EP2440007B1 - Steuerverfahren bei Betrieb einer Reihe von Induktoren eines Induktionskochfeldes, und zugehöriges Induktionskochfeld - Google Patents
Steuerverfahren bei Betrieb einer Reihe von Induktoren eines Induktionskochfeldes, und zugehöriges Induktionskochfeld Download PDFInfo
- Publication number
- EP2440007B1 EP2440007B1 EP11184075.7A EP11184075A EP2440007B1 EP 2440007 B1 EP2440007 B1 EP 2440007B1 EP 11184075 A EP11184075 A EP 11184075A EP 2440007 B1 EP2440007 B1 EP 2440007B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- inductors
- heating zone
- display
- hob
- residual heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
- H05B6/062—Control, e.g. of temperature, of power for cooking plates or the like
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2213/00—Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
- H05B2213/03—Heating plates made out of a matrix of heating elements that can define heating areas adapted to cookware randomly placed on the heating plate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2213/00—Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
- H05B2213/05—Heating plates with pan detection means
Definitions
- the present invention relates to a control method in operation of a set of inductors of an induction hob.
- an induction hob comprising a set of inductors distributed in a two-dimensional grid in a hob of said induction hob, adapted to implement the control method according to the invention.
- the invention relates to the control in operation of the inductors in an induction hob having no predefined heating zones.
- Induction hobs with independent cooking hobs are already known, the number, position and size of hobs being defined by the induction hob manufacturer.
- the cooking hobs are symbolized on the hob of the induction hobs by a marking made by screen printing.
- Each cooking zone is respectively associated with one or more display elements of the control means.
- the data required to control one of the cooking stoves are displayed by means of this or these respective display elements.
- the safety data associated with each cooking stove such as the residual heat indicator, are displayed in the display element or elements associated with each cooking zone.
- each heating zone is constituted case by case depending on the position and the size of the container placed on the cooking surface. vis-à-vis a subset of inductors.
- each inductor is powered by an inverter supply device, including implementing a power switch of the bipolar transistor type such as an IGBT transistor (acronym for the term “Insulated Gate Bipolar Transistor”) or a transistor MOS (acronym for the term “Metal Oxide Semiconductor”).
- a power switch of the bipolar transistor type such as an IGBT transistor (acronym for the term “Insulated Gate Bipolar Transistor") or a transistor MOS (acronym for the term “Metal Oxide Semiconductor”).
- the position of at least one heating zone on the hob of a matrix-type induction hob may therefore be random. And therefore, the representation of said at least one heating zone on a display means, such as a graphical display, may also be random.
- a heating zone does not correspond to one or more respective display elements on the display means since each zone can take a multitude of positions on the hob.
- the documents are also known FR 2 863 039 A1 , WO 97/37515 A1 and WO 2009/053279 A1 which describe an induction hob where the inductors are distributed in a two-dimensional grid in a hob of the induction hob.
- the induction hob is adapted to detect at least one heating zone consisting of a subset of inductors at least partially covered by a container, to represent the at least one heating zone on at least one means of heating. display, to operate inductors of said at least one heating zone, and to stop inductors of said at least one heating zone.
- the document is also known DE 10 2007 057 332 A1 which describes a hob comprising independent cooking hobs whose number, position and size of the cooking hobs are predefined.
- the cooking hobs are symbolized on the hob of the hob.
- Each cooking zone is respectively associated with a display element of a display.
- the data required to control one of the cooking stoves is displayed through the display element associated with a cooking zone.
- the security data associated with each cooking zone such as the residual heat indicator, are displayed in the display element associated with a cooking zone.
- EP 1 978 784 A1 which describes a hob where the heating elements are distributed in a two-dimensional grid in a hob of the hob.
- a control unit makes it possible to determine an exceeding of a first threshold temperature value at at least one heating zone in the hob. Then, an indication can be displayed on a display to warn the user that an exceeding of a first threshold temperature value in at least one heating zone has been detected.
- Said at least one detected heating zone corresponds to at least one zone where the temperature estimated according to a mathematical model, taking into account in particular the heating power and the heating time of the heating elements, exceeds a threshold temperature value.
- the present invention aims to solve the aforementioned drawbacks and to provide a control method in operation of a set of inductors of an induction hob, and an associated induction hob, for managing in a manner secure with at least one display means the display and the extinction of at least one residual heat indicator generated by a heating of the hob at at least one heating zone of a container placed on the hob of the induction cooktop of the matrix type so as to warn and protect users.
- the present invention aims, in a first aspect, a control method in operation of a set of inductors of an induction hob, said inductors being distributed in a two-dimensional grid in a cooking hob of said induction hob, and each inductor being powered by an inverter supply device, said inductors forming means for heating a container and means for detecting the presence of a container
- the operating control method of a set of inductors of an induction hob makes it possible to clearly and significantly display the display position of at least one residual heat indicator on at least one means of display so as to guarantee the safety of users.
- This operating method of operating a set of inductors of an induction hob makes it possible to display as realistically as possible at least one heating zone of the hob on said at least one means of cooking. display.
- the step of detecting at least one heating zone consisting of a subset of inductors covered at least partially by a receptacle makes it possible to determine the presence or absence of one or more receptacles on the cooking surface of the cooking chamber.
- matrix-type induction hob The step of detecting at least one heating zone consisting of a subset of inductors covered at least partially by a receptacle makes it possible to determine the presence or absence of one or more receptacles on the cooking surface of the cooking chamber.
- the step of representing said at least one heating zone on at least one display means makes it possible to display on said at least one display means the positioning of the container or containers previously detected.
- the step of operating the inductors of said at least one heating zone is implemented for each container detected and controlled by at least one power setpoint.
- the operation of the inductors of the heating zone associated with each detected and controlled receptacle causes a heating zone to the location of the container (s) concerned on the hob of the matrix-type induction hob.
- the step of stopping the inductors of said at least one heating zone is implemented after a programmed elapsed time or by a stop command of said at least one heating zone.
- the presence of the heating zone (s) at the location of the container (s) concerned on the hob of the matrix-type induction hob must be signaled to the user so as to guarantee its safety.
- the method implements the step of determining an exceeding of a first threshold temperature value at at least one zone of heating in said hob belonging to said at least one heating zone.
- This step of determining an exceeding of a first threshold temperature value in the hob can determine the presence of the heating zone (s) at the location of the container (s) concerned on the cooking surface of the cooking zone. matrix-type induction hob.
- the method implements the step of displaying at least one residual heat indicator on said at least one display means, wherein the position of said at least one residual heat indicator on said at least one means for displaying display is dependent on the position of said at least one heating zone detected in the hob.
- This step of displaying at least one residual heat indicator on said at least one display means makes it possible to accurately display the actual position of at least one heating zone of the hob of the hob. matrix-type induction on said at least one display means by means of at least one residual heat indicator.
- said at least one residual heat indicator is displayed at the same location as the representation of said at least one heating zone on said at least one display means as soon as an exceeding of said first temperature threshold value is detected at said at least one heating zone.
- the displayed position of at least one residual heat indicator on said at least one display means corresponds to the actual position of at least one heating zone of the hob of the type induction hob. matrix since said displayed position corresponds to the position of at least one heating zone of a container placed on the hob, and not to the position of a temperature sensor located inside the hob.
- said method comprises a step of determining the coordinates representing said at least one heating zone on said at least one display means during the step of detecting said at least one heating zone on said hob, and a step of assigning said coordinates representing said at least one heating zone on said at least one display means to the positioning coordinates of said at least one residual heat indicator on said at least one display as soon as an exceeding of said first temperature threshold value is detected at said at least one heating zone.
- the present invention aims, in a second aspect, an induction hob, comprising a set of inductors distributed in a two-dimensional grid in a cooking plane of said induction hob, each inductor being powered by a device of inverter power supply.
- the induction hob includes control means adapted to implement the control method.
- This induction hob has characteristics and advantages similar to those described above in relation to the control method according to the invention.
- the hob 1 comprises heating means consisting of a set of inductors 2. These inductors 2 are distributed in a two-dimensional grid in a hob 3 of the induction hob 1.
- the induction hob 1 comprises a plurality of elementary inductors 2 arranged under the cooking plane 3 so as to cover the entire surface of the latter.
- the inductors 2 are here of circular shape and of equal diameter, which can be of the order of 80 millimeters.
- the inductors can be of different shape and size, such as for example triangular, rectangular, or octagonal.
- the inductors 2 are arranged in line in a direction, for example horizontal as illustrated in FIGS. Figures 1 and 2 , and the inductors 2 of each line are themselves arranged in staggered rows with the inductors 2 of the adjacent lines so as to best cover the hob 3.
- the arrangement of the inductors in the hob is not limiting and may be different.
- the hob 3 thus formed via the inductors 2 can be of any shape, for example rectangular as illustrated in FIGS. Figures 1 and 2 .
- the shape of the hob is not limiting and may be different, including square, circular or oval.
- Such an induction hob 1 does not have predefined delimited heating zones, each heating zone being determined case by case depending on the position and the size of a container placed on the hob 3 and covering a subset of inductors 2.
- Each inductor 2 can be fed in a conventional manner by an inverter supply device (not shown), composed of a half-bridge power electronic structure or a quasi-resonant circuit power electronics structure.
- the container presence detection can be implemented by measuring the effective current flowing in each inductor 2 since it is dependent on the surface covered by said inductor 2 by a container.
- the inductors 2 thus constitute both the heating means of a container and the means for detecting the presence of a container.
- the control means (not shown) of the induction hob 1, comprising at least one or more microcontrollers, are able to control one or more containers placed on the hob 3 and apply operating powers to each zone. of heating, different or identical that are depending on the user-requested setpoint power for each container.
- the induction hob 1 comprises a control keyboard 4 comprising at least selection means 5, such as for example touch keys or a touch screen, and display means 6, such as for example one or more lights made by means of light-emitting diodes and / or one or more displays that can be of the LCD type (acronym for the term Liquid Crystal Display).
- selection means 5 such as for example touch keys or a touch screen
- display means 6 such as for example one or more lights made by means of light-emitting diodes and / or one or more displays that can be of the LCD type (acronym for the term Liquid Crystal Display).
- the step of detecting at least one heating zone Z1 consisting of a subset of inductors 2 at least partially covered by a container makes it possible to determine the presence or absence of one or more containers on the cooking surface. 3 of the induction cooktop 1 of the matrix type.
- the step of representing said at least one heating zone Z1 on at least one display means 6 makes it possible to display on said at least one display means 7 the positioning of the container or containers previously detected.
- Said at least one display means 6 is preferably a graphical type of display, such as for example the LCD (acronym for the English term Liquid Crystal Display) which can be monochrome or color.
- LCD liquid crystal Display
- This graphic display device allows the representation of graphic objects, such as, for example, the heating zone (s) Z1 of the hob 3, from the information collected by a control unit of the induction hob 1 comprising at least one microcontroller, where the information collected may include the presence or absence of one or more containers on the cooking plane 3, the position and / or the size of the container or containers detected.
- the result of the step of detecting at least one heating zone Z1 makes it possible to determine the coordinates of the position of at least one container on the hob 3 of the induction hob 1. Then these coordinates of said at least one heating zone Z1 associated with said at least one container are transposed in the reference of said at least one display means 6 so as to represent at least one container on said at least one display means 6 by a graphic object .
- the step of operating the inductors 2 of said at least one heating zone Z1 is implemented for each container detected and controlled by at least one power setpoint.
- the operation of the inductors 2 of the heating zone Z1 associated with each detected and controlled receptacle causes a heating zone at the location of the receptacle (s) concerned on the hob 3 of the induction hob 1 of matrix type.
- the step of stopping the inductors 2 of said at least one heating zone Z1 is carried out after an elapsed programmed duration or by a stop command of said at least one heating zone Z1.
- the stop of the inductors 2 of said at least one heating zone Z1 can be manually controlled by the activation of one of the selection means 5 of the control keyboard 4 by activating a stop command of said at least one zone of Z1 heater.
- the shutdown of the inductors 2 of said at least one heating zone Z1 can also be automatically controlled by the countdown of a previously programmed timer, where the countdown of the timer is controlled by a control unit of the induction cooktop. 1 comprising at least one microcontroller.
- the programming of the timer can be performed through the selection means 5 of the control keyboard 4.
- the presence of the heating zone or zones at the location of the container or containers concerned on the hob 3 of the induction cooktop 1 of matrix type is to be reported to the user so as to ensure its safety.
- the method implements the step of determining an exceeding of a first threshold temperature value at at least one heating zone in said cooking plane 3 belonging to said at least one zone of heating. Z1 heater.
- This step of determining an overrun of a first temperature threshold value in the hob 3 makes it possible to determine the presence of the heating zone or zones at the location of the container (s) concerned on the hob 3 induction cooktop 1 of the matrix type.
- the operating control method of a set of inductors 2 of an induction cooktop 1 makes it possible to clearly and significantly display the display position of at least one residual heat indicator H on at least one display means 6 so as to guarantee the safety of the users.
- This control method in operation of a set of inductors 2 of an induction hob 1 makes it possible to display as realistically as possible at least one heating zone of the hob 3 on said at least one display medium 6.
- control method implements the step of displaying at least one residual heat indicator H on the hob 3 said at least one display means 6, wherein the position of said at least one residual heat indicator H on said at least one display means 6 is dependent on the position of said at least one heating zone detected in the plane cooking 3.
- This step of displaying at least one residual heat indicator H on said at least one display means 6 makes it possible to accurately display the actual position of at least one heating zone of the hob 3 of the induction cooktop 1 of the matrix type on said at least one display means 6 by means of at least one residual heat indicator H.
- Said at least one display means 6 makes it possible to display as many residual heat lamps H as detected heating zones of the hob 3.
- the method comprises a step of determining the coordinates representing said at least one heating zone Z1 on said at least one display means 6 during the step of detecting said at least one heating zone Z1 on the hob 3, and a step of assigning said coordinates representing said at least one heating zone Z1 to said at least one display means 6 at the positioning coordinates of said at least one residual heat indicator H on said at least one display 6 as soon as an exceeding of said first threshold temperature value is detected at said at least one heating zone Z1.
- the induction hob 1 comprises a plurality of temperature sensors 7 in the hob 3 detecting at least one heating zone of said hob 3.
- the step of determining an overshoot of a first threshold temperature value is implemented by means of at least one temperature sensor 7 in the hob 3, where the at least one temperature sensor 7 is at least partially covered by a heated container during the step of operating the inductors 2 of said at least one heating zone Z1.
- the step of displaying at least one residual heat indicator H on said at least one display means 6 displays the position of said at least one residual heat indicator H on said at least one display means 6 function of the position of said at least one temperature sensor 7 having detected the exceeding of the first temperature threshold value in the hob 3.
- the temperature data measured by the temperature sensors 7 are analyzed by the control unit of the induction hob 1 so as to determine it is necessary to display at least one residual heat indicator H on said at least one display means 6.
- the temperature data measured by the temperature sensors 7 can be in the form of digital data for their processing by at least one microcontroller of the control unit, where these temperature data are the image of the temperature present at the temperature level. at least one heating zone in the hob 3.
- At least one temperature sensor 7 exceeds at least a first threshold temperature value, then at least one residual heat indicator H must be symbolized on said at least one display means 6.
- said at least one residual heat indicator H is displayed on said at least one display means 6 at the corresponding position of at least one temperature sensor 7 in the hob 3 as soon as said at least one temperature sensor 7 belonging to said at least one heating zone Z1 detects the exceeding of said first temperature threshold value.
- the displayed position of at least one residual heat indicator H on said at at least one display means 6 corresponds to the position of at least one temperature sensor 7 belonging to said at least one heating zone Z1 while minimizing the loss of precision of the display position of said at least one residual heat indicator H on said at least one display means 6 with respect to said at least one actual heating zone of the hob 3 while ensuring the safety of the user and limiting the loss of information of the position of said at least one actual zone of heating by said at least one residual heat indicator.
- the residual heat indicator H is displayed on said at least one display means 6 at the position corresponding to the temperature sensor 7 measuring the highest temperature and detecting the exceeding of the first temperature threshold value following the shutdown of the inductors 2 of the heating zone Z1.
- This temperature measurement of said temperature sensor 7 is read by the control unit of the induction hob 1 and follows the evolution of the temperature measurement of said temperature sensor 7.
- the display of the residual heat indicator H is implemented on said at least one display means 6 as a function of the temperature sensor 7 having detected an exceeding of the first threshold temperature value. and where the measured temperature value is the highest, without taking into consideration the temperature measurement of the other temperature sensors 7 belonging to the heating zone Z1.
- said at least one residual heat indicator H is displayed at the same location as the representation of said at least one heating zone Z1 on said at least one display means 6 as soon as at least one temperature sensor 7 belonging to said at least one heating zone Z1 detects the exceeding of said first threshold temperature value.
- the displayed position of at least one residual heat indicator H on said at least one display means 6 corresponds to the actual position of at least one heating zone of the hob 3 of the cooking hob.
- induction 1 of the matrix type since said displayed position corresponds to the position of at least one heating zone Z1 of a container placed on the hob 3, and not to the position of said at least one temperature sensor 7 located at the inside said at least one heating zone Z1 of a container placed on the cooking surface 3.
- each inductor 2 of the induction hob 1 comprises a temperature sensor 7.
- Such a hardware configuration of the induction hob 1 makes it possible by means of the processing of the temperature data coming from the sensors of temperature 7 by the control unit of said table 1 to define at least one heating zone of the hob 3 corresponding to at least one heating zone Z1 of a container on the hob 3.
- the determination of at least one heating zone of the hob 3 can be implemented by means of a single temperature sensor 7 or several temperature sensors 7 depending on the position and the size of the container placed on the cooking plane 3 and detected by means of the inductors 2 and control means of the induction hob 1.
- the number of temperature sensors 7 detecting the heating zone of the hob 3 corresponding to the heating zone Z1 is four.
- each inductor group 8 comprises a single temperature sensor 7 measuring the temperature at each inductor 2 of an inductor group 8.
- this hardware configuration of the induction hob 1 makes it possible, by means of the processing of the temperature data coming from the temperature sensors 7, by the control unit of said table 1 to delimit at least one heating zone of the heating plane. cooking 3 corresponding to at least one heating zone Z1 of a container on the hob 3 at the lowest cost by dividing the number of temperature sensors 7 by the number of inductors 2 constituting each group of inductors 8.
- the cost of obtaining a matrix type induction cooktop 1 is minimized by reducing the number of temperature sensors 7 necessary for the display of at least one residual heat indicator H on said at least one display means 6 corresponding to at least one heating zone Z1 of a container on the hob 3, and simplifying the connection of these temperature sensors 7 to the control means of the induction hob 1 during the manufacture of it.
- the determination of at least one heating zone of the hob 3 can be implemented by means of a single temperature sensor 7 or several temperature sensors 7 depending on the position and the size of the container placed on the cooking plane 3 and detected by means of the inductors 2 and control means of the induction hob 1.
- the number of temperature sensors 7 detecting the heating zone of the hob 3 corresponding to the heating zone Z1 is three.
- control method may comprise a step of determining at least one temperature sensor 7 covered at least partially by a container placed on the hob 3 during the step of operating the inductors 2 of said at least one heating zone Z1.
- This information of said at least one temperature sensor 7 is stored by the control unit of the induction hob 1 until the step of stopping the inductors of said at least one heating zone Z1.
- the control unit of the induction hob 1 controls the display of at least one residual heat indicator H on said at least one display means 6 in place of the graphic object of said at least one heating zone Z1 shown on said at least one display means 6.
- the induction hob 1 comprises at least one energy meter detecting at least one heating zone of the hob 3.
- the step of determining an overshoot of a first threshold temperature value is implemented by means of said at least one energy meter, wherein said at least one energy meter determines a level. for heating said at least one heating zone Z1 as a function of at least one operating parameter of at least one inverter supply device.
- the step of displaying at least one residual heat indicator H on said at least one display means 6 displays the position of said at least one residual heat indicator H on said at least one display means 6 function of the operating data of said at least one inverter supply device read by said at least one energy meter having determined that the first temperature threshold value in the hob 3 has been exceeded.
- the operating data of said at least one inverter supply device taken up by said at least one energy meter can be, in particular, the operating time of at least one inverter supply device and / or the power delivered to an inductor by at least one inverter supply device so as to determine a heating level of at least one heating zone Z1.
- the operating data of said at least one inverter supply device read by said at least one energy meter are analyzed by the control unit. of the induction hob 1 so as to determine whether it is necessary to display at least one residual heat indicator H on said at least one display means 6.
- the operating data of said at least one inverter supply device read by said at least one energy meter can be in the form of digital data for processing by at least one microcontroller of the control unit, where these data operating mode are the image of the temperature present at at least one heating zone in the hob 3.
- At least one residual heat indicator H must be symbolized on said at least one heating element. display 6.
- the control method also comprises a step of extinguishing said at least one residual heat indicator H following the determination of crossing a second threshold temperature value at said at least one heating zone in the hob. 3 belonging to said at least one heating zone Z1, where the second temperature threshold value is lower than the first temperature threshold value.
- the crossing determination of a second temperature threshold value at said at least one heating zone in the hob 3 is implemented by at least one temperature sensor 7 belonging to said at least one heating zone Z1.
- the temperature data measured by said at least one temperature sensor 7 can be continuously analyzed by the control unit of the induction hob 1 so as to determine when said at least one H residual heat indicator displayed on said at least one display means 6 can be turned off.
- the residual heat indicator H displayed on said at least one display means 6 is extinguished when the temperature data measured by all these sensors 7 are lower than the second temperature threshold value.
- the crossing determination of a second threshold temperature value at said at least one heating zone in the hob 3 belonging to said at least one heating zone Z1 is implemented. by the countdown of a predetermined duration through the control means of the induction hob 1, in particular at least one microcontroller, since the determination of an exceeding of the first threshold temperature value at the level of said minus one heating zone in the hob 3 belonging to said at least one heating zone Z1.
- This predetermined duration may be dependent on the operating time at least one inverter supply device and / or the power delivered to an inductor by at least one inverter supply device.
- the operating data of said at least one inverter supply device taken up by said at least one energy meter can be analyzed by the control unit of the induction hob 1 following the step of stopping the inductors 2 of said at least one heating zone Z1 so as to determine when said at least one residual heat indicator H displayed on said at least one display means 6 can be extinguished.
- the first temperature threshold value is of the order of 60 ° C. and the second temperature threshold value is of the order of 50 ° C.
- This temperature difference between the first temperature threshold value and the second temperature threshold value makes it possible to avoid a possible extinction of the at least one residual heat indicator H, then the re-display thereof, then to again the extinction of it if the monitored temperature oscillates around a single temperature threshold value.
- the representation of said at least one new heating zone Z2 on said at least one display means 6 at least partially intersects the display of at least one residual heat indicator H on said at least one display means 6, whereas said method comprises a step of extinguishing said at least one control residual heat H then a step of representing said at least one new heating zone Z2 on said at least one display means 6.
- the at least partial overlapping of a heating zone of the hob 3 by at least one new heating zone Z2 makes it possible to extinguish the display of a residual heat indicator H associated with said heating zone of the plane cooking 3 without major safety risk for the user.
- the control method comprises a step of displaying said at least one residual heat indicator H on said at least one display means 6 corresponding to the heating zone of the hob 3 where the highest temperature is determined.
- the at least partial overlapping of a first heating zone of the hob 3 by a second heating zone of the hob 3 makes it possible to extinguish the display of a residual heat indicator H associated with the heating zone 3. heating of the hob 3 having the lowest temperature without major safety risk for the user.
- the induction hob 1 comprises control means provided with a control unit.
- the control unit comprises at least one electronic card provided with at least one microcontroller capable of implementing the control method in operation of an induction hob according to the invention.
- control unit controls in particular the inductors 2, and the temperature sensor (s) 7 or the energy meter (s) so as to manage the display and the extinction of at least one residual heat indicator H on said at least one display means 6 at a given position image of the location of at least one container placed on the hob 3 of a matrix-type induction cooktop 1 and previously heated up by a subset of inductors 2 constituting at least one heating zone Z1, wherein said at least one heating zone Z1 constitutes a heating zone of the hob 3, as previously described.
- the operating control method of a set of inductors of an induction hob makes it possible to clearly and significantly display the display position of at least one residual heat indicator. on at least one display means so as to guarantee the safety of the users by increased readability on said at least one display means.
- the present invention is neither limited in the number of inductors distributed in a two-dimensional grid in the hob of the induction hob, nor in the number of heating zones that can be defined on the hob. from the position of a container covering a subset of inductors.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Induction Heating Cooking Devices (AREA)
- General Induction Heating (AREA)
Claims (9)
- Verfahren zur Betriebssteuerung einer Einheit von Induktoren (2) einer Induktionskochplatte (1), wobei die Induktoren (2) gemäß einem zweidimensionalen Raster in einem Kochfeld (3) der Induktionskochplatte (1) verteilt sind, und jeder Induktor (2) von einer Versorgungsvorrichtung mit Wechselrichter versorgt wird, wobei die Induktoren (2) Mittel zum Erhitzen eines Behälters und Mittel zum Feststellen des Vorhandenseins eines Behälters bilden,
wobei das Verfahren mindestens folgende Schritte umfasst:- Feststellen mindestens eines Heizbereichs (Z1), der von einer Teileinheit von Induktoren (2) gebildet wird, die mindestens teilweise von einem Behälter bedeckt sind;- Darstellen des mindestens einen Heizbereichs (Z1) auf mindestens einem Anzeigemittel (6);- Inbetriebsetzen der Induktoren (2) des mindestens einen Heizbereichs (Z1);- Abschalten der Induktoren (2) des mindestens einen Heizbereichs (Z1);- im Anschluss an das Abschalten der Induktoren (2) des mindestens einen Heizbereichs (Z1), Bestimmen einer Überschreitung eines ersten Temperaturgrenzwerts auf Höhe von mindestens einem Erhitzungsbereich im Kochfeld (3), der zum Heizbereich (Z1) gehört;dadurch gekennzeichnet, dass das Verfahren ebenfalls mindestens folgenden Schritt umfasst:- Anzeigen von mindestens einer Restwärmelampe (H) auf dem mindestens einen Anzeigemittel (6),- wobei die Position der mindestens einen Restwärmelampe (H) auf dem mindestens einen Anzeigemittel (6) von der Position des mindestens einen Erhitzungsbereichs abhängig ist, der im Kochfeld (3) festgestellt wird, und- wobei im Anschluss an eine Feststellung mindestens eines neuen Heizbereichs (Z2), der von einer Teileinheit von Induktoren (2) gebildet wird, die mindestens teilweise von einem Behälter bedeckt sind, wenn die Darstellung des mindestens einen neuen Heizbereichs (Z2) auf dem mindestens einen Anzeigemittel (6) mindestens teilweise die Anzeige von mindestens einer Restwärmelampe (H) auf dem mindestens einen Anzeigemittel (6) überschneidet, dann das Verfahren einen Schritt des Erlöschens der mindestens einen Restwärmelampe (H) und einen Schritt des Darstellens des mindestens einen neuen Heizbereichs (Z2) auf dem mindestens einen Anzeigemittel (6) umfasst. - Verfahren zur Betriebssteuerung einer Einheit von Induktoren (2) einer Induktionskochplatte (1) nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine Restwärmelampe (H) an der gleichen Stelle angezeigt wird wie die Darstellung des mindestens einen Heizbereichs (Z1) auf dem mindestens einen Anzeigemittel (6), sobald eine Überschreitung des ersten Temperaturgrenzwerts auf Höhe des mindestens einen Heizbereichs (Z1) festgestellt wird.
- Verfahren zur Betriebssteuerung einer Einheit von Induktoren (2) einer Induktionskochplatte (1) nach Anspruch 2, dadurch gekennzeichnet, dass das Verfahren einen Schritt des Bestimmens der Koordinaten umfasst, die den mindestens einen Heizbereich (Z1) auf dem mindestens einen Anzeigemittel (6) beim Schritt des Feststellens des mindestens einen Heizbereichs (Z1) auf dem Kochfeld (3) darstellen, und einen Schritt des Zuordnens der Koordinaten, die den mindestens einen Heizbereich (Z1) auf dem mindestens einen Anzeigemittel (6) darstellen, zu Positionierungskoordinaten der mindestens einen Restwärmelampe (H) auf der mindestens einen Anzeige (6), sobald eine Überschreitung des ersten Temperaturgrenzwerts auf Höhe des mindestens einen Heizbereichs (Z1) festgestellt wird.
- Verfahren zur Betriebssteuerung einer Einheit von Induktoren (2) einer Induktionskochplatte (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Verfahren einen Schritt des Erlöschens der mindestens einen Restwärmelampe (H) im Anschluss an die Bestimmung des Überschreitens eines zweiten Temperaturgrenzwerts auf Höhe des mindestens einen Erhitzungsbereichs im Kochfeld (3) umfasst, der zum mindestens einen Heizbereich (Z1) gehört, wobei der zweite Temperaturgrenzwert niedriger ist als der erste Temperaturgrenzwert.
- Verfahren zur Betriebssteuerung einer Einheit von Induktoren (2) einer Induktionskochplatte (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass, wenn die Anzeige mindestens einer ersten Restwärmelampe (H) auf dem mindestens einen Anzeigemittel (6) mindestens teilweise die Anzeige mindestens einer zweiten Restwärmelampe (H) auf dem mindestens einen Anzeigemittel (6) überschneidet, dann das Verfahren einen Schritt des Anzeigens der mindestens einen Restwärmelampe (H) auf dem mindestens einen Anzeigemittel (6) entsprechend dem Erhitzungsbereich des Kochfelds (3) umfasst, wo die höchste Temperatur bestimmt wird.
- Verfahren zur Betriebssteuerung einer Einheit von Induktoren (2) einer Induktionskochplatte (1) nach einem der Ansprüche 1 bis 5, wobei die Platte (1) eine Vielzahl von Temperaturfühlern (7) im Kochfeld (3) umfasst, die mindestens einen Erhitzungsbereich des Kochfelds (3) feststellen, dadurch gekennzeichnet, dass:- der Schritt des Bestimmens einer Überschreitung eines ersten Temperaturgrenzwerts mithilfe von mindestens einem Temperaturfühler (7) im Kochfeld (3) umgesetzt wird,- wobei der mindestens eine Temperaturfühler (7) mindestens teilweise von einem in Erhitzung befindlichen Behälter beim Schritt des Inbetriebsetzens der Induktoren (2) des mindestens einen Heizbereichs (Z1) bedeckt ist, und- der Schritt des Anzeigens von mindestens einer Restwärmelampe (H) auf dem mindestens einen Anzeigemittel (6) die Position der mindestens einen Restwärmelampe (H) auf dem mindestens einen Anzeigemittel (6) in Abhängigkeit von der Position des mindestens einen Temperaturfühlers (7) anzeigt, der die Überschreitung des ersten Temperaturgrenzwerts im Kochfeld (3) festgestellt hat.
- Verfahren zur Betriebssteuerung einer Einheit von Induktoren (2) einer Induktionskochplatte (1) nach einem der Ansprüche 1 bis 5, wobei die Platte (1) mindestens einen Energiezähler umfasst, die mindestens einen Erhitzungsbereich des Kochfelds (3) feststellt, dadurch gekennzeichnet, dass:- der Schritt des Bestimmens einer Überschreitung eines ersten Temperaturgrenzwerts mithilfe des mindestens einen Energiezählers umgesetzt wird,- wobei der mindestens eine Energiezähler einen Erhitzungspegel des mindestens einen Heizbereichs (Z1) in Abhängigkeit von mindestens einem Betriebsparameter von mindestens einer Versorgungsvorrichtung mit Wechselrichter bestimmt, und- der Schritt des Anzeigens von mindestens einer Restwärmelampe (H) auf dem mindestens einen Anzeigemittel (6) die Position der mindestens einen Restwärmelampe (H) auf dem mindestens einen Anzeigemittel (6) in Abhängigkeit der Betriebsdaten der mindestens einen Versorgungsvorrichtung mit Wechselrichter anzeigt, die vom mindestens einen Energiezähler erhoben werden, der die Überschreitung des ersten Temperaturgrenzwerts im Kochfeld (3) bestimmt hat.
- Induktionskochplatte (1), umfassend eine Einheit von Induktoren (2), die gemäß einem zweidimensionalen Raster in einem Kochfeld (3) der Induktionskochplatte (1) verteilt sind, wobei jeder Induktor (2) von einer Versorgungsvorrichtung mit Wechselrichter versorgt wird, wobei die Induktoren (2) Mittel zum Erhitzen eines Behälters und Mittel zum Feststellen des Vorhandenseins eines Behälters bilden, dadurch gekennzeichnet, dass sie Steuermittel umfasst, die angepasst sind, um das Steuerungsverfahren nach einem der Ansprüche 1 bis 7 anzuwenden.
- Induktionskochplatte (1) nach Anspruch 8, wobei die Platte (1) eine Vielzahl von Temperaturfühlern (7) im Kochfeld (3) umfasst, die mindestens einen Erhitzungsbereich des Kochfelds (3) feststellen, dadurch gekennzeichnet, dass die Induktoren (2) in Induktorengruppen (8) gruppiert sind, wobei jede Induktorengruppe (8) einen einzelnen Temperaturfühler (7) umfasst, der die Temperatur auf Höhe jedes Induktors (2) einer Induktorengruppe (8) misst.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1003981A FR2966002B1 (fr) | 2010-10-07 | 2010-10-07 | Procede de commande en fonctionnement d'un ensemble d'inducteurs d'une table de cuisson a induction et table de cuisson a induction associee |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2440007A2 EP2440007A2 (de) | 2012-04-11 |
EP2440007A3 EP2440007A3 (de) | 2012-11-21 |
EP2440007B1 true EP2440007B1 (de) | 2016-08-03 |
Family
ID=43558358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11184075.7A Revoked EP2440007B1 (de) | 2010-10-07 | 2011-10-06 | Steuerverfahren bei Betrieb einer Reihe von Induktoren eines Induktionskochfeldes, und zugehöriges Induktionskochfeld |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2440007B1 (de) |
ES (1) | ES2600640T3 (de) |
FR (1) | FR2966002B1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104221470B (zh) * | 2012-10-22 | 2016-08-24 | 松下电器产业株式会社 | 感应加热烹调器 |
WO2017038014A1 (ja) * | 2015-08-28 | 2017-03-09 | パナソニックIpマネジメント株式会社 | 誘導加熱調理器 |
EP3503672B1 (de) * | 2017-12-20 | 2022-08-10 | Vestel Elektronik Sanayi ve Ticaret A.S. | Induktionskochfeld |
KR102631230B1 (ko) * | 2018-10-10 | 2024-01-29 | 엘지전자 주식회사 | 피가열체 구분 기능이 개선된 유도 가열 장치 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3118414A1 (de) | 1981-05-09 | 1982-11-25 | Diehl Gmbh & Co | Restwaermeanzeige fuer einen elektrisch beheizbaren herd |
DE4007680A1 (de) | 1990-03-10 | 1991-09-19 | Grass Ag | Heizplatte |
DE4317040A1 (de) | 1993-05-21 | 1994-04-28 | Schott Glaswerke | Glaskeramikkochfeld mit wenigstens einer Kochzone und einer zugeordneten Anzeigeeinrichtung |
WO1997037515A1 (de) | 1996-03-29 | 1997-10-09 | Kolja Kuse | Homogenheizfeld |
DE19802571A1 (de) | 1998-01-23 | 1999-08-05 | Bosch Siemens Hausgeraete | Kochmulde mit Anzeigeelementen |
DE10033361A1 (de) | 2000-07-08 | 2002-01-24 | Thomas Wartmann | Matrix-Kochfeld |
EP1505854A1 (de) | 2003-08-04 | 2005-02-09 | Whirpool Corporation | Kochfeld mit Benutzerschnittstelle und beliebiger Positionierung |
EP1575336A1 (de) | 2004-03-12 | 2005-09-14 | Brandt Industries SAS | Zusammensetzungsmodul von Induktionsspulen einer Induktionskochzone und Kochzone ausgestattet mit solchem Modul |
DE19936418B4 (de) | 1998-10-05 | 2007-10-25 | BSH Bosch und Siemens Hausgeräte GmbH | Gargerät mit einer Anzeigeeinheit zur Restwärmeanzeige und Verfahren zum Betrieb eines solchen Gargerätes |
EP1978784A1 (de) | 2007-04-05 | 2008-10-08 | Whirlpool Corporation | Verfahren zur Schätzung der Oberflächentemperatur eines Zufallspositionskochfeldes |
WO2009068387A2 (de) | 2007-11-28 | 2009-06-04 | BSH Bosch und Siemens Hausgeräte GmbH | Hausgerätanzeigevorrichtung |
US7554060B2 (en) | 2006-09-29 | 2009-06-30 | England Raymond O | Displaying cooking-related information |
WO2010063539A2 (de) | 2008-12-01 | 2010-06-10 | BSH Bosch und Siemens Hausgeräte GmbH | Kochfeld mit einem bildschirm und verfahren zum betreiben eines kochfelds |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2863039B1 (fr) * | 2003-11-27 | 2006-02-17 | Brandt Ind | Procede de chauffage d'un recipient pose sur une table de cuisson a moyens de chauffage associe a des inducteurs |
ES2331037B1 (es) * | 2007-10-25 | 2010-09-21 | Bsh Electrodomesticos España, S.A. | Campo de coccion y procedimiento para el accionamiento de un campo de coccion. |
-
2010
- 2010-10-07 FR FR1003981A patent/FR2966002B1/fr active Active
-
2011
- 2011-10-06 ES ES11184075.7T patent/ES2600640T3/es active Active
- 2011-10-06 EP EP11184075.7A patent/EP2440007B1/de not_active Revoked
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3118414A1 (de) | 1981-05-09 | 1982-11-25 | Diehl Gmbh & Co | Restwaermeanzeige fuer einen elektrisch beheizbaren herd |
DE4007680A1 (de) | 1990-03-10 | 1991-09-19 | Grass Ag | Heizplatte |
DE4317040A1 (de) | 1993-05-21 | 1994-04-28 | Schott Glaswerke | Glaskeramikkochfeld mit wenigstens einer Kochzone und einer zugeordneten Anzeigeeinrichtung |
WO1997037515A1 (de) | 1996-03-29 | 1997-10-09 | Kolja Kuse | Homogenheizfeld |
DE19802571A1 (de) | 1998-01-23 | 1999-08-05 | Bosch Siemens Hausgeraete | Kochmulde mit Anzeigeelementen |
DE19936418B4 (de) | 1998-10-05 | 2007-10-25 | BSH Bosch und Siemens Hausgeräte GmbH | Gargerät mit einer Anzeigeeinheit zur Restwärmeanzeige und Verfahren zum Betrieb eines solchen Gargerätes |
DE10033361A1 (de) | 2000-07-08 | 2002-01-24 | Thomas Wartmann | Matrix-Kochfeld |
EP1505854A1 (de) | 2003-08-04 | 2005-02-09 | Whirpool Corporation | Kochfeld mit Benutzerschnittstelle und beliebiger Positionierung |
EP1575336A1 (de) | 2004-03-12 | 2005-09-14 | Brandt Industries SAS | Zusammensetzungsmodul von Induktionsspulen einer Induktionskochzone und Kochzone ausgestattet mit solchem Modul |
US7554060B2 (en) | 2006-09-29 | 2009-06-30 | England Raymond O | Displaying cooking-related information |
EP1978784A1 (de) | 2007-04-05 | 2008-10-08 | Whirlpool Corporation | Verfahren zur Schätzung der Oberflächentemperatur eines Zufallspositionskochfeldes |
WO2009068387A2 (de) | 2007-11-28 | 2009-06-04 | BSH Bosch und Siemens Hausgeräte GmbH | Hausgerätanzeigevorrichtung |
WO2010063539A2 (de) | 2008-12-01 | 2010-06-10 | BSH Bosch und Siemens Hausgeräte GmbH | Kochfeld mit einem bildschirm und verfahren zum betreiben eines kochfelds |
Also Published As
Publication number | Publication date |
---|---|
FR2966002A1 (fr) | 2012-04-13 |
EP2440007A3 (de) | 2012-11-21 |
FR2966002B1 (fr) | 2015-12-11 |
EP2440007A2 (de) | 2012-04-11 |
ES2600640T3 (es) | 2017-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1610590B1 (de) | Kochmuldeneinheit mit mehreren Kochstellen | |
EP2551600B1 (de) | Kochfeld und Verfahren zur Steuerung, wenn das Kochfeld in Betrieb ist | |
EP2440011B1 (de) | Steuerverfahren bei Betrieb einer Reihe von Induktoren eines Induktionskochfeldes, und zugehöriges Induktionskochfeld | |
EP2440007B1 (de) | Steuerverfahren bei Betrieb einer Reihe von Induktoren eines Induktionskochfeldes, und zugehöriges Induktionskochfeld | |
EP2482613B1 (de) | Verfahren zur Optimierung der Positionierung mindestens eines Behälters auf einer Gruppe von Induktoren eines Induktionskochfeldes, und zugehöriges Induktionskochfeld | |
EP2166290B1 (de) | Method for controlling a hob | |
CN103493587B (zh) | 带有锅检测装置的电磁炉铁架以及用于操作电磁炉铁架的方法 | |
US20180224127A1 (en) | Cook top assembly having a monitoring system and method of monitoring a cooking process | |
EP0412875B1 (de) | Temperaturmessvorrichtung für Induktionskochgerät und Gerät mit einer solchen Vorrichtung | |
EP2445309B1 (de) | Temperaturmessvorrichtung für eine Gruppe von Induktoren eines Induktionskochfeldes, und zugehöriges Induktionskochfeld | |
EP2506674B1 (de) | Induktionskochfeld mit einer Topferkennungsvorrichtung | |
EP2440009B1 (de) | Steuerverfahren bei Betrieb einer Reihe von Induktoren eines Induktionskochfeldes, und zugehöriges Induktionskochfeld | |
EP2440012B1 (de) | Steuerverfahren bei Betrieb einer Reihe von Induktoren eines Induktionskochfeldes, und zugehöriges Induktionskochfeld | |
EP2440008B1 (de) | Steuerverfahren bei Betrieb einer Reihe von Induktoren eines Induktionskochfeldes, und zugehöriges Induktionskochfeld | |
US20250093047A1 (en) | Display interface for inductive cooktop system | |
EP2144480B1 (de) | Verfahren zur Ansteuerung von zumindest einem Heizelement eines Gargeräts | |
EP3065505B1 (de) | Verfahren zur steuerung eines kochgeräts und entsprechendes kochgerät | |
EP1675435B2 (de) | Steuerungsverfahren eines Kochfeldes und sein Kochfeld | |
JP2009178598A (ja) | 業務用調理機器 | |
FR3115352A1 (fr) | Dispositif de cuisson |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602011028745 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H05B0003740000 Ipc: H05B0006060000 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H05B 6/06 20060101AFI20121015BHEP Ipc: H05B 3/74 20060101ALI20121015BHEP Ipc: H05B 6/12 20060101ALI20121015BHEP |
|
17P | Request for examination filed |
Effective date: 20130429 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FAGORBRANDT SAS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GROUPE BRANDT |
|
19U | Interruption of proceedings before grant |
Effective date: 20140411 |
|
19W | Proceedings resumed before grant after interruption of proceedings |
Effective date: 20150601 |
|
111Z | Information provided on other rights and legal means of execution |
Free format text: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR Effective date: 20150930 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160307 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 818041 Country of ref document: AT Kind code of ref document: T Effective date: 20160815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011028745 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 818041 Country of ref document: AT Kind code of ref document: T Effective date: 20160803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161103 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161203 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2600640 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161205 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161104 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602011028745 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161103 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26 | Opposition filed |
Opponent name: BSH HAUSGERAETE GMBH Effective date: 20170503 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161006 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161006 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111006 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20211026 Year of fee payment: 11 Ref country code: GB Payment date: 20211004 Year of fee payment: 11 Ref country code: ES Payment date: 20211111 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20211006 Year of fee payment: 11 Ref country code: FR Payment date: 20211012 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R103 Ref document number: 602011028745 Country of ref document: DE Ref country code: DE Ref legal event code: R064 Ref document number: 602011028745 Country of ref document: DE |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MGE |
|
27W | Patent revoked |
Effective date: 20220502 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20220502 |