[go: up one dir, main page]

EP2297288B1 - Compositions de lavage - Google Patents

Compositions de lavage Download PDF

Info

Publication number
EP2297288B1
EP2297288B1 EP09793904.5A EP09793904A EP2297288B1 EP 2297288 B1 EP2297288 B1 EP 2297288B1 EP 09793904 A EP09793904 A EP 09793904A EP 2297288 B1 EP2297288 B1 EP 2297288B1
Authority
EP
European Patent Office
Prior art keywords
alginate
agents
granule
ratio
citric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09793904.5A
Other languages
German (de)
English (en)
Other versions
EP2297288A1 (fr
Inventor
Andrew Philip Parker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Priority to EP09793904.5A priority Critical patent/EP2297288B1/fr
Publication of EP2297288A1 publication Critical patent/EP2297288A1/fr
Application granted granted Critical
Publication of EP2297288B1 publication Critical patent/EP2297288B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin

Definitions

  • This invention relates to an alginate granule. More particularly, the invention is directed to an alginate granule comprising citric acid. The invention further relates to laundry detergent compositions comprising the alginate granules of the invention, to a process to make the alginate granules and to the use of said granules to deliver benefit agents to the fabric.
  • Encapsulation or immobilisation of active materials is a well known technique which can offer advantages such as the stabilisation/protection of active materials that are otherwise unstable or reactive.
  • Alginates are known as encapsulation materials.
  • WO 00/46337 Quest International B.V.
  • This document relates to a liquid detergent composition containing greater than 5% by weight of surfactant and an encapsulate containing greater than 10% by weight of active material and a cross-linked anionic gum.
  • the anionic gum can be an alginate, and the active material can be a fragrance.
  • WO 2007/009621 discloses fabric softening particles which incorporate a fabric softening emulsion into an alginate or carrageenan polysaccharide matrix. These particles do not contain any sequestrant. The alginate particles leave residues cn fabric due to the reliance on sequestrants present in detergent formulations to aid dissolution of the softening particle.
  • WO 2004/074422 A discloses a sprayable, acidic, hard surface cleaning and/or disinfecting composition which contains suspended inclusions which appear as visibly discernible, discrete particulate materials, preferably where said discrete particulate materials are based on alginates which are present as two or more classes of particulate materials.
  • US 5, 334, 229 discloses alginate gel beads useful for encapsulating plant reproductive units, and a method for production thereof.
  • alginate encapsulates/beads A problem that exists with such alginate encapsulates/beads is that they leave visible residues on laundered clothes. Such visible residues are not only problematic for consumers, but are also indicative that the alginate matrix has not released the encapsulated benefit agent or other active material.
  • citric acid in the granulation process provides alginate granules that exhibit a reduced level of visible residues in laundry use.
  • the present invention provides an alginate granule comprising:
  • a second aspect of the invention provides a laundry detergent composition comprising from 0.1 to 25 wt.% of the alginate granule of the first aspect, from 2 to 70 wt.% of a surfactant, and from 1 to 70 wt.% of a builder.
  • a third aspect of the invention provides the use of the alginate granule of first aspect, to deliver a fabric benefit agent to a textile during the laundering process.
  • a fourth aspect of the invention provides a process for making the alginate granules of the first aspect, wherein the process includes the steps of:-
  • the alginate granules preferably have a size range of from 0.05 to 10mm. More preferably the particle size is between 0.1 and 2mm. The granule size can be measured for example using graded sieves.
  • the alginate granule comprises:
  • Alginate is the general name for alginic acid and its salts. Alginates are linear polysaccharides made up from ⁇ -1,4 linked D-mannuronate (M) residues and its C-5 epimer, ⁇ -1,4 linked L-guluronate (G) residues. The alginates have a block polymeric arrangement of these M and G residues along the linear chain. The arrangement of these blocks can be described as being blocks of repeating M residues, repeating G residues, or alternating M and G residues.
  • the ratio of mannuronate to guluronate residues present in the alginate is well known in the art as the M:G ratio.
  • the M:G ratio of the alginate can vary due to the source or growth conditions of the alginate.
  • One common alginate source is brown seaweed (Phaeophyceae).
  • the M:G ratio of the alginate used in the present invention is preferably from 0.1:1 to less than 1:1, for example 0.1:1 to 0.99:1. This means that the alginates used herein preferably contain a greater number of G residues than M residues.
  • the M:G ratio is more preferably 0.1:1 to 0.8:1, even more preferably from 0.2:1 to 0.8:1.
  • Certain embodiments of the alginate granules of the present invention may comprise alginate having an M:G ratio of from 0.25 to 0.75. Suitable sources for these alginates are those obtained from the fronds and stipes of Laminaria hyperborea.
  • the alginate granules comprise preferably alginate with a M:G as defined above. More preferably all of the alginate present in the granule has the aforementioned M:G ratios.
  • the molecular weight of the alginate can be between 1,000 to 3,000,000 Daltons.
  • the alginate is used in the form of a sodium salt.
  • Suitable alginates with the preferred M:G ratio are available under the "Manugel” trade name from International Speciality Products, for example “Manugel GMB”; “Protonal” from FMC Biopolymer; and, “Satialgine”, “Cecalgum” and “Algogel” from Texturant Systems.
  • the alginate is present in the granule at a level of from 30 to 80 wt.%.
  • the cationic species form the gelled cross-linked matrix with the alginate.
  • the cationic species is a divalent or polyvalent metal cation.
  • the cationic species forms a gelled network with alginate.
  • the cationic species is a calcium salt (e.g. calcium chloride).
  • the cationic species is present in the granule at a level of fron 10 to 30 wt.%.
  • Citric acid as used herein incorporates the free acid itself as well as its various anionic forms.
  • the citric acid is incorporated in the alginate granule as the free acid.
  • the citric acid is present in the granule at a level of from 5 to 30 wt.%.
  • the fabric benefit agent is selected from the group consisting of: chlorine/oxygen scavengers, antioxidants, non-calcium binding sequestrants, perfumes, antimicrobial agents, antibacterial agents, antifungal agents, lubricants, UV absorbers, shading dyes, fluorescent whitening agents, dispersants, anti-redeposition agents, soil release agents, enzymes (for removing fuzz or pills or preventing staining), dye transfer inhibitors, dye binders, dye fixers, softeners, or crystal growth inhibitors.
  • the fabric benefit agent may also be a mixture of two or more of the aforementioned benefit agents.
  • the fabric benefit agent is selected from the group consisting of: mild reducing agents, non-calcium binding sequestrants, perfumes, fluorescent whitening agents, shading dyes, antimicrobial agents or mixtures thereof.
  • the inclusion level of the fabric benefit agent(s) in the granules is dependant on the amount that is required to achieve the benefit required, the release profile of the agent(s) and the calcium level. Typical ranges of fabric benefit agents in the alginate granule are from 0.001 to 60wt.% of the granule.
  • the inclusion level can preferably be between 0.001% to 20wt.% of the granule.
  • a suitable process for making the alginate granules of the invention includes the steps of:-
  • citric acid is also present in the second solution.
  • the solution can use any suitable solvent. Water is preferred.
  • the alginate granule is suitably delivered to the fabric via incorporation into laundry detergent composition.
  • Suitable laundry detergent compositions comprise from 0.1 to 25 wt.% of the alginate granule and from 2 to 70 wt.% of a surfactant and from 1 to 70 wt.% of a builder.
  • the alginate granules are present in the laundry detergent composition at a level of from 0.1 to 25 wt.%, preferably from 0.5 to 10 wt.%.
  • the laundry treatment composition may take the form of an isotropic liquid, a surfactant-structured liquid, a granular, spray-dried or dry-blended powder, a tablet, a paste, a molded solid or any other laundry detergent form known to those skilled in the art.
  • the composition is preferably a liquid or granular laundry composition, most preferably a granular laundry composition.
  • Preferred laundry detergent composition forms which are particularly suitable in combination with the alginate granules of the invention are granular, spray-dried or dry-blended powder compositions.
  • the laundry detergent composition comprises between 2 to 70 wt.% of a surfactant, most preferably 10 to 30 wt.%.
  • a surfactant most preferably 10 to 30 wt.%.
  • the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described " Surface Active Agents" Vol. 1, by Schwartz & Perry, Interscience 1949 , Vol. 2 by Schwartz, Perry & Berch, Interscience 1958 , in the current edition of "McCutcheon's Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in " Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 .
  • the surfactants used are saturated.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
  • Specific nonionic detergent compounds are C 6 to C 22 alkyl phenol-ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic C 8 to C 18 primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO.
  • Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C 8 to C 18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C 9 to C 20 benzene sulphonates, particularly sodium linear secondary alkyl C 10 to C 15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the preferred anionic detergent compounds are sodium C 11 to C 15 alkyl benzene sulphonates and sodium C 12 to C 18 alkyl sulphates.
  • surfactants such as those described in EP-A-328 177 (Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074 , and alkyl monoglycosides.
  • Preferred surfactant systems are mixtures of anionic with nonionic detergent active materials, in particular the groups and examples of anionic and nonionic surfactants pointed out in EP-A-346 995 (Unilever).
  • surfactant system that is a mixture of an alkali metal salt of a C 16 to C 18 primary alcohol sulphate together with a C 12 to C 15 primary alcohol 3 to 7 EO ethoxylate.
  • the nonionic detergent is preferably present in amounts greater than 10%, e.g. 25 to 90 wt.% of the surfactant system.
  • Anionic surfactants can be present for example in amounts in the range from about 5 wt.% to about 40 wt.% of the surfactant system.
  • the laundry detergent composition may comprise from 1 to 70 wt.% of a builder.
  • the level of builder is preferably from 1 to 40 wt.%.
  • Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • the size is in the range 0.1 to 10 microns (as measured by The Mastersizer 2000 particle size analyzer using laser diffraction ex MalvernTM).
  • calcium sequestrant builder materials examples include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetraacetic acid.
  • precipitating builder materials examples include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
  • zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
  • the composition may also contain 0-50 wt.% of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
  • Zeolite and carbonate are preferred builders.
  • the composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15 wt.%.
  • Aluminosilicates are materials having the general formula: 0.8-1.5 M 2 O. Al 2 O 3 . 0.8-6 SiO 2 where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g.
  • the preferred sodium aluminosilicates contain 1.5-3.5 SiO 2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
  • the ratio of surfactants to aluminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • phosphate builders may be used.
  • 'phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
  • the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt.% of phosphate.
  • the laundry detergent composition preferably comprises a blue or violet shading agent in the range from 0.0001 to 0.01 wt.%.
  • the shading agents reduce the perception of damage to many coloured garments and increase whiteness of white garments.
  • the shading agents are preferably selected from blue and violet dyes of the solvent disperse basic, direct and acid type listed in the colour index ( Society of Dyers and Colourists and American Association of Textile Chemists and Colorists 2002 ).
  • a direct violet or direct blue dyes is present.
  • the dyes are bis-azo, tris-azo dyes or triphendioxazine dye.
  • the carcinogenic benzidene based dyes are not preferred.
  • Bis-azo copper containing dyes such as direct violet 66 may be used.
  • the most preferred bis-azo dyes have the following structure: or wherein:
  • Preferred bis-azo dyes are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, and direct violet 99.
  • Preferred solvent and disperse dyes are selected from, mono-azo or anthraquinone dyes, most preferably, solvent violet 13, disperse violet 27 disperse violet 26, disperse violet 28, disperse violet 63 and disperse violet 77.
  • a preferred pigment is pigment violet 23.
  • the laundry detergent composition preferably comprises one or more enzymes which provide cleaning performance and/or fabric care benefits.
  • suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases,-lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, arabinosidases, hyaluronidase, chondroitinase, laccase, and amylases, or mixtures thereof.
  • a typical combination is an enzyme cocktail that may comprise, for example, a protease and lipase in conjunction with amylase.
  • the aforementioned additional enzymes may be present at levels from about 0.00001 wt.% to about 2 wt.%, from about 0.0001 wt.% to about 1 wt.% or even from about 0.001 wt.% to about 0.5 wt.% enzyme protein by weight of the composition.
  • Preferred enzymes are cellulases.
  • the laundry detergent composition preferably comprises a fluorescent agent (optical brightener).
  • fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • the total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt.%, more preferably 0.01 to 0.1 wt.%.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Diamine stilbene di-sulphonic acid compounds, e.g.
  • Preferred fluorescers are: sodium 2-(4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]trazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfoslyryl)biphenyl.
  • the laundry detergent composition comprises a perfume.
  • the perfume is preferably in the range from 0.001 to 3 wt.%, most preferably 0.1 to 1 wt.%.
  • CTFA Cosmetic, Toiletry and Fragrance Association
  • Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]).
  • Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • Perfume and top note may be used to cue the whiteness benefit of the invention.
  • the laundry detergent composition may comprise one or more polymers.
  • Examples are carboxymethylcellulose, poly(ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • compositions in the form of a liquid it is useful to include a hydrotrope, which prevents liquid crystal formation.
  • Suitable hydrotropes include but are not limited to propylene glycol, ethanol, urea, salts of benzene sulphonate, toluene sulphonate, xylene sulphonate or cumene sulphonate.
  • Suitable salts include but are not limited to sodium, potassium, ammonium, monoethanolamine, triethanolamine.
  • the hydrotrope is selected from the group consisting of propylene glycol, xylene sulfonate, ethanol, and urea to provide optimum performance.
  • the amount of the hydrotrope is generally in the range of from 0 to 30%, preferably from 0.5 to 30%, more preferably from 0.5 to 30%, most preferably from 1 to 15%.
  • the laundry detergent compositions may also suitably contain a bleach system. If bleach is present, then it is preferred that the compositions of the invention contain peroxy bleach compounds capable of yielding hydrogen peroxide in aqueous solution, for example inorganic or organic peroxyacids, and inorganic persalts such as the alkali metal perborates, percarbonates, perphosphates, persilicates and persulphates. Bleach ingredients are generally post-dosed as powders.
  • the peroxy bleach compound for example sodium percarbonate
  • the peroxy bleach compound is suitably present in an amount of from 5 to 35 wt.%, preferably from 10 to 25 wt.%.
  • the peroxy bleach compound for example sodium percarbonate
  • the bleach precursor is suitably present in an amount of from 1 to 8 wt.%, preferably from 2 to 5 wt.%.
  • Preferred bleach precursors are peroxycarboxylic acid precursors, more especially peracetic acid precursors and peroxybenzoic acid precursors; and peroxycarbonic acid precursors.
  • An especially preferred bleach precursor suitable for use in the present invention is N, N, N', N'-tetracetyl ethylenediamine (TAED).
  • a bleach stabiliser may also be present.
  • Suitable bleach stabilisers include ethylenediamine tetraacetate (EDTA), ethylenediamine disuccinate (EDDS), and the aminopolyphosphonates such as ethylenediamine tetramethylene phosphonate (EDTMP) and diethylenetriamine pentamethylene phosphonate (DETPMP).
  • the granules were then removed from the hardening bath using a 1mm sieve and oven dried at 60°C to constant weight.
  • the benefit agent release profile of the three batches of the alginate granules was then measured by placing 1g of granules into 500ml demineralised water adjusted to either pH 4, 7 or 10. The solution was pumped thorough a 10mm quartz flowcell mounted in a Hewlett-Packard 8453 diode array Uv/Vis Spectrophotometer ® . The release of Acid Blue 80 was measured by absorption at 629nm over a period of 90 minutes at room temperature.
  • Granule dissolution in a washing machine was assessed using the "black sachet" test, which reproduces the conditions experienced by a granule if it becomes caught in a pocket and is thus suffers less mechanical abrasion than if it was mobile inside the drum.
  • 1g of the various alginate granules was placed in between two pieces of black woven cotton and all edges overlocked, thus preventing the alginate granules from escaping.
  • the sachet was then attached to a 100x50cm panel of woven cotton sheeting to prevent it becoming lodged in the door seal of the washing machine.
  • the panel was then placed in a washing machine along with 800g woven cotton sheeting, 800g of knitted cotton and 800g of 65:35 woven cotton:polyester.
  • the particles of batch 1 are considered a fair representation of the disclosure of WO 2007/009621 , in that they contain alginate, benefit agent and calcium.
  • the particles of batches 2 and 3 are according to the invention, and show the benefit of adding citric acid as part of the actual particle, as opposed to relying on sequestrant present in the detergent compositions to aid dissolution of the particle.
  • the alginate granules that contained citric acid as part of the granule itself exhibited significantly improved performance in that there were reduced or no residues after washing. This the technical advantage in terms of reduced residues for the incorporation of citric acid in a granule according to the invention as opposed to the prior art disclosures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Molecular Biology (AREA)
  • Detergent Compositions (AREA)

Claims (10)

  1. Granule d'alginate comprenant :
    (a) de 30 à 80 % en poids d'alginate ;
    (b) de 10 à 30 % d'une ou plusieurs espèces cationiques qui sont un cation métallique divalent ou polyvalent ;
    (c) de 5 à 30 % d'acide citrique ; et
    (d) un ou plusieurs agents bénéfiques pour les tissus.
  2. Granule d'alginate selon la revendication 1, dans lequel l'alginate possède un rapport de résidu mannuronate au résidu guluronate (rapport M:G) de 0,1:1 à moins de 1:1, de préférence de 0,1:1 à 0,8:1, plus préférablement de 0,2:1 à 0,8:1.
  3. Granule d'alginate selon la revendication 1 ou la revendication 2, dans lequel l'espèce cationique est le calcium.
  4. Granule d'alginate selon l'une quelconque des revendications précédentes, dans lequel l'agent bénéfique pour les tissus est choisi dans le groupe constitué par : les piégeurs de chlore/oxygène, les antioxydants, les séquestrants de liaison non calciques, les parfums, les agents antimicrobiens, les agents antibactériens, les agents antifongiques, les lubrifiants, les absorbeurs d'UV, les colorants de nuançage, les agents de blanchiment fluorescents, les dispersants, les agents antiredéposition, les agents anti-salissures, les enzymes (pour éliminer les duvets ou les bouloches ou empêcher les tâches), les inhibiteurs de transfert de colorant, les séquestrants de colorant, les fixateurs de colorant, les assouplissants, les inhibiteurs de la croissance de cristaux, ou des mélanges de ceux-ci.
  5. Granule d'alginate selon la revendication 4, dans lequel l'agent bénéfique pour les tissus est choisi dans le groupe constitué par : les agents de réduction doux, les séquestrants, les parfums, les agents de blanchiment fluorescents, les colorants de nuançage, les agents antimicrobiens ou des mélanges de ceux-ci.
  6. Granule d'alginate selon l'une quelconque des revendications précédentes, dans lequel l'agent bénéfique pour les tissus est soluble dans l'eau.
  7. Composition détergente pour le linge comprenant :
    (i) de 0,1 à 25 % en poids du granule d'alginate selon l'une quelconque des revendications 1 à 6,
    (ii) de 2 à 70 % en poids d'un tensioactif ; et
    (iii) de 1 à 70 % en poids d'un adjuvant.
  8. Utilisation d'un granule d'alginate selon l'une quelconque des revendications 1 à 6, pour délivrer un agent bénéfique pour les tissus sur un textile pendant le procédé de lavage du linge.
  9. Procédé de préparation d'un granule d'alginate selon l'une quelconque des revendications 1 à 6, comprenant les étapes suivantes :
    a) approvisionnement d'une première solution comprenant un mélange d'alginate, d'acide citrique, et d'un ou plusieurs agents bénéfiques ;
    b) formation de gouttelettes de la première solution ; et
    c) mise en contact desdites gouttelettes avec une seconde solution comprenant une espèce cationique qui est un cation métallique divalent ou polyvalent.
  10. Procédé selon la revendication 9, dans lequel l'alginate possède un rapport de résidu mannuronate au résidu guluronate (rapport M:G) de 0,1:1 1 à moins de 1:1.
EP09793904.5A 2008-07-09 2009-06-17 Compositions de lavage Not-in-force EP2297288B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09793904.5A EP2297288B1 (fr) 2008-07-09 2009-06-17 Compositions de lavage

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08160024 2008-07-09
PCT/EP2009/057537 WO2010003792A1 (fr) 2008-07-09 2009-06-17 Compositions de blanchisserie
EP09793904.5A EP2297288B1 (fr) 2008-07-09 2009-06-17 Compositions de lavage

Publications (2)

Publication Number Publication Date
EP2297288A1 EP2297288A1 (fr) 2011-03-23
EP2297288B1 true EP2297288B1 (fr) 2013-05-08

Family

ID=39951625

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09793904.5A Not-in-force EP2297288B1 (fr) 2008-07-09 2009-06-17 Compositions de lavage

Country Status (7)

Country Link
EP (1) EP2297288B1 (fr)
CN (1) CN102083952B (fr)
BR (1) BRPI0914211A2 (fr)
CL (1) CL2010001323A1 (fr)
ES (1) ES2424793T3 (fr)
WO (1) WO2010003792A1 (fr)
ZA (1) ZA201008049B (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2806062A1 (fr) * 2013-05-13 2014-11-26 Whirlpool Corporation Procédés et compositions de traitement de pièces de linge
WO2017003025A1 (fr) * 2015-07-01 2017-01-05 한국생산기술연구원 Procédé amélioré pour préparer un adsorbant d'humidité hybride de zéolite-chlorure de métal, et adsorbant d'humidité préparé par ce dernier, et procédé pour préparer une composition d'adsorbant d'humidité pour revêtement de surface le comprenant
US9624615B2 (en) 2013-03-15 2017-04-18 Whirlpool Corporation Methods and compositions for treating laundry items
US9702074B2 (en) 2013-03-15 2017-07-11 Whirlpool Corporation Methods and compositions for treating laundry items

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX349735B (es) 2010-04-26 2017-08-10 Novozymes As Granulos de enzima.
EP2721137B1 (fr) 2011-06-20 2017-11-01 Novozymes A/S Composition particulaire
JP6126086B2 (ja) 2011-06-24 2017-05-10 ノボザイムス アクティーゼルスカブ プロテアーゼ活性を有するポリペプチドおよびこれをコードするポリヌクレオチド
KR20140041801A (ko) 2011-06-30 2014-04-04 노보자임스 에이/에스 알파-아밀라제 스크리닝 방법
WO2013007594A1 (fr) 2011-07-12 2013-01-17 Novozymes A/S Granulés enzymatiques stables au stockage
US9000138B2 (en) 2011-08-15 2015-04-07 Novozymes A/S Expression constructs comprising a Terebella lapidaria nucleic acid encoding a cellulase, host cells, and methods of making the cellulase
CN104204200B (zh) 2011-09-22 2017-06-09 诺维信公司 具有蛋白酶活性的多肽和编码它们的多核苷酸
JP2015500006A (ja) 2011-11-25 2015-01-05 ノボザイムス アクティーゼルスカブ サブチラーゼ変異体およびこれをコードするポリヌクレオチド
MX2014007446A (es) 2011-12-20 2014-08-01 Novozymes As Variantes de subtilasa y polinucleotidos que las codifican.
CN104350149A (zh) 2012-01-26 2015-02-11 诺维信公司 具有蛋白酶活性的多肽在动物饲料和洗涤剂中的用途
MX350713B (es) 2012-02-17 2017-09-14 Novozymes As Variantes de subtilisina y polinucleotidos que las codifican.
CN104704102A (zh) 2012-03-07 2015-06-10 诺维信公司 洗涤剂组合物和洗涤剂组合物中光增亮剂的取代
CN113201519A (zh) 2012-05-07 2021-08-03 诺维信公司 具有黄原胶降解活性的多肽以及编码其的核苷酸
AU2013279440B2 (en) 2012-06-20 2016-10-06 Novozymes A/S Use of polypeptides having protease activity in animal feed and detergents
WO2014096259A1 (fr) 2012-12-21 2014-06-26 Novozymes A/S Polypeptides possédant une activité protéasique et polynucléotides codant pour ceux-ci
US9902946B2 (en) 2013-01-03 2018-02-27 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2014183921A1 (fr) 2013-05-17 2014-11-20 Novozymes A/S Polypeptides présentant une activité alpha-amylase
CN118813589A (zh) 2013-06-06 2024-10-22 诺维信公司 α-淀粉酶变体以及对其进行编码的多核苷酸
WO2014207224A1 (fr) 2013-06-27 2014-12-31 Novozymes A/S Variants de subtilase et polynucléotides codant pour ceux-ci
CN105874067A (zh) 2013-06-27 2016-08-17 诺维信公司 枯草杆菌酶变体以及编码它们的多核苷酸
WO2015001017A2 (fr) 2013-07-04 2015-01-08 Novozymes A/S Polypeptides présentant un effet anti-redéposition et polynucléotides codant pour ceux-ci
EP2832853A1 (fr) 2013-07-29 2015-02-04 Henkel AG&Co. KGAA Composition détergente comprenant des variantes de protéases
US9926550B2 (en) 2013-07-29 2018-03-27 Novozymes A/S Protease variants and polynucleotides encoding same
US10150957B2 (en) 2013-07-29 2018-12-11 Novozymes A/S Protease variants and polynucleotides encoding same
EP3039113B1 (fr) * 2013-08-28 2019-12-04 Novozymes A/S Granulés enzymatiques avec agent de blanchiment fluorescent
WO2015049370A1 (fr) 2013-10-03 2015-04-09 Novozymes A/S Composition détergente et utilisation de celle-ci
EP3083954B1 (fr) 2013-12-20 2018-09-26 Novozymes A/S Polypeptides a activite de protease et polynucleotides les codant
US20160333292A1 (en) 2014-03-05 2016-11-17 Novozymes A/S Compositions and Methods for Improving Properties of Cellulosic Textile Materials with Xyloglucan Endotransglycosylase
CN106062270A (zh) 2014-03-05 2016-10-26 诺维信公司 使用木葡聚糖内糖基转移酶改进非纤维素纺织材料的性质的组合物和方法
WO2015150457A1 (fr) 2014-04-01 2015-10-08 Novozymes A/S Polypeptides présentant une activité alpha-amylase
US20170121695A1 (en) 2014-06-12 2017-05-04 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
US10626388B2 (en) 2014-07-04 2020-04-21 Novozymes A/S Subtilase variants and polynucleotides encoding same
CN106661566A (zh) 2014-07-04 2017-05-10 诺维信公司 枯草杆菌酶变体以及编码它们的多核苷酸
WO2016079305A1 (fr) 2014-11-20 2016-05-26 Novozymes A/S Variants de alicyclobacillus et polynucléotides codant pour ceux-ci
EP3690037A1 (fr) 2014-12-04 2020-08-05 Novozymes A/S Variants de subtilase et polynucléotides codant pour ceux-ci
ES2763235T3 (es) 2014-12-15 2020-05-27 Henkel Ag & Co Kgaa Composición detergente que comprende variantes de subtilasa
EP3106508B1 (fr) 2015-06-18 2019-11-20 Henkel AG & Co. KGaA Composition détergente comprenant des variantes de subtilase
US11162089B2 (en) 2015-06-18 2021-11-02 Novozymes A/S Subtilase variants and polynucleotides encoding same
CN108291215A (zh) 2015-10-14 2018-07-17 诺维信公司 具有蛋白酶活性的多肽以及编码它们的多核苷酸
CN108291212A (zh) 2015-10-14 2018-07-17 诺维信公司 多肽变体
EP3464582A1 (fr) 2016-06-03 2019-04-10 Novozymes A/S Variants de subtilase et polynucléotides codant pour ceux-ci
EP3485010B1 (fr) 2016-07-13 2024-11-06 The Procter & Gamble Company Variants dnase de bacillus cibi et leurs utilisations
HUE057832T2 (hu) 2017-10-27 2022-06-28 Procter & Gamble Polipeptid-variánsokat tartalmazó mosószerkészítmények
US20230416706A1 (en) 2017-10-27 2023-12-28 Novozymes A/S Dnase Variants
EP3781660A1 (fr) 2018-04-17 2021-02-24 Novozymes A/S Polypeptides ayant une activité de liaison des hydrates de carbone dans des compositions détergentes et leur utilisation pour réduire les plis de textiles ou de tissus
MX2021011287A (es) 2019-03-21 2021-10-13 Novozymes As Variantes de alfa-amilasa y polinucleotidos que codifican las mismas.
US12247237B2 (en) 2019-04-10 2025-03-11 Novozymes A/S Polypeptide variants
EP4022019A1 (fr) 2019-08-27 2022-07-06 Novozymes A/S Composition détergente
CN114616312A (zh) 2019-09-19 2022-06-10 诺维信公司 洗涤剂组合物
WO2021064068A1 (fr) 2019-10-03 2021-04-08 Novozymes A/S Polypeptides comprenant au moins deux domaines de liaison aux hydrates de carbone
EP3892708A1 (fr) 2020-04-06 2021-10-13 Henkel AG & Co. KGaA Compositions de nettoyage comprenant des variantes de dispersine
WO2022074037A2 (fr) 2020-10-07 2022-04-14 Novozymes A/S Variants d'alpha-amylase
WO2022171780A2 (fr) 2021-02-12 2022-08-18 Novozymes A/S Variants d'alpha-amylase
WO2022268885A1 (fr) 2021-06-23 2022-12-29 Novozymes A/S Polypeptides d'alpha-amylase
WO2024131880A2 (fr) 2022-12-23 2024-06-27 Novozymes A/S Composition détergente comprenant une catalase et une amylase

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218303A (ja) * 1989-09-26 1991-09-25 Kirin Brewery Co Ltd 改良アルギン酸塩ゲルビーズ
AR043906A1 (es) * 2003-02-22 2005-08-17 Reckitt Benckiser Inc Composiciones limpiadoras para superficies duras
GB0514716D0 (en) * 2005-07-19 2005-08-24 Unilever Plc Process to form fabric softening particle,particle obtained and its use
EP2099889B1 (fr) * 2007-01-12 2010-07-14 Unilever PLC Compositions de lavage du linge

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9624615B2 (en) 2013-03-15 2017-04-18 Whirlpool Corporation Methods and compositions for treating laundry items
US9631310B2 (en) 2013-03-15 2017-04-25 Whirlpool Corporation Methods and compositions for treating laundry items
US9644301B2 (en) 2013-03-15 2017-05-09 Whirlpool Corporation Methods and compositions for treating laundry items
US9689101B2 (en) 2013-03-15 2017-06-27 Whirlpool Corporation Methods and compositions for treating laundry items
US9702074B2 (en) 2013-03-15 2017-07-11 Whirlpool Corporation Methods and compositions for treating laundry items
US9758914B2 (en) 2013-03-15 2017-09-12 Whirlpool Corporation Methods and compositions for treating laundry items
US10011935B2 (en) 2013-03-15 2018-07-03 Whirlpool Corporation Methods and compositions for treating laundry items
US10017893B2 (en) 2013-03-15 2018-07-10 Whirlpool Corporation Methods and compositions for treating laundry items
US10072373B2 (en) 2013-03-15 2018-09-11 Whirlpool Corporation Methods and compositions for treating laundry items
US10266981B2 (en) 2013-03-15 2019-04-23 Whirlpool Corporation Methods and compositions for treating laundry items
EP2806062A1 (fr) * 2013-05-13 2014-11-26 Whirlpool Corporation Procédés et compositions de traitement de pièces de linge
WO2017003025A1 (fr) * 2015-07-01 2017-01-05 한국생산기술연구원 Procédé amélioré pour préparer un adsorbant d'humidité hybride de zéolite-chlorure de métal, et adsorbant d'humidité préparé par ce dernier, et procédé pour préparer une composition d'adsorbant d'humidité pour revêtement de surface le comprenant

Also Published As

Publication number Publication date
ES2424793T3 (es) 2013-10-08
CL2010001323A1 (es) 2011-04-08
BRPI0914211A2 (pt) 2015-11-03
CN102083952B (zh) 2013-04-10
WO2010003792A1 (fr) 2010-01-14
EP2297288A1 (fr) 2011-03-23
ZA201008049B (en) 2012-02-29
CN102083952A (zh) 2011-06-01

Similar Documents

Publication Publication Date Title
EP2297288B1 (fr) Compositions de lavage
EP2252680B1 (fr) Composition de traitement de lessive comportant des lubrifiants polymériques
EP2300589B1 (fr) Composition de nuançage
EP2252678B2 (fr) Compositions de traitement du linge
EP2534206B1 (fr) Polymères colorants
EP2294169B1 (fr) Compositions de traitement du linge
EP2488622B1 (fr) Polymères colorants
WO2011098356A1 (fr) Composition de traitement de blanchisserie comportant des colorants d'ombrage diazo
WO2012098046A1 (fr) Polymère colorant pour traitement du linge
EP2103677A1 (fr) Compositions de traitement de blanchisserie
EP2427540B1 (fr) Composition d'ombrage
CN102549137B (zh) 遮蔽组合物
EP2360232A1 (fr) Taux d'agent tensioactif dans des détergents pour la lessive contenant un colorant
EP2521764B1 (fr) Formulation de détergent contenant des granules séchées par atomisation
EP2252681B2 (fr) Compositions de traitement de blanchisserie
EP2331670B1 (fr) Colorants cationiques à l'isothiazolium
CN108699490B (zh) 增白组合物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 611109

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009015622

Country of ref document: DE

Effective date: 20130704

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2424793

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20131008

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 611109

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130508

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130808

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130809

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130808

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20140211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130617

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009015622

Country of ref document: DE

Effective date: 20140211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090617

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130617

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160621

Year of fee payment: 8

Ref country code: ES

Payment date: 20160614

Year of fee payment: 8

Ref country code: GB

Payment date: 20160621

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20160527

Year of fee payment: 8

Ref country code: FR

Payment date: 20160627

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160628

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009015622

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170617

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170617

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170617

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170617