aktuelle Betriebsfrequenz fR größer als eine nominale Betriebsfrequenz fnom ist. Die nominale Betriebsfrequenz fnom stellt eine minimale Betriebsfrequenz des elektronischen Vorschaltgeräts dar. Wird festgestellt, dass die aktuelle Betriebsfrequenz fR über der nominalen Betriebsfrequenz fnom liegt, so wird im Schritt 180 die Betriebsfrequenz fR reduziert und anschließend zum Start zurückverzweigt.However, if it is determined in step 120 that the dead time t dead is less than the predetermined time period t timeout , it is checked in step 160 whether the current operating frequency f R is greater than a nominal operating frequency f nom . The nominal operating frequency f nom represents a minimum operating frequency of the electronic ballast. If it is determined that the current operating frequency f R is above the nominal operating frequency f nom , the operating frequency f R is reduced in step 180 and then branched back to the start.

Wird in Schritt 160 jedoch festgestellt, dass die nominale Betriebsfrequenz fnom erreicht wurde, so wird ohne eine Änderung der aktuellen Betriebsfrequenz fR zum Start zurückverzweigt.However, if it is determined in step 160 that the nominal operating frequency f nom has been reached, then without a change in the current operating frequency f R, it is branched back to the start.

Die Ausführung der Schritte 160, 180 ist insbesondere von Bedeutung, wenn zunächst eine Lampe mit einer höheren Brennspannung an dem elektronischen Vorschaltgerät betrieben wurde und deren Brennspannung anschließend, beispielsweise durch thermische Effekte, abgesunken ist. Ohne eine Regelung auf die nominale Betriebsfrequenz fnom würde die Lampe in diesem Fall dauerhaft bei erhöhter Frequenz und somit bei reduzierter Leistung betrieben werden. So ermöglicht der in Fig. 4 dargestellte Regelungszusammenhang zum einen ein Funktionieren der Totzeitregelung, zum anderen einen Betrieb jeder an das elektronische Vorschaltgerät angeschlossenen Lampe mit der optimalen Betriebsfrequenz.The execution of steps 160, 180 is of particular importance when initially a lamp with a higher operating voltage has been operated on the electronic ballast and its burning voltage has subsequently dropped, for example due to thermal effects. Without regulation to the nominal operating frequency f nom , the lamp would in this case be operated permanently at increased frequency and thus at reduced power. Thus, the in Fig. 4 illustrated regulatory relationship on the one hand, a functioning of the dead time control, on the other hand, an operation of each connected to the electronic ballast lamp with the optimum operating frequency.

Das jeweilige Erreichen der vorgebbaren Zeitdauer ttimeout lässt sich besonders einfach digital erfassen. Die Erhöhung der Halbbrückenfrequenz kann je nach Implementation digital erfolgen, beispielsweise durch digitale PWM-Register für die Einschaltzeiten der Schaltelemente, oder analog durch einen Offset am Eingang eines VCO oder CCO.The respective achievement of the predefinable time duration t timeout can be detected particularly simply digitally. Depending on the implementation, the increase of the half-bridge frequency can be digital, for example by digital PWM registers for the switch-on times of the switching elements, or analogously by an offset at the input of a VCO or CCO.

Der in Fig. 4 dargestellt Ablauf sollte allerdings ausschließlich im Brennbetrieb und nicht während der Vorheizung oder der Zündung der Entladungslampe aktiviert werden, um ungewollte Wechselwirkungen mit anderen Schutzund Regelmechanismen zu vermeiden.The in Fig. 4 However, the sequence should only be activated in the burning mode and not during the preheating or the ignition of the discharge lamp in order to avoid unwanted interactions with other protection and control mechanisms.

Wie für den Fachmann offensichtlich, kann der Trapezkondensator Ct und der Koppelkondensator CC auch an anderer Stelle angeordnet sein. Überdies können auch mehrere Trapezkondensatoren und Koppelkondensatoren, wie für den Fachmann offensichtlich, vorgesehen sein.As is apparent to those skilled in the art, the trapezoidal capacitor C t and the coupling capacitor C C may also be located elsewhere. Moreover, it is also possible to provide a plurality of trapezoidal capacitors and coupling capacitors, as is obvious to a person skilled in the art.

Claims (11)

  1. Electronic ballast for operating at least one discharge lamp (RL) comprising
    - an input having a first (E1) and a second input terminal (E2) for coupling to a direct supply voltage (UZw);
    - one output having a first (A1) and a second output terminal (A2) for coupling to the at least one discharge lamp (RL);
    - an inverter (10) having a bridge circuit with at least one first (S1) and one second electronic switch (S2) and a control device (12) for driving at least the first (S1) and the second electronic switch (S2) in such a manner that the first (S1) and the second electronic switch (S2) are alternately switched to conduct with a first frequency (fR), wherein the first (S1) and the second switch (S2) are coupled serially between the first (E1) and the second input terminal (E2), wherein the second electronic switch (S2) is coupled to the first input terminal (E1) and the first electronic switch (S1) is coupled to the second input terminal (E2), wherein a first bridge centre (HBM) is formed between the first (E2) and the second electronic switch (E1);
    - a current measuring device (RS) for measuring the current (Is) at least through the first electronic switch (S1);
    - a lamp choke (LR) which is coupled serially between the first bridge centre (HBM) and the first output terminal (A1);
    - at least one trapezoidal capacitor (Ct) which is coupled in parallel with one of the two electronic switches (S1; S2); and
    - at least one coupling capacitor (CC) for connecting the
    load;
    wherein the control device (12) is coupled to the current measuring device (RS) and is designed for switching the first electronic switch (S1) to conduct,
    a) if a predeterminable negative threshold value (IThres) of the current (IS) through the first electronic switch (S1) is exceeded after the second electronic switch (S2) has been switched to block; or
    b) if the predeterminable negative threshold value (IThres) of the current (IS) is not exceeded by the first electronic switch (S1) after the second electronic switch (S2) has been switched to block: after a predeterminable period (ttimeout);
    characterized in that the control device (12) is designed for increasing the first frequency (fR) in case b).
  2. Electronic ballast according to Claim 1, characterized in that each of the two electronic switches (S1, S2) comprises a control electrode, an operating electrode and a reference electrode, wherein a free running diode (D2, D1) is connected in parallel with the operating electrode - reference electrode path.
  3. Electronic ballast according to Claim 2, characterized in that the free running diode (D2, D1) represents a body diode of the electronic switch (S2, S1).
  4. Electronic ballast according to Claim 2, characterized in that the free running diode (D2, D1) represents a discrete diode.
  5. Electronic ballast according to one of the preceding claims, characterized in that the control device (12) comprises a memory in which the predeterminable period (ttimeout) is deposited.
  6. Electronic ballast according to one of the preceding claims, characterized in that the control device (12) comprises a time measuring device which is designed to determine the period after the second electronic switch (S2) has been switched to block up to when the first electronic switch (S1) has been switched to conduct.
  7. Electronic ballast according to Claim 6, characterized in that the control device (12) is designed for carrying out the following step:
    c1) if the measured period (tdead) is equal to the
    predeterminable period (ttimeout) (step 120) :
    increase the first frequency (fR) by a predeterminable step (step 140).
  8. Electronic ballast according to Claim 7, characterized in that the control device (12) is also designed for carrying out the following step:
    c2) repeat step c1), in any case until the measured
    period (tdead) is shorter than the predeterminable period (ttimeout).
  9. Electronic ballast according to one of Claims 7 and 8, characterized in that the control device (12) is also designed for carrying out the following step:
    d1) if the measured period (tdead) is shorter than the
    predeterminable period (ttimeout) (step 160) :
    reduce the first frequency (fR) by a predeterminable step (step 180).
  10. Electronic ballast according to Claim 9, characterized in that the control device (12) is also designed for carrying out the following step:
    d2) repeat step d1) until a predeterminable value for the
    first frequency (fR) is reached.
  11. Method for operating a discharge lamp (RL) at an electronic ballast having an input with a first (E1) and a second input terminal (E2) for coupling to a direct supply voltage (UZw); an output having a first (A1) and a second output terminal (A2) for coupling to the at least one discharge lamp (RL); an inverter (10) having a bridge circuit with at least one first (S1) and a second electronic switch (S2) and a control device (12) for driving at least the first (S1) and the second electronic switch (S2) in such a manner that the first (S1) and the second electronic switch (S2) are alternately switched to conduct at a first frequency (fR), wherein the first (S1) and the second switch (S2) are coupled serially between the first (E1) and the second input terminal (E2), wherein the second electronic switch (S2) is coupled to the first input terminal (E1) and the first electronic switch (S1) is coupled to the second input terminal (E2), wherein a first bridge centre (HBM) is formed between the first (S1) and the second electronic switch (S2); a current measuring device (RS) for measuring the current (Is) at least through the first electronic switch (S1); a lamp choke (LR) which is coupled serially between the first bridge centre (HBM) and the first output terminal (A1); at least one trapezoidal capacitor (Ct) which is coupled in parallel with one of the two electronic switches (S1; S2); and at least one coupling capacitor (CC) for connecting the load; wherein the control device (12) is coupled to the current measuring device (RS) and is designed for switching the first electronic switch (S1) to conduct
    a) if a predeterminable negative threshold value (IThres) of the current (Is) is exceeded by the first electronic switch (S1) after the second electronic switch (S2) has been switched to block; or
    b) if the predeterminable negative threshold value (IThres) of the current (IS) is not exceeded by the first electronic switch (S1) after the second electronic switch (S2) has been switched to block: after a predeterminable period (ttimeout);
    characterized by the following step:
    increase the first frequency (fR) in case b) (step 140).
EP10744908.4A 2009-09-29 2010-08-12 Electronic ballast and method for operating at least one discharge lamp Not-in-force EP2484183B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910043611 DE102009043611A1 (en) 2009-09-29 2009-09-29 Electronic ballast and method for operating at least one discharge lamp
PCT/EP2010/061769 WO2011038974A1 (en) 2009-09-29 2010-08-12 Electronic ballast and method for operating at least one discharge lamp

Publications (2)

Publication Number Publication Date
EP2484183A1 EP2484183A1 (en) 2012-08-08
EP2484183B1 true EP2484183B1 (en) 2013-12-25

Family

ID=43125468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10744908.4A Not-in-force EP2484183B1 (en) 2009-09-29 2010-08-12 Electronic ballast and method for operating at least one discharge lamp

Country Status (5)

Country Link
US (1) US8994285B2 (en)
EP (1) EP2484183B1 (en)
CN (1) CN102577626B (en)
DE (1) DE102009043611A1 (en)
WO (1) WO2011038974A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8947893B2 (en) * 2010-11-11 2015-02-03 Fairchild Korea Semiconductor Ltd. Switch controller and converter including the same for prevention of damage
DE102016124116A1 (en) * 2016-12-12 2018-06-14 Sml Verwaltungs Gmbh Device for controlling a radiation source for curing lining hoses

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604411A (en) * 1995-03-31 1997-02-18 Philips Electronics North America Corporation Electronic ballast having a triac dimming filter with preconditioner offset control
CN1179077A (en) 1996-09-19 1998-04-15 通用电气公司 High-voltage integrated circuit driving half-bridge gas discharge lamp ballast
US5925990A (en) * 1997-12-19 1999-07-20 Energy Savings, Inc. Microprocessor controlled electronic ballast
US6466456B2 (en) * 1999-12-18 2002-10-15 Koninklijke Philips Electronics N.V. Converter with resonant circuit elements for determing load type
CN1389088A (en) * 2000-08-28 2003-01-01 皇家菲利浦电子有限公司 Circuit device
WO2003019780A1 (en) 2001-08-28 2003-03-06 Koninklijke Philips Electronics N.V. Half-bridge circuit
DE102006022819A1 (en) * 2005-05-23 2007-01-04 Infineon Technologies Ag Circuit for supplying load with output current has converter for producing a.c. signal from energy from energy source, piezotransformer, load coupled to piezotransformer output for converting output current to another form of useful energy
DE102006061357B4 (en) 2006-12-22 2017-09-14 Infineon Technologies Austria Ag Method for controlling a fluorescent lamp
JP2008159382A (en) * 2006-12-22 2008-07-10 Koito Mfg Co Ltd Discharge lamp lighting circuit
EP2201669B1 (en) 2007-09-18 2017-06-21 Nxp B.V. Control method for a half bridge resonant converter for avoiding capacitive mode

Also Published As

Publication number Publication date
CN102577626B (en) 2014-12-10
DE102009043611A1 (en) 2011-04-07
US20120181945A1 (en) 2012-07-19
EP2484183A1 (en) 2012-08-08
CN102577626A (en) 2012-07-11
WO2011038974A1 (en) 2011-04-07
US8994285B2 (en) 2015-03-31

Similar Documents

Publication Publication Date Title
EP1333707B1 (en) Electronic ballast for a discharge lamp
DE4109325C2 (en) Circuit arrangement for operating a high-pressure discharge lamp
DE3319739C2 (en) Ballast for gas discharge lamps
EP2011217B1 (en) Boost power factor correction circuit (boost pfc)
EP1603219B1 (en) Method and device for power factor correction
EP1705961A2 (en) Circuit and method for operating lamps
DE102006018576A1 (en) Step-up Power Factor Correction Circuit (Boost PFC)
EP3202235B1 (en) Clocked electronic energy converter
EP0637118B1 (en) Circuit for limiting inrush current and overvoltage of an electronic ballast
DE19843643B4 (en) Circuit arrangement for starting and operating a high-pressure discharge lamp
EP0439240B1 (en) Electronic ballast
AT14074U1 (en) Operating circuit for LED
DE102010002226A1 (en) Method and circuit for power factor correction
EP2138015B1 (en) Circuit configuration for generating an auxiliary voltage and for operating at least one discharge lamp
EP2484183B1 (en) Electronic ballast and method for operating at least one discharge lamp
EP2327276B1 (en) Circuit arrangement and method for operation of a discharge lamp
WO2009010098A1 (en) Circuit arrangement comprising a voltage transformer and associated method
WO2005091502A1 (en) Control circuitry for controlling a power electronic circuit and method therefor
DE69709604T2 (en) CIRCUIT
EP0389847B1 (en) Circuit
DE102004037389C5 (en) Method for controlling a load having a fluorescent lamp for optimizing the ignition process
DE19933161A1 (en) Circuit arrangement
EP1395094A1 (en) Apparatus and method for operating a lamp
EP2208401B1 (en) Electronic ballast and method for operating at least one first and second discharge lamp
EP2224792B1 (en) Electronic pre-switching device and lighting device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130906

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 647172

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010005772

Country of ref document: DE

Effective date: 20140220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140325

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140428

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005772

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

26N No opposition filed

Effective date: 20140926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005772

Country of ref document: DE

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140812

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100812

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 647172

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170822

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010005772

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301