EP2462060A2 - Famille uzm-29 de compositions zéolithiques cristallines et procédé de préparation des compositions - Google Patents
Famille uzm-29 de compositions zéolithiques cristallines et procédé de préparation des compositionsInfo
- Publication number
- EP2462060A2 EP2462060A2 EP10806940A EP10806940A EP2462060A2 EP 2462060 A2 EP2462060 A2 EP 2462060A2 EP 10806940 A EP10806940 A EP 10806940A EP 10806940 A EP10806940 A EP 10806940A EP 2462060 A2 EP2462060 A2 EP 2462060A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- value
- group
- ammonium
- mole ratio
- mixtures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000000203 mixture Substances 0.000 title claims description 56
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000010457 zeolite Substances 0.000 claims abstract description 32
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 23
- 238000006243 chemical reaction Methods 0.000 claims abstract description 15
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 10
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 10
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 10
- 238000006317 isomerization reaction Methods 0.000 claims abstract description 3
- 239000001273 butane Substances 0.000 claims abstract 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims abstract 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims abstract 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 31
- 150000001768 cations Chemical class 0.000 claims description 21
- 238000002441 X-ray diffraction Methods 0.000 claims description 18
- 239000011541 reaction mixture Substances 0.000 claims description 16
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- 239000000377 silicon dioxide Substances 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- -1 rare earth metal ions Chemical class 0.000 claims description 11
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052681 coesite Inorganic materials 0.000 claims description 10
- 229910052906 cristobalite Inorganic materials 0.000 claims description 10
- 229910052682 stishovite Inorganic materials 0.000 claims description 10
- 229910052905 tridymite Inorganic materials 0.000 claims description 10
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 9
- 229910052733 gallium Inorganic materials 0.000 claims description 9
- 239000011734 sodium Substances 0.000 claims description 9
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 7
- 239000003513 alkali Substances 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 239000003054 catalyst Substances 0.000 claims description 7
- YOMFVLRTMZWACQ-UHFFFAOYSA-N ethyltrimethylammonium Chemical compound CC[N+](C)(C)C YOMFVLRTMZWACQ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 7
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 6
- 150000001412 amines Chemical class 0.000 claims description 6
- FIVJMCNNMIGYRO-UHFFFAOYSA-N bis(2-hydroxyethyl)-dimethylazanium Chemical compound OCC[N+](C)(C)CCO FIVJMCNNMIGYRO-UHFFFAOYSA-N 0.000 claims description 6
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 claims description 6
- ZJHQDSMOYNLVLX-UHFFFAOYSA-N diethyl(dimethyl)azanium Chemical compound CC[N+](C)(C)CC ZJHQDSMOYNLVLX-UHFFFAOYSA-N 0.000 claims description 6
- 229950002932 hexamethonium Drugs 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- PYIHTIJNCRKDBV-UHFFFAOYSA-L trimethyl-[6-(trimethylazaniumyl)hexyl]azanium;dichloride Chemical compound [Cl-].[Cl-].C[N+](C)(C)CCCCCC[N+](C)(C)C PYIHTIJNCRKDBV-UHFFFAOYSA-L 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- GSBKRFGXEJLVMI-UHFFFAOYSA-N Nervonyl carnitine Chemical compound CCC[N+](C)(C)C GSBKRFGXEJLVMI-UHFFFAOYSA-N 0.000 claims description 5
- 230000029936 alkylation Effects 0.000 claims description 5
- 238000005804 alkylation reaction Methods 0.000 claims description 5
- 229960001231 choline Drugs 0.000 claims description 5
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 claims description 5
- OSBSFAARYOCBHB-UHFFFAOYSA-N tetrapropylammonium Chemical compound CCC[N+](CCC)(CCC)CCC OSBSFAARYOCBHB-UHFFFAOYSA-N 0.000 claims description 5
- ACZOGADOAZWANS-UHFFFAOYSA-N trimethyl(pentyl)azanium Chemical compound CCCCC[N+](C)(C)C ACZOGADOAZWANS-UHFFFAOYSA-N 0.000 claims description 5
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 4
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- WOZZOSDBXABUFO-UHFFFAOYSA-N tri(butan-2-yloxy)alumane Chemical compound [Al+3].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-] WOZZOSDBXABUFO-UHFFFAOYSA-N 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 150000001336 alkenes Chemical class 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052792 caesium Inorganic materials 0.000 claims description 3
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- 150000002910 rare earth metals Chemical class 0.000 claims description 3
- 229910052701 rubidium Inorganic materials 0.000 claims description 3
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 2
- 239000004327 boric acid Substances 0.000 claims description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 claims description 2
- 239000008119 colloidal silica Substances 0.000 claims description 2
- 229910000373 gallium sulfate Inorganic materials 0.000 claims description 2
- SBDRYJMIQMDXRH-UHFFFAOYSA-N gallium;sulfuric acid Chemical compound [Ga].OS(O)(=O)=O SBDRYJMIQMDXRH-UHFFFAOYSA-N 0.000 claims description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 claims description 2
- 229910000360 iron(III) sulfate Inorganic materials 0.000 claims description 2
- QMHNQZGXPNCMCO-UHFFFAOYSA-N n,n-dimethylhexan-1-amine Chemical compound CCCCCCN(C)C QMHNQZGXPNCMCO-UHFFFAOYSA-N 0.000 claims 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 claims 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 claims 1
- 229910021485 fumed silica Inorganic materials 0.000 claims 1
- 229910001679 gibbsite Inorganic materials 0.000 claims 1
- 239000000047 product Substances 0.000 description 15
- 229910000323 aluminium silicate Inorganic materials 0.000 description 13
- 239000008367 deionised water Substances 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- JEWHCPOELGJVCB-UHFFFAOYSA-N aluminum;calcium;oxido-[oxido(oxo)silyl]oxy-oxosilane;potassium;sodium;tridecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.O.[Na].[Al].[K].[Ca].[O-][Si](=O)O[Si]([O-])=O JEWHCPOELGJVCB-UHFFFAOYSA-N 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910001743 phillipsite Inorganic materials 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000000908 ammonium hydroxide Substances 0.000 description 4
- 238000004517 catalytic hydrocracking Methods 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000012265 solid product Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 3
- WUPZNKGVDMHMBS-UHFFFAOYSA-N azane;dihydrate Chemical compound [NH4+].[NH4+].[OH-].[OH-] WUPZNKGVDMHMBS-UHFFFAOYSA-N 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- DJEQZVQFEPKLOY-UHFFFAOYSA-N N,N-dimethylbutylamine Chemical compound CCCCN(C)C DJEQZVQFEPKLOY-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 159000000021 acetate salts Chemical class 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- WRMFBHHNOHZECA-UHFFFAOYSA-N butan-2-olate Chemical compound CCC(C)[O-] WRMFBHHNOHZECA-UHFFFAOYSA-N 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000020335 dealkylation Effects 0.000 description 1
- 238000006900 dealkylation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- KVFVBPYVNUCWJX-UHFFFAOYSA-M ethyl(trimethyl)azanium;hydroxide Chemical compound [OH-].CC[N+](C)(C)C KVFVBPYVNUCWJX-UHFFFAOYSA-M 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005216 hydrothermal crystallization Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- LXPCOISGJFXEJE-UHFFFAOYSA-N oxifentorex Chemical compound C=1C=CC=CC=1C[N+](C)([O-])C(C)CC1=CC=CC=C1 LXPCOISGJFXEJE-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- OGHBATFHNDZKSO-UHFFFAOYSA-N propan-2-olate Chemical compound CC(C)[O-] OGHBATFHNDZKSO-UHFFFAOYSA-N 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000011031 topaz Substances 0.000 description 1
- 229910052853 topaz Inorganic materials 0.000 description 1
- 238000010555 transalkylation reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QENJZWZWAWWESF-UHFFFAOYSA-N tri-methylbenzoic acid Natural products CC1=CC(C)=C(C(O)=O)C=C1C QENJZWZWAWWESF-UHFFFAOYSA-N 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/06—Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
- C01B39/48—Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/22—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
- C07C5/27—Rearrangement of carbon atoms in the hydrocarbon skeleton
- C07C5/2767—Changing the number of side-chains
- C07C5/277—Catalytic processes
- C07C5/2775—Catalytic processes with crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G29/00—Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
- C10G29/20—Organic compounds not containing metal atoms
- C10G29/205—Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
- C10G3/44—Catalytic treatment characterised by the catalyst used
- C10G3/48—Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
- C10G3/49—Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
- C10G45/60—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
- C10G45/64—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/37—Acid treatment
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
Definitions
- This invention relates to a new family of crystalline zeolitic compositions designated UZM-29. They are represented by the empirical formula of:
- UZM-29 has a similar topology to phillipsite (PHI structure type) but has characteristics which differentiate it from phillipsite and phillipsite analogs.
- Another member of the family is UZM-29HS which is a high silica version of UZM-29.
- Zeolites are crystalline aluminosilicate compositions which are microporous and which are formed from corner sharing AlO 2 and SiO 2 tetrahedra. Numerous zeolites, both naturally occurring and synthetically prepared are used in various industrial processes.
- Synthetic zeolites are prepared via hydrothermal synthesis employing suitable sources of Si, Al and structure directing agents such as alkali metals, alkaline earth metals, amines, or organoammonium cations.
- the structure directing agents reside in the pores of the zeolite and are largely responsible for the particular structure that is ultimately formed. These species balance the framework charge associated with aluminum and can also serve as space fillers.
- Zeolites are characterized by having pore openings of uniform dimensions, having a significant ion exchange capacity, and being capable of reversibly desorbing an adsorbed phase which is dispersed throughout the internal voids of the crystal without significantly displacing any atoms which make up the permanent zeolite crystal structure.
- Zeolites can be used as catalysts for hydrocarbon conversion reactions, which can take place on outside surfaces as well as on internal surfaces within the pore.
- UZM-29 has a three dimensional framework structure with the topology of phillipsite zeolite or the PHI structure type.
- UZM-29 is prepared using a combination of two organic structure directing agents such as pentaethonium ammonium dihydroxide, [HEPDA(OH) 2 ] and ethyltrimethyammonioum hydroxide (ETMAOH) plus an alkali metal such as sodium using the Charge Density Mismatch Process for synthesizing zeolites as described in US Patent Application Publication No. 2005/0095195.
- one embodiment of the invention is a microporous crystalline zeolite having a three-dimensional framework of at least SiO 2 tetrahedral units having an empirical composition in the as synthesized form and on an anhydrous basis expressed by an empirical formula of: M n TR r P+ Al 1 -x E,Si y 0 z
- M is at least one exchangeable cation selected from the group consisting of alkali metal ions, alkaline earth metal ions, and rare earth metal ions
- M is at least one exchangeable cation selected from the group consisting of alkali metal ions, alkaline earth metal ions, and rare earth metal ions
- "m" is the mole ratio of M to (Al + E) and varies from greater than zero to 2
- R is an organoammonium cation or an amine selected from the group consisting of pentaethonium ammonium dihydroxide, [HEPDA(OH) 2 ], ethyltrimethylammonio
- DEDMA + diethyldimethylammonium
- r is the mole ratio of R to (Al +E) and has a value of 0.05 to 5
- n is the weighted average valence of M and has a value of 1 to 3
- p is the weighted average valence of R and has a value of 1 to 2
- E is an element selected from the group consisting of gallium, iron, boron and mixtures thereof
- x is the mole fraction of E and has a value from 0 to 1.0
- y is the mole ratio of Si to (Al + E) and varies from greater than 2 to 20
- Another embodiment of the invention is a process for preparing the UZM-29 composition described above.
- the process comprises forming a reaction mixture containing reactive sources of M, R, Al, Si and optionally E and heating the reaction mixture at a temperature of 100 0 C to 200 0 C for a time sufficient to form the zeolite, the reaction mixture having a composition expressed in terms of mole ratios of the oxides of: aM 2/n O : bR 2/p 0 : 1-CAl 2 O 3 : CE 2 O 3 : dSiO 2 : eH 2 O where "a” has a value from greater than zero to 5.0, "b” has a value of 1.5 to 120, “c” has a value of 0 to 1.0, “d” has a value of 2 to 10, and “e” has a value of 25 to 4000.
- Applicants have prepared a new family of microporous crystalline zeolites having a three dimensional structure of at least SiO 2 tetrahedral units designated the UZM-29 family of zeolites which has the topological structure related to PHI as described in Atlas of Zeolites Framework Types, which is maintained by the International Zeolite Association Structure Commission at http://topaz.ethz.ch/IZA-SC/StdAtlas.htm.
- the UZM-29 has an empirical composition in the as-synthesized form and on an anhydrous basis expressed by the empirical formula:
- M is at least one exchangeable cation and is selected from the group consisting of alkali metal ions, alkaline earth metal ions, and rare earth metal ions.
- M cations include but are not limited to lithium, sodium, potassium, rubidium, cesium, calcium, strontium, barium, lanthanum, ytterbium and mixtures thereof, with Na being preferred.
- R is an organoammonium cation or an amine, examples of which include but are not limited to the pentaethonium ammonium (HEPDA) "2 , ethyltrimethylammonium, diquat-4, choline cation [(CHs) 3 NCH 2 CH 2 OH] + , diethyldimethylammonium, hexamethonium ammonium,
- HEPDA pentaethonium ammonium
- trimethylpiOpylammonium trimethylpentylammonium, dimethyldiethanolammonium, tetraethylammonium (TEA + ), tetrapropylammonium TPA + , dimethylbutylamine,
- diethanolamine and mixtures there of and "r” is the mole ratio of R to (Al + E) and varies from 0.25 to 2.0.
- Pentaethonium ammonium (HEPDA) +2 is a preferred organoammonium cation.
- the value of "p” which is the weighted average valence of R varies from 1 to 2.
- the value of "n” which is the weighted average valence of M varies from 1 to 3 while “m” is the mole ratio of M to (Al + E) and varies from greater than zero to 2.
- the ratio of silicon to (Al + E) is represented by "y" which varies from greater than 2 to 10.
- E is an element which is tetrahedrally coordinated, is present in the framework and is selected from the group consisting of gallium, iron and boron.
- M is only one metal, then the weighted average valence is the valence of that one metal, i.e. +1 or +2.
- UZM-29 is prepared by a hydrothermal crystallization of a reaction mixture prepared by combining reactive sources of M, R, aluminum, silicon and optionally E.
- the sources of aluminum include but are not limited to aluminum alkoxides, precipitated aluminas, aluminum metal, aluminum salts and alumina sols.
- Specific examples of aluminum alkoxides include, but are not limited to aluminum ortho sec-butoxide and aluminum ortho isopropoxide.
- Sources of silica include but are not limited to tetraethylorthosilicate, colloidal silica, precipitated silica and alkali silicates.
- Sources of the E elements include but are not limited to alkali borates, boric acid, precipitated gallium oxyhydroxide, gallium sulfate, ferric sulfate, and ferric chloride.
- Sources of the M metals include the halide salts, nitrate salts, acetate salts, and hydroxides of the respective alkali, alkaline earth, or rare earth metals.
- R is an organoammonium cation or an amine selected from the group consisting of pentaethonium ammonium (HEPDA) +2 , ethyltrimethylammonium, hexamethonium ammonium, diquat-4, trimethylpentylammonium, choline, diethyldimethylammonium, TEA, TPA, trimethylpropylammonium,
- HEPDA pentaethonium ammonium
- ethyltrimethylammonium ethyltrimethylammonium
- hexamethonium ammonium hexamethonium ammonium
- diquat-4 trimethylpentylammonium
- choline diethyldimethylammonium
- TEA diethyldimethylammonium
- TPA trimethylpropylammonium
- dimethyldiethanolammonium, dimethylbutylamine, diethanolamine and mixtures thereof and the sources include the hydroxide, chloride, bromide, iodide and fluoride compounds.
- specific examples include without limitation pentaethonium ammonium dihydroxide and, ethyltrimethylammonium hydroxide.
- the reaction mixture containing reactive sources of the desired components can be described in terms of molar ratios of the oxides by the formula: aM 2/n O : bR 2/ p0 : 1 -CAl 2 O 3 : cE 2 O 3 : dSiO 2 : eH 2 O where "a” varies from greater than O to 5.0, "b” varies from 1.5 to 120, “c” varies from 0 to 1.0, “d” varies from 2 to 10, and “e” varies from 25 to 4000. If alkoxides are used, it is preferred to include a distillation or evaporative step to remove the alcohol hydrolysis products.
- the reaction mixture is now reacted at a temperature of 100°C to 200 0 C and preferably from 125°C to 175°C for a period of 1 day to 3 weeks and preferably for a time of 3 days to 10 days in a sealed reaction vessel under autogenous pressure.
- the solid product is isolated from the reaction mixture by means such as filtration or centrifugation, and then washed with deionized water and dried in air at ambient temperature up to 100 0 C.
- a preferred synthetic approach to make UZM-29 utilizes the Charge Density Mismatch process disclosed in US Patent Application Publication No. US 2005/0095195 which is incorporated by reference in its entirety.
- the charge density mismatch process allows multiple structure directing agents to cooperate to crystallize a single structure.
- the method employs appropriate quaternary ammonium hydroxides to solubilize aluminosilicate species, creating a reaction mixture which has difficulty crystallizing and condensing to form a solid under synthesis conditions.
- UZM-29 pentaethonium ammonium (HEPDA) "2 dihydroxide as the charge density mismatch template and sodium as the crystallization inducing agent.
- HEPDA pentaethonium ammonium
- the UZM-29 crystalline microporous zeolite having at least SiO 2 tetrahedral units which is obtained from the above-described process, is characterized by an x-ray diffraction pattern having at least the d-spacings and relative intensities set forth in Table A below.
- the microporous UZM-29 composition will contain some of the exchangeable or charge balancing cations in its pores. These exchangeable cations can be exchanged for other cations.
- the UZM-29 zeolite may be modified in many ways to tailor it for use in a particular application. Modifications include calcination, ion-exchange, steaming, various acid extractions, ammonium hexafluorosilicate treatment, or any combination thereof, as outlined for the case of UZM-4 in US 6,776,975 Bl which is incorporated by reference in its entirety.
- Properties that can be modified include porosity, adsorption, Si/ Al ratio, acidity, thermal stability, etc.
- UZM-29HS The UZM-29 composition which is modified by one or more techniques described in the '975 patent (herein UZM-29HS) is described by the empirical formula on an anhydrous basis of:
- a zeolite is virtually pure silica when y' has a value of at least 3,000, preferably 10,000 and most preferably 20,000.
- ranges for y' are from 15 to 3,000 preferably greater than 30 to 3,000; 15 to 10,000 preferably greater than 30 to 10,000 and 15 to 20,000 preferably greater than 30 to 20,000.
- anhydrous state of the zeolite will be intended unless otherwise stated.
- the term “anhydrous state” is employed herein to refer to a zeolite substantially devoid of both physically adsorbed and chemically adsorbed water.
- the crystalline UZM-29 zeolite of this invention can be used for separating mixtures of molecular species, removing contaminants through ion exchange and catalyzing various hydrocarbon conversion processes. Separation of molecular species can be based either on the molecular size (kinetic diameter) or on the degree of polarity of the molecular species.
- the UZM-29 zeolite of this invention can also be used as a catalyst or catalyst support in various hydrocarbon conversion processes.
- Hydrocarbon conversion processes are well known in the art and include cracking, hydrocracking, alkylation of both aromatics and isoparaffin, isomerization, polymerization, reforming, hydrogenation, dehydrogenation, transalkylation, dealkylation, hydration, dehydration, hydrotreating, hydrodenitrogenation, hydrodesulfurization, methanation and syngas shift process.
- Specific reaction conditions and the types of feeds which can be used in these processes are set forth in US 4,310,440 and US
- hydrocarbon conversion processes are those in which hydrogen is a component such as hydrotreating or hydrof ⁇ ning,
- Hydrocracking conditions typically include a temperature in the range of 400° to 1200°F (204-649 0 C), preferably between 600° and 950 0 F (316-51O 0 C).
- Reaction pressures are in the range of atmospheric to 3,500 psig (24,132 kPa g), preferably between 200 and 3000 psig (1379 - 20,685 kPa g).
- Contact times usually correspond to liquid hourly space velocities (LHSV) in the range of 0.1 hr "1 to 15 hr "1 , preferably between 0.2 and 3 hr '1 .
- Hydrogen circulation rates are in the range of 1,000 to 50,000 standard cubic feet (scf) per barrel of charge (178-8,888 std.
- Suitable hydrotreating conditions are generally within the broad ranges of hydrocracking conditions set out above.
- reaction zone effluent is normally removed from the catalyst bed, subjected to partial condensation and vapor-liquid separation and then fractionated to recover the various components thereof.
- the hydrogen, and if desired some or all of the unconverted heavier materials, are recycled to the reactor.
- a two-stage flow may be employed with the unconverted material being passed into a second reactor.
- Catalysts of the subject invention may be used in just one stage of such a process or may be used in both reactor stages.
- Catalytic cracking processes are preferably carried out with the UZM-29 composition using feedstocks such as gas oils, heavy naphthas, deasphalted crude oil residua, etc. with gasoline being the principal desired product.
- feedstocks such as gas oils, heavy naphthas, deasphalted crude oil residua, etc.
- gasoline being the principal desired product.
- Temperature conditions of 850° to 1100 0 F, LHSV values of 0.5 to 10 and pressure conditions of from 0 to 50 psig are suitable.
- Alkylation of aromatics usually involves reacting an aromatic (C 2 to Ci 2 ), especially benzene, with a monoolefin to produce a linear alkyl substituted aromatic.
- the process is carried out at an aromatic: olefin (e.g., benzene :olefm) ratio of between 5:1 and 30:1, a LHSV of 0.3 to 6 hr "1 , a temperature of 100° to 250 0 C and pressures of 200 to 1000 psig.
- an aromatic: olefin e.g., benzene :olefm
- Alkylation of isoparaffins with olefins to produce alkylates suitable as motor fuel components is carried out at temperatures of -30° to 4O 0 C, pressures from atmospheric to 6,894 kPa (1,000 psig) and a weight hourly space velocity (WHSV) of 0.1 to 120. Details on paraffin alkylation may be found in US 5,157,196 and US 5,157,197, which are incorporated by reference. [0023] The following examples are presented in illustration of this invention and are not intended as undue limitations on the generally broad scope of the invention as set out in the appended claims.
- the structures of the UZM-29 family of zeolite compositions of this invention were determined by x-ray analysis.
- the x-ray patterns presented in the following examples were obtained using standard x-ray powder diffraction techniques.
- the radiation source was a high- intensity, x-ray tube operated at 45 kV and 35 ma.
- the diffraction pattern from the copper K-alpha radiation was obtained by appropriate computer based techniques.
- Flat compressed powder samples were continuously scanned at 2° to 70° (2 ⁇ ).
- Interplanar spacings (d) in Angstrom units were obtained from the position of the diffraction peaks expressed as ⁇ where ⁇ is the Bragg angle as observed from digitized data.
- Intensities were determined from the integrated area of diffraction peaks after subtracting background, "I 0 " being the intensity of the strongest line or peak, and "I" being the intensity of each of the other peaks.
- the purity of a synthesized product may be assessed with reference to its x-ray powder diffraction pattern.
- a sample is stated to be pure, it is intended only that the x-ray pattern of the sample is free of lines attributable to crystalline impurities, not that there are no amorphous materials present.
- peaks are identified with special identifiers as follows: very broad (vbr); broad (br); and shoulder (sh).
- EXAMPLE IA [0029] In one container 4.02g of NaCl were dissolved in 15g of deionized water. The
- An aluminosilicate reaction solution was prepared by mixing in a container 72.77g of aluminum sec-butoxide and 761.18g of pentaethonium ammonium hydroxide, and 150.7Og of ethyltrimethyarnmonioum hydroxide (20% solution), while stirring vigorously. After thorough mixing, 215.31g of LudoxTM AS-40 (SiO 2 , 40%) was added. The reaction mixture was homogenized for 30 minutes, sealed in a TeflonTM bottle and placed in an oven for 18 hours at 100 0 C to react the mixture and then cooled to provide an aluminosilicate solution.
- An aluminosilicate reaction solution was prepared by mixing in a container 12.11 g of aluminum sec-butoxide and 761.18g of pentaethonium ammonium hydroxide, and 150.7Og of ethyltrimethyammonioum hydroxide (20% solution), while stirring vigorously. After thorough mixing, 215.3 Ig of LudoxTM AS-40 (SiO 2 , 40%) was added. The reaction mixture was homogenized for 30 minutes, sealed in a TeflonTM bottle and placed in a oven for 18 hours at IOOC to react the mixture and then cooled to provide an aluminosilicate solution.
- Table B compares d-spacing for UZM-29 with examples from the literature as reported in: "A New Addition to the Phillipsite Family of Molecular Sieves: A Divalent Metal-Ion- Framework Substituted Microporous Aluminophosphate (DAF-8)", Solid State Science 2006 ,8, 337-341 Barrett, PA., Sankar, G., Catlow, C.R.A., Thomas, J.M., Jones, R.H., and Teat, SJ. Table B
- Table B shows that UZM-29 has a different x-ray diffraction pattern to that of phillipsite.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Cette invention concerne une nouvelle famille de zéolithes microporeuses cristallines désignée par famille UZM-29. Ces zéolithes sont représentées par la formule empirique : Mm
n+R+rAll-x ExSiyOz. UZM-29 a la topologie de type structure PHI, mais est thermiquement stable jusqu'à une température d'au moins 350 °C. La famille UMZ-29 de zéolithes peut être utilisée dans divers procédés de conversion d'hydrocarbures, comme l'isomérisation du butane.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/535,248 US8017824B2 (en) | 2009-08-04 | 2009-08-04 | Hydrocarbon conversion processes using UZM-29 and UZM-29HS crystalline zeolitic compositions |
US12/535,254 US8268290B2 (en) | 2009-08-04 | 2009-08-04 | UZM-29 family of crystalline zeolitic compositions and a method of preparing the compositions |
PCT/US2010/043630 WO2011017183A2 (fr) | 2009-08-04 | 2010-07-29 | Famille uzm-29 de compositions zéolithiques cristallines et procédé de préparation des compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2462060A2 true EP2462060A2 (fr) | 2012-06-13 |
Family
ID=43544882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10806940A Withdrawn EP2462060A2 (fr) | 2009-08-04 | 2010-07-29 | Famille uzm-29 de compositions zéolithiques cristallines et procédé de préparation des compositions |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2462060A2 (fr) |
WO (1) | WO2011017183A2 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8609920B1 (en) * | 2012-12-12 | 2013-12-17 | Uop Llc | UZM-44 aluminosilicate zeolite |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6049018A (en) * | 1999-01-21 | 2000-04-11 | Mobil Corporation | Synthetic porous crystalline MCM-68, its synthesis and use |
US6890511B2 (en) * | 2003-03-21 | 2005-05-10 | Uop Llc | Crystalline aluminosilicate zeolitic composition: UZM-15 |
CN100575458C (zh) * | 2003-09-23 | 2009-12-30 | 环球油品公司 | 结晶硅铝酸盐:uzm-13、uzm-17、uzm-19和uzm-25 |
FR2863913B1 (fr) * | 2003-12-23 | 2006-12-29 | Inst Francais Du Petrole | Catalyseur zeolithique,support a base de matrice silico-aluminique et de zeolithe, et procede d'hydrocraquage de charges hydrocarbonees |
US7744850B2 (en) * | 2006-08-03 | 2010-06-29 | Uop Llc | UZM-22 aluminosilicate zeolite, method of preparation and processes using UZM-22 |
-
2010
- 2010-07-29 WO PCT/US2010/043630 patent/WO2011017183A2/fr active Application Filing
- 2010-07-29 EP EP10806940A patent/EP2462060A2/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2011017183A3 * |
Also Published As
Publication number | Publication date |
---|---|
WO2011017183A3 (fr) | 2011-06-30 |
WO2011017183A2 (fr) | 2011-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7575737B1 (en) | UZM-27 family of crystalline aluminosilicate compositions and a method of preparing the compositions | |
JP5823295B2 (ja) | Uzm−35アルミノシリケートゼオライト、uzm−35の製造方法及びそれを用いる方法 | |
US7982084B1 (en) | Processes using UZM-37 aluminosilicate zeolite | |
JP5271266B2 (ja) | Uzm−22アルミノシリケートゼオライト、その調製方法およびuzm−22の使用方法 | |
EP1474362A1 (fr) | Composition cristalline zeolitique d'aluminosilicate: uzm-9 | |
EP1742875A1 (fr) | Composition zéolitique d'aluminosilicate cristallin: uzm-15 | |
US8158104B2 (en) | UZM-7 aluminosilicate zeolite, method of preparation and processes using UZM-7 | |
WO2010074889A2 (fr) | Famille de compositions d'aluminosilicates cristallins uzm-26, procédé de préparation et procédés d'utilisation de ces compositions | |
US8609920B1 (en) | UZM-44 aluminosilicate zeolite | |
EP2552834A2 (fr) | Zéolithe aluminosilicate uzm-37 | |
US8158105B2 (en) | UZM-37 aluminosilicate zeolite | |
EP2582626A1 (fr) | Composition zéolithique uzm-35, son procédé d'élaboration et procédés | |
US8158103B2 (en) | UZM-37 aluminosilicate zeolite method of preparation | |
US8268290B2 (en) | UZM-29 family of crystalline zeolitic compositions and a method of preparing the compositions | |
US8017824B2 (en) | Hydrocarbon conversion processes using UZM-29 and UZM-29HS crystalline zeolitic compositions | |
WO2011017183A2 (fr) | Famille uzm-29 de compositions zéolithiques cristallines et procédé de préparation des compositions | |
US7763764B2 (en) | Hydrocarbon conversion processes using the UZM-27 family of crystalline aluminosilicate compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120202 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160202 |