EP2475584A2 - Behälter und verfahren zur ausgabe von mehrfachdosierungen eines flüssigkeitskonzentrats und haltbare flüssigkeitskonzentrate - Google Patents
Behälter und verfahren zur ausgabe von mehrfachdosierungen eines flüssigkeitskonzentrats und haltbare flüssigkeitskonzentrateInfo
- Publication number
- EP2475584A2 EP2475584A2 EP10757668A EP10757668A EP2475584A2 EP 2475584 A2 EP2475584 A2 EP 2475584A2 EP 10757668 A EP10757668 A EP 10757668A EP 10757668 A EP10757668 A EP 10757668A EP 2475584 A2 EP2475584 A2 EP 2475584A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- concentrate
- liquid
- packaged
- container
- liquid beverage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 133
- 238000000034 method Methods 0.000 title claims abstract description 35
- 235000008504 concentrate Nutrition 0.000 claims abstract description 154
- 235000014666 liquid concentrate Nutrition 0.000 claims abstract description 136
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 86
- 239000012141 concentrate Substances 0.000 claims abstract description 80
- 238000002156 mixing Methods 0.000 claims abstract description 37
- 239000008240 homogeneous mixture Substances 0.000 claims abstract description 8
- 235000019441 ethanol Nutrition 0.000 claims description 63
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 62
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 54
- 239000000203 mixture Substances 0.000 claims description 49
- 239000000047 product Substances 0.000 claims description 44
- 150000003839 salts Chemical class 0.000 claims description 32
- 230000000694 effects Effects 0.000 claims description 29
- 239000002253 acid Substances 0.000 claims description 28
- 239000000872 buffer Substances 0.000 claims description 25
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 24
- 235000013361 beverage Nutrition 0.000 claims description 22
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 18
- 239000012530 fluid Substances 0.000 claims description 17
- 239000003755 preservative agent Substances 0.000 claims description 16
- 238000007865 diluting Methods 0.000 claims description 11
- 239000000654 additive Substances 0.000 claims description 9
- 235000003599 food sweetener Nutrition 0.000 claims description 9
- 230000000813 microbial effect Effects 0.000 claims description 9
- 239000011780 sodium chloride Substances 0.000 claims description 9
- 239000003765 sweetening agent Substances 0.000 claims description 9
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 8
- 235000015165 citric acid Nutrition 0.000 claims description 8
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 8
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 claims description 8
- 239000001508 potassium citrate Substances 0.000 claims description 7
- 229960002635 potassium citrate Drugs 0.000 claims description 7
- 235000011082 potassium citrates Nutrition 0.000 claims description 7
- 230000004044 response Effects 0.000 claims description 7
- 239000001509 sodium citrate Substances 0.000 claims description 7
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 7
- 235000011083 sodium citrates Nutrition 0.000 claims description 7
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 6
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 6
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 6
- 238000004040 coloring Methods 0.000 claims description 6
- 230000000994 depressogenic effect Effects 0.000 claims description 6
- -1 gums Substances 0.000 claims description 6
- 235000015097 nutrients Nutrition 0.000 claims description 6
- 230000002335 preservative effect Effects 0.000 claims description 5
- 239000003381 stabilizer Substances 0.000 claims description 5
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 claims description 4
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 claims description 4
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 4
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 4
- 150000001242 acetic acid derivatives Chemical class 0.000 claims description 4
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 239000001530 fumaric acid Substances 0.000 claims description 4
- 235000011087 fumaric acid Nutrition 0.000 claims description 4
- 230000003116 impacting effect Effects 0.000 claims description 4
- 239000004310 lactic acid Substances 0.000 claims description 4
- 235000014655 lactic acid Nutrition 0.000 claims description 4
- 239000001630 malic acid Substances 0.000 claims description 4
- 235000011090 malic acid Nutrition 0.000 claims description 4
- 229910000402 monopotassium phosphate Inorganic materials 0.000 claims description 4
- 235000019796 monopotassium phosphate Nutrition 0.000 claims description 4
- 235000011007 phosphoric acid Nutrition 0.000 claims description 4
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 4
- 229960003975 potassium Drugs 0.000 claims description 4
- 239000011591 potassium Substances 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 claims description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K potassium phosphate Substances [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 claims description 4
- 239000004302 potassium sorbate Substances 0.000 claims description 4
- 235000010241 potassium sorbate Nutrition 0.000 claims description 4
- 229940069338 potassium sorbate Drugs 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 4
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 claims description 4
- 239000004299 sodium benzoate Substances 0.000 claims description 4
- 235000010234 sodium benzoate Nutrition 0.000 claims description 4
- 239000013589 supplement Substances 0.000 claims description 4
- 239000011975 tartaric acid Substances 0.000 claims description 4
- 235000002906 tartaric acid Nutrition 0.000 claims description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- NVNLLIYOARQCIX-MSHCCFNRSA-N Nisin Chemical compound N1C(=O)[C@@H](CC(C)C)NC(=O)C(=C)NC(=O)[C@@H]([C@H](C)CC)NC(=O)[C@@H](NC(=O)C(=C/C)/NC(=O)[C@H](N)[C@H](C)CC)CSC[C@@H]1C(=O)N[C@@H]1C(=O)N2CCC[C@@H]2C(=O)NCC(=O)N[C@@H](C(=O)N[C@H](CCCCN)C(=O)N[C@@H]2C(NCC(=O)N[C@H](C)C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCSC)C(=O)NCC(=O)N[C@H](CS[C@@H]2C)C(=O)N[C@H](CC(N)=O)C(=O)N[C@H](CCSC)C(=O)N[C@H](CCCCN)C(=O)N[C@@H]2C(N[C@H](C)C(=O)N[C@@H]3C(=O)N[C@@H](C(N[C@H](CC=4NC=NC=4)C(=O)N[C@H](CS[C@@H]3C)C(=O)N[C@H](CO)C(=O)N[C@H]([C@H](C)CC)C(=O)N[C@H](CC=3NC=NC=3)C(=O)N[C@H](C(C)C)C(=O)NC(=C)C(=O)N[C@H](CCCCN)C(O)=O)=O)CS[C@@H]2C)=O)=O)CS[C@@H]1C NVNLLIYOARQCIX-MSHCCFNRSA-N 0.000 claims description 3
- 108010053775 Nisin Proteins 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 claims description 3
- 108010039918 Polylysine Proteins 0.000 claims description 3
- 150000007513 acids Chemical class 0.000 claims description 3
- 239000001361 adipic acid Substances 0.000 claims description 3
- 235000011037 adipic acid Nutrition 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000001110 calcium chloride Substances 0.000 claims description 3
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 3
- 229910000403 monosodium phosphate Inorganic materials 0.000 claims description 3
- 235000019799 monosodium phosphate Nutrition 0.000 claims description 3
- 239000004311 natamycin Substances 0.000 claims description 3
- 235000010298 natamycin Nutrition 0.000 claims description 3
- NCXMLFZGDNKEPB-FFPOYIOWSA-N natamycin Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C[C@@H](C)OC(=O)/C=C/[C@H]2O[C@@H]2C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 NCXMLFZGDNKEPB-FFPOYIOWSA-N 0.000 claims description 3
- 229960003255 natamycin Drugs 0.000 claims description 3
- 239000004309 nisin Substances 0.000 claims description 3
- 235000010297 nisin Nutrition 0.000 claims description 3
- 235000021317 phosphate Nutrition 0.000 claims description 3
- 229920000656 polylysine Polymers 0.000 claims description 3
- 239000001103 potassium chloride Substances 0.000 claims description 3
- 235000011164 potassium chloride Nutrition 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 claims description 3
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 claims description 3
- 235000019982 sodium hexametaphosphate Nutrition 0.000 claims description 3
- 239000001488 sodium phosphate Substances 0.000 claims description 3
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims 3
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 claims 1
- 238000004806 packaging method and process Methods 0.000 abstract description 5
- 238000012360 testing method Methods 0.000 description 49
- 230000000845 anti-microbial effect Effects 0.000 description 19
- 235000016213 coffee Nutrition 0.000 description 16
- 235000013353 coffee beverage Nutrition 0.000 description 16
- 239000000796 flavoring agent Substances 0.000 description 14
- 235000019634 flavors Nutrition 0.000 description 14
- 238000009472 formulation Methods 0.000 description 13
- 238000010790 dilution Methods 0.000 description 10
- 239000012895 dilution Substances 0.000 description 10
- 230000000153 supplemental effect Effects 0.000 description 9
- 230000002378 acidificating effect Effects 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- 238000009928 pasteurization Methods 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 229920001903 high density polyethylene Polymers 0.000 description 4
- 239000004700 high-density polyethylene Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 235000021580 ready-to-drink beverage Nutrition 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- WSWCOQWTEOXDQX-MQQKCMAXSA-M (E,E)-sorbate Chemical compound C\C=C\C=C\C([O-])=O WSWCOQWTEOXDQX-MQQKCMAXSA-M 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 2
- 239000004376 Sucralose Substances 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 229960001948 caffeine Drugs 0.000 description 2
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229940075554 sorbate Drugs 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 235000019408 sucralose Nutrition 0.000 description 2
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 2
- 235000013616 tea Nutrition 0.000 description 2
- 238000012422 test repetition Methods 0.000 description 2
- BJORNXNYWNIWEY-UHFFFAOYSA-N tetrahydrozoline hydrochloride Chemical compound Cl.N1CCN=C1C1C2=CC=CC=C2CCC1 BJORNXNYWNIWEY-UHFFFAOYSA-N 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 229940028445 visine Drugs 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- RMLYXMMBIZLGAQ-UHFFFAOYSA-N (-)-monatin Natural products C1=CC=C2C(CC(O)(CC(N)C(O)=O)C(O)=O)=CNC2=C1 RMLYXMMBIZLGAQ-UHFFFAOYSA-N 0.000 description 1
- RMLYXMMBIZLGAQ-HZMBPMFUSA-N (2s,4s)-4-amino-2-hydroxy-2-(1h-indol-3-ylmethyl)pentanedioic acid Chemical compound C1=CC=C2C(C[C@](O)(C[C@H](N)C(O)=O)C(O)=O)=CNC2=C1 RMLYXMMBIZLGAQ-HZMBPMFUSA-N 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 244000056139 Brassica cretica Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 241000079253 Byssochlamys spectabilis Species 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241000222178 Candida tropicalis Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 241001468096 Gluconacetobacter diazotrophicus Species 0.000 description 1
- 241000032686 Gluconacetobacter liquefaciens Species 0.000 description 1
- 241000589236 Gluconobacter Species 0.000 description 1
- 241000589232 Gluconobacter oxydans Species 0.000 description 1
- 239000004384 Neotame Substances 0.000 description 1
- 241000909532 Penicillium spinulosum Species 0.000 description 1
- 244000228451 Stevia rebaudiana Species 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 244000185386 Thladiantha grosvenorii Species 0.000 description 1
- 241000235029 Zygosaccharomyces bailii Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000009455 aseptic packaging Methods 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 235000021557 concentrated beverage Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical class OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 210000003811 finger Anatomy 0.000 description 1
- 238000011194 good manufacturing practice Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 235000008960 ketchup Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000003798 microbiological reaction Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 235000019412 neotame Nutrition 0.000 description 1
- HLIAVLHNDJUHFG-HOTGVXAUSA-N neotame Chemical compound CC(C)(C)CCN[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 HLIAVLHNDJUHFG-HOTGVXAUSA-N 0.000 description 1
- 108010070257 neotame Proteins 0.000 description 1
- 235000013615 non-nutritive sweetener Nutrition 0.000 description 1
- 235000019533 nutritive sweetener Nutrition 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 235000021485 packed food Nutrition 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- HELXLJCILKEWJH-NCGAPWICSA-N rebaudioside A Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HELXLJCILKEWJH-NCGAPWICSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D47/00—Closures with filling and discharging, or with discharging, devices
- B65D47/04—Closures with discharging devices other than pumps
- B65D47/20—Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge
- B65D47/30—Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge with plug valves, i.e. valves that open and close a passageway by turning a cylindrical or conical plug without axial passageways
- B65D47/305—Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge with plug valves, i.e. valves that open and close a passageway by turning a cylindrical or conical plug without axial passageways provided with a spout, e.g. "escargot"-type valve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D47/00—Closures with filling and discharging, or with discharging, devices
- B65D47/04—Closures with discharging devices other than pumps
- B65D47/20—Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge
- B65D47/2018—Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge comprising a valve or like element which is opened or closed by deformation of the container or closure
- B65D47/2031—Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge comprising a valve or like element which is opened or closed by deformation of the container or closure the element being formed by a slit, narrow opening or constrictable spout, the size of the outlet passage being able to be varied by increasing or decreasing the pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D37/00—Portable flexible containers not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/45—Mixing liquids with liquids; Emulsifying using flow mixing
- B01F23/451—Mixing liquids with liquids; Emulsifying using flow mixing by injecting one liquid into another
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23F—COFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
- A23F3/00—Tea; Tea substitutes; Preparations thereof
- A23F3/16—Tea extraction; Tea extracts; Treating tea extract; Making instant tea
- A23F3/18—Extraction of water soluble tea constituents
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/52—Adding ingredients
- A23L2/68—Acidifying substances
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/30—Artificial sweetening agents
- A23L27/31—Artificial sweetening agents containing amino acids, nucleotides, peptides or derivatives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/20—Jet mixers, i.e. mixers using high-speed fluid streams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/20—Jet mixers, i.e. mixers using high-speed fluid streams
- B01F25/23—Mixing by intersecting jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/712—Feed mechanisms for feeding fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/717—Feed mechanisms characterised by the means for feeding the components to the mixer
- B01F35/71795—Squeezing a flexible container
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D47/00—Closures with filling and discharging, or with discharging, devices
- B65D47/04—Closures with discharging devices other than pumps
- B65D47/20—Closures with discharging devices other than pumps comprising hand-operated members for controlling discharge
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12G—WINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
- C12G3/00—Preparation of other alcoholic beverages
- C12G3/04—Preparation of other alcoholic beverages by mixing, e.g. for preparation of liqueurs
- C12G3/06—Preparation of other alcoholic beverages by mixing, e.g. for preparation of liqueurs with flavouring ingredients
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2547/00—Closures with filling and discharging, or with discharging, devices
- B65D2547/04—Closures with discharging devices other than pumps
- B65D2547/06—Closures with discharging devices other than pumps with pouring spouts ot tubes; with discharge nozzles or passages
- B65D2547/063—Details of spouts
Definitions
- Containers and methods for dispensing a liquid are described herein and, in particular, containers and methods for dispensing multiple doses of a concentrated liquid and a concentrated liquid for use either in combination or independently.
- Concentrated liquids can be used to decrease the size of packaging needed to supply a desired quantity of end result product.
- Concentrated liquids can include concentrated amounts of dye so that after mixing, the resulting product has the desired coloring. These dyes can stain surfaces, such as clothes, skin, etc., if they come into contact with the surfaces. Due to this, a container storing a concentrated liquid is undesirable if it allows the liquid concentrate to drip or otherwise leak from the container in an uncontrolled manner.
- One form of container releases a stream of liquid out of an opening when squeezed by a user. When this type of container is utilized to store a concentrated liquid, at least two problems can occur.
- Liquids can also be susceptible to spoilage by a variety of microbial agents, particularly if packaged in a container intended for extended shelf life. Reducing food spoilage and increasing shelf life of packaged foods in the past has often involved various combinations of heat, pressure, irradiation, ultrasound, refrigeration, natural and artificial antimicrobial/preservative compositions, and the like. Any useful antimicrobial process or composition can target food specific spoilage agents and minimize its effect on the food products themselves. Prior attempts have used various combinations of preservatives and pasteurization. Current trends in the art seek to reduce the amount of preservatives in food products. Pasteurization adds processing steps and added expense and energy usage to heat the compositions to pasteurizing levels.
- Containers and methods are provided for dispensing a liquid concentrate utilizing one or more desirable properties including a generally consistent discharge across a range of squeeze forces, a generally consistent discharge with the same force without significant dependence on the amount of liquid concentrate in the container, a substantially dripless or leak proof outlet opening, a jet that reduces splashing when the liquid concentrate impacts a target liquid, and a jet that increases mixing between the liquid concentrate and the target liquid to produce a generally homogenous mixture without the use of extraneous utensils or shaking.
- the container described herein includes a container body with a hinged lid having an outlet spout attached thereto.
- the container includes a fluid flow path having a nozzle member disposed thereacross to dispense a jet of liquid concentrate from the container having the one or more desirable properties.
- the container allows for a user to have a relatively small package of a liquid concentrate that can be dispensed in multiple doses over time into a larger quantity of fluid, e.g., water, to make a beverage.
- a packaged liquid beverage concentrate includes a lidded container and a plurality of doses of liquid beverage concentrate.
- the lidded container includes a container body, a recloseable lid, and a nozzle member.
- the container body has a closed bottom end and a top end having a shoulder that narrows to a spout having an outlet opening.
- a sidewall which is preferably resilient, extends between the top and bottom ends to define an interior of the container body that is accessible through the outlet opening.
- the sidewall is flexible so that it can be squeezed to force the liquid beverage concentrate through the outlet opening of the spout.
- the sidewall further may optionally include a locator region that is inwardly indented.
- the locator region is preferably positioned closer to the shoulder than to the bottom end of the container body. This provides a tactile indication of where force should be applied when squeezing the sidewall to force the liquid beverage concentrate from the interior of the container body and through the outlet opening of the spout, thereby improving consistency of dispensing.
- the recloseable lid includes a base portion configured to be attached to the spout of the container body.
- the base portion includes a spout with an outlet opening coinciding with the outlet opening of the spout of the container body such that the liquid beverage concentrate exits the interior of the container body through the outlet opening of the spout of the base portion.
- the lid further includes a cover portion that is hinged relative to the base portion to close the outlet opening of the spout of the base portion.
- a packaged product in another form, includes a lidded container that includes the container body, the recloseable lid, and the nozzle member and has a plurality of doses of liquid concentrate therein.
- the container body has an interior to store the liquid concentrate therein.
- the interior is defined by a sidewall extending between a closed first end and an at least partially open second end.
- the sidewall includes at least one flexible portion that is configured to deflect under pressure to force the liquid concentrate from the interior of the container body through the at least partially open second end.
- the sidewall further may optionally include a grip region depressed with respect to adjacent portions of the sidewall and positioned closer to the second end than the first end to indicate that squeezing force should be applied closer to the second end than the first end.
- the recloseable lid is secured to the at least partially open second end of the container body and includes a base and a cover pivotably attached to the base.
- the base includes an outwardly protruding spout with an outlet opening.
- the spout is fluidly connected to the interior of the container body to create a fluid flow path between the interior of the container and the outlet opening such that pressure forcing the liquid concentrate from the interior of the container body forces the liquid concentrate out through the outlet opening of the. spout.
- the nozzle member is disposed across the fluid flow path and has an opening therethrough that is configured to produce a jet of liquid concentrate having a Liquid Concentrate Performance Value of less than 4 upon application of a force on the flexible portion of the sidewall producing a mass flow rate between 1.0 g/s and 1.5 g/s.
- a method is provided to create a mixture using a jet of liquid concentrate from a container.
- the method starts by applying pressure to a flexible portion of a sidewall of the container, where the container has a plurality of doses of the liquid concentrate stored therein.
- the container further includes an outlet opening with a nozzle member disposed thereacross.
- the nozzle member has an opening therein.
- a jet of the liquid concentrate is then dispensed from the container through the nozzle member, where the jet has a mass flow between 1.0 g/s and 3.0 g/s, or between 1.0 g/s and 1.5 g/s.
- a target liquid within a target container is then impacted by the jet such that the impact does not displace a significant amount of fluid from within the target container.
- the target liquid and the liquid concentrate are then mixed into a generally homogeneous mixture with the jet.
- Pressure to create the desired dispensing flow can be a function of the fluid viscosity.
- Viscosity for the liquid concentrate within the present container can be less than about 75 or less than about 500 cP (centipoise), and preferably in the range of about 1 to 25 cP.
- liquid beverage concentrates that can be cold filled during packaging while maintaining shelf stability for at least twelve months at ambient temperatures. This can be achieved through a combination of low pH and high alcohol content to provide stability to otherwise unstable ingredients.
- an acidic drink concentrate can result that is shelf stable at ambient temperatures for at least twelve months and does not require added preservatives or pasteurization.
- the pH of the concentrate can be less than about 3 or 3.5 and alcohol content at least 1 percent by weight.
- the compositions and methods can include a cold-filled beverage concentrate using a combination of low pH (such as less than about 3) and alcohol (preferably 5 to about 35 percent weight).
- Various supplemental salt combinations (such as electrolytes) can be added to about 0.01 up to about 35 percent by weight. The supplemental salt can lower the composition's water activity to further provide antimicrobial stability.
- liquid beverage concentrate composition that can be shelf stable for at least 12 months; can be concentrated to at least 75 times, such that the concentrate will form 1/75 or less of the beverage (and preferably up to 100 times, such that the concentrate will form 1/100 or less of the beverage); and have water activity in the range of about 0.6 up to 1.0, and preferably in the range of about 0.75 to up to 1.0.
- the concentrates can contain any combination of additives or ingredients such as water flavoring, nutrients, coloring, sweetener, salts, buffers, gums, caffeine, stabilizers, and the like.
- Optional preservatives, such as sorbate or benzoate can be included, but would not be needed to maintain shelf stability.
- the concentrate can be concentrated between about 25 to 500 times, between about 75 to 160 times, or between about 40 to 500 times, and have a pH between about 1.4 to about 3.0 or 3.5.
- the pH can be established using any combination of food-grade acid such as malic acid, adipic acid, citric acid, fumaric acid, tartaric acid, phosphoric acid, lactic acid, or any other food grade organic or inorganic acid.
- Acid selection can be a function of the desired concentrate pH and desired taste of the diluted ready-to-drink product.
- Buffers can also be used to regulate the pH of the concentrate, such as the conjugated base of any acid, e.g., sodium citrate, potassium citrate, acetates and phosphates.
- the concentrates can have a buffer for the acid with a total acid:buffer weight ratio range of about 1 : 1 or higher, such as 1 : 1 to 4000: 1, preferably about 1 : 1 to about 40: 1, and most preferably about 7: 1 to about 15:1.
- the potable beverage can be a dilution of the concentrate such that it has, for example, less than about 0.5 percent alcohol by volume.
- Methods to make the concentrates can include providing water and additives; providing at least 5 percent by weight of alcohol; adjusting the pH of the concentrate to less than about 3, and preferably to a pH of about 2.5 or less.
- additives can be flavoring, nutrients, coloring, sweetener, salts, buffers, gums and stabilizers.
- the concentrates can be packaged in an airtight seal without pasteurization.
- the method to make the concentrate can optionally include the steps of providing a predetermined amount of water; providing potassium citrate; providing sweetener; providing acids in an amount predetermined to achieve a pH of no more than about 3; providing color; providing at least 5 percent by weight of alcohol; and providing flavoring.
- FIGURE 1 is a perspective view of a container showing a lid in a closed position
- FIGURE 2 is a schematic perspective view of the container of FIGURE 1 being squeezed to dispense a jet of liquid therefrom into a container housing a second liquid;
- FIGURE 3 is an enlarged top plan view of a spout and nozzle of the lid of FIGURE 1 ;
- FIGURE 4 is an enlarged top plan view of a spout and nozzle of the lid of FIGURE 1 ;
- FIGURE 5 is a perspective view of an alternative container showing a lid in a closed position
- FIGURE 6 is a perspective view of an alternative container showing a lid in a closed position
- FIGURE 7 is a bottom perspective of a representation of the results of the mixing ability test for tested nozzles showing beakers with varying levels of mixture;
- FIGURE 8 is a top plan view of a representation of the results of an impact splatter test for a tested nozzle, showing a coffee filter with splatter marks thereon;
- FIGURE 9 is a top plan view of a representation of the results of an impact splatter test for a tested nozzle showing a coffee filter with splatter marks thereon;
- FIGURE 10 is a top plan view of a representation of the results of an impact splatter test for a tested nozzle showing a coffee filter with splatter marks thereon;
- FIGURE 1 1 is a top plan view of a representation of the results of an impact splatter test for a tested nozzle showing a coffee filter with splatter marks thereon;
- FIGURE 12 is a top plan view of a representation of the results of an impact splatter test for a tested nozzle showing a coffee filter with splatter marks thereon;
- FIGURE 13 is a top plan view of a representation of the results of an impact splatter test for a tested nozzle showing a coffee filter with splatter marks thereon;
- FIGURE 14 is a top plan view of a representation of the results of an impact splatter test for a tested nozzle showing a coffee filter with splatter marks thereon;
- FIGURE 15 is a graph showing Mixing Ability Value and Impact Splash Factor for tested nozzles
- FIGURE 16 is a graph showing the difference of the Mass Flow between easy and hard forces for tested nozzles
- FIGURE 17 is a graph showing the difference of the Momentum-Second between easy and hard forces for tested nozzles
- FIGURE 18 is a graph showing the maximum difference between two Linearity of Flow test data points for tested nozzles
- FIGURE 19 is an exploded perspective view of a container and lid in accordance with another exemplary embodiment.
- FIGURE 20 is a perspective view of the underside of the lid of FIGURE 19.
- a container 10 and methods are provided for dispensing a liquid concentrate in a desirable manner.
- Desirable properties include, for example, generally consistent discharge across a range of squeeze forces, generally consistent discharge with the same force without significant dependence on the amount of liquid concentrate in the container, a substantially dripless or leak proof outlet opening, a jet that limits splashing when the liquid concentrate enters another liquid, and a jet that promotes mixing between the liquid concentrate and the other liquid.
- the container 10 utilizes some or all of these properties while dispensing a jet of the liquid concentrate into a target container having a target liquid therein.
- the container 10 described herein dispenses the liquid concentrate in such a way as to enter the target liquid without substantial splashing or splatter while also causing sufficient turbulence or mixing within the target container between the liquid concentrate and the target liquid to form a generally homogenous end mixture without the use of extraneous utensils or shaking.
- the container includes a closed first end 12 and an at least partially open second end 14 configured to be securable to a closure 16.
- the first and second ends 12, 14 are connected by a generally tubular sidewall 18, which can take any suitable cross section, including any polygonal shape, any curvilinear shape, or any combination thereof, to form an interior.
- the container 10 is sized to include a plurality of serving sizes of liquid concentrate 20 therein.
- a serving size of the liquid concentrate 20 is approximately 2 cubic centimeters (cc) per 240 cc of beverage and the container 10 is sized to hold approximately 60 cc of the liquid concentrate 20.
- the container 10 could contain approximately 48 cc of the liquid concentrate 20.
- Example shapes of the container 10 are illustrated in FIGS. 1, 3, and 4.
- the illustrated container 10 includes the first end 12, which acts as a secure base for the container 10 to rest upon.
- the sidewall 18 extends generally upward from the base to the second end 14.
- the closure 16 is secured to the second end 14 by any suitable mechanism, including, for example, a threaded neck, a snap-fit neck, adhesive, ultrasonic welding, or the like.
- the second end 14 includes an upwardly facing shoulder that tapers to a spout configured to connect with the closure 16 by snap-fit.
- the container 10 can be generally egg-shaped where front and rear surfaces 21 curve generally outwardly and provide an ergonomic container shape.
- the sidewall 18 includes front and rear surfaces 23 that are generally drop-shaped so that the container 10 has an oblong cross-section.
- the container 10 can be configured to rest on the closure 16 attached to the second end 14.
- the closure 16 has a generally flat top surface so that the container 10 can securely rest on the closure 16.
- the sidewall 18 of this form can taper as the sidewall 18 transitions from the second end 14 to the first end 12 to form a narrow first end 12, such as in the rounded configuration shown in FIG. 5.
- the sidewall 18 may further include a recessed panel 25 therein, which can be complementary to the shape of the sidewall 18 in a front view, such as an inverted drop shape shown in FIG. 5.
- the sidewall 18 may further optionally include a depression 22 to act as a grip region.
- the depression 22 is generally horizontally centered on the sidewall 18 of the container 10.
- the depression 22 is positioned closer to the second end 14 than the first end 12. This is preferable because as the liquid concentrate 20 is dispensed from the container 10, headspace is increased in the container 10 which is filled with air. The liquid concentrate 20 is dispensed in a more uniform manner if pressure is applied to locations of the container 10 where the liquid concentrate 20 is present rather than places where the headspace is present.
- the container 10 When dispensing the liquid concentrate 20, the container 10 is turned so that the second end 14 and the closure 16 are lower than the first end 12, so the first end 12 will enclose any air in the container 10 during dispensing.
- the depression 22 acts as a thumb or finger locator for a user to utilize to dispense the liquid concentrate 20.
- the depression 22 may be generally circular; however, other shapes can be utilized, such as polygons, curvilinear shapes, or combinations thereof.
- FIGS. 1 -6 Exemplary embodiments of the closure 16 are illustrated in FIGS. 1 -6.
- the closure 16 is a flip top cap having a base 24 and a cover 26.
- An underside of the base 24 defines an opening therein configured to connect to the second end 14 of the container 10 and fluidly connect to the interior of the container 10.
- a top surface 28 of the base 24 includes a spout 30 defining an outlet opening 31 extending outwardly therefrom. The spout 30 extends the opening defined by the underside of the base 24 to provide an exit or fluid flow path for the liquid concentrate 20 stored in the interior of the container 10.
- the spout 30 includes a nozzle 32 disposed therein, such as across the fluid flow path, that s configured to restrict fluid flow from the container 10 to form a jet 34 of liquid concentrate 20.
- FIGS. 3 and 4 illustrate example forms of the nozzle 32 for use in the container 10.
- the nozzle 32 includes a generally flat plate 36 having a hole, bore, or orifice 38 therethrough.
- the bore 38 may be straight edged or have tapered walls.
- the nozzle 32 includes a generally flat, flexible plate 40, which may be composed of silicone or the like, having a plurality of slits 42 therein, and preferably two intersecting slits 42 forming four generally triangular flaps 44.
- the liquid concentrate 20 is forced against the nozzle 32 which outwardly displaces the flaps 44 to allow the liquid concentrate 20 to flow therethrough.
- the jet 34 of liquid concentrate formed by the nozzle 32 combines velocity and mass flow to impact a target liquid 43 within a target container 45 to cause turbulence in the target liquid 43 and create a generally uniform mixed end product without the use of extraneous utensils or shaking.
- the cover 26 of the closure 16 is generally dome-shaped and configured to fit over the spout 30 projecting from the base 24.
- the lid 26 is pivotably connected to the base 24 by a hinge 46.
- the lid 26 may further include a stopper 48 projecting from an interior surface 50 of the lid.
- the stopper 48 is sized to fit snugly within the spout 30 to provide additional protection against unintended dispensing of the liquid concentrate 20 or other leakage.
- the lid 26 can be configured to snap fit with the base 24 to close off access to the interior 19 of the container 10.
- a recessed portion 52 can be provided in the base 24 configured to be adjacent the cover 26 when the cover 26 is pivoted to a closed position. The recessed portion 52 can then provide access to a ledge 54 of the cover 26 so that a user can manipulate the ledge 54 to open the cover 26.
- FIGS. 19 and 20 An alternative exemplary embodiment of a container 1 10 is similar to those of FIGS. 1-6, but includes a modified closure 116 and modified neck or second end 1 14 of the container 1 10 as illustrated in FIGS. 19 and 20.
- the closure of the alternative exemplary embodiment is a flip top cap having a base 124 and a hinged cover 126.
- An underside of the base 124 defines an opening therein configured to connect to the second end 1 14 of the container 110 and fluidly connect to the interior of the container 1 10.
- a top surface 128 of the base 124 includes a spout 130 defining an outlet opening 131 extending outwardly therefrom.
- the spout 130 extends from the opening defined by the underside of the base 124 to provide an exit or fluid flow path for the liquid concentrate stored in the interior of the container 1 10.
- the spout 130 includes a nozzle 132 disposed therein, such as across the fluid flow path, that is configured to restrict fluid flow from the container 1 10 to form a jet of liquid concentrate.
- the nozzle 132 can be of the types illustrated in FIGS. 3 and 4 and described herein.
- the cover 126 of the closure 1 16 is generally dome shaped and configured to fit over the spout 130 projecting from the base 124.
- the lid 126 may further include a stopper 148 projecting from an interior surface 150 of the lid.
- the stopper 148 is sized to snugly fit within the spout 130 to provide additional protection against unintended dispensing of the liquid concentrate or other leakage.
- the stopper 148 can be a hollow, cylindrical projection, as illustrated in FIGS. 19 and 20.
- An optional inner plug 149 can be disposed within the stopper 148 and may project further therefrom.
- the inner plug 149 can contact the flexible plate 40 of the nozzle 32 to restrict movement of the plate 40 from a concave orientation, whereby the flaps are closed, to a convex orientation, whereby the flaps are at least partially open for dispensing.
- the inner plug 149 can further restrict leakage or dripping from the interior of the container 110.
- the stopper 148 and/or plug 149 cooperate with the nozzle 132 and/or the spout 130 to at least partially block fluid flow.
- the stopper 148 can be configured to cooperate with the spout 130 to provide one, two or more audible and/or tactile responses to a user during closing. For example, sliding movement of the rearward portion of the stopper 148 past the rearward portion of the spout 130 - closer to the hinge - can result in an audible and tactile response as the cover 126 is moved toward a closed position. Further movement of the cover 126 toward its closed position can result in a second audible and tactile response as the forward portion of the stopper slides past a forward portion of the spout 130 - on an opposite side of the respective rearward portions from the hinge. Preferably the second audible and tactile response occurs just prior to the cover 126 being fully closed. This can provide audible and/or tactile feedback to the user that the cover 126 is closed.
- the cover 126 can be configured to snap fit with the base 124 to close off access to the interior of the container 1 10.
- a recessed portion 152 can be provided in the base 124 configured to be adjacent the cover 126 when the cover 126 is pivoted to a closed position. The recessed portion 152 can then provide access to a ledge 154 of the cover 126 so that a user can manipulate the ledge 154 to open the cover 126.
- the neck 114 includes a circumferential, radially projecting inclined ramp 1 15.
- a skirt 1 17 depending from the underside of the base 124 of the closure 1 16 includes an inwardly extending rib 1 19.
- the rib 119 is positioned on the skirt 117 such that it can slide along and then to a position past the ramp 1 15 to attach the closure 116 to the neck 1 14.
- the ramp 1 15 is configured such that lesser force is required to attach the closure 1 16 as compared to remove the closure 1 16.
- one or more axially extending and outwardly projecting protuberances 121 are formed on the neck 114.
- Each protuberance 121 is received within a slot 123 formed in the skirt 1 17 of the closure 1 16. Engagement between side edges of the protuberance 121 and side edges of the slot 123 restrict rotation of the closure 1 16 and maintain the closure 1 16 in a preferred orientation, particularly suitable when portions of the closure 1 16 is designed to be substantially flush with the sidewall 1 18 of the container 1 10.
- two protuberances 121 and two slots 123 each spaced 180 degrees apart.
- the containers described herein may have resilient sidewalls that permit them to be squeezed to dispense the liquid concentrate or other contents. By resilient, it is meant that they return to or at least substantially return to their original configuration when no longer squeezed.
- the containers may be provided with structural limiters for limiting displacement of the sidewall, i.e., the degree to which the sidewalls can be squeezed.
- This can advantageous contribute to the consistency of the discharge of contents from the containers.
- the foregoing depression can function as a limiter, whereby it can contact the opposing portion of the sidewall to limit further squeezing of opposing sidewall portions together.
- the depth and/or thickness of the depression can be varied to provide the desired degree of limiting.
- Other structural protuberances of one or both sidewalls can function as limiters, as can structural inserts.
- Tests were performed using a variety of nozzles as the discharge opening in a container made from high-density polyethylene (HDPE) and ethylene vinyl alcohol (EVOH) with a capacity of approximately 60 cc. Table 1 below shows the nozzles tested and the abbreviation used for each.
- HDPE high-density polyethylene
- EVOH ethylene vinyl alcohol
- the SLA Square Edge Orifice nozzles each have a front plate with a straight-edged circular opening therethrough, and were made using stereolithography. The number following the opening identification is the approximate diameter of the opening.
- the LMS refers to a silicone valve disposed in a nozzle having an X shaped slit therethrough, and are available from Liquid Molding Systems, Inc. ("LMS") of Midland, Michigan.
- LMS Liquid Molding Systems, Inc.
- the slit is designed to flex to allow product to be dispensed from the container and at least partially return to its original position to seal against unwanted flow of the liquid through the valve. This advantageously protects against dripping of the liquid stored in the container, which is important for liquid concentrates, as discussed above.
- the valve When combined with the containers described herein, the valve is believed to permit atmospheric gasses to flow into the container body during a cleaning phase when the squeeze force is released effective to clean the valve and upstream portions of an exit path through the container and/or closure. Further, such a combination is believed to provide for controllable flow of the concentrate when the valve is generally downwardly directed such that gases which enter during the cleaning phase are remote from the exit path.
- Another suitable valve is the LMS V25 Engine 0.070 X Slit.
- An important feature for the nozzle is the ability to mix the dispelled liquid concentrate with the target liquid, usually water, using only the force created by spraying the liquid concentrate into the water.
- Acidity (pH) levels can be utilized to evaluate how well two liquids have been mixed. For example, a liquid concentrate poured from a cup leaves distinct dark and light bands. A jet of the liquid concentrate, however, tends to shoot to the bottom of the target container and then swirl back up to the top of the target liquid, which greatly reduces the color difference between the bands.
- pH levels can also be utilized in real time to determine mixture composition. Testing included dispensing 4 cc of liquid concentrate in 500 ml of DI H 2 0 at room temperature of 25 degree Celsius. The pour was done from a small shot glass, while the jet was produced by a 6 cc syringe with an approximately 0.050 inch opening. Mixing refers to a Magnastir mixer until steady state was achieved.
- each nozzle was tested to determine a Mixing Ability Value.
- the Mixing Ability Value is a visual test measured on a scale of 1-4 where 1 is excellent, 2 is good, 3 is fair, and 4 is poor. Poor coincides with a container having unmixed layers of liquid, i.e., a water layer resting on the liquid concentrate layer, or an otherwise inoperable nozzle. Fair coincides with a container having a small amount of mixing between the water and the liquid concentrate, but ultimately having distinct layers of liquid concentrate and water, or the nozzle operates poorly for some reason. Good coincides with a container having desirable mixing over more than half of the container while also having small layers of water and liquid concentrate on either side of the mixed liquid. Excellent coincides with a desirable and well mixed liquid with no significant or minor, readily-identifiable separation of layers of liquid concentrate or water.
- the test dispensed 4 cc of liquid concentrate, which was 125g citric acid in 500 g H20 5% SN949603 (Flavor) and Blue #2 1.09 g cc, into a glass 250 ml Beaker having 240 ml of water therein.
- the liquid concentrate has a viscosity of approximately 4 centipoises.
- Table 3A shows the results of the mixing test and the Mixing Ability Value of each nozzle.
- FIG. 7 a representation of the resulting beaker of the mixing ability test for each tested nozzle is shown. Dashed lines have been added to indicate the approximate boundaries between readily-identifiable, separate layers. From the above table and the drawings in FIG. 7, the 0.025 inch diameter Square Edge Orifice, the 0.070 inch X Slit, and the 0.100 inch X Slit all produced mixed liquids with an excellent Mixing Ability Value where the beaker displayed a homogeneous mixture with a generally uniform color throughout.
- the 0.020 inch diameter Square Edge Orifice, the 0.145 inch X Slit, and the 0.200 inch X Slit produced mixed liquids with a good Mixing Ability Value, where there were small layers of water and liquid concentrate visible after the 4 cc of liquid concentrate had been dispensed.
- the 0.015 inch Square Edge Orifice produced a mixed liquid that would have qualified for a good Mixing Ability Value, but was given a poor Mixing Ability Value due to the amount of time it took to dispense the 4 cc of liquid concentrate, which was viewed as undesirable to a potential consumer.
- Another test measured the Mixing Ability Value based upon the squeeze pressure by injecting a pulse of air into the container with various valve configurations. More specifically, the test was performed for a calibrated "easy,” “medium,” and “hard” simulated squeeze. A pulse of pressurized air injected into the container simulates a squeeze force (although the test does not actually squeeze the sidewalls).
- an air pressure regulator is set to the desired pressure. The output from the air pressure regulator is connected via tubing to a pressure tight fitting set into an aperture formed in the center portion of the bottom of the container.
- the container can be between about 10 degrees and 0 degrees from vertical.
- the container is filled for each test to its preferred maximum volume (which can be less than the total volume of the container).
- the push button is depressed a time calculated to result in a target dosage volume.
- the nozzle of the container is disposed between 2 and 4 inches above the target. This same protocol was used to determine other parameters associated with simulated squeezes, discussed herein.
- a nozzle utilized to dispense liquid concentrate is the amount of splashing or splatter that occurs when the liquid concentrate is dispensed into a container of liquid.
- the concentrated dyes within the liquid concentrate can stain surrounding surfaces, as well as the clothes and skin of the user of the container. Due to this, each nozzle was also tested for an Impact Splatter Factor.
- the Impact Splatter Factor test utilized a 400 ml beaker having water dyed blue filled to 1 inch from the rim of the beaker. A circular coffee filter was then secured to the beaker using a rubber band, such that the filter had a generally flat surface positioned 1 inch above the rim of the beaker.
- the coffee filter By being positioned an inch above the rim of the beaker, the coffee filter included a sidewall that when splashed indicated liquid exiting the beaker in a sideways orientation, which due to the dyes discussed above, is undesirable.
- the coffee filter also included a cutout extending slightly onto the upper surface so that the liquid could be dispensed into the container.
- a bottle having the nozzles secured thereto was then held above the perimeter of the beaker and liquid was dispensed to the center of the beaker five times.
- the coffee filter was subsequently removed and examined to determine the Impact Splatter Factor for each nozzle.
- the Impact Splatter Factor is a visual test measured on a scale of 1-4 where 1 is excellent, 2 is good, 3 is fair, and 4 is poor.
- Excellent coincides with a filter having no or small splashes in the center area of the filter positioned above the beaker and substantially minimal to no splashes outside of this center area.
- Good coincides with a filter having splashes in the center area and small splashes outside of the center area.
- Fair coincides with splashes in the center area and medium size splashes outside of the center area.
- Poor coincides with a filter having splashes in the center area and large splashes outside of the center area.
- the 0.100 inch and the 0.145 inch X Slit nozzles caused large splatter marks to impact the sidewall as illustrated in FIGS. 12 and 13 and accordingly received an Impact Splatter Factor of 3.
- the 0.200 inch X Slit nozzle caused substantial marks on the sidewall of the coffee filter, which indicates that a large amount of liquid was forced outward from the beaker. Due to this, the 0.200 inch X Slit nozzle received an Impact Splatter Factor of 4.
- the push button is depressed a time calculated to result in a target dosage volume.
- the nozzle of the container is disposed between 2 and 4 inches above the target.
- This simulated squeeze testing was performed The results are consistent with the actual squeeze testing, and show that the larger X Slit nozzles cause more splashing.
- the time was that required to dispense 4 cc of beverage concentrate from a container having about 49 cc of concentrate in a total volume of about 65 cc.
- the container had the shape similar to that illustrated in FIG.
- a high density polyethylene wall with a thickness of about 0.03 inches, a span from the bottom of the container to the valve of about 3 inches, a thickness of about 1.1 thick and about 2.25 inches at maximum width with a neck of about an inch in diameter.
- the concentrate had a density of about 1.1 gm cc, 4 cP and color sufficient to provide an indication of color in the final beverage.
- FIG. 15 illustrates the Mixing Ability Values and the Impact Splatter Factors found for each of the nozzles tested using the actual squeeze testing. These test values can be combined, i.e., added, to form Liquid Concentrate Performance Values for each nozzle.
- the 0.070 inch X Slit was found to produce a Liquid Concentrate Performance Value of 2 by both mixing excellently while also creating minimal impact splatter.
- the 0.020 inch and the 0.025 inch Square Edge Orifices were both found to have a value of 3 to produce a good overall end product.
- the Liquid Concentrate Performance Value for the nozzle utilized with the container described herein should be in the range of 1-4 to produce a good product, and preferably 2-3.
- Each nozzle was then tested to determine how many grams per second of fluid are dispensed through the nozzle for both the easy and hard forces. The force was applied for three seconds and the mass of the dispelled fluid was weighed. This value was then divided by three to find the grams dispelled per second. Table 6 below displays the results.
- the graph shows the difference of the Mass Flow between the easy and hard forces for each of the nozzles.
- a relatively small delta value for Mass Flow is desirable because this means that a consumer will dispense a generally equal amount of liquid concentrate even when differing squeeze forces are used.
- This advantageously supplies an approximately uniform mixture amount, which when applied in a beverage setting directly impacts taste, for equal squeeze times with differing squeeze forces.
- the 0.100 inch, the 0.145 inch, and the 0.200 inch X Slit openings dispense significantly more grams per second, but also have a higher difference between the easy and hard forces, making a uniform squeeze force more important when dispensing the product to produce consistent mixtures.
- Table 7 A Time to Dispense 1 cubic centimeter of liquid for easy and hard forces for each nozzle
- Ease of use testing showed that a reasonable range of time for dispensing a dose of liquid concentrate is from about 0.3 seconds to about 3.0 seconds, which includes times that a consumer can control dispensing the liquid concentrate or would be willing to tolerate to get a reasonably determined amount of the liquid concentrate.
- a range of about 0.5 sec per cc to about 0.8 sec per cc provides a sufficient amount of time from a user reaction standpoint, with a standard dose of approximately 2 cc per 240 ml or approximately 4 cc for a standard size water bottle, while also not being overly cumbersome by taking too long to dispense the standard dose.
- the mass flow rate is determined by placing the container upside-down and spaced about 6 inches above a catchment tray disposed on a load cell of an Instron. The aforementioned pressure application system then simulates the squeeze force for an "easy,” “medium,” and “hard” squeeze. The output from the Instron can be analyzed to determine the mass flow rate.
- the mass flow rate can then be used to calculate the time required to dispense a desired volume of concentrate, e.g., 2 cc, 4 cc, etc.
- the dispense time should not be too long (as this can disadvantageous ⁇ result in greater variance and less consistency in the amount dispensed) nor should the dispense time be too short (as this can disadvantageously lead to an inability to customize the amount dispensed within a reasonable range).
- the time to dispense can be measured on a scale of 1 to 4, where 1 is a readily controllable quantity or dose that is of sufficient duration to permit some customization without too much variation (e.g., an average of between 1-3 seconds for 4 cc); 2 is a dose that is of slightly longer or shorter duration but is still controllable (e.g., an average of between 0.3 and 1 or between 3 and 4 seconds for 4 cc); 3 is a dose that is difficult to control given that it is either too short or too long in duration, permitting either minimal opportunity for customization or too large of an opportunity for customization (e.g., an average of about 0.3 (with some but not all datapoints being less than 0.3) or between about 4 and 10 for 4 cc); and 4 is a dose that is even more difficult to control for the same reasons as for 3 (e.g., an average of less than 0.3 (with all datapoints being less than 0.3) or greater than 10 seconds for 4 cc).
- the resulting Dispense Time Rating is then determined based upon
- the Mixing Ability Value, the Impact Splatter, and the Dispense Time Rating can be multiplied together to determine a Liquid Concentrate Dispense Functionality Value (LCDFV).
- a low LCDFV is preferred. For example, between 1 and 4 is preferred.
- Examples of the LCDFV for the aforementioned simulated squeeze Mixing Ability Value, the Impact Splatter, and the Dispense Time Rating are set forth in the below Table 7C. The results show that the V21_070 valve and the O_025 orifice have the lowest LCDFV. While the O_025 orifice has a lower LCDFV value than the V21_070 valve, the orifice would fail the Drip Test.
- the SLA nozzle circular opening areas were calculated using ⁇ 2 .
- the areas of the X Slits were calculated by multiplying the calculated dispense quantity by one thousand and dividing by the calculated velocity for both the easy and the hard force.
- the momentum-second of each nozzle was also determined using the above- referenced procedure for generating "easy,” “medium,” and “hard” simulated squeezes using a pulse of pressurized air.
- the mass flow rate (set forth in Table 9B) was multiplied by the velocity (set forth in Table 9C) to provide the momentum-second for the simulated squeezes (set forth in Table 9D).
- Table 9D Momentum-second of each nozzle for easy, medium and hard simulated squeezes
- Momentum-second values correlate to the mixing ability of a jet of liquid exiting a nozzle because it is the product of the mass flow and the velocity, so it is the amount and speed of liquid being dispensed from the container. Testing, however, has shown that a range of means that a consumer will dispense a generally equal amount of liquid concentrate even when differing squeeze forces are used. This advantageously supplies an approximately uniform mixture for equal squeeze times with differing squeeze forces. The results for the actual and simulated squeezes are consistent. As shown above, mimicking the performance of an orifice with a valve can result in more consistent momentum-second values for easy versus hard squeezes, as well as for a range of simulated squeezes, while also providing the anti-drip functionality of the valve.
- the graph shows the difference for the Momentum-Second values between the easy and hard forces for each nozzle.
- momentum-second having a relatively small delta value for Momentum-Second is desirable because a delta value of zero coincides with a constant momentum-second regardless of squeeze force.
- a delta momentum-second value of less than approximately 10,000, and preferably 8,000 provides a sufficiently small variance in momentum-second between an easy force and a hard force so that a jet produced by a container having this range will have a generally equal energy impacting a target liquid, which will produce a generally equal mixture.
- a liquid concentrate container to dispense liquid concentrate generally linearly throughout a range of liquid concentrate fill amounts in the container when a constant pressure is applied for a constant time.
- the nozzles were tested to determine the weight amount of liquid concentrate dispensed at a pressure that achieved a minimum controllable velocity for a constant time period when the liquid concentrate was filled to a high, a medium, and a low liquid concentrate level within the container. Table 10 shows the results of this test below.
- FIG. 18 shows a graph displaying the maximum variation between two values in Table 10 for each nozzle.
- the maximum variation for all of the Square Edge Orifice nozzles and the 0.070 inch and the 0.100 inch X Slit nozzles is less than 0.15 grams spanning a high, medium, or low fill of liquid concentrate in the container.
- the 0.145 inch and the 0.200 inch X Slit nozzles were measured to have a maximum variation of 0.91 grams and 1.2 grams respectively.
- a desirable nozzle has a maximum variation for linearity of flow at varying fill levels of less than 0.5 grams, and preferably less than 0.3 grams, and more preferably less than 0.15 grams.
- the container is configured to protect against unintentional dripping.
- this is accomplished using the slit designed to flex to allow product to be dispensed from the container and at least partially return to its original position to seal against unwanted flow of the liquid through the valve.
- the protection against dripping does not mean that the container will never drip under any conditions. Instead, the container is designed to provide for substantial protection against dripping. This can be measured using a Drip Index Value.
- the method of calculating a Drip Index Value includes providing an empty container, providing a communication path in the bottom region of the container between atmosphere and the interior of the container that has a cross-sectional area of at least 20% of the maximum cross-sectional area of the container, filling the container with water through the communication path, inverting the container so that the exit is pointing downwardly, removing or opening any lid covering or obstructing the exit, and counting the number of drops of water that drop from the container over in the span of 10 minutes. The number of drops counted is the Drip Index Value.
- a preferred container such as that described herein having the X slit valve V21_070 and illustrated in FIG. 6 (but without the depression)
- testing showed that there was a Drip Index Value of zero. This indicates that the container provides at least substantial protection against dripping. While a Drip Index Value of zero is preferred, other suitable values can include any number in the range of 1-10, with lower values being preferred.
- the containers described herein are suitable for many different types of liquid concentrates.
- the liquid concentrates are advantageously suitable for cold filling while maintaining shelf stability for at least twelve months at ambient temperatures. This can be achieved through a combination of low pH and alcohol content to provide stability to what can be otherwise unstable ingredients.
- the compositions and associated methods can also include beverage concentrates having low pH, reduced water activity, and alcohol. Reduced water activity can occur through additional salts.
- the compositions are not carbonated (e.g., with C0 2 ).
- the concentrate can be diluted at least 25 times to make a potable drink.
- the concentrate can have a pH of between about 1.4 to 3.0 or 3.5 and from between about 3 to 35 percent alcohol by weight.
- Some beverages and beverage concentrates such as juices are hot filled (for example, at 93 degrees Celsius) during packaging, then sealed to prevent microbial growth.
- Other beverages such as diet sodas, may contain preservatives and can be cold filled during packaging (i.e., without pasteurization).
- the preferred compositions given their combination of pH and alcohol levels, do not need additional thermal treatments or mechanical treatments such as pressure or ultrasound to reduce microbial activity either before or after packing. It is noted though that the compositions are not precluded from receiving such treatments either.
- the packaging material also preferably does not require additional chemical or irradiation treatment. While the manufacturing environment should be maintained clean, there is no need for UV or use of sterilant materials. In short, the product, processing equipment, package and manufacturing environment should be subject to good manufacturing practices, but need not be subject to aseptic packaging practices. As such, the present compositions can allow for reduced manufacturing costs.
- the concentrates can be non-potable, and can optionally have colors
- Optional preservatives such as sorbate or benzoate, would not be needed to maintain shelf stability in some embodiments.
- sorbate or benzoate would be stable in the acidic environment. Dilution of alternate embodiments can be cold-filled, and capable of mixing with water without additional stirring. The alcohol content of the final beverage should not exceed 0.5 percent weight.
- the beverage concentration can be 25 to 500 times to form the concentrate.
- Preferable range can be about 75 to 200 times concentrated, and most preferred is about 75 to 160 times.
- the concentrate may be non-potable prior to dilution and allow diluting and mixing in water.
- other potable liquids can be used in dilution, such as juices, sodas, teas, coffee and the like.
- concentration a concentration of 75 times would be equivalent to 1 part concentrate to 74 parts water (or other potable liquid).
- the dilution can be expressed as an amount of dilution needed to provide a ready to drink beverage having a sweetness level equivalent to the amount of sweetness of a beverage containing about 5 to 25 percent sugar.
- the desired dilution can be expressed, by analogy, in a Brix degree equivalent of 5 to 25 and preferably in the range of about 8 - 14.
- a Brix degree can be defined as a unit of sugar content of an aqueous solution.
- a Brix of 1 degree can correspond to 1 gram of sucrose in 100 grams of solution.
- a Brix of 1 degree can, by analogy, compare to the amount of sweetener, natural or artificial, needed to provide the amount of sweetness expected from an equivalent amount of sucrose.
- dilution can be expressed as obtaining a desired RTD beverage having an acid range of about 0.01 to 0.8 percent weight. Also, dilution can also be expressed as obtaining desired.
- the acid content of the concentrates can be any edible/food-grade organic or inorganic acids such as citric acid, malic acid, adipic acid, tartaric acid, fumaric acid, phosphoric acid, lactic acid, and the like.
- the pH range of the concentrate can be from about 3.0 to about 1.4, and preferably from about 2.3, and most preferably about 2.2.
- an acid buffer such as a conjugated base of any acid (e.g., sodium citrate and potassium citrate), acetates, phosphates or any salt of an acid can be added to adjust the pH of the concentrate when a concentrate's pH is lower than is desired.
- a potassium citrate can be used to bring the pH from about 1.3 (without a buffer) or 2.0 to about 2.3. See Table 11, below, for three examples.
- an undissociated salt ion of the acid can buffer the overall concentration.
- the pH of the concentrate provides desired antimicrobial effects, while not being so acidic as to break down the flavor component.
- An added benefit of the buffer may be improved organoleptics of the final product in its diluted form.
- the buffer can give a better overall "rounded" sour flavor to the ready-to- drink diluted concentrate.
- citrate with citric acid can increase tartness better than if only citric acid is used.
- the preferred acid:buffer ratio can be about 1 : 1 or higher, preferably between 1 :1 - 40:1, and most preferably about 7: 1 to about 15: 1. In any event, the predetermined acid.buffer ratio contributes to antimicrobial effects and flavor stabilization.
- Table 12 describes the degree of taste variation of test samples by pH over a 4 week period.
- Lemon flavored liquid concentrate samples of the present compositions were prepared at three different pH levels, 1.5, 2.0 and 2.5 and stored at three different storage temperatures, 0 degrees F, 70 degrees F, and 90 degrees F.
- the samples stored at 0 F were the controls and it was assumed there would be no significant degradation of the flavor over the testing period.
- the liquid concentrate samples stored at 0 F and 70 F were removed from their storage conditions and diluted with water to the ready-to drink strength.
- the ready-to-drink samples were then allowed to reach room temperature and then evaluated by panelists (4 - 6 people).
- the panelists were asked to taste the pH 1.5 sample stored at 0 F and compare that to the pH 1.5 sample stored at 70 F.
- the panelists rated the degree of difference for the overall flavor.
- the rating scale was from 1 -10, with the range from 1 -3 being "very close", 4-6 being “different” and from 7-10 being “very different”.
- the same test was then repeated with samples at pH levels of 2.0 and 2.5.
- Samples stored at 90oF were also evaluated after 1 week, 3 weeks, 4 weeks and 5 weeks and compared to the Control samples stored at 0 F to evaluate the degree of difference in a manner described above for samples stored at 70 F. The results show that as pH is increased, flavor stability increases.
- Edible antimicrobials in the present embodiments can include various edible alcohols such as ethyl alcohol, propylene glycol or various combinations thereof.
- Alcohol content of the concentrate can be from about 5 percent to about 35 percent on a total weight basis, preferably between about 5 percent to about 15 percent by weight, and most preferably about 10 percent by weight.
- Flavorings can include fruits, tea, coffee and the like and combinations thereof.
- the concentrate may also contain coloring, stabilizers, gums, salts or nutrients in any combination so long as the desired pH and alcohol percentage by weight are maintained.
- the preferred formulations have stable flavor and color sensory characteristics that do not significantly change in the high acid environment.
- natural or artificial preservatives can be added to supplement antimicrobial stability, such as EDTA, sodium benzoate, potassium sorbate, sodium hexametaphosphate, nisin, natamycin, polylysine, and the like.
- Supplemental preservatives such as potassium sorbate or sodium benzoate
- formulations having, for example, less than 20 percent by weight propylene glycol and/or less than 10 percent by weight ethyl alcohol.
- Nutrient additives can include vitamins, minerals, antioxidants, and the like.
- the concentrate includes a sweetener.
- sweeteners include sucralose, aspartame, stevia, saccharine, monatin, luo han guo, neotame, sucrose, fructose, cyclamates, acesuifame potassium or any other caloric or non-caloric sweetener and combinations thereof.
- Table 14 Cold filled beverage concentrate (second example)
- Table 15 Cold filled beverage concentrate (third example)
- the examples of Tables 13 through 17 include compositions for a cold-filled beverage concentrate using a combination of low pH, such as less than about 3.5, and preferably in the range of about 1.7 to 2.4.
- the alcohol component can include ethanol, propylene glycol, and the like and combinations thereof.
- the alcohol component can be in the range of about 1 to about 35 percent weight, and preferably in the range of about 3 to 35 percent by weight.
- the alcohol component is included in the described examples as combined with the flavor. Nevertheless, total alcohol by weight would still be within these ranges irrespective of combinations with flavors.
- the examples of Tables 13 through 17 add various supplemental salt combinations in the range of up to about 35 percent by weight, and preferably in the range of about 4 to 15 percent by weight.
- Colors can be artificial or natural and can be in the range of 0.005 to 5.0 percent, preferably in the range of about 0.005 to 1 percent. In formulations using natural colors, a higher percent weight may be needed to achieve desired color characteristics.
- the composition further includes supplemental components to lower the formulation's water activity, e.g., salts such as sodium chloride (NaCl) and mono potassium phosphate.
- salts such as sodium chloride (NaCl) and mono potassium phosphate.
- NaCl sodium chloride
- mono potassium phosphate e.g., sodium chloride (NaCl) and mono potassium phosphate.
- the added salts may result in a liquid beverage concentrate composition that can be concentrated to at least 75 times, and preferably up to 100 times; and may result in reduced water activity in the range of about 0.6 to up to 1 (preferably in the range of about 0.75 up to 1.0).
- the lower water activity further improves shelf life and improves antimicrobial activity while also allowing reduction of alcohol and supplemental preservatives.
- Water activity can be defined as a ratio of water vapor pressure in an enclosed chamber containing a food to the saturation water vapor pressure at the same temperature.
- water activity can indicate of the degree to which unbound water is available to act as a solvent or otherwise degrade a product or facilitate microbiological reactions. (See generally, U.S. Pat. 6,482,465 Cherukuri, et al.).
- the salts can be salts containing Na+ (sodium); K+ (potassium); Ca2+ (calcium); Mg2+ (magnesium); CI- (chloride); HP04-2 (hydrogen phosphate); HC03- (hydrogen carbonate); and the like;, and various combinations thereof.
- Other added salts can include electrolytes, such as: sodium citrate; mono sodium phosphate; potassium chloride; magnesium chloride; sodium chloride, calcium chloride; and the like; and combinations thereof.
- An added advantage of these salts provides electrolytes for sports type drinks.
- Tables 18 and 19 show antimicrobial test results for several variations of potential beverage concentrates varied by pH and alcohol content (Table 18 for EtOH and Table 19 for propylene glycol.
- the EtOH antimicrobial tests were divided into three culture types: bacteria, yeast and mold and tested over at least 3 months.
- the bacteria cultures contained: Gluconobacter oxydans, Gluconacetobacter diazotrophicus, Gluconacetobacter liquefaciens, and/or Gluconobacter sacchari.
- the yeast cultures contained Zygosaccharomyces bailii, Saccharomyces cerevisiae, Candida tropicalis, and/or Candida lypolytica.
- the mold cultures contained: Penicillium spinulosum, Aspergillus niger, and/or Paecilomyces variotii.
- the table indicates which cultures had no, or negative, growth compared to the controls, with * indicating no microbial growth and *** indicating some microbial growth. Mold and yeast studies were also performed for samples where the alcohol was propylene glycol. For these samples, the pH was about 2.3 and had a water activity of about 0.85 to 0.95. Table 19 shows a positive correlation between increased levels of propylene glycol and increased antimicrobial effects.
- water activity levels in combination with the low pH and alcohol surprisingly provided an antimicrobial effect typically only found in previous formulations having water activities of less than about 0.6. See Table 20, below.
- the combination of the low pH, alcohol (for example propylene glycol, ethanol, and the like, and various combinations thereof) and lowered water activity create a hostile environment for microorganisms.
- preferred embodiments can show an bactericidal effect at about 10 percent ethanol and 20 percent propylene glycol and a bacteriostatic effect at about 10 percent propylene glycol.
- Manufacturing of the present invention can include any number of variations to achieve the beverage concentrate with the desired pH and alcohol content.
- the method can include providing water and additives, then providing at least 5 percent alcohol by weight, then providing an acid component to adjust the pH to be less than about 3. This may include adding buffers.
- Suitable liquid concentrates are set forth in the below Table 21. These examples can be used in combination with the aforementioned containers to provide for an extended shelf life concentrated beverage package. These examples can also be used independently, e.g., alone or with another type of container.
- the flavoring fraction of the formulation includes a combined flavor/alcohol component.
- the alcohol by percentage weight of the formulation is added parenthetically.
- the alcohol can be ethyl alcohol, propylene glycol, and combinations thereof and are used as a solvent for the flavoring.
- the range of alcohol can be from about 75 percent to about 95 percent of the flavoring fraction of the formulation and preferably about 90 percent.
- the combination of the nozzle 132 and the cover 126 with the stopper 148 and inner plug 149, as illustrated in FIGS. 19 and 20, advantageously provides multiple layers of protection against leakage, which is particularly important when used in combination with the foregoing beverage concentrates.
- This exceptional protection is evident when compared with a screw-type cap, such as can be found on a bottle of Visine, but is much easier to use, e.g., a flip top lid versus a screw cap.
- Table 22 when the nozzle V21_070 is used in the container the amount of oxygen that enters the closed container over time is comparable to that of the screw-cap Visine bottle.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Nutrition Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Ceramic Engineering (AREA)
- Closures For Containers (AREA)
- Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
- Non-Alcoholic Beverages (AREA)
- Packages (AREA)
- Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
- Seasonings (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Package Specialized In Special Use (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19156252.9A EP3508436B1 (de) | 2009-09-11 | 2010-09-10 | Haltbare flüssigkeitskonzentrate |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24158409P | 2009-09-11 | 2009-09-11 | |
US32015510P | 2010-04-01 | 2010-04-01 | |
US32021810P | 2010-04-01 | 2010-04-01 | |
US37417810P | 2010-08-16 | 2010-08-16 | |
PCT/US2010/048449 WO2011031985A2 (en) | 2009-09-11 | 2010-09-10 | Containers and methods for dispensing multiple doses of a concentrated liquid, and shelf stable concentrated liquids |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19156252.9A Division EP3508436B1 (de) | 2009-09-11 | 2010-09-10 | Haltbare flüssigkeitskonzentrate |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2475584A2 true EP2475584A2 (de) | 2012-07-18 |
Family
ID=43415179
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10757668A Withdrawn EP2475584A2 (de) | 2009-09-11 | 2010-09-10 | Behälter und verfahren zur ausgabe von mehrfachdosierungen eines flüssigkeitskonzentrats und haltbare flüssigkeitskonzentrate |
EP19156252.9A Active EP3508436B1 (de) | 2009-09-11 | 2010-09-10 | Haltbare flüssigkeitskonzentrate |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19156252.9A Active EP3508436B1 (de) | 2009-09-11 | 2010-09-10 | Haltbare flüssigkeitskonzentrate |
Country Status (14)
Country | Link |
---|---|
US (1) | US20130075430A1 (de) |
EP (2) | EP2475584A2 (de) |
JP (4) | JP2013504498A (de) |
KR (1) | KR101809284B1 (de) |
CN (2) | CN102712396A (de) |
AR (1) | AR078421A1 (de) |
AU (3) | AU2010292122B2 (de) |
BR (1) | BR112012005422B1 (de) |
CA (1) | CA2773701C (de) |
MX (1) | MX2012002935A (de) |
NZ (1) | NZ598818A (de) |
RU (2) | RU2606327C2 (de) |
SG (2) | SG179076A1 (de) |
WO (1) | WO2011031985A2 (de) |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2475584A2 (de) * | 2009-09-11 | 2012-07-18 | Kraft Foods Global Brands LLC | Behälter und verfahren zur ausgabe von mehrfachdosierungen eines flüssigkeitskonzentrats und haltbare flüssigkeitskonzentrate |
US8293299B2 (en) | 2009-09-11 | 2012-10-23 | Kraft Foods Global Brands Llc | Containers and methods for dispensing multiple doses of a concentrated liquid, and shelf stable Concentrated liquids |
GB201011663D0 (en) * | 2010-07-09 | 2010-08-25 | Obrist Closures Switzerland | A closure |
BR112013004938B8 (pt) | 2010-09-02 | 2020-10-13 | Kraft Foods Group Brands Llc | recipientes para dispensar concentrados de bebidas |
EP2651775B1 (de) | 2010-12-14 | 2015-09-02 | Kraft Foods Group Brands LLC | Behälter und verfahren zur isolierung von flüssigkeiten vor der ausgabe |
CN103874430B (zh) * | 2011-08-12 | 2018-10-02 | 卡夫食品集团品牌有限责任公司 | 贮存稳定的低水液体饮料浓缩物及其制备方法 |
USD738732S1 (en) | 2011-11-30 | 2015-09-15 | Tc Heartland Llc | Bottle with cap |
USD720622S1 (en) | 2011-11-30 | 2015-01-06 | Tc Heartland Llc | Bottle with cap |
CA2866266C (en) * | 2012-03-09 | 2020-07-21 | Kraft Foods Group Brands Llc | Beverage concentrates with increased viscosity and shelf life and methods of making the same |
US11013248B2 (en) | 2012-05-25 | 2021-05-25 | Kraft Foods Group Brands Llc | Shelf stable, concentrated, liquid flavorings and methods of preparing beverages with the concentrated liquid flavorings |
WO2014028918A2 (en) | 2012-08-17 | 2014-02-20 | Altus Justin Grant | Multiple container device |
CN103640747A (zh) * | 2013-11-22 | 2014-03-19 | 中山环亚塑料包装有限公司 | 一种柔性防漏手感包装瓶 |
KR101533381B1 (ko) * | 2013-12-12 | 2015-07-02 | 롯데칠성음료주식회사 | 농축 액체 음료 조성물 및 이의 제조방법 |
MX2016013306A (es) * | 2014-04-16 | 2017-01-18 | Reckitt Benckiser (Brands) Ltd | Tapa de dispensacion de dosis. |
JP2017517554A (ja) | 2014-06-16 | 2017-06-29 | ザ プロクター アンド ギャンブル カンパニー | 濃縮コンディショナーを用いて毛髪を処理する方法 |
CN106659673B (zh) | 2014-06-16 | 2020-08-04 | 宝洁公司 | 利用浓缩型调理剂处理毛发的方法 |
WO2015195512A2 (en) | 2014-06-16 | 2015-12-23 | The Procter & Gamble Company | Method of treating hair with a concentrated conditioner |
EP3034428B1 (de) | 2014-12-19 | 2017-07-19 | SHB GmbH | Dosierkappe für eine Dosierflasche |
WO2016172468A1 (en) | 2015-04-23 | 2016-10-27 | The Procter & Gamble Company | Concentrated personal cleansing compositions |
MX2017013538A (es) | 2015-04-23 | 2018-03-07 | Procter & Gamble | Metodos y composiciones concentradas para la limpieza personal. |
EP3285889B1 (de) | 2015-04-23 | 2020-07-22 | The Procter and Gamble Company | Konzentrierte körperreinigungsprodukte und verwendung davon |
EP3285886A1 (de) | 2015-04-23 | 2018-02-28 | The Procter and Gamble Company | Haarpflegende balsamzusammensetzung |
EP3285728B1 (de) | 2015-04-23 | 2019-12-18 | The Procter and Gamble Company | Konzentrierte körperpflegezusammensetzungen und verfahren |
US20170119023A1 (en) * | 2015-10-30 | 2017-05-04 | Medtech Products Inc. | Soluble Fiber Liquid Beverage Concentrate And Method For Delivery Of Soluble Fiber |
US10265256B2 (en) | 2015-12-15 | 2019-04-23 | The Procter And Gamble Company | Method of treating hair |
WO2017106399A1 (en) | 2015-12-15 | 2017-06-22 | The Procter & Gamble Company | Method of treating hair |
JP2018537496A (ja) | 2015-12-15 | 2018-12-20 | ザ プロクター アンド ギャンブル カンパニー | 毛髪を処理する方法 |
US10124951B2 (en) | 2015-12-15 | 2018-11-13 | The Procter And Gamble Company | Method of treating hair |
US10285925B2 (en) | 2015-12-15 | 2019-05-14 | The Procter & Gamble Company | Method of treating hair |
US10265251B2 (en) | 2015-12-15 | 2019-04-23 | The Procter And Gamble Company | Method of treating hair |
US10294013B2 (en) | 2015-12-21 | 2019-05-21 | The Procter And Gamble Plaza | Package to dispense a foaming composition |
WO2017184795A1 (en) | 2016-04-22 | 2017-10-26 | The Procter & Gamble Company | Method of forming a silicone layer |
US10828248B2 (en) | 2016-04-22 | 2020-11-10 | The Procter And Gamble Company | Method of forming a silicone layer |
US11185486B2 (en) | 2016-10-21 | 2021-11-30 | The Procter And Gamble Company | Personal cleansing compositions and methods |
US11179301B2 (en) | 2016-10-21 | 2021-11-23 | The Procter And Gamble Company | Skin cleansing compositions and methods |
CN110191655B (zh) * | 2017-01-23 | 2022-03-22 | 埃姆弗西斯进出口及分销有限公司 | 毛发施用器 |
US20210138409A1 (en) * | 2017-02-16 | 2021-05-13 | Aveine | Beverage pouring device, comprising a central air injector |
US10806686B2 (en) | 2017-02-17 | 2020-10-20 | The Procter And Gamble Company | Packaged personal cleansing product |
US10675231B2 (en) | 2017-02-17 | 2020-06-09 | The Procter & Gamble Company | Packaged personal cleansing product |
JP7199528B2 (ja) | 2018-11-08 | 2023-01-05 | ザ プロクター アンド ギャンブル カンパニー | 球状ゲルネットワークベシクルを有する低剪断応力のコンディショナー組成物 |
JP6657462B2 (ja) * | 2019-04-05 | 2020-03-04 | サントリーホールディングス株式会社 | 飲料の提供システム |
JP6818170B2 (ja) * | 2020-02-04 | 2021-01-20 | サントリーホールディングス株式会社 | 飲料濃縮液を希釈した飲料を調製する方法及び飲料濃縮液の1回使用分が収容された容器詰飲料 |
JP7454957B2 (ja) * | 2020-02-28 | 2024-03-25 | 株式会社吉野工業所 | スクイズ容器 |
AU2023335919A1 (en) * | 2022-08-31 | 2025-03-20 | Cirkul, Inc. | Beverage additives and delivery systems |
US12070761B1 (en) * | 2022-12-12 | 2024-08-27 | Marcus Ceasar | Apparatus and a method for ejecting one or more substances |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2977231A (en) * | 1959-05-15 | 1961-03-28 | Cecil Wolfson | Packaging and dispensing beverage concentrates |
WO2006102435A2 (en) * | 2005-03-22 | 2006-09-28 | Water Sensations, Inc. | Flavoring composition concentrates |
Family Cites Families (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3342379A (en) * | 1965-10-24 | 1967-09-19 | James P Foley | Squeeze bottle and support cap |
US3366284A (en) * | 1966-04-13 | 1968-01-30 | Gen Foods Corp | Liquid metering dispenser container |
US4148417A (en) * | 1976-11-29 | 1979-04-10 | Simmons Michael J | Fluid dispenser |
EP0162526A3 (de) * | 1984-05-25 | 1988-01-07 | The Procter & Gamble Company | Flüssiges Teegemischkonzentrat |
US4830870A (en) * | 1986-11-09 | 1989-05-16 | General Foods Corporation | Method for increasing stability of liquid beverage concentrate |
US5033655A (en) * | 1989-02-15 | 1991-07-23 | Liquid Molding Systems Inc. | Dispensing package for fluid products and the like |
US5271531A (en) * | 1991-01-14 | 1993-12-21 | Seaquist Closures, A Division Of Pittway Corp. | Dispensing closure with pressure-actuated flexible valve |
US5213236A (en) * | 1991-12-06 | 1993-05-25 | Liquid Molding Systems, Inc. | Dispensing valve for packaging |
EP0555623B1 (de) * | 1992-02-14 | 1995-11-15 | The Procter & Gamble Company | Vorrichtung umfassend einen mit einem Schlitzventil als Entlüftungsventil versehenen Behälter und eine in diesem Behälter enthaltene Flüssigkeit |
CA2093996C (en) * | 1992-05-04 | 2005-01-11 | Bobby Earl Green | Microwaveable squeeze bottle for cheese sauce and the like |
DE4332885A1 (de) * | 1992-09-28 | 1994-03-31 | Colgate Palmolive Co | Eindrückbarer Abgabebehälter für fließfähige Stoffe |
WO1994008473A1 (en) * | 1992-10-21 | 1994-04-28 | The Procter & Gamble Company | Storage stable calcium-supplemented beverage premix concentrates and syrups |
US5373991A (en) * | 1993-04-09 | 1994-12-20 | Contico International, Inc. | Foamer trigger dispenser with sealing device |
ATE165794T1 (de) * | 1993-10-12 | 1998-05-15 | Frutin Bernard D | Verfahren und gerät zur qualitätsverbesserung von getränken |
US5632420A (en) * | 1993-11-03 | 1997-05-27 | Zeller Plastik, Inc. | Dispensing package |
US5499736A (en) * | 1993-12-28 | 1996-03-19 | Kraft Foods, Inc. | Reclosable, removable cap for reusable shaker dispenser bottle |
US5498429A (en) * | 1994-10-12 | 1996-03-12 | Warner-Lambert Company | Fruit juice center-filled chewing gum |
GB9504155D0 (en) * | 1995-03-02 | 1995-04-19 | Reckitt & Colmann Prod Ltd | Improvements in or relating to beverages |
US5626262A (en) * | 1995-06-07 | 1997-05-06 | Redmond Products, Inc. | Dispensing container with drainage passages |
FR2739079B1 (fr) * | 1995-09-25 | 1997-11-14 | Oreal | Dispositif de conditionnement et de distribution |
US5918777A (en) * | 1996-02-21 | 1999-07-06 | Owens-Brockway Plastic Products Inc. | Dispensing package for viscous liquid product |
FR2745552B1 (fr) * | 1996-02-29 | 1998-04-10 | Oreal | Tete et ensemble de distribution de produit de consistance liquide a visqueuse, comportant un reducteur d'ecoulement |
US5676289A (en) * | 1996-04-04 | 1997-10-14 | Aptargroup, Inc. | Valve-controlled dispensing closure with dispersion baffle |
JP3603109B2 (ja) * | 1996-07-10 | 2004-12-22 | 株式会社吉野工業所 | 液体注出容器 |
JP3523021B2 (ja) * | 1997-06-20 | 2004-04-26 | 株式会社吉野工業所 | 容 器 |
US6482465B1 (en) | 1997-06-24 | 2002-11-19 | Biovail Technologies Ltd. | Positive hydration method of preparing confectionery and product therefrom |
FR2771078B1 (fr) * | 1997-11-14 | 2000-01-28 | Oreal | Organe reducteur d'ecoulement, notamment pour un recipient contenant un produit cosmetique et procede de fabrication |
US5996850A (en) * | 1997-12-04 | 1999-12-07 | Chesebrough-Pond's Usa Co | Package for dispensing flowable cosmetics |
CN1284925A (zh) * | 1998-01-20 | 2001-02-21 | 宝洁公司 | 具有整体锁紧开关和损坏证明结构的配置罩 |
US5971232A (en) * | 1998-06-03 | 1999-10-26 | Aptargroup, Inc. | Dispensing structure which has a pressure-openable valve retained with folding elements |
JP3466515B2 (ja) | 1999-02-10 | 2003-11-10 | 長谷川香料株式会社 | 酸性飲料で安定な抗菌剤製剤 |
CA2336841C (en) * | 1999-05-31 | 2007-07-24 | Yoshino Kogyosho Co., Ltd. | Synthetic resin-made tubular container |
US6139895A (en) * | 1999-07-06 | 2000-10-31 | Monsanto Company | Viscosity stable acidic edible liquid compositions and method of making |
US6230940B1 (en) * | 1999-11-02 | 2001-05-15 | Seaquist Closures Foreign, Inc. | One-Piece dispensing system and method for making same |
US6315160B1 (en) * | 2000-01-18 | 2001-11-13 | Crown Cork & Seal Technologies Corporation | System and method for dispensing viscuous material |
FR2806705B1 (fr) * | 2000-03-27 | 2002-05-03 | Oreal | Capsule de distribution et recipient equipe d'une telle capsule |
FR2809712B1 (fr) * | 2000-05-30 | 2002-07-26 | Oreal | Embout doseur pour la distribution d'une dose a volume variable et ensemble equipe d'un tel embout doseur |
FR2810017B1 (fr) * | 2000-06-09 | 2002-09-06 | Oreal | Capsule a articulation du type a effet ressort, et ensemble de conditionnement equipe d'une telle capsule |
JP4443013B2 (ja) * | 2000-08-01 | 2010-03-31 | 花王株式会社 | 二重容器用キャップ |
DE20013287U1 (de) * | 2000-08-02 | 2001-01-11 | MegaPlast GmbH & Co. KG, 78052 Villingen-Schwenningen | Selbsttätiger Verschluß für elastisch verformbare Behälter |
US6703056B2 (en) | 2000-09-29 | 2004-03-09 | The Procter + Gamble Co. | Beverage compositions comprising arabinogalactan and defined minerals |
US6405901B1 (en) * | 2000-12-22 | 2002-06-18 | Seaquist Closures Foreign, Inc. | Valve with rolling sleeve |
US6402054B1 (en) * | 2001-02-09 | 2002-06-11 | Saint-Gobain Calmar Inc. | Airless squeeze bottle aspirator |
JP4749572B2 (ja) * | 2001-03-13 | 2011-08-17 | 大成化工株式会社 | 分与容器の口栓構造 |
USH2027H1 (en) * | 2001-06-06 | 2002-06-04 | Seaquist Closures Foreign, Inc. | Flexible slit valve |
US6616012B2 (en) * | 2001-07-27 | 2003-09-09 | Richard C. G. Dark | Fluid dispensing valve and method of use |
USD463744S1 (en) * | 2001-11-08 | 2002-10-01 | Owens-Illinois Closure Inc. | Closure |
US6616016B2 (en) * | 2001-12-07 | 2003-09-09 | Seaquist Closures Foreign, Inc. | Closure with pressure-actuated valve and lid seal |
US20050100639A1 (en) * | 2002-02-11 | 2005-05-12 | Edizone, Lc | Method for a consumer to create his own tasty beverage |
AU2003212609A1 (en) * | 2002-03-28 | 2003-10-13 | Firmenich Sa | Compounds for the controlled release of active aldehydes |
US6726063B2 (en) * | 2002-04-04 | 2004-04-27 | Stull Technologies | Self-cleaning shape memory retaining valve |
US6705492B2 (en) * | 2002-06-27 | 2004-03-16 | Method Products, Inc. | Bottom-dispensing liquid soap dispenser |
JP2004267041A (ja) * | 2003-03-06 | 2004-09-30 | Sanei Gen Ffi Inc | 微細化固形物分散製剤およびその製造方法 |
RU2380989C2 (ru) * | 2003-08-25 | 2010-02-10 | Карджилл, Инкорпорейтед | Питьевая композиция, содержащая монатин, и способы ее получения |
JP2005075881A (ja) * | 2003-08-29 | 2005-03-24 | T Hasegawa Co Ltd | 香料組成物 |
JP2004043035A (ja) * | 2003-11-20 | 2004-02-12 | Akio Mori | 飲料缶などに装着付帯する、果汁、酒類、液体嗜好品など添付品の少量封入容器 |
DE102004010845B3 (de) * | 2004-03-05 | 2005-05-25 | Seaquist-Löffler Kunststoffwerk Gmbh | Verschluß für einen fließfähiges Gut enthaltenden Behälter |
JP2006000031A (ja) * | 2004-06-16 | 2006-01-05 | Oji Paper Co Ltd | pH調整剤 |
US7152763B2 (en) * | 2004-07-08 | 2006-12-26 | Stull Technologies, Inc. | Container closure and method of assembly |
MX2007004234A (es) * | 2004-10-11 | 2007-06-12 | Procter & Gamble | Conjunto de recipiente vertical que comprende una tapa despachadora y un producto para lavar vajilla contenido en el conjunto de recipiente. |
EP1676784A1 (de) * | 2004-12-29 | 2006-07-05 | The Procter & Gamble Company | Flexibler Flüssigkeitsbehälter, Verfahren zur Herstellung eines flüssigkeitsgefüllten Behälters |
US6951295B1 (en) * | 2005-01-18 | 2005-10-04 | Seaquist Closures Foreign, Inc. | Flow control element and dispensing structure incorporating same |
US7398900B2 (en) * | 2005-01-28 | 2008-07-15 | Owens-Illinois Closure Inc. | Dispensing closure, package and method of manufacture |
US7503469B2 (en) * | 2005-03-09 | 2009-03-17 | Rexam Closure Systems Inc. | Integrally molded dispensing valve and method of manufacture |
DE102005020956A1 (de) * | 2005-05-06 | 2006-11-09 | Wella Ag | Behälter mit einer Einrichtung zum Abgeben von Produkt |
US7731066B2 (en) * | 2005-08-04 | 2010-06-08 | Colgate-Palmolive Company | Closure |
US7195138B2 (en) * | 2005-08-25 | 2007-03-27 | Continental Afa Dispensing Company | Container closure with biased closed valve |
US20070114250A1 (en) * | 2005-11-23 | 2007-05-24 | Langseder Neal E | Molded container head with orifice valve |
USD544351S1 (en) * | 2005-12-28 | 2007-06-12 | Access Business Group International Llc | Container |
US20070262092A1 (en) * | 2006-05-12 | 2007-11-15 | Tyski Wlodzimierz M | Fluid dispensing container |
US20090181148A1 (en) * | 2006-06-12 | 2009-07-16 | Nestec S.A. | Shelf-stable milk concentrates for preparing acidified milk based beverages |
US7543724B2 (en) * | 2006-06-21 | 2009-06-09 | Seaquist Closures Foreign, Inc. | Dispensing system with a dispensing valve having a projecting, reduced size discharge end |
US8016162B2 (en) * | 2006-06-30 | 2011-09-13 | H.J. Heinz Company | Condiment bottle |
EP2121467B1 (de) * | 2006-12-20 | 2011-05-25 | Plasticum Group B.V. | Verschlussanordnung mit ventil und herstellungsverfahren dafür |
KR101463639B1 (ko) * | 2007-05-08 | 2014-12-04 | 카오카부시키가이샤 | 환원 음료용 농축 조성물 |
US20090074927A1 (en) * | 2007-09-18 | 2009-03-19 | Pepsico, Inc. | Cinnamic Acid To Inhibit Heat- And Light-Induced Benzene Formation In Benzoate-Preserved Carbonated And Non-Carbonated Beverages And Foods While Maintaining Or Improving Product Microbial Stability |
USD592957S1 (en) * | 2008-01-08 | 2009-05-26 | The Procter & Gamble Company | Bottle |
USD601899S1 (en) * | 2008-01-08 | 2009-10-13 | The Procter & Gamble Company | Bottle |
US7967172B2 (en) * | 2008-02-11 | 2011-06-28 | Kraft Foods Global Brands Llc | Metered dosage dispenser closure for powders |
AU323031S (en) * | 2008-04-18 | 2008-12-11 | Unilever Plc | Container |
USD587117S1 (en) * | 2008-05-06 | 2009-02-24 | Colgate-Palmolive Company | Container and closure |
GB0902297D0 (en) * | 2009-02-12 | 2009-04-01 | Gordon Michael J | Dispensing container with support member |
JP4951016B2 (ja) * | 2009-03-23 | 2012-06-13 | 三笠産業株式会社 | 合成樹脂製ヒンジキャップ |
US20100303971A1 (en) * | 2009-06-02 | 2010-12-02 | Whitewave Services, Inc. | Producing foam and dispersing creamer and flavor through packaging |
EP2281755B1 (de) * | 2009-08-05 | 2012-06-27 | The Procter & Gamble Company | Flüssigkeitsmischkammer |
WO2011025550A1 (en) * | 2009-08-31 | 2011-03-03 | Relaj, Inc. | Fluid container & support bracket therefor |
EP2475584A2 (de) * | 2009-09-11 | 2012-07-18 | Kraft Foods Global Brands LLC | Behälter und verfahren zur ausgabe von mehrfachdosierungen eines flüssigkeitskonzentrats und haltbare flüssigkeitskonzentrate |
US8293299B2 (en) * | 2009-09-11 | 2012-10-23 | Kraft Foods Global Brands Llc | Containers and methods for dispensing multiple doses of a concentrated liquid, and shelf stable Concentrated liquids |
DE102010009102B4 (de) * | 2010-02-24 | 2014-08-28 | Gaplast Gmbh | Doppelwandige Quetschflasche mit Ventil im Airless-System |
USD638715S1 (en) * | 2010-04-01 | 2011-05-31 | Kraft Foods Global Brands Llc | Container |
CA2807777C (en) * | 2010-08-16 | 2018-04-03 | Kraft Foods Group Brands Llc | Perforated shrink wrap sleeves and containers |
US20120080450A1 (en) * | 2010-10-01 | 2012-04-05 | Conopco, Inc., D/B/A Unilever | Food dispenser |
US20120114800A1 (en) * | 2010-11-10 | 2012-05-10 | Ecosentials, Llc | Drink Enhancer System |
KR20120114701A (ko) * | 2011-04-07 | 2012-10-17 | 이정민 | 가압기준면을 갖는 액체용기 |
US8960502B2 (en) * | 2011-06-08 | 2015-02-24 | Charles J Stehli, Jr. | Fluid dispenser, system and filling process |
GB201113097D0 (en) * | 2011-07-28 | 2011-09-14 | Carbonite Corp | Injection moulding plastic components with a slit |
US8646659B2 (en) * | 2011-08-24 | 2014-02-11 | Calibre Closures Llc | Dispensing container for dispensing predetermined amounts of product |
IN2014DN05761A (de) * | 2012-01-06 | 2015-04-10 | Nestec Sa | |
US8757442B2 (en) * | 2012-01-10 | 2014-06-24 | Holdenart, Inc. | Reversible spout for bottles |
RU2014141620A (ru) * | 2012-03-16 | 2016-05-10 | Аптаргруп, Инк. | Выдачный клапан |
EP2653842B1 (de) * | 2012-04-17 | 2020-10-28 | The Procter & Gamble Company | Flüssigkeitsdosiervorrichtung |
US9788993B2 (en) * | 2012-05-09 | 2017-10-17 | Taisei Kako Co., Ltd. | Mouth cap for liquid container |
TWM464056U (zh) * | 2013-06-20 | 2013-11-01 | jun-feng Chen | 兼具噴霧及飲水之水壺結構 |
US9789988B2 (en) * | 2013-12-16 | 2017-10-17 | Kiley Steven Wilson | Squeezable leak proof feeding bottle |
-
2010
- 2010-09-10 EP EP10757668A patent/EP2475584A2/de not_active Withdrawn
- 2010-09-10 SG SG2012016846A patent/SG179076A1/en unknown
- 2010-09-10 CN CN2010800509204A patent/CN102712396A/zh active Pending
- 2010-09-10 RU RU2012114192A patent/RU2606327C2/ru active
- 2010-09-10 BR BR112012005422-8A patent/BR112012005422B1/pt active IP Right Grant
- 2010-09-10 RU RU2016147566A patent/RU2717588C2/ru active
- 2010-09-10 AU AU2010292122A patent/AU2010292122B2/en active Active
- 2010-09-10 MX MX2012002935A patent/MX2012002935A/es unknown
- 2010-09-10 CA CA2773701A patent/CA2773701C/en active Active
- 2010-09-10 WO PCT/US2010/048449 patent/WO2011031985A2/en active Application Filing
- 2010-09-10 CN CN201610565763.XA patent/CN106185009B/zh active Active
- 2010-09-10 SG SG10201405639YA patent/SG10201405639YA/en unknown
- 2010-09-10 KR KR1020127009228A patent/KR101809284B1/ko active IP Right Grant
- 2010-09-10 EP EP19156252.9A patent/EP3508436B1/de active Active
- 2010-09-10 US US13/395,652 patent/US20130075430A1/en not_active Abandoned
- 2010-09-10 NZ NZ598818A patent/NZ598818A/en unknown
- 2010-09-10 JP JP2012528931A patent/JP2013504498A/ja active Pending
- 2010-09-13 AR ARP100103341A patent/AR078421A1/es active IP Right Grant
-
2016
- 2016-08-09 JP JP2016156664A patent/JP6727982B2/ja active Active
- 2016-11-21 AU AU2016262647A patent/AU2016262647A1/en not_active Abandoned
-
2018
- 2018-09-10 JP JP2018169122A patent/JP6746649B2/ja active Active
-
2019
- 2019-10-30 AU AU2019257444A patent/AU2019257444B2/en active Active
-
2020
- 2020-08-05 JP JP2020133352A patent/JP2020200114A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2977231A (en) * | 1959-05-15 | 1961-03-28 | Cecil Wolfson | Packaging and dispensing beverage concentrates |
WO2006102435A2 (en) * | 2005-03-22 | 2006-09-28 | Water Sensations, Inc. | Flavoring composition concentrates |
Non-Patent Citations (1)
Title |
---|
See also references of WO2011031985A2 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2019257444B2 (en) | Containers and methods for dispensing multiple doses of a concentrated liquid, and shelf stable concentrated liquids | |
US20210261318A1 (en) | Container for Dispensing Multiple Doses of a Concentrated Liquid | |
US20210219578A1 (en) | Shelf Stable, Concentrated, Liquid Flavorings And Methods of Preparing Beverages With The Concentrated Liquid Flavorings | |
RU2723062C2 (ru) | Устройства и емкости для приготовления напитка в прозрачной камере | |
US9187222B2 (en) | Soft drink container supporting additive containment and selective release | |
CA2748983C (en) | Containers and methods for dispensing multiple doses of a concentrated liquid, and shelf stable concentrated liquids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120405 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KRAFT FOODS GROUP BRANDS LLC |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180403 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20190223 |