[go: up one dir, main page]

EP2359005B1 - Sliding vane pump - Google Patents

Sliding vane pump Download PDF

Info

Publication number
EP2359005B1
EP2359005B1 EP09812433A EP09812433A EP2359005B1 EP 2359005 B1 EP2359005 B1 EP 2359005B1 EP 09812433 A EP09812433 A EP 09812433A EP 09812433 A EP09812433 A EP 09812433A EP 2359005 B1 EP2359005 B1 EP 2359005B1
Authority
EP
European Patent Office
Prior art keywords
rotor
fact
grooves
accordance
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09812433A
Other languages
German (de)
French (fr)
Other versions
EP2359005A2 (en
Inventor
Eugen Schmidt
Franz Pawellek
Andreas Blechschmidt
Nico Eberhardt
Torsten Wilhelm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec GPM GmbH
Original Assignee
Geraete und Pumpenbau GmbH Dr Eugen Schmidt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geraete und Pumpenbau GmbH Dr Eugen Schmidt filed Critical Geraete und Pumpenbau GmbH Dr Eugen Schmidt
Publication of EP2359005A2 publication Critical patent/EP2359005A2/en
Application granted granted Critical
Publication of EP2359005B1 publication Critical patent/EP2359005B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3441Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/30Geometry of the stator
    • F04C2250/301Geometry of the stator compression chamber profile defined by a mathematical expression or by parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/12Vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/13Noise

Definitions

  • the invention relates to vane pumps with a mounted in a pump housing, driven by a shaft rotor, a plurality of outer rotor blades mounted on this wing and an outer ring surrounding the rotor and the wing plates, this either directly in the pump housing, or in a pump housing along predetermined paths movable adjusting ring is arranged.
  • the pump designers have been and are endeavoring for decades to provide the largest possible inflow cross sections for best possible filling of the displacer cells by means of symmetrically designed "clearances" arranged in the rotor walls of the most varied vane pump designs.
  • the respective pump design then pumps the delivery volume flow by means of these solutions from the suction kidney into the pressure kidney.
  • a major disadvantage of the aforementioned types of vane pumps of the current state of the art is still that at drive speeds in the range of 4500 U / min to over 6000 U / min addition (ie when using these vane pumps, for example, as directly from the crankshaft of a Motor vehicle driven oil pumps) high power losses, a rising noise with increasing speed noise and also increasing with increasing speed wear occurs.
  • the object of the invention is now to develop vane pumps, which avoid the aforementioned disadvantages of the prior art and in addition to the power losses, the noise and wear compared to the prior art pump designs, especially in the speed range from 4,500 U / min to Beyond 6,000 rpm, significantly reduced, but manufacturing technology are easy to manufacture and are also characterized in all speed ranges by a high reliability, a long life, a high specific flow rate and high efficiency.
  • this object is achieved by a vane pump with a rotor (3), which is mounted in a pump housing (1) and driven by a shaft (2), a plurality of wing plates (5) mounted in bearing grooves (4) of the rotor (3) and one rotor ( 3) and the wing plates (5) surrounding the outer ring (6) arranged on a in the pump housing (1) suction kidney (8) and to this offset by 180 ° in the pump housing (1) Druckniere (9), with the radially inner Edge of each cell chamber (10), that in the cylinder surface of the rotor (3), between the bearing grooves (4) over the entire rotor width extending, parallel to the bearing grooves (4) of the wing plates (5) arranged by the bearing grooves (4) a lateral web (11) spaced transverse grooves (12), which according to the invention are characterized in that these transverse grooves (12) have an asymmetrical cross-sectional profile (13), which in each cell chamber (10) via a point (14) with a smallest Radius of the rot
  • asymmetrical design of the cross-sectional profile (13) of the transverse groove (12) in vane pumps were surprisingly the power losses, noise and wear compared to the previously described in the prior art pump designs in the speed range from 4,500 U / min to over 6,000 U / min addition significantly reduced.
  • the solution according to the invention is easy to manufacture in terms of production and is characterized in all speed ranges by a high reliability, a long service life, a high specific volume flow and also a high degree of efficiency.
  • FIG. 1 the vane pump according to the invention in the side view, without cover with a mounted in a pump housing 1, by a shaft 2, in this embodiment of the crankshaft directly driven rotor 3, with a plurality of bearing grooves 4 of the rotor 3 radially displaceably mounted wing plates 5 and a the Rotor 3 and the wing plates 5 surrounding outer ring 6 shown.
  • This outer ring 6 is arranged in this embodiment in a rotatably mounted, provided with a control lever 20 lock slider 7.
  • On one side of the control lever 20 is mounted in the pump housing 1 compression spring 21 at.
  • each cell chamber 10 of the rotor 3 there is furthermore a suction kidney 8 and a pressure kidney 9 which is offset by 180 ° relative thereto.
  • a suction kidney 8 and a pressure kidney 9 which is offset by 180 ° relative thereto.
  • At the radially inner edge of each cell chamber 10 of the rotor 3 are between the bearing grooves 4 of the wing plates 5, over the entire width, ie along the lateral surface of the rotor 3 extending, parallel to the bearing grooves 4 of the wing plates 5 arranged by the bearing grooves 4 to a bearing web 11 spaced transverse grooves 12 are arranged.
  • these transverse grooves 12 as already explained, an asymmetrical cross-sectional profile 13 which has a point 14 in each of the cell chambers 10 with a smallest radius of the rotor is always arranged in the direction of rotation of the cell chamber center axis 15, said point 14 in Embodiment about 1% to 8% of the outer diameter of the rotor 3 radially within this imaginary, the bearing webs 11 fictitious interconnecting outer diameter of the rotor 3 is located. It is also characteristic that the asymmetrical cross-sectional profile 13 of the transverse grooves 12 on the rotor 3, as shown in this embodiment, can also be described by a polynomial of the 4th degree.
  • the illustrated 7-blade vane pump is the width of one segment (including the associated wing panel sections) 51.4285 °.
  • the rotor shell in a cell chamber 10 it follows immediately next to the cell chamber 10 on both sides limiting bearing grooves 4, ie in the region of the bearing webs 11 (in this embodiment, on both sides over a "width range" of the cell chamber 10 of about 5%) the " original "rotor outside diameter.
  • the thus formed, immediately adjacent to the bearing grooves 4 of the wing plates 5 arranged bearing webs 11 ensure the required power transmission and rigidity of the rotor 3 even at high stress of the vane pump.
  • the course of the original outer diameter of the rotor 3 as the second bearing bar 11, in this exemplary embodiment over an area of the cell chamber 10 of approximately 5% along the original outer diameter of the rotor 3 up to the bearing groove 4, is then maintained.
  • asymmetrical design of the cross-sectional profile 13 of the transverse groove 12 is surprisingly always ensured in vane pumps a low-friction and aerodynamically optimal complete filling of the pump chambers.
  • transverse grooves 12 according to the invention are also easy to manufacture.
  • the vane pumps with the asymmetrical transverse grooves according to the invention are distinguished from the designs of the prior art also by a quieter running even at very high speeds.
  • the wear of the vane pumps could also be significantly reduced and the power loss minimized.
  • a guide ring 19 is fitted in the rotor 3 which rests against the "inner" end faces 16 of the wing plates 5, which in turn rest with their "outer” end faces 16 on the outer ring 6. It is characteristic that the wing plates 5 of the vane pump according to the invention are rounded at their end faces 16.
  • the radius arranged on the end faces 16 of the wing panels 5 corresponds to half the distance between the end faces 16 of the wing panels 5.
  • control pressure chamber 23 is sealed on both sides in each case by a sealing strip 24, wherein the sealing strips 24 are displaceably mounted in respectively associated and pressurized by the control pressure of the gallery Actuallysungshuntnuten 25. It is advantageous in this context that in the istsungshuntnuten 25 (below the sealing strips 24) resilient elements, eg as in the FIG.
  • leaf springs 27 are arranged, which ensure that the sealing strips 24 are still pressed against the pump housing 1 when the vane pump (the motor) is stopped / stopped.
  • the guide chamber grooves 25 are connected via connecting channels 26 to the control pressure chamber 23, so that they are safe from the can be acted upon via the inflow opening 22 incoming control pressure of the gallery, and thus ensure a highly reliable and very secure sealing of the control pressure chamber 23 by means of the sealing strips 24 with minimal space under extreme conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

Die Erfindung betrifft Flügelzellenpumpen mit einem in einem Pumpengehäuse gelagerten, von einer Welle angetriebenen Rotor, mehreren im äußeren Umfang dieses Rotors gelagerten Flügelplatten und einem den Rotor und die Flügelplatten umgebenden Außenring, wobei dieser entweder direkt im Pumpengehäuse, oder in einem im Pumpengehäuse entlang vorgegebener Bahnen verfahrbaren Stellring angeordneten ist.The invention relates to vane pumps with a mounted in a pump housing, driven by a shaft rotor, a plurality of outer rotor blades mounted on this wing and an outer ring surrounding the rotor and the wing plates, this either directly in the pump housing, or in a pump housing along predetermined paths movable adjusting ring is arranged.

Im Stand der Technik sind die unterschiedlichsten Ausführungen von Flügelzellenpumpen vorbeschrieben. So beschreiben beispielsweise die DE 29 14 282 C2 , wie auch die DE 103 53 027 A1 jeweils regelbare Flügelzellenpumpen mit einem linear verschiebbaren Stellring zur Erzielung einer variablen Förderleistung.
In der DE 195 33 686 C2 wird eine andere Bauform einer regelbaren Flügelzellenpumpe mit einem um einen Bolzen schwenkbar gelagerten Stellring vorbeschrieben.
Zumeist sind beidseitig des Rotors einer Flügelzellenpumpe einerseits eine Saugniere und andererseits zu dieser um 180° versetzt eine Druckniere angeordnet.
In the prior art, the most varied designs of vane pumps are described above. For example, describe the DE 29 14 282 C2 , as well as the DE 103 53 027 A1 in each case adjustable vane pumps with a linearly displaceable adjusting ring to achieve a variable delivery capacity.
In the DE 195 33 686 C2 Another type of variable vane pump is described above with a collar pivotally mounted about a pin.
In most cases, on both sides of the rotor of a vane pump on the one hand a suction kidney and on the other hand to this offset by 180 ° arranged a pressure kidney.

All den vorgenannten Bauformen ist gemeinsam, dass der Innenring zwischen den Lagerstellen der Trennelemente stets bogenförmig, d.h. als Kreisbogen entsprechend dem Außendurchmesser des jeweiligen Innenringes ausgebildet ist.
In anderen Schutzrechten/Schutzrechtsanmeldungen, wie beispielsweise in der DE 33 34 919 C2 , der DE 44 42 083 A1 oder aber auch in der DE 602 07 401 T2 und der WO2005/003562 , welche als nächstliegender Stand der Technik betrachtet werden kann, werden Bauformen von Flügelzellenpumpen mit variabler Förderleistung vorbeschrieben, bei denen am/im radial inneren Rand jeder Zellenkammer, d.h. in der "Zylindermantelfläche" des jeweiligen Rotors, über die gesamte Rotorbreite verlaufende, parallel zu den Lagernuten der Flügelplatten am radial inneren Rand jeder Zellenkammer angeordnete, von den Lagernuten beabstandete, zur Mittenachse jeder Zellenkammer stets symmetrisch ausgebildete, in ihrem Querschnitt wannenförmige, zumeist fast trapezförmig ausgeformte Querrillen angeordnet sind, welche das Volumen der jeweiligen Pumpen-Zellenkammern oftmals auf ein für die jeweilige Bauform mögliches Maximum erhöhen sollen.
In einer anderen Schutzrechtsanmeldung, wie beispielsweise in der DE 10 2004 019 326 A1 werden andere Zellenpumpen, wie z.B. Rollenzellenpumpen vorbeschrieben bei denen am/im radial inneren Rand jeder Zellenkammer, d.h. wiederum in der "Zylindermantelfläche" des Rotors, symmetrisch zur Mittenachse jeder Zellenkammer ausgebildete, über die gesamte Rotorbreite verlaufende, parallel zu den Lagern der Zylinderrollen am radial inneren Rand jeder Zellenkammer angeordnete, in ihrem Querschnitt nahezu rechteckige, wannenförmig ausgeformte Querrillen angeordnet sind, welche ebenfalls das Volumen der jeweiligen Pumpenkammer deutlich erhöhen, und in der hier vorgestellten Bauform sogar etwa verdoppeln sollen.
Eine weitere Zellenpumpe wird in der DE 10 2006 061 326 A1 vorgestellt. Hierbei handelt es sich um eine mengenregelbare Pendelschiebermaschine, bei der in der Figur 1 sowohl am/im radial inneren Rand jeder Zellenkammer, d.h. in der "Zylindermantelfläche" des Innenrotors, wie gleichzeitig auch in der "Zylindermantelfläche" des Außenrotors, ebenfalls über die gesamte Rotorbreite verlaufende, zur Mittenachse jeder Zellenkammer ebenfalls symmetrisch ausgebildete, in der "Zylindermantelfläche" des Innenrotors in ihrem Querschnitt halbrund und in der "Zylindermantelfläche" des Außenrotors in ihrem Querschnitt nahezu trapezförmig, wannenförmig ausgeformte Querrillen angeordnet sind, welche auch bei dieser Bauform einer sehr speziellen Flügel- Zellenpumpe das Volumen der jeweiligen Pumpenkammer möglichst auf ein Maximum vergrößern sollen.
Wie der beschriebene Stand der Technik zeigt, waren und sind die Pumpenkonstrukteure seit Jahrzehnten bestrebt, mittels in den Rotorwänden der unterschiedlichsten Flügelzellenpumpenbauformen angeordneter, zur Mittenachse der jeweiligen Zellenkammern symmetrisch ausgebildeter "Freimachungen" die jeweils größtmöglichen Einströmquerschnitte zu einer bestmöglichen Befüllung der Verdrängerzellen bereitzustellen.
Entsprechend der jeweiligen Exzentrizität des Rotors gegenüber dem Außenring pumpt dann die jeweilige Pumpenbauform den Fördervolumenstrom mittels dieser Lösungen aus der Saugniere in die Druckniere.
Ein wesentlicher Nachteil der vorgenannten Bauformen von Flügelzellenpumpen des gegenwärtigen Standes der Technik besteht jedoch bis heute noch darin, dass bei Antriebsdrehzahlen im Bereich von 4500 U/min bis über 6000 U/min hinaus (d.h. beim Einsatz dieser Flügelzellenpumpen z.B. als direkt von der Kurbelwelle eines Kraftfahrzeugmotors angetriebene Ölpumpen) hohe Verlustleistungen, eine mit steigender Drehzahl stark zunehmende Geräuschentwicklung und ein mit steigender Drehzahl ebenfalls stark zunehmender Verschleiß eintritt.
All the aforementioned designs have in common that the inner ring between the bearing points of the separating elements is always arcuate, that is formed as a circular arc corresponding to the outer diameter of the respective inner ring.
In other property rights / patent applications, such as in the DE 33 34 919 C2 , of the DE 44 42 083 A1 or in the DE 602 07 401 T2 and the WO2005 / 003562 , which can be considered as the closest prior art, are described designs of vane pumps with variable capacity, in which at / in the radially inner edge of each cell chamber, ie in the "cylinder surface" of the respective rotor, over the entire rotor width extending, parallel to the Lagernuten the wing plates arranged at the radially inner edge of each cell chamber, spaced from the Lagernuten, always symmetrical to the center axis of each cell chamber formed in cross-section trough-shaped, usually almost trapezoidal transverse grooves are arranged, which often the volume of the respective pump cell chambers to one for the respective design should increase possible maximum.
In another patent application, such as in the DE 10 2004 019 326 A1 Other cell pumps, such as roller cell pumps are described in which at / in the radially inner edge of each cell chamber, ie again in the "cylinder surface" of the rotor, symmetrically formed to the center axis of each cell chamber, extending over the entire rotor width, parallel to the bearings of the cylindrical rollers on the radial arranged inside the edge of each cell chamber, in its cross-section almost rectangular, trough-shaped transverse grooves are arranged, which also significantly increase the volume of the respective pump chamber, and even approximately doubled in the design presented here.
Another cell pump will be in the DE 10 2006 061 326 A1 presented. This is a variable-speed pendulum pusher machine, in which in the FIG. 1 both on / in the radially inner edge of each cell chamber, ie in the "cylinder surface" of the inner rotor, as well as in the "cylinder surface" of the outer rotor, also over the entire Rotor width extending to the center axis of each cell chamber also symmetrically formed, in the "cylinder surface" of the inner rotor in its cross-section half round and in the "cylinder surface" of the outer rotor in its cross section almost trapezoidal, trough-shaped transverse grooves are arranged, which also in this design a very special Wing cell pump to increase the volume of the respective pump chamber as possible to a maximum.
As the prior art described shows, the pump designers have been and are endeavoring for decades to provide the largest possible inflow cross sections for best possible filling of the displacer cells by means of symmetrically designed "clearances" arranged in the rotor walls of the most varied vane pump designs.
According to the respective eccentricity of the rotor relative to the outer ring, the respective pump design then pumps the delivery volume flow by means of these solutions from the suction kidney into the pressure kidney.
A major disadvantage of the aforementioned types of vane pumps of the current state of the art, however, is still that at drive speeds in the range of 4500 U / min to over 6000 U / min addition (ie when using these vane pumps, for example, as directly from the crankshaft of a Motor vehicle driven oil pumps) high power losses, a rising noise with increasing speed noise and also increasing with increasing speed wear occurs.

Die Aufgabe der Erfindung besteht nun darin Flügelzellenpumpen zu entwickeln, welche die vorgenannten Nachteile des Standes der Technik vermeiden und neben den Verlustleistungen, auch die Geräuschentwicklung und den Verschleiß gegenüber den im Stand der Technik vorbeschriebenen Pumpenbauformen, insbesondere im Drehzahlbereich von 4.500 U/min bis über 6.000 U/min hinaus, deutlich reduzierten, dabei jedoch fertigungstechnisch einfach herstellbar sind und die sich darüber hinaus in allen Drehzahlbereichen durch eine hohe Zuverlässigkeit, eine hohe Lebensdauer, einen hohen spezifischen Fördervolumenstrom und einen hohen Wirkungsgrad auszeichnen.The object of the invention is now to develop vane pumps, which avoid the aforementioned disadvantages of the prior art and in addition to the power losses, the noise and wear compared to the prior art pump designs, especially in the speed range from 4,500 U / min to Beyond 6,000 rpm, significantly reduced, but manufacturing technology are easy to manufacture and are also characterized in all speed ranges by a high reliability, a long life, a high specific flow rate and high efficiency.

Erfindungsgemäß wird diese Aufgabe durch eine Flügelzellenpumpe mit einem in einem Pumpengehäuse (1) gelagerten, von einer Welle (2) angetriebenen Rotor (3), mehreren in Lagernuten (4) des Rotors (3) gelagerten Flügelplatten (5) und einem den Rotor (3) und die Flügelplatten (5) umgebenden Außenring (6) mit einer an einer im Pumpengehäuse (1) angeordneten Saugniere (8) und einer zu dieser um 180° versetzt im Pumpengehäuse (1) angeordneten Druckniere (9), mit am radial inneren Rand jeder Zellenkammer (10), d.h. in den Zylindermantelfläche des Rotors (3), zwischen den Lagernuten (4) über die gesamte Rotorbreite verlaufenden, parallel zu den Lagernuten (4) der Flügelplatten (5) angeordneten, von den Lagernuten (4) um einen Lagersteg (11) beabstandeten Querrillen (12), welche sich erfindungsgemäß dadurch auszeichnen, dass diese Querrillen (12) einen unsymmetrischen Querschnittsverlauf (13) aufweisen, welcher in jeder Zellenkammer (10) über einen Punkt (14) mit einem kleinsten Radius des Rotors verfügt, der in Drehrichtung gesehen stets nach der Zellenkammermittenachse (15) angeordnet ist.
Mittels dieser erfindungsgemäßen, unsymmetrischen Ausbildung des Querschnittsverlaufes (13) der Querrille (12) bei Flügelzellenpumpen wurden überraschenderweise die Verlustleistungen, die Geräuschentwicklung und der Verschleiß gegenüber den im Stand der Technik vorbeschriebenen Pumpenbauformen im Drehzahlbereich von 4.500 U/min bis über 6.000 U/min hinaus deutlich reduziert.
Die erfindungsgemäße Lösung ist dabei fertigungstechnisch einfach herstellbar und zeichnet sich in allen Drehzahlbereichen durch eine hohe Zuverlässigkeit, eine hohe Lebensdauer, einen hohen spezifischen Fördervolumenstrom und zudem durch einen hohen Wirkungsgrad aus.
In Versuchsreihen wurde festgestellt, dass die Zellenkammern der Flügelzellenpumpen des beschriebenen Standes der Technik mit symmetrisch stark "vergrößerter" Zellengeometrie, insbesondere im Drehzahlbereich von 4.500 U/min bis über 6.000 U/min hinaus, während der "Saugphase" nicht mehr "vollständig" befüllt werden.
In der Folge dieser "unvollständigen" Befüllung der Zellenkammern kommt es bei den im Stand der Technik vorbeschriebenen Flügelzellenpumpen mit symmetrisch vergrößerten Zellenkammern zu Kavitationserscheinungen, welche eine Ursache für die im Drehzahlbereich von 4.500 U/min bis über 6.000 U/min auftretenden Geräuschentwicklungen, den in diesem Drehzahlbereich auftretenden Verschleiß, aber auch für die in diesem Drehzahlbereich auftretenden Verlustleistungen sind.
Überraschender Weise wurde in den mit der neuartigen Zellenkammergeometrie, gemäß der erfindungsgemäße Lösung, durchgeführten Versuchsreihen demgegenüber, selbst bei den Drehzahlen im Bereich von 4.500 U/min bis über 6.000 U/min hinaus, stets eine optimale, vollständige, kavitationsfreie Befüllung der erfindungsgemäßen Zellenkammern (10) problemlos realisiert.
Die neuartigen, erfindungsgemäßen, einen unsymmetrischen Querschnittsverlauf (13) aufweisenden Querrillen (12), welche in jeder Zellenkammern (10) über einen Punkt (14) mit einem kleinsten Radius des Rotors verfügen, der in Drehrichtung gesehen stets nach der Zellenkammermittenachse (15) liegt, gewährleisten in Folge ihrer optimalen, sehr speziellen strömungstechnischen Ausbildung zudem im gesamten Drehzahlbereich eine reibungsarme und strömungstechnisch optimale vollständige Befüllung der Pumpenkammern.
Hervorzuheben ist auch, dass mittels der erfindungsgemäßen Lösung selbst bei den bisher sehr kritischen Drehzahlen, im Bereich von 4.500 U/min bis über 6.000 U/min hinaus, neben einer vollständigen und optimalen Befüllung der Zellenkammern (10) zugleich aber auch gegenüber dem bisherigen Stand der Technik eine optimale und schnelle, reibungsarme Entleerung der Zellenkammern (10) gewährleistet wird.
Sehr vorteilhaft ist in diesem Zusammenhang weiterhin, dass sich die erfindungsgemäßen Querrillen (12) fertigungstechnisch auch sehr einfach herstellen lassen.
In den mit der erfindungsgemäßen Lösung durchgeführten Versuchsreihen wurde festgestellt, dass mittels des erfindungsgemäßen asymmetrischen Pumpenzellenquerschnitts auch überraschende Wirkungen auftreten, welche vermutlich in Verbindung mit der Reflektion der in die Zellenkammern einströmenden Flüssigkeit an den Flügelplatten hervor gerufen werden.
All diese durch die erfindungsgemäße Lösung hervorgerufenen überraschenden Wirkungen gewährleisten eine vollständige Befüllung der Pumpenkammern auch jenseits der 5000 U/min, wie auch deren optimale Entleerung und reduzieren dabei gleichzeitig auch deutlich die Verlustleistungen und den Verschleiß bei Flügelzellenpumpen.
Besonders vorteilhafte Ausführungsformen, Einzelheiten und weitere Merkmale der Erfindung ergeben sich aus den Unteransprüchen sowie der nachfolgenden Beschreibung eines erfindungsgemäßen Ausführungsbeispieles in Verbindung mit zwei Zeichnungen zur erfindungsgemäßen Lösung.
Die Erfindung soll nun an Hand eines Ausführungsbeispieles in Verbindung mit zwei Figuren näher erläutert werden.
According to the invention, this object is achieved by a vane pump with a rotor (3), which is mounted in a pump housing (1) and driven by a shaft (2), a plurality of wing plates (5) mounted in bearing grooves (4) of the rotor (3) and one rotor ( 3) and the wing plates (5) surrounding the outer ring (6) arranged on a in the pump housing (1) suction kidney (8) and to this offset by 180 ° in the pump housing (1) Druckniere (9), with the radially inner Edge of each cell chamber (10), that in the cylinder surface of the rotor (3), between the bearing grooves (4) over the entire rotor width extending, parallel to the bearing grooves (4) of the wing plates (5) arranged by the bearing grooves (4) a lateral web (11) spaced transverse grooves (12), which according to the invention are characterized in that these transverse grooves (12) have an asymmetrical cross-sectional profile (13), which in each cell chamber (10) via a point (14) with a smallest Radius of the rotor has, as seen in the direction of rotation is always located after the cell chamber center axis (15).
By means of this invention, asymmetrical design of the cross-sectional profile (13) of the transverse groove (12) in vane pumps were surprisingly the power losses, noise and wear compared to the previously described in the prior art pump designs in the speed range from 4,500 U / min to over 6,000 U / min addition significantly reduced.
The solution according to the invention is easy to manufacture in terms of production and is characterized in all speed ranges by a high reliability, a long service life, a high specific volume flow and also a high degree of efficiency.
In test series it was found that the cell chambers of the vane pumps described in the prior art with symmetrically strong "enlarged" cell geometry, especially in the speed range from 4,500 rev / min to more than 6,000 rpm, during the "suction phase" no longer "completely" filled become.
As a result of this "incomplete" filling of the cell chambers occurs in the prior art described in the art vane pumps with symmetrically enlarged cell cavitation phenomena, which is a cause of the occurring in the speed range from 4,500 rev / min to over 6,000 rpm noise developments, the in occurring in this speed range wear, but also for the power losses occurring in this speed range.
Surprisingly, in the experiments carried out with the novel cell chamber geometry, according to the inventive solution, in contrast, even at speeds in the range of 4,500 U / min to more than 6,000 U / min, always an optimal, complete, cavitation-free filling of the cell chambers according to the invention ( 10) realized without problems.
The novel, according to the invention, an asymmetrical cross-sectional profile (13) having transverse grooves (12) having in each cell chambers (10) via a point (14) with a smallest radius of the rotor, which is always in the direction of rotation after the cell chamber center axis (15) , ensure in the entire speed range due to their optimal, very special fluidic design also a low-friction and aerodynamically optimal complete filling of the pump chambers.
It should also be emphasized that, in addition to a complete and optimal filling of the cell chambers (10) at the same time but also with respect to the previous state by means of the inventive solution even at the previously very critical speeds, in the range of 4,500 rev / min to more than 6,000 of the Technique optimal and fast, low-friction emptying of the cell chambers (10) is ensured.
In this context, it is furthermore very advantageous that the transverse grooves (12) according to the invention can also be produced very easily in terms of production engineering.
In the test series carried out with the solution according to the invention, it was found that surprising effects occur also by means of the asymmetrical pump cell cross-section according to the invention, which are presumably caused in connection with the reflection of the liquid flowing into the cell chambers on the wing plates.
All these surprising effects caused by the solution according to the invention ensure complete filling of the pump chambers even beyond the 5000 rpm, as well as their optimal emptying, while at the same time significantly reducing the power loss and wear in vane pumps.
Particularly advantageous embodiments, details and other features of the invention will become apparent from the dependent claims and the following description of an embodiment of the invention in conjunction with two drawings for the solution according to the invention.
The invention will now be explained in more detail with reference to an embodiment in conjunction with two figures.

Es zeigen dabei:

Figur 1 :
die erfindungsgemäße Flügelzellenpumpe in der Seitenansicht (ohne die seitliche Abdeckung);
Figur 2 :
die Darstellung des Querschnittsverlaufes 13 der erfindungsgemäßen Querrille 12, gemäß Figur 1 (in Polarkoordinaten).
It shows:
FIG. 1:
the vane pump according to the invention in the side view (without the side cover);
FIG. 2:
the representation of the cross-sectional profile 13 of the transverse groove 12 according to the invention, according to FIG. 1 (in polar coordinates).

In der Figur 1 ist die erfindungsgemäße Flügelzellenpumpe in der Seitenansicht, ohne Abdeckung mit einem in einem Pumpengehäuse 1 gelagerten, von einer Welle 2, in diesem Ausführungsbeispiel von der Kurbelwelle direkt angetriebenen Rotor 3, mit mehreren in Lagernuten 4 des Rotors 3 radial verschiebbar gelagerten Flügelplatten 5 und einem den Rotor 3 und die Flügelplatten 5 umgebenden Außenring 6 dargestellt.
Dieser Außenring 6 ist in diesem Ausführungsbeispiel in einem drehbar gelagerten, mit einem Stellhebel 20 versehenen Stellschieber 7 angeordnet.
An einer Seite des Stellhebels 20 liegt eine im Pumpengehäuse 1 gelagerte Druckfeder 21 an.
An der gegenüber liegenden Seite des Stellhebels 20 ist eine über eine Zuströmöffnung 22 vom Steuerdruck der Galerie beaufschlagte Steuerdruckkammer 23 angeordnet.
Im Pumpengehäuse 1 befindet sich weiterhin eine Saugniere 8 sowie eine zu dieser um 180° versetzt angeordneten Druckniere 9.
Am radial inneren Rand jeder Zellenkammer 10 des Rotors 3 sind zwischen den Lagernuten 4 der Flügelplatten 5, über die gesamte Breite, d.h. entlang der Mantelfläche des Rotors 3 verlaufende, parallel zu den Lagernuten 4 der Flügelplatten 5 angeordnete, von den Lagernuten 4 um einem Lagersteg 11 beabstandete Querrillen 12 angeordnet.
Erfindungsgemäß weisen diese Querrillen 12, wie bereits erläutert, einen unsymmetrischen Querschnittsverlauf 13 auf, welcher in jeder der Zellenkammern 10 über einen Punkt 14 mit einem kleinsten Radius des Rotors verfügt der in Drehrichtung gesehen stets nach der Zellenkammermittenachse 15 angeordnet ist, wobei dieser Punkt 14 im Ausführungsbeispiel etwa um 1% bis 8% des Außendurchmesser der Rotors 3 radial innerhalb dieses gedachten, die Lagerstege 11 fiktiv miteinander verbindenden Außendurchmessers des Rotors 3 liegt.
Kennzeichnend ist weiterhin, dass der unsymmetrische Querschnittsverlauf 13 der Querrillen 12 am Rotor 3, wie in diesem Ausführungsbeispiel dargestellt, auch durch ein Polynom 4. Grades beschrieben werden kann.
Das diesem Ausführungsbeispiel zugrunde liegende Polynom ist im Bereich von ca. - 0,42 rad bis + 0,42 rad definiert und lautet: y = 39 , 33695 x 4 - 31 , 29170 x 3 + 0 , 4913634 x 2 + 5 , 285977 x + 32 , 22082.

Figure imgb0001

Dieser Funktionsverlauf, als einer der möglichen Querschnittsverläufe 13 der erfindungsgemäßen Querrille 12, ist in den vg. Grenzen in der Figur 2 dargestellt.
Auch die in der Figur 1 dargestellten Querrillen 12 der Zellenkammern 10 haben stets diesen in der Figur 2 dargestellten Querschnittsverlauf 13.
Bei der in der Figur 1 dargestellten 7-flügligen Flügelzellenpumpe beträgt die Breite eines Segmentes (einschließlich der zugehörigen Flügelplattenabschnitte) 51,4285 °.
Betrachtet man den Rotormantel in einer Zellenkammer 10 so folgt dieser zunächst unmittelbar neben den die Zellenkammer 10 beidseitig begrenzenden Lagernuten 4, d.h. im Bereich der Lagerstege 11 (in diesem Ausführungsbeispiel beidseitig über einen "Breitenbereich" der Zellenkammer 10 von ca. 5%) dem "ursprünglichen" Rotoraußendurchmesser.
Die dabei gebildeten, unmittelbar neben den Lagernuten 4 der Flügelplatten 5 angeordneten Lagerstege 11 gewährleisten die erforderliche Kraftübertragung und Steifigkeit des Rotors 3 selbst bei einer hohen Beanspruchung der Flügelzellenpumpe.
In Drehrichtung gesehen folgt dem "ersten" Lagersteg 11 der betrachteten Zellenkammer 10 dann über ca. 63 % der Breite der Zellenkammer 10 entlang des fiktiven "ursprünglichen" Rotoraußendurchmessers ein zweiter Bereich in dem der Querschnittsverlauf 13 der Querrille 12 bis zu einen Punkt 14, in diesem Ausführungsbeispiel auf den Radius 31,5 mm, d.h. um 1,9 mm (2,85% des ursprünglichen Rotoraußendurchmessers vom 66,8 mm) abfällt.
Diesem zweiten Sektor folgt nach dem Punkt 14 ein dritter Sektor in dem der Querschnittsverlauf 13 der Querrille 12 relativ rasch wieder ansteigt und bereits nach ca. 27 % der Breite der Zellenkammer 10 entlang des fiktiven Rotoraußendurchmessers den ursprünglichen Außendurchmesser des Rotors 3 wieder erreicht.
Wie bereits erläutert wird dann der Verlauf des ursprünglichen Außendurchmessers des Rotors 3 als zweiter Lagersteg 11, in diesem Ausführungsbeispiel über einen Bereich der Zellenkammer 10 von ca. 5% entlang des ursprünglichen Außendurchmessers des Rotors 3 bis zur Lagernut 4 beibehalten.
Mittels dieser erfindungsgemäßen, unsymmetrischen Ausbildung des Querschnittsverlaufes 13 der Querrille 12 wird bei Flügelzellenpumpen überraschenderweise stets eine reibungsarme und strömungstechnisch optimale vollständige Befüllung der Pumpenkammern gewährleistet.
Insbesondere kann durch die erfindungsgemäße Lösung selbst bei den bisher sehr kritischen Drehzahlen im Bereich von 4.500 U/min bis selbst über 6.000 U/min problemlos eine optimale vollständige Befüllung der Zellenkammern 10 wie auch eine optimale schnelle und reibungsarme Entleerung der Zellenkammern 10 gewährleistet werden.
Dabei sind die erfindungsgemäßen Querrillen 12 zudem auch einfach fertigungstechnisch herstellbar.
Die Flügelzellenpumpen mit den erfindungsgemäßen, unsymmetrischen Querrillen zeichnen sich dabei gegenüber den Bauformen des Standes der Technik auch durch einen geräuschärmeren Lauf selbst bei sehr hohen Drehzahlen aus.
Wie bereits erläutert, wurde in den mit der erfindungsgemäßen Lösung durchgeführeten Versuchsreihen festgestellt, dass mittels der hier vorgestellten Lösung auch der Verschleiß der Flügelzellenpumpen deutlich gesenkt und die Verlustleistungen minimiert werden konnten.
Zusammenfassend kann zudem auch festgestellt werden, dass mittels der erfindungsgemäßen Lösung bei hoher Zuverlässigkeit und hoher Lebensdauer ein hoher spezifischer Fördervolumenstrom mit hohem Wirkungsgrad sowohl bei niedrigen, wie aber insbesondere auch bei hohen Drehzahlen, d.h. im Bereich von 4.500 U/min bis über 6.000 U/min hinaus, gewährleistet werden kann.
In dem in der Figur 1 dargestellten Ausführungsbeispiel ist im Rotor 3 ein Führungsring 19 eingepasst der an den "innen liegenden" Stirnseiten 16 der Flügelplatten 5 anliegt, welche selbst wiederum mit ihren "außen liegenden" Stirnseiten 16 am Außenring 6 anliegen.
Kennzeichnend ist dabei, dass die Flügelplatten 5 der erfindungsgemäßen Flügelzellenpumpe an ihren Stirnseiten 16 abgerundet sind.
Im vorliegenden Ausführungsbeispiel entspricht der an den Stirnseiten 16 der Flügelplatten 5 angeordnete Radius dem halben Abstand zwischen den Stirnseiten 16 der Flügelplatten 5.
Dadurch wird neben einer optimalen und reibungs- und verschleißarmen Abdichtung der Zellenkammer am Außenring 6, gleichzeitig auch eine optimale, reibungs- und verschleißarme Führung am Führungsring 19 während des gesamten Umlaufs der Welle 2 gewährleistet.
Erfindungsgemäß ist auch, dass in den Wandungen 17 der im Rotor 3 angeordneten Lagernuten 4 der Flügelplatten 5 Schmiertaschen 18 angeordnet sind, welche den Verschleiß zwischen den Flügelplatten 5 und Lagernuten 4 deutlich minimieren.
Die in Verbindung mit der erfindungsgemäßen Lösung in der Figur 1 dargestellte Steuerdruckkammer 23 wird beidseitig jeweils von einer Dichtleiste 24 abgedichtet, wobei die Dichtleisten 24 in jeweils zugeordneten und vom Steuerdruck der Galerie druckbeaufschlagten Führungskammernuten 25 verschiebbar gelagert sind.
Vorteilhaft ist in diesem Zusammenhang, dass in den Führungskammernuten 25 (unterhalb der Dichtleisten 24) federnde Elemente, z.B. wie in der Figur 1 dargestellt, Blattfedern 27 angeordnet sind, welche gewährleisten, dass die Dichtleisten 24 auch dann noch an das Pumpengehäuse 1 angepresst werden wenn die Flügelzellenpumpe (der Motor) angehalten/gestoppt wird.
Erfindungsgemäß sind die Führungskammernuten 25 über Verbindungskanäle 26 mit der Steuerdruckkammer 23 verbunden, so dass diese sicher von dem über die Zuströmöffnung 22 einströmenden Steuerdruck der Galerie beaufschlagt werden können, und so auch unter extremen Bedingungen eine hoch zuverlässige und sehr sichere Abdichtung der Steuerdruckkammer 23 mittels der Dichtleisten 24 bei minimalem Bauraum gewährleisten.In the FIG. 1 the vane pump according to the invention in the side view, without cover with a mounted in a pump housing 1, by a shaft 2, in this embodiment of the crankshaft directly driven rotor 3, with a plurality of bearing grooves 4 of the rotor 3 radially displaceably mounted wing plates 5 and a the Rotor 3 and the wing plates 5 surrounding outer ring 6 shown.
This outer ring 6 is arranged in this embodiment in a rotatably mounted, provided with a control lever 20 lock slider 7.
On one side of the control lever 20 is mounted in the pump housing 1 compression spring 21 at.
On the opposite side of the actuating lever 20 via a feed opening 22 acted upon by the control pressure of the gallery control pressure chamber 23 is arranged.
In the pump housing 1, there is furthermore a suction kidney 8 and a pressure kidney 9 which is offset by 180 ° relative thereto.
At the radially inner edge of each cell chamber 10 of the rotor 3 are between the bearing grooves 4 of the wing plates 5, over the entire width, ie along the lateral surface of the rotor 3 extending, parallel to the bearing grooves 4 of the wing plates 5 arranged by the bearing grooves 4 to a bearing web 11 spaced transverse grooves 12 are arranged.
According to the invention, these transverse grooves 12, as already explained, an asymmetrical cross-sectional profile 13 which has a point 14 in each of the cell chambers 10 with a smallest radius of the rotor is always arranged in the direction of rotation of the cell chamber center axis 15, said point 14 in Embodiment about 1% to 8% of the outer diameter of the rotor 3 radially within this imaginary, the bearing webs 11 fictitious interconnecting outer diameter of the rotor 3 is located.
It is also characteristic that the asymmetrical cross-sectional profile 13 of the transverse grooves 12 on the rotor 3, as shown in this embodiment, can also be described by a polynomial of the 4th degree.
The polynomial underlying this embodiment is defined in the range of about - 0.42 radians to + 0.42 radians and reads: y = 39 . 33695 x 4 - 31 . 29170 x 3 + 0 . 4913634 x 2 + 5 . 285977 x + 32 . 22,082th
Figure imgb0001

This functional course, as one of the possible cross-sectional profiles 13 of the transverse groove 12 according to the invention, is shown in FIGS. Borders in the FIG. 2 shown.
Also in the FIG. 1 shown transverse grooves 12 of the cell chambers 10 always have this in the FIG. 2 illustrated cross section course 13th
When in the FIG. 1 The illustrated 7-blade vane pump is the width of one segment (including the associated wing panel sections) 51.4285 °.
Considering the rotor shell in a cell chamber 10, it follows immediately next to the cell chamber 10 on both sides limiting bearing grooves 4, ie in the region of the bearing webs 11 (in this embodiment, on both sides over a "width range" of the cell chamber 10 of about 5%) the " original "rotor outside diameter.
The thus formed, immediately adjacent to the bearing grooves 4 of the wing plates 5 arranged bearing webs 11 ensure the required power transmission and rigidity of the rotor 3 even at high stress of the vane pump.
Seen in the direction of rotation follows the "first" bearing web 11 of the considered cell chamber 10 then about 63% of the width of the cell chamber 10 along the fictional "original" rotor outer diameter, a second region in which the cross-sectional profile 13 of the transverse groove 12 up to a point 14, this embodiment drops to the radius 31.5 mm, ie, 1.9 mm (2.85% of the original rotor outer diameter of 66.8 mm).
After the point 14, this second sector is followed by a third sector in which the cross-sectional profile 13 of the transverse groove 12 rises again relatively quickly and already after approximately 27% of the width of the cell chamber 10 along the notional Rotor outer diameter reaches the original outer diameter of the rotor 3 again.
As already explained, the course of the original outer diameter of the rotor 3 as the second bearing bar 11, in this exemplary embodiment over an area of the cell chamber 10 of approximately 5% along the original outer diameter of the rotor 3 up to the bearing groove 4, is then maintained.
By means of this invention, asymmetrical design of the cross-sectional profile 13 of the transverse groove 12 is surprisingly always ensured in vane pumps a low-friction and aerodynamically optimal complete filling of the pump chambers.
In particular, can be ensured by the inventive solution even at the previously very critical speeds in the range of 4,500 rev / min to even more than 6,000 rpm easily complete optimal filling of the cell chambers 10 as well as an optimal fast and low-friction emptying of the cell chambers 10.
In addition, the transverse grooves 12 according to the invention are also easy to manufacture.
The vane pumps with the asymmetrical transverse grooves according to the invention are distinguished from the designs of the prior art also by a quieter running even at very high speeds.
As already explained, it was found in the experimental series carried out with the solution according to the invention that by means of the solution presented here, the wear of the vane pumps could also be significantly reduced and the power loss minimized.
In summary, it can also be stated that by means of the solution according to the invention with high reliability and a long service life a high specific delivery volume flow with high efficiency both at low, but especially at high speeds, ie Range from 4,500 rpm to over 6,000 rpm.
In the in the FIG. 1 illustrated embodiment, a guide ring 19 is fitted in the rotor 3 which rests against the "inner" end faces 16 of the wing plates 5, which in turn rest with their "outer" end faces 16 on the outer ring 6.
It is characteristic that the wing plates 5 of the vane pump according to the invention are rounded at their end faces 16.
In the present exemplary embodiment, the radius arranged on the end faces 16 of the wing panels 5 corresponds to half the distance between the end faces 16 of the wing panels 5.
As a result, in addition to an optimal and low-friction and low-wear sealing of the cell chamber on the outer ring 6, at the same time ensures optimal, low-friction and low-wear guidance on the guide ring 19 during the entire circulation of the shaft 2.
It is also according to the invention that 5 lubrication pockets 18 are arranged in the walls 17 of the bearing grooves 4 of the wing plates arranged in the rotor 3, which clearly minimize the wear between the wing plates 5 and the bearing grooves 4.
In connection with the solution according to the invention in the FIG. 1 shown control pressure chamber 23 is sealed on both sides in each case by a sealing strip 24, wherein the sealing strips 24 are displaceably mounted in respectively associated and pressurized by the control pressure of the gallery Führungsungskammernuten 25.
It is advantageous in this context that in the Führungsungskammernuten 25 (below the sealing strips 24) resilient elements, eg as in the FIG. 1 represented, leaf springs 27 are arranged, which ensure that the sealing strips 24 are still pressed against the pump housing 1 when the vane pump (the motor) is stopped / stopped.
According to the invention, the guide chamber grooves 25 are connected via connecting channels 26 to the control pressure chamber 23, so that they are safe from the can be acted upon via the inflow opening 22 incoming control pressure of the gallery, and thus ensure a highly reliable and very secure sealing of the control pressure chamber 23 by means of the sealing strips 24 with minimal space under extreme conditions.

BezugszeichenzusammenstellungREFERENCE SYMBOL

11
Pumpengehäusepump housing
22
Wellewave
33
Rotorrotor
44
Lagernutenbearing grooves
55
Flügelplattenwing plates
66
Außenringouter ring
77
Stellschieberlock slider
88th
Saugnieresuction kidney
99
Drucknierepressure kidney
1010
Zellenkammercell chamber
1111
Lagerstegbearing web
1212
Querrillentransverse grooves
1313
QuerschnittsverlaufCross-sectional profile
1414
Tiefstpunktnadir
1515
ZellenkammermittenachseCell chamber center axis
1616
Stirnseitefront
1717
Wandungwall
1818
Schmiertaschelubrication pocket
1919
Führungsringguide ring
2020
Stellhebellever
2121
Druckfedercompression spring
2222
Zuströmöffnunginflow
2323
SteuerdruckkammerControl pressure chamber
2424
Dichtleistesealing strip
2525
FührungskammernutenFührungskammernuten
2626
Verbindungskanalconnecting channel
2727
Blattfederleaf spring

Claims (10)

  1. Sliding vane pump with a rotor (3) mounted in a pump housing (1) and driven by a shaft (2), several vane plates (5) mounted in bearing grooves (4) of the rotor (3) and an outer ring (6) surrounding the rotor (3) and the vane plates (5), with a suction kidney (8) arranged in the pump housing (1) and a pressure kidney (9) arranged in the pump housing (1) offset from this component by 180°, with at the radial inner edge of each cell chamber (10), i.e. in the radial outer cylinder liner surface of the rotor (3), between the bearing grooves (4), running over the complete rotor width, parallel to the bearing grooves (4) of the vane plates (5), transverse grooves (12) separated from the bearing grooves (4) by a bearing journal (11), characterised by the fact that these transverse grooves (12) have an asymmetrical cross-section progression (13), which in every cell chamber (10) has a point (14) with a smallest radius of the rotor (3), which viewed in the direction of rotation is always arranged after the cell chamber central axis (15).
  2. Sliding vane pump in accordance with Claim 1, characterised by the fact that the point (14) with a smallest radius of the rotor lies radially within approx. 1 % to 8 % of the outer diameter of an intended outer diameter of the rotor (3) connecting the bearing journals (11) with each other.
  3. Sliding vane pump in accordance with Claim 1, characterised by the fact that the vane plates (5) are rounded off (ball-shaped) on their front faces (16).
  4. Sliding vane pump in accordance with Claim 3, characterised by the fact that the vane plates (5) are provided with radii on their front faces (16).
  5. Sliding vane pump in accordance with Claim 4, characterised by the fact that the radius arranged on the front faces (16) of the vane plates (5) corresponds to half the distance between the front faces (16).
  6. Sliding vane pump in accordance with Claim 1, characterised by the fact that lubrication pockets (18) are arranged in the walls (17) of the bearing grooves (4) of the vane plates (5) in the rotor (3).
  7. Sliding vane pump in accordance with Claim 1, characterised by the fact that the outer ring (6) is mounted in a rotating setting slide (7) provided with a setting lever (20), which is in contact on one side of the setting lever (20) with a pressure spring (21) mounted in the pump housing (1), and on the other side of the setting lever (20) there is a control pressure chamber (23) pressurised by an inflow opening (22) by the control pressure of the gallery.
  8. Sliding vane pump in accordance with Claim 7, characterised by the fact that the control pressure chamber (23) is sealed on both sides by a sealing strip (24), which are mounted in sliding mountings in facing, pressurised guide chamber grooves (25).
  9. Sliding vane pump in accordance with Claim 8, characterised by the fact that the guide chamber grooves (25) are connected with the control pressure chamber (23) by means of connecting channels (26).
  10. Sliding vane pump in accordance with Claim 8, characterised by the fact that leaf springs (27) are arranged in the guide chamber grooves (25) underneath the sealing strips (24).
EP09812433A 2008-11-29 2009-11-23 Sliding vane pump Active EP2359005B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008059720A DE102008059720A1 (en) 2008-11-29 2008-11-29 Vane pump
PCT/DE2009/001667 WO2010060416A2 (en) 2008-11-29 2009-11-23 Sliding vane pump

Publications (2)

Publication Number Publication Date
EP2359005A2 EP2359005A2 (en) 2011-08-24
EP2359005B1 true EP2359005B1 (en) 2013-04-03

Family

ID=42134085

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09812433A Active EP2359005B1 (en) 2008-11-29 2009-11-23 Sliding vane pump

Country Status (8)

Country Link
US (1) US8747085B2 (en)
EP (1) EP2359005B1 (en)
JP (1) JP5611221B2 (en)
KR (1) KR101587945B1 (en)
CN (1) CN102224344B (en)
DE (1) DE102008059720A1 (en)
ES (1) ES2414182T3 (en)
WO (1) WO2010060416A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008006289B4 (en) 2008-01-28 2018-10-04 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) impeller
DE102010022677B4 (en) 2010-06-04 2016-06-30 Nidec Gpm Gmbh Vane pump
DE102011086175B3 (en) * 2011-11-11 2013-05-16 Schwäbische Hüttenwerke Automotive GmbH Rotary pump with improved sealing
KR101251535B1 (en) * 2011-11-30 2013-04-05 현대자동차주식회사 Oil pump for vehicle
US9964108B2 (en) * 2014-12-05 2018-05-08 O.M.P. Officine Mazzocco Pagnoni S.R.L. Variable displacement oil pump
US9920666B2 (en) * 2015-09-29 2018-03-20 Ford Global Technologies, Llc Vane oil pump
DE102017209511A1 (en) * 2017-06-06 2018-12-06 Volkswagen Ag Vane pump, fluid system and internal combustion engine
CN108843423B (en) * 2018-08-16 2024-10-22 湖南机油泵股份有限公司 A control system for a direct-push dual-chamber supercharged variable displacement oil pump
US11686200B2 (en) 2020-11-20 2023-06-27 Delphi Technologies Ip Limited Sliding vane fluid pump

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2914282C2 (en) 1979-04-09 1983-01-05 Mannesmann Rexroth GmbH, 8770 Lohr Support body for the adjustable race of hydraulic pumps
JPS5958185A (en) 1982-09-28 1984-04-03 Nachi Fujikoshi Corp Variable delivery pump
JPH035986U (en) * 1989-05-31 1991-01-21
DE4442083C2 (en) 1993-11-26 1998-07-02 Aisin Seiki Vane pump
DE19533686C2 (en) 1995-09-12 1997-06-19 Daimler Benz Ag Adjustable vane pump as a lubricant pump
US6237560B1 (en) * 1998-01-06 2001-05-29 Saitoh & Co., Ltd. Overexpansion rotary engine
CA2715436C (en) 2001-04-05 2015-03-10 Argo-Tech Corporation Variable displacement pump having a rotating cam ring
JP4250958B2 (en) * 2002-12-26 2009-04-08 株式会社ジェイテクト Vane pump
US6857862B2 (en) * 2003-05-01 2005-02-22 Sauer-Danfoss Inc. Roller vane pump
WO2005003562A1 (en) * 2003-07-07 2005-01-13 Unisia Jkc Steering Systems Co., Ltd. Vane pump
DE10353027A1 (en) 2003-11-13 2005-06-16 Daimlerchrysler Ag Adjustable pump, in particular vane pump
JP2005264906A (en) * 2004-03-22 2005-09-29 Kayaba Ind Co Ltd Vane pump rotor, vane pump
DE102005048602B4 (en) * 2005-10-06 2011-01-13 Joma-Polytec Kunststofftechnik Gmbh Vane machine, in particular vane pump
JP4769126B2 (en) * 2006-05-30 2011-09-07 株式会社ショーワ Variable displacement pump
DE102006061326B4 (en) * 2006-12-22 2012-02-16 Mahle International Gmbh Positioning device for a volume-adjustable cell pump
DE102008006289B4 (en) * 2008-01-28 2018-10-04 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) impeller

Also Published As

Publication number Publication date
CN102224344B (en) 2015-07-15
WO2010060416A4 (en) 2011-01-27
WO2010060416A3 (en) 2010-12-02
US8747085B2 (en) 2014-06-10
JP2012510023A (en) 2012-04-26
WO2010060416A2 (en) 2010-06-03
KR101587945B1 (en) 2016-02-02
KR20110094320A (en) 2011-08-23
US20110293458A1 (en) 2011-12-01
CN102224344A (en) 2011-10-19
ES2414182T3 (en) 2013-07-18
JP5611221B2 (en) 2014-10-22
EP2359005A2 (en) 2011-08-24
DE102008059720A1 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
EP2359005B1 (en) Sliding vane pump
DE102010022677B4 (en) Vane pump
DE102006016791B4 (en) vacuum pump
AT517163A1 (en) ROTARY PUMP
WO2016173800A1 (en) Pump device
DE102012204424A1 (en) A vane pump with a housing, a sliding stator, and a rotatable within the stator rotor
DE102011000533A1 (en) Variable displacement pump for steering system of motor vehicles, has rotor elements that coincide with point contact, which are made to abut against sintered cam track
EP2176519B1 (en) Pendulum slide vacuum pump
EP3249156B1 (en) Machine, in particular oil pump
EP0810373A2 (en) Vane pump
DE102006016790B3 (en) cell pump
DE102010046591B4 (en) Vane pump
DE102005017834B4 (en) cell pump
EP2286088B1 (en) Pump
WO2008138712A1 (en) Pump unit with a main pump and an auxiliary pump
WO2016173799A1 (en) Pump device
WO2005001291A1 (en) Pump
DE102014002524B3 (en) Vane pump
EP2580477B1 (en) Rotary vane pump
DE102014219354A1 (en) Hydrostatic vane machine
DE3610302A1 (en) MACHINE WITH FLUID FLOW RATE OF THE SPIRAL DESIGN
DE102015216989A1 (en) Machine, in particular oil pump
DE102014220766B4 (en) Pendulum slide machine
EP3805521A1 (en) Vane pump
DE102012206520A1 (en) Vane machine has control element having bearing surfaces with axial inlet and outlet openings which are in fluid communication with radial inlet and outlet openings of cam portions through communicating passages

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110326

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502009006759

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04C0002344000

Ipc: F04C0015060000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 15/06 20060101AFI20121023BHEP

Ipc: F04C 2/344 20060101ALI20121023BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 604908

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009006759

Country of ref document: DE

Effective date: 20130529

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2414182

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130718

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130403

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130704

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

26N No opposition filed

Effective date: 20140106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009006759

Country of ref document: DE

Effective date: 20140106

BERE Be: lapsed

Owner name: GERATE- UND PUMPENBAU GMBH, DR. EUGEN SCHMIDT

Effective date: 20131130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131123

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091123

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009006759

Country of ref document: DE

Representative=s name: SCHMALZ, HANS-DIETER, DIPL.-ING. DR.-ING., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009006759

Country of ref document: DE

Owner name: NIDEC GPM GMBH, DE

Free format text: FORMER OWNER: GERAETE- UND PUMPENBAU GMBH DR. EUGEN SCHMIDT, 98673 AUENGRUND, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009006759

Country of ref document: DE

Representative=s name: KUHNEN & WACKER PATENT- UND RECHTSANWALTSBUERO, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20191121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20191220

Year of fee payment: 11

Ref country code: IT

Payment date: 20191128

Year of fee payment: 11

Ref country code: FR

Payment date: 20191120

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20191121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191120

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: NIDEC GPM GMBH

Effective date: 20200508

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 604908

Country of ref document: AT

Kind code of ref document: T

Owner name: NIDEC GPM GMBH, DE

Effective date: 20200508

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 604908

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201123

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201124

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241112

Year of fee payment: 16