[go: up one dir, main page]

EP2264385B1 - Refrigeration cycle and method of operating a refrigerating cycle - Google Patents

Refrigeration cycle and method of operating a refrigerating cycle Download PDF

Info

Publication number
EP2264385B1
EP2264385B1 EP10181303.8A EP10181303A EP2264385B1 EP 2264385 B1 EP2264385 B1 EP 2264385B1 EP 10181303 A EP10181303 A EP 10181303A EP 2264385 B1 EP2264385 B1 EP 2264385B1
Authority
EP
European Patent Office
Prior art keywords
line
refrigerant
refrigeration circuit
compressor unit
collecting container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10181303.8A
Other languages
German (de)
French (fr)
Other versions
EP2264385A3 (en
EP2264385A2 (en
Inventor
Bernd Heinbokel
Andreas Gernemann
Uwe Schierhorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Kaeltetechnik Deutschland GmbH
Original Assignee
Linde Kaeltetechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004038640A external-priority patent/DE102004038640A1/en
Application filed by Linde Kaeltetechnik GmbH filed Critical Linde Kaeltetechnik GmbH
Publication of EP2264385A2 publication Critical patent/EP2264385A2/en
Publication of EP2264385A3 publication Critical patent/EP2264385A3/en
Application granted granted Critical
Publication of EP2264385B1 publication Critical patent/EP2264385B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/04Desuperheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the invention relates to a refrigeration cycle in which a one- or multi-component refrigerant circulates, comprising in the flow direction a condenser, a collecting container, an expansion device upstream of an evaporator, an evaporator and a compressor unit.
  • the invention relates to a method for operating a refrigeration cycle.
  • liquefier should be understood to mean both liquefier and gas cooler.
  • Composite refrigerators generally supply a large number of refrigeration consumers, such as refrigerators, refrigerators and freezers. For this purpose circulates in them a one- or multi-component refrigerant or refrigerant mixture.
  • a counting of the prior art refrigeration cycle or a refrigeration system in which such a refrigeration cycle is realized, is based on the in the FIG. 1 illustrated embodiment explained in more detail.
  • the circulating in the refrigeration cycle one- or multi-component refrigerant is in a condenser or gas cooler A - hereinafter referred to only as a condenser - which is usually outside the supermarket, for example, on the roof, arranged by heat exchange, preferably against outside air, condensed.
  • the refrigerant passes through the liquid line D to the cold consumers of the so-called normal cooling circuit.
  • the in the FIG. 1 represented consumers F and F 'for any number of consumers of the normal refrigeration cycle.
  • Each of the aforementioned refrigeration consumers is preceded by an expansion valve E or E ', in which the refrigerant flowing into the refrigeration appliance or the evaporator or the evaporator of the refrigeration consumer is expanded.
  • the so-relaxed refrigerant is evaporated in the evaporators of the refrigerant consumers F and F 'and thus cools the corresponding refrigeration cabinets and rooms.
  • the refrigerant evaporated in the refrigeration consumers F and F 'of the normal refrigeration cycle is then fed via the suction line G to the compressor unit H and compressed therein to the desired pressure between 10 and 25 bar.
  • the compressor unit H is designed to be single-stage and has several compressors connected in parallel.
  • the compressed in the compressor unit H refrigerant is then fed via the pressure line I in turn to the aforementioned condenser A.
  • a second liquid line D ' is the condenser C refrigerant supplied to the condenser K and evaporated in this heat exchange with the refrigerant of the still to be explained Tiefkühlniklaufes before it is fed via the line G' of the compressor unit H.
  • the liquefied in the condenser K refrigerant of the freezing circuit is supplied via line L to the collector M of the freezing circuit.
  • the refrigerant to the consumer P - this is for any number of consumers -, which is preceded by a relaxation device O, supplied and evaporated in this.
  • the suction line Q the vaporized refrigerant is fed to the single or multi-stage compressor unit R, compressed in this to a pressure between 25 and 40 bar and then fed via the pressure line S to the aforementioned capacitor K.
  • R 404A As a refrigerant of the normal refrigeration cycle, for example, R 404A is used, while for the freezing cycle carbon dioxide is used.
  • compressor units H and R, the collector C and M and the capacitor K are usually arranged in a separate machine room.
  • about 80 to 90% of the entire pipeline network is located in the sales rooms, the storage areas or other areas of a supermarket accessible to employees and customers.
  • this line network operates at pressures of no more than 35 to 40 bar, this is acceptable to the supermarket operators both from a psychological point of view and for cost reasons.
  • Object of the present invention is to provide a generic refrigeration cycle and a method for operating a refrigeration cycle, which avoids the disadvantages mentioned.
  • a refrigeration cycle which is characterized in that between the condenser and the collecting container, an intermediate-expansion device is arranged.
  • the object is achieved in that in the intermediate between the condenser and the collecting intermediate relaxation device, a relaxation of the refrigerant to an (intermediate) pressure of 5 to 40 bar.
  • the refrigerator / refrigerator includes a liquid line for conducting liquid refrigerant separated by the gas-liquid separator to the evaporator; and a gas conduit for conducting gaseous refrigerant separated from the gas-liquid separator to an inlet side of the compressor, the gas conduit being in heat exchange with a conduit section between the outlet side of the compressor and an inlet of the condenser.
  • a refrigeration cycle, and a method for operating a refrigeration cycle and other embodiments thereof are the same below with reference to in the Figures 2 and 3 shown embodiments explained in more detail, wherein the FIG. 4 shows a refrigeration cycle according to the invention.
  • FIG. 2 a composite refrigeration system in which a possible embodiment of a refrigeration cycle is realized.
  • a procedure is described in which as a refrigerant HFC (s), HFC (s) or CO 2 can be used.
  • the compressed in the compressor unit 6 to a pressure between 10 and 120 bar refrigerant is supplied via the pressure line 7 to the condenser or gas cooler 1 and condensed in this against outside air or deprived.
  • the refrigerant is supplied to the refrigerant collector 3 via the lines 2, 2 'and 2 ", but according to the invention it is expanded in the intermediate expansion device a to an intermediate pressure of 5 to 40 bar and the collector 3 need only be designed for a lower pressure position
  • the pressure to which the refrigerant in the mentioned intermediate expansion device a is relieved is preferably selected so that it is still below the lowest expected condensing pressure.
  • the pressure line 7 with the collecting container 3, preferably with the gas space, connected or connectable can take place, for example, via a connecting line 17, in which an expansion valve h is arranged.
  • the pressure line 7 is connected or connectable to the line or line sections 2 or 2 ', 2 "connecting the condenser 1 and the collecting container 3.
  • This connection between the pressure line 7 and the line 2 or 2 ', 2 " can be done, for example, via the connecting line 18 shown in dashed lines, in which a valve j is arranged.
  • a refrigeration cycle of the collecting container 3 preferably the gas space, connected to the input of the compressor unit 6 or connectable.
  • This connection between the collecting container 3 and the input of the compressor unit 6 can, for example, via a connecting line 12, as in the FIG. 2 shown, in the suction line 11 opens, done.
  • the selected intermediate pressure can now be kept constant for all operating conditions.
  • a regulation is also possible in such a way that there is a constant difference value to the suction pressure. This ensures that the throttle steam fraction at the evaporators is comparatively small, with the result that the liquid and suction lines can be dimensioned correspondingly smaller.
  • This also applies to the condensate line, since now no gaseous components have to flow through them back into the condenser 1.
  • refrigerant is withdrawn from the collector 3 and the refrigerant consumers or their heat exchangers E2 and E3 supplied. This is preceded by a respective expansion valve b and c, in which the refrigerant flowing into the refrigeration consumer is expanded.
  • the refrigerant evaporated in the refrigeration consumers E2 and E3 is then fed back to the compressor unit 6 via the suction line 5 or sucked out of the evaporators E2 and E3 by the latter.
  • a portion of the withdrawn from the collector 3 via line 4 refrigerant is fed via line 8 to one or more frozen consumers - represented by the heat exchanger E4 -, which is also preceded by an expansion valve d supplied.
  • this partial refrigerant flow is fed via the suction line 9 to the compressor unit 10 and compressed therein to the inlet pressure of the compressor unit 6.
  • the thus compressed refrigerant partial stream is then fed via line 11 to the input side of the compressor unit 6.
  • a heat exchanger E1 can be connected upstream.
  • the heat exchanger E1 is preferably connected on the input side to the output of the condenser 1 or connectable.
  • a partial flow of the liquefied or desiccant refrigerant can now be withdrawn from the condenser or gas cooler 1 or line 2 via line 13, in which an expansion valve f is provided, and in the heat exchanger E1 against the heat exchanger E1 to be heated via line 2 'supplied refrigerant to be evaporated.
  • the vaporized refrigerant partial stream is then fed via line 14 to a compressor 6 ', which is associated with the above-described compressor unit 6 and which preferably sucks at a higher pressure level, and in this compressed to the desired final pressure of the compressor unit 6.
  • the refrigerant stream to be expanded in the intermediate expansion device a is preferably cooled to such an extent that the throttled vapor portion of the expanded refrigerant is minimized.
  • the resulting in the collector 3 throttle steam fractions can be sucked off via the line 12 and the dashed line 15 by means of the compressor 6 'at a higher pressure level.
  • FIG. 3 1 shows an embodiment of a refrigeration cycle or a method for operating a refrigeration cycle, in which the refrigerant drawn off from the collecting container 3 via the line 4 is subjected to supercooling in the heat exchanger E5.
  • the subcooling takes place - in accordance with an advantageous embodiment - in heat exchange with the flash gas withdrawn from the collecting container 3 via line 12.
  • Liquid lines such as those in the Figures 2 and 3 shown line 4, with a temperature level below the ambient temperature exposed to heat radiation. This has the consequence that the refrigerant flowing inside the liquid line partially evaporates, thus resulting in the formation of undesirable vapor contents.
  • refrigerants are previously undercooled either by an expansion of a partial flow of the refrigerant and subsequent evaporation or by an internal heat transfer to a suction gas stream, which is thereby overheated.
  • the temperature difference between the suction and liquid line or the circulating refrigerant therein may be too low to realize an internal heat transfer for the required supercooling of the refrigerant flowing in the liquid line.
  • the procedure described thus has the additional advantage that the reliability of the compressor or compressor unit 6 is increased due to a safe overheating of the flash gas stream.
  • FIG. 4 shows an embodiment of the refrigeration cycle according to the invention or the method according to the invention for operating a refrigeration cycle. For the sake of clarity is in the FIG. 4 only a part of the in the FIG. 2 and 3 shown refrigerant circuit shown.
  • the method according to the invention for operating a refrigeration cycle further develops that at least a partial flow of the flash gas withdrawn from the collecting container is at least temporarily overheated against at least a partial flow of the compressed refrigerant.
  • FIG. 4 shows a possible embodiment of the method according to the invention, in which at least temporarily a partial flow of the withdrawn from the reservoir 3 via line 12 flash gas via line 16 to a heat exchanger E6 and superheated in this against the compressed in the compressor unit 6 refrigerant.
  • the flash gas stream After passing through the heat exchanger / superheater E6, the flash gas stream is supplied via line 16 'to the inlet of the compressor 6' of the compressor unit 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Transmitters (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

Refrigerant is circulated in a predetermined flow direction comprised of a heat-rejecting heat exchanger (4), intermediate throttle valve (6), receiver (8), evaporator throttle valves (10), evaporator (14), compressor (20) and flash gas tapping line (26). The flash gas tapping line is connected to the receiver and to the compressor. An independent claim is also included for a refrigeration circuit operating method.

Description

Die Erfindung betrifft einen Kältekreislauf, in dem ein ein- oder mehrkomponentiges Kältemittel zirkuliert, aufweisend in Strömungsrichtung einen Verflüssiger, einen Sammelbehälter, eine, einem Verdampfer vorgeschaltete Entspannungsvorrichtung, einen Verdampfer und eine Verdichtereinheit.The invention relates to a refrigeration cycle in which a one- or multi-component refrigerant circulates, comprising in the flow direction a condenser, a collecting container, an expansion device upstream of an evaporator, an evaporator and a compressor unit.

Ferner betrifft die Erfindung ein Verfahren zum Betreiben eines Kältekreislaufes.Furthermore, the invention relates to a method for operating a refrigeration cycle.

Unter dem Begriff "Verflüssiger" seien sowohl Verflüssiger als auch Gaskühler zu verstehen.The term "liquefier" should be understood to mean both liquefier and gas cooler.

Gattungsgemäße Kältekreisläufe sind hinlänglich bekannt. Sie werden beispielsweise in Kälteanlagen, so genannten Verbundkälteanlagen, wie sie in Supermärkten zur Anwendung kommen, realisiert. Verbundkälteanlagen versorgen dort im Allgemeinen eine Vielzahl von Kälteverbrauchern, wie etwa Kühlräume, Kühl- und Tiefkühlmöbel. Zu diesem Zweck zirkuliert in ihnen ein ein- oder mehrkomponentiges Kältemittel bzw. Kältemittelgemisch.Generic refrigeration cycles are well known. They are for example in refrigeration systems, so-called composite refrigeration systems, such as those used in supermarkets, implemented. Composite refrigerators generally supply a large number of refrigeration consumers, such as refrigerators, refrigerators and freezers. For this purpose circulates in them a one- or multi-component refrigerant or refrigerant mixture.

Ein zum Stand der Technik zählender Kältekreislauf bzw. eine Kälteanlage, in der ein derartiger Kältekreislauf realisiert wird, sei anhand des in der Figur 1 dargestellten Ausführungsbeispieles näher erläutert.A counting of the prior art refrigeration cycle or a refrigeration system in which such a refrigeration cycle is realized, is based on the in the FIG. 1 illustrated embodiment explained in more detail.

Das in dem Kältekreislauf zirkulierende ein- oder mehrkomponentige Kältemittel wird in einem Verflüssiger bzw. Gaskühler A - nachfolgend nurmehr als Verflüssiger bezeichnet -, der im Regelfall außerhalb des Supermarktes, beispielsweise auf dessen Dach, angeordnet ist, durch Wärmetausch, vorzugsweise gegen Au-ßenluft, kondensiert.The circulating in the refrigeration cycle one- or multi-component refrigerant is in a condenser or gas cooler A - hereinafter referred to only as a condenser - which is usually outside the supermarket, for example, on the roof, arranged by heat exchange, preferably against outside air, condensed.

Das flüssige Kältemittel aus dem Verflüssiger A wird über Leitung B einem (Kältemittel)Sammler C zugeführt. Innerhalb eines Kältekreislaufes muss immer soviel Kältemittel vorhanden sein, dass auch bei maximalem Kältebedarf die Verdampfer aller Kälteverbraucher gefüllt werden können. Da jedoch bei niedrigerem Kältebedarf einzelne Verdampfer nur teilweise gefüllt oder sogar vollständig leer sind, muss das überschüssige Kältemittel während dieser Zeiten in dem dafür vorgesehenen Sammler C aufgefangen werden.The liquid refrigerant from the condenser A is fed via line B to a (refrigerant) collector C. Within a refrigeration cycle always so much refrigerant must be present that even with maximum cooling demand, the evaporator of all refrigeration consumers can be filled. However, with lower cooling requirements individual evaporators are only partially filled or even completely empty, the excess refrigerant must be collected during these times in the designated collector C.

Aus dem Sammler C gelangt das Kältemittel über die Flüssigkeitsleitung D zu den Kälteverbrauchern des so genannten Normalkühlkreislaufes. Hierbei stehen die in der Figur 1 dargestellten Verbraucher F und F' für eine beliebige Anzahl von Verbrauchern des Normalkühlkreislaufes. Jedem der vorgenannten Kälteverbraucher ist ein Expansionsventil E bzw. E' vorgeschaltet, in welchem das in den Kälteverbraucher bzw. den oder die Verdampfer des Kälteverbrauchers strömende Kältemittel entspannt wird. Das so entspannte Kältemittel wird in den Verdampfern der Kältemittelverbraucher F und F' verdampft und kühlt so die entsprechenden Kühlmöbel und -räume.From the collector C, the refrigerant passes through the liquid line D to the cold consumers of the so-called normal cooling circuit. Here are the in the FIG. 1 represented consumers F and F 'for any number of consumers of the normal refrigeration cycle. Each of the aforementioned refrigeration consumers is preceded by an expansion valve E or E ', in which the refrigerant flowing into the refrigeration appliance or the evaporator or the evaporator of the refrigeration consumer is expanded. The so-relaxed refrigerant is evaporated in the evaporators of the refrigerant consumers F and F 'and thus cools the corresponding refrigeration cabinets and rooms.

Das in den Kälteverbrauchern F und F' des Normalkühlkreislaufes verdampfte Kältemittel wird anschließend über die Saugleitung G der Verdichtereinheit H zugeführt und in dieser auf den gewünschten Druck zwischen 10 und 25 bar verdichtet. Im Regelfall ist die Verdichtereinheit H lediglich einstufig ausgebildet und weist mehrere parallel geschaltete Verdichter auf.The refrigerant evaporated in the refrigeration consumers F and F 'of the normal refrigeration cycle is then fed via the suction line G to the compressor unit H and compressed therein to the desired pressure between 10 and 25 bar. As a rule, the compressor unit H is designed to be single-stage and has several compressors connected in parallel.

Das in der Verdichtereinheit H verdichtete Kältemittel wird anschließend über die Druckleitung I wiederum dem bereits erwähnten Verflüssiger A zugeführt.The compressed in the compressor unit H refrigerant is then fed via the pressure line I in turn to the aforementioned condenser A.

Über eine zweite Flüssigkeitsleitung D' wird aus dem Sammler C Kältemittel dem Kondensator K zugeführt und in diesem im Wärmetausch gegen das Kältemittel des noch zu erläuternden Tiefkühlkreislaufes verdampft, bevor es über die Leitung G' der Verdichtereinheit H zugeführt wird.Via a second liquid line D 'is the condenser C refrigerant supplied to the condenser K and evaporated in this heat exchange with the refrigerant of the still to be explained Tiefkühlkreislaufes before it is fed via the line G' of the compressor unit H.

Das in dem Kondensator K verflüssigte Kältemittel des Tiefkühlkreislaufes wird über Leitung L dem Sammler M des Tiefkühlkreislaufes zugeführt. Aus diesem wird über die Leitung N das Kältemittel dem Verbraucher P - dieser steht für eine beliebige Anzahl von Verbrauchern -, dem eine Entspannungsvorrichtung O vorgeschaltet ist, zugeführt und in diesem verdampft. Über die Saugleitung Q wird das verdampfte Kältemittel der ein- oder mehrstufigen Verdichtereinheit R zugeführt, in dieser auf einen Druck zwischen 25 und 40 bar verdichtet und anschließend über die Druckleitung S dem bereits erwähnten Kondensator K zugeführt.The liquefied in the condenser K refrigerant of the freezing circuit is supplied via line L to the collector M of the freezing circuit. For this, via the line N, the refrigerant to the consumer P - this is for any number of consumers -, which is preceded by a relaxation device O, supplied and evaporated in this. Via the suction line Q, the vaporized refrigerant is fed to the single or multi-stage compressor unit R, compressed in this to a pressure between 25 and 40 bar and then fed via the pressure line S to the aforementioned capacitor K.

Als Kältemittel des Normalkühlkreislaufes wird beispielsweise R 404A verwendet, während für den Tiefkühlkreislauf Kohlendioxid zur Anwendung kommt.As a refrigerant of the normal refrigeration cycle, for example, R 404A is used, while for the freezing cycle carbon dioxide is used.

Die in der Figur 1 dargestellten Verdichtereinheiten H und R, die Sammler C und M sowie der Kondensator K sind im Regelfall in einem separaten Maschinenraum angeordnet. Etwa 80 bis 90 % des gesamten Leitungsnetzes sind jedoch in den Verkaufsräumen, den Lagerräumen bzw. anderen für Mitarbeiter und Kunden zugänglichen Räumen eines Supermarktes angeordnet. Solange in diesem Leitungsnetz mit Drücken von nicht mehr als 35 bis 40 bar gearbeitet wird, ist dies für die Supermarktbetreiber sowohl aus psychologischer Sicht als auch aus Kostengründen akzeptabel.The in the FIG. 1 shown compressor units H and R, the collector C and M and the capacitor K are usually arranged in a separate machine room. However, about 80 to 90% of the entire pipeline network is located in the sales rooms, the storage areas or other areas of a supermarket accessible to employees and customers. As long as this line network operates at pressures of no more than 35 to 40 bar, this is acceptable to the supermarket operators both from a psychological point of view and for cost reasons.

Derzeit wird dazu übergegangen, auch den vorbeschriebenen Normalkühlkreislauf mit dem Kältemittel CO2 zu betreiben.Currently, it is going to operate even the above-described normal cooling circuit with the refrigerant CO 2 .

Der sinnvolle Einsatz des natürlichen Kältemittels CO2 in der Gewerbekälte scheitert bisher zum einen an der unzureichenden energetischen Effizienz des einfachen, einstufigen Kreisprozesses bei hohen (Außen)Lufttemperaturen. Zum anderen sind aufgrund der Stoffeigenschaften von CO2 hohe Arbeitsdrücke - bis zu 100 bar und darüber - erforderlich, die eine Fertigung von entsprechenden Kältekreisläufen bzw. Kälteanlagen aus ökonomischen Gründen enorm erschweren. Kommerziell wird das Kältemittel CO2 daher bisher nur bei Kaskadensystemen in der Tiefkühlung verwendet - wie dies beispielhaft anhand der Figur 1 erläutert ist -, da die dort realisierten Arbeitsdrücke die übliche, maximale Drucklage von 40 bar nicht überschreiten.The sensible use of the natural refrigerant CO 2 in commercial refrigeration fails on the one hand due to the insufficient energetic efficiency of the simple, single-stage cycle at high (outside) air temperatures. On the other hand, owing to the material properties of CO 2, high working pressures - up to 100 bar and above - are required, which make it extremely difficult to manufacture corresponding refrigeration circuits or refrigeration plants for economic reasons. Commercially, the refrigerant CO 2 is therefore so far only used in cascade systems in the freezing - as exemplified by the FIG. 1 is explained - since the working pressures realized there do not exceed the usual maximum pressure of 40 bar.

Aufgrund der vorerwähnten höheren Drücke bzw. Drucklage muss das Rohrleitungsnetz des Kältekreislaufes auf diese Drücke bzw. Drucklage ausgelegt werden. Die hierfür erforderlichen Materialien sind jedoch weitaus teurer als diejenigen, die bei den bisher realisierten Drucklagen zur Anwendung kommen können. Darüber hinaus sind derartige, vergleichsweise hohe Drucklagen jedoch auch den Anlagenbetreibern nur sehr schwer zu vermitteln.Due to the above-mentioned higher pressures or pressure, the pipe network of the refrigeration cycle must be designed for these pressures or pressure. However, the materials required for this are far more expensive than those that can be used in the previously implemented printing layers. In addition, however, such relatively high pressure levels are also very difficult to convey to plant operators.

Ein weiteres Problem besteht insbesondere bei der Verwendung von CO2 als Kältemittel darin, dass bei entsprechend hohen Außentemperaturen ein überkritischer Betrieb des Kältekreislaufes erforderlich wird. Hohe Außenlufttemperaturen haben zur Folge, dass am Verdampfereintritt vergleichsweise hohe Drosseldampfanteile auftreten. Dadurch wird die effektive volumetrische Kälteleistung des zirkulierenden Kältemittels verringert, jedoch müssen sowohl Saug- als auch Flüssigkeitsleitungen sowie die Verdampfer entsprechend größer dimensioniert werden, um die Druckverluste so niedrig wie möglich zu halten.Another problem is especially when using CO 2 as a refrigerant in that at high ambient temperatures, a supercritical operation of the refrigeration cycle is required. High outside air temperatures have the consequence that at the evaporator inlet comparatively high throttle vapor components occur. This reduces the effective volumetric cooling capacity of the circulating refrigerant, however, both suction and liquid lines and the evaporators must be sized accordingly larger to keep the pressure losses as low as possible.

Aufgabe der vorliegenden Erfindung ist es, einen gattungsgemäßen Kältekreislauf sowie ein Verfahren zum Betreiben eines Kältekreislaufes anzugeben, der bzw. das die genannten Nachteile vermeidet.Object of the present invention is to provide a generic refrigeration cycle and a method for operating a refrigeration cycle, which avoids the disadvantages mentioned.

Zur Lösung dieser Aufgabe wird ein Kältekreislauf vorgeschlagen, der sich dadurch auszeichnet, dass zwischen dem Verflüssiger und dem Sammelbehälter eine Zwischen-Entspannungsvorrichtung angeordnet ist.To solve this problem, a refrigeration cycle is proposed, which is characterized in that between the condenser and the collecting container, an intermediate-expansion device is arranged.

Verfahrensseitig wird die gestellte Aufgabe dadurch gelöst, dass in der zwischen dem Verflüssiger und dem Sammelbehälter angeordneten Zwischen-Entspannungsvorrichtung eine Entspannung des Kältemittels auf einen (Zwischen)Druck von 5 bis 40 bar erfolgt.The method, the object is achieved in that in the intermediate between the condenser and the collecting intermediate relaxation device, a relaxation of the refrigerant to an (intermediate) pressure of 5 to 40 bar.

Aus der DE 195 22 884 A1 ist ein Verfahren zum Betrieb einer Kompressionskälteanlage mit dem Arbeitsmittel Kohlendioxid (CO2) mit einer zweistufigen Drosselung und Teilung des umlaufenden Arbeitsmittelmassestromes bekannt. Dabei wird der Arbeitsmittelmassestrom nach der ersten Drosselstufe in einen unterkritisch arbeitenden Mitteldruckabscheidesammler geleitet, der sich der im unteren Teil des Mitteldruckabscheidesammlers separierende grössere flüssige Arbeitsmittelmassestromanteil wird dem Verdampfer zugeführt, der im oberen Teil des Mitteldruckabscheidesammlers separierende kleinere dampfförmige Arbeitsmittelmassestromanteil wird über eine zweite Drosselstufe bis nahe über den Verdampfungsdruck entspannt und dient in einen inneren Wärmeübertrager durch Verdampfung und Überhitzung zur Unterkühlung des überkritischen Hochdruckgases. Nach der Verdampfung und Überhitzung wird der kleinere Arbeitsmittelmassestromanteil in einen im Verdampfer integrierten Sammelrohr mit den Ausgängen der Verdampferstränge gemischt. Die in DE 195 22 884 A1 offenbarten Kältekreislauf und Verfahren entsprechen den Oberbegriffen der Ansprüche 1 und 14. Aus der JP 2000 154941 A ist ein Kühlgerät/Kühlschrank bekannt, mit einem Verdichter, einem Verflüssiger, einer Drosseleinrichtung und einem Verdampfer, die ringförmig durch Leitungen miteinander verbunden sind, und mit einem Gas-Flüssig-Separator, der auf einer stromabwärts gelegenen Seite der Drosseleinheit vorgesehen ist. Der Kühlschrank/das Kühlgerät enthält eine Flüssigleitung zum Leiten von flüssigem Kältemittel, das durch den Gas-Flüssig-Separator separiert worden ist, zu dem Verdampfer; und eine Gasleitung zum Leiten von gasförmigem Kältemittel, das von dem Gas-Flüssig-Separator separiert worden ist, zu einer Einlassseite des Verdichters, wobei die Gasleitung in Wärmeaustausch mit einem Leitungsabschnitt zwischen der Auslassseite des Verdichters und einem Einlass des Verflüssigers steht. Ein Kältekreislauf, und ein Verfahren zum Betreiben eines Kältekreislaufes sowie weitere Ausgestaltungen desselben seien nachfolgend anhand der in den Figuren 2 und 3 gezeigten Ausführungsbeispiele näher erläutert, wobei die Figur 4 einen erfindungsgemäßen Kältekreislauf zeigt.From the DE 195 22 884 A1 is a method for operating a compression refrigeration system with the working fluid carbon dioxide (CO2) with a two-stage throttling and division of the circulating mass flow of working fluid known. In this case, the working medium mass flow is passed after the first throttle stage in a subcritical working medium pressure separator, which is the lower in the lower part of the medium pressure separating large liquid Arbeitsmittelmassestromanteil the evaporator is supplied to the upper part of the Mitteleldruckabscheidesammlers separating smaller vapor Arbeitsmittelmassestromanteil is about a second throttle level to close relaxes the evaporation pressure and serves in an internal heat exchanger by evaporation and overheating to subcool the supercritical high pressure gas. After evaporation and overheating, the smaller mass fraction of the working fluid is mixed with the evaporator strands in a collecting tube integrated in the evaporator. In the DE 195 22 884 A1 disclosed refrigerant circuit and method correspond to the preambles of claims 1 and 14. From the JP 2000 154941 A For example, a refrigerator / refrigerator is known, comprising a compressor, a condenser, a throttle device and an evaporator, which are annularly connected to each other by lines, and with a gas-liquid separator, which is provided on a downstream side of the throttle unit. The refrigerator / refrigerator includes a liquid line for conducting liquid refrigerant separated by the gas-liquid separator to the evaporator; and a gas conduit for conducting gaseous refrigerant separated from the gas-liquid separator to an inlet side of the compressor, the gas conduit being in heat exchange with a conduit section between the outlet side of the compressor and an inlet of the condenser. A refrigeration cycle, and a method for operating a refrigeration cycle and other embodiments thereof are the same below with reference to in the Figures 2 and 3 shown embodiments explained in more detail, wherein the FIG. 4 shows a refrigeration cycle according to the invention.

Hierbei zeigt die Figur 2 eine Verbundkälteanlage, in der eine mögliche Ausgestaltung eines Kältekreislaufes realisiert ist. Im Folgenden sei eine Verfahrensweise beschrieben, bei der als Kältemittel HFKW(s), FKW(s) oder CO2 zur Anwendung kommen kann.This shows the FIG. 2 a composite refrigeration system in which a possible embodiment of a refrigeration cycle is realized. In the following, a procedure is described in which as a refrigerant HFC (s), HFC (s) or CO 2 can be used.

Das in der Verdichtereinheit 6 auf einem Druck zwischen 10 und 120 bar verdichtete Kältemittel wird über die Druckleitung 7 dem Verflüssiger bzw. Gaskühler 1 zugeführt und in diesem gegen Außenluft kondensiert bzw. enthitzt. Über die Leitungen 2, 2' und 2" wird das Kältemittel dem Kältemittelsammler 3 zugeführt, wobei es nunmehr jedoch erfindungsgemäß in der Zwischen-Entspannungsvorrichtung a auf einen Zwischendruck von 5 bis 40 bar entspannt wird. Diese Zwischenentspannung bietet den Vorteil, dass das nachgeschaltete Leitungsnetz sowie der Sammler 3 nurmehr auf eine niedrigere Drucklage ausgelegt sein müssen. Der Druck, auf den das Kältemittel in der erwähnten Zwischen-Entspannungsvorrichtung a entspannt wird, wird hierbei vorzugsweise so gewählt, dass er noch unterhalb des niedrigsten zu erwartenden Verflüssigungsdruckes liegt.The compressed in the compressor unit 6 to a pressure between 10 and 120 bar refrigerant is supplied via the pressure line 7 to the condenser or gas cooler 1 and condensed in this against outside air or deprived. The refrigerant is supplied to the refrigerant collector 3 via the lines 2, 2 'and 2 ", but according to the invention it is expanded in the intermediate expansion device a to an intermediate pressure of 5 to 40 bar and the collector 3 need only be designed for a lower pressure position The pressure to which the refrigerant in the mentioned intermediate expansion device a is relieved is preferably selected so that it is still below the lowest expected condensing pressure.

Gemäss einer vorteilhaften Ausgestaltung eines Kältekreislaufes ist die Druckleitung 7 mit dem Sammelbehälter 3, vorzugsweise mit dessen Gasraum, verbunden bzw. verbindbar. Diese Verbindung zwischen Druckleitung 7 und dem Sammelbehälter 3 kann beispielsweise über eine Verbindungsleitung 17, in der ein Entspannungsventil h angeordnet ist, erfolgen.According to an advantageous embodiment of a refrigeration cycle, the pressure line 7 with the collecting container 3, preferably with the gas space, connected or connectable. This connection between the pressure line 7 and the collecting container 3 can take place, for example, via a connecting line 17, in which an expansion valve h is arranged.

Gemäß einer vorteilhaften Ausgestaltung eines Kältekreislaufes ist die Druckleitung 7 mit der den Verflüssiger 1 und den Sammelbehälter 3 verbindenden Leitung bzw. Leitungsabschnitte 2 bzw. 2', 2" verbunden bzw. verbindbar. Diese Verbindung zwischen der Druckleitung 7 und der Leitung 2 bzw. 2', 2" kann beispielsweise über die gestrichelt dargestellte Verbindungsleitung 18, in der ein Ventil j angeordnet ist, erfolgen.According to an advantageous embodiment of a refrigeration cycle, the pressure line 7 is connected or connectable to the line or line sections 2 or 2 ', 2 "connecting the condenser 1 and the collecting container 3. This connection between the pressure line 7 and the line 2 or 2 ', 2 "can be done, for example, via the connecting line 18 shown in dashed lines, in which a valve j is arranged.

Gemäß einer vorteilhaften Ausgestaltung eines Kältekreislaufes ist der Sammelbehälter 3, vorzugsweise dessen Gasraum, mit dem Eingang der Verdichtereinheit 6 verbunden bzw. verbindbar.According to an advantageous embodiment of a refrigeration cycle of the collecting container 3, preferably the gas space, connected to the input of the compressor unit 6 or connectable.

Diese Verbindung zwischen Sammelbehälter 3 und Eingang der Verdichtereinheit 6 kann beispielsweise über eine Verbindungsleitung 12, die wie in der Figur 2 dargestellt, in die Saugleitung 11 mündet, erfolgen.This connection between the collecting container 3 and the input of the compressor unit 6 can, for example, via a connecting line 12, as in the FIG. 2 shown, in the suction line 11 opens, done.

Über das in der Leitung 12 vorgesehene Entspannungsventil e und das in der Leitung 17 vorgesehene Entspannungsventil h oder das in der Leitung 18 vorgesehene Ventil j kann der gewählte Zwischendruck nunmehr für alle Betriebsbedingungen konstant gehalten werden. Möglich ist jedoch auch eine Regelung dergestalt, dass ein konstanter Differenzwert zum Saugdruck besteht. Dadurch wird erreicht, dass der Drosseldampfanteil an den Verdampfern vergleichsweise klein ist, was zur Folge hat, dass die Flüssigkeits- und Saugleitungen entsprechend kleiner dimensioniert werden können. Dies gilt auch für die Kondensatleitung, da nunmehr keine gasförmigen Bestandteile über sie zurück in den Verflüssiger 1 strömen müssen. Mittels der Erfindung wird somit auch erreicht, dass sich die erforderliche Kältemittelfüllmenge um bis zu ca. 30 % reduzieren lässt.By way of the expansion valve e provided in the line 12 and the expansion valve h provided in the line 17 or the valve j provided in the line 18, the selected intermediate pressure can now be kept constant for all operating conditions. However, a regulation is also possible in such a way that there is a constant difference value to the suction pressure. This ensures that the throttle steam fraction at the evaporators is comparatively small, with the result that the liquid and suction lines can be dimensioned correspondingly smaller. This also applies to the condensate line, since now no gaseous components have to flow through them back into the condenser 1. By means of the invention is thus also achieved that can be reduced by up to about 30%, the required refrigerant charge.

Über die Saugleitung 4 wird Kältemittel aus dem Sammler 3 abgezogen und den Kältemittelverbrauchern bzw. deren Wärmetauscher E2 und E3 zugeführt. Diesen vorgeschaltet ist jeweils ein Entspannungsventil b bzw. c, in denen das in die Kälteverbraucher strömende Kältemittel entspannt wird. Das in den Kälteverbrauchern E2 und E3 verdampfte Kältemittel wird anschließend über die Saugleitung 5 wiederum der Verdichtereinheit 6 zugeführt bzw. durch diese aus den Verdampfern E2 und E3 gesaugt.Via the suction line 4 refrigerant is withdrawn from the collector 3 and the refrigerant consumers or their heat exchangers E2 and E3 supplied. This is preceded by a respective expansion valve b and c, in which the refrigerant flowing into the refrigeration consumer is expanded. The refrigerant evaporated in the refrigeration consumers E2 and E3 is then fed back to the compressor unit 6 via the suction line 5 or sucked out of the evaporators E2 and E3 by the latter.

Ein Teil des aus dem Sammler 3 über Leitung 4 abgezogenen Kältemittels wird über Leitung 8 einem oder mehreren Tiefkühlverbrauchern - dargestellt durch den Wärmetauscher E4 -, dem ebenfalls ein Entspannungsventil d vorgeschaltet ist, zugeführt. Dieser Kältemittelteilstrom wird nach der Verdampfung im Wärmetauscher bzw. Kälteverbraucher E4 über die Saugleitung 9 der Verdichtereinheit 10 zugeführt und in dieser auf den Eingangsdruck der Verdichtereinheit 6 verdichtet. Der so verdichtete Kältemittelteilstrom wird anschließend über Leitung 11 der Eingangsseite der Verdichtereinheit 6 zugeführt. Weiterbildend wird vorgeschlagen, dass - wie in der Figur 2 dargestellt - dem Sammelbehälter 3 ein Wärmeübertrager E1 vorgeschaltet sein kann.A portion of the withdrawn from the collector 3 via line 4 refrigerant is fed via line 8 to one or more frozen consumers - represented by the heat exchanger E4 -, which is also preceded by an expansion valve d supplied. After the evaporation in the heat exchanger or cold consumer E4, this partial refrigerant flow is fed via the suction line 9 to the compressor unit 10 and compressed therein to the inlet pressure of the compressor unit 6. The thus compressed refrigerant partial stream is then fed via line 11 to the input side of the compressor unit 6. Further training suggests that - as in the FIG. 2 represented - the collecting container 3, a heat exchanger E1 can be connected upstream.

Hierbei ist der Wärmeübertrager E1 vorzugsweise eingangsseitig mit dem Ausgang des Verflüssigers 1 verbunden oder verbindbar.Here, the heat exchanger E1 is preferably connected on the input side to the output of the condenser 1 or connectable.

Wie in der Figur 2 dargestellt, kann nunmehr über Leitung 13, in der ein Entspannungsventil f vorgesehen ist, ein Teilstrom des verflüssigten bzw. enthitzen Kältemittels aus dem Verflüssiger bzw. Gaskühler 1 bzw. der Leitung 2 abgezogen und in dem Wärmeübertrager E1 gegen das zu enthitzende, dem Wärmeübertrager E1 über Leitung 2' zugeführte Kältemittel verdampft werden. Der verdampfte Kältemittelteilstrom wird anschließend über Leitung 14 einem Verdichter 6', der der vorbeschriebenen Verdichtereinheit 6 zugeordnet ist und der vorzugsweise auf einem höheren Druckniveau ansaugt, zugeführt und in diesem auf den gewünschten Enddruck der Verdichtereinheit 6 verdichtet werden.Like in the FIG. 2 a partial flow of the liquefied or desiccant refrigerant can now be withdrawn from the condenser or gas cooler 1 or line 2 via line 13, in which an expansion valve f is provided, and in the heat exchanger E1 against the heat exchanger E1 to be heated via line 2 'supplied refrigerant to be evaporated. The vaporized refrigerant partial stream is then fed via line 14 to a compressor 6 ', which is associated with the above-described compressor unit 6 and which preferably sucks at a higher pressure level, and in this compressed to the desired final pressure of the compressor unit 6.

Mittels des Wärmeübertragers E1 wird der in der Zwischen-Entspannungsvorrichtung a zu entspannende Kältemittelstrom vorzugsweise soweit abgekühlt, dass der Drosseldampfanteil des entspannten Kältemittels minimiert wird.By means of the heat exchanger E1, the refrigerant stream to be expanded in the intermediate expansion device a is preferably cooled to such an extent that the throttled vapor portion of the expanded refrigerant is minimized.

Alternativ oder zusätzlich können die im Sammler 3 anfallenden Drosseldampfanteile auch über die Leitung 12 sowie die gestrichelt gezeichnete Leitung 15 mittels des Verdichters 6' auf einem höheren Druckniveau abgesaugt werden.Alternatively or additionally, the resulting in the collector 3 throttle steam fractions can be sucked off via the line 12 and the dashed line 15 by means of the compressor 6 'at a higher pressure level.

In der Figur 3 dargestellt ist eine Ausführungsform eines Kältekreislaufes bzw. eines Verfahrens zum Betreiben eines Kältekreislaufes, bei dem das aus dem Sammelbehälter 3 über die Leitung 4 abgezogene Kältemittel im Wärmetauscher E5 einer Unterkühlung unterworfen wird. Hierbei erfolgt die Unterkühlung - entsprechend einer vorteilhaften Ausgestaltung - im Wärmetausch mit dem aus dem Sammelbehälter 3 über Leitung 12 abgezogenen Flashgas.In the FIG. 3 1 shows an embodiment of a refrigeration cycle or a method for operating a refrigeration cycle, in which the refrigerant drawn off from the collecting container 3 via the line 4 is subjected to supercooling in the heat exchanger E5. In this case, the subcooling takes place - in accordance with an advantageous embodiment - in heat exchange with the flash gas withdrawn from the collecting container 3 via line 12.

Flüssigkeitsleitungen, wie beispielsweise die in den Figuren 2 und 3 dargestellte Leitung 4, mit einem Temperaturniveau unterhalb der Umgebungstemperatur sind einer Wärmeeinstrahlung ausgesetzt. Diese hat zur Folge, dass das innerhalb der Flüssigkeitsleitung strömende Kältemittel teilweise verdampft, es somit zur Bildung von unerwünschten Dampfanteilen kommt. Um dies zu verhindern, werden Kältemittel bisher entweder durch eine Expansion eines Teilstromes des Kältemittels und anschließender Verdampfung oder durch einen inneren Wärmeübergang gegen einen Sauggasstrom, welches dabei überhitzt wird, unterkühlt. Der Temperaturabstand zwischen Saug- und Flüssigkeitsleitung bzw. des darin zirkulierenden Kältemittels kann unter Umständen zu gering sein, um eine innere Wärmeübertragung für die erforderliche Unterkühlung des in der Flüssigkeitsleitung strömenden Kältemittels zu realisieren. Weiterbildend wird daher - wie bereits erwähnt - vorgeschlagen, das aus dem Sammelbehälter 3 über Leitung 4 abgezogene Kältemittel im Wärmetauscher bzw. Unterkühler E5 gegen das aus dem Sammelbehälter 3 über Leitung 12 und im Ventil e entspannte Flashgas zu unterkühlen. Nach Durchgang durch den Wärmetauscher bzw. Unterkühler E5 wird das entspannte und im Wärmetauscher E5 überhitzte Kältemittel über die Leitungsabschnitte 12' und 11 dem Eingang der Verdichtereinheit 6 zugeführt. Durch die Überhitzung des aus dem Sammelbehälter 3 über Leitung 12 abgezogenen Flashgasstromes wird in der Flüssigkeitsleitung 4 eine ausreichende Unterkühlung des in ihr strömenden Kältemittels erreicht; diese Unterkühlung des Kältemittels verbessert den Regelbetrieb der Entspannungs- bzw. Einspritzventile b, c und d, die den Verdampfern E2, E3 und E4 vorgeschaltet sind.Liquid lines, such as those in the Figures 2 and 3 shown line 4, with a temperature level below the ambient temperature exposed to heat radiation. This has the consequence that the refrigerant flowing inside the liquid line partially evaporates, thus resulting in the formation of undesirable vapor contents. In order to prevent this, refrigerants are previously undercooled either by an expansion of a partial flow of the refrigerant and subsequent evaporation or by an internal heat transfer to a suction gas stream, which is thereby overheated. The temperature difference between the suction and liquid line or the circulating refrigerant therein may be too low to realize an internal heat transfer for the required supercooling of the refrigerant flowing in the liquid line. Further education is therefore - as already mentioned - proposed to subcool the withdrawn from the sump 3 via line 4 refrigerant in the heat exchanger or subcooler E5 against the expanded from the sump 3 via line 12 and in the valve e flash gas. After passing through the heat exchanger or subcooler E5, the expanded refrigerant which has been overheated in the heat exchanger E5 is fed via the line sections 12 'and 11 to the inlet of the compressor unit 6. Due to the overheating of the withdrawn from the reservoir 3 via line 12 Flashgasstromes a sufficient subcooling of the refrigerant flowing in it is achieved in the liquid line 4; This supercooling of the refrigerant improves the regular operation of the expansion or injection valves b, c and d, which are upstream of the evaporators E2, E3 and E4.

Flüssigkeitströpfchen, die aus dem Sammelbehälter 3 über Leitung 12 aufgrund einer zu kleinen Dimensionierung und/oder Überfüllung des Sammelbehälters 3 nicht abgeschieden und mit dem Flashgas mitgeführt werden, werden spätestens im Wärmetauscher/Unterkühler E5 verdampft. Die beschriebene Verfahrensweise hat somit darüber hinaus den Vorteil, dass die Betriebssicherheit der Verdichter bzw. Verdichtereinheit 6 aufgrund einer sicheren Überhitzung des Flashgasstromes erhöht wird.Liquid droplets which are not separated from the collecting container 3 via line 12 due to a too small dimensioning and / or overfilling of the collecting container 3 and carried along with the flash gas, are evaporated at the latest in the heat exchanger / subcooler E5. The procedure described thus has the additional advantage that the reliability of the compressor or compressor unit 6 is increased due to a safe overheating of the flash gas stream.

Die Figur 4 zeigt eine Ausgestaltung des erfindungsgemäßen Kältekreislaufes bzw. des erfindungsgemäßen Verfahrens zum Betreiben eines Kältekreislaufes. Der Übersichtlichkeit halber ist in der Figur 4 lediglich ein Ausschnitt des in der Figur 2 und 3 dargestellten Kältekreislaufes dargestellt.The FIG. 4 shows an embodiment of the refrigeration cycle according to the invention or the method according to the invention for operating a refrigeration cycle. For the sake of clarity is in the FIG. 4 only a part of the in the FIG. 2 and 3 shown refrigerant circuit shown.

Das erfindungsgemäße Verfahren zum Betreiben eines Kältekreislaufes weiterbildend wird vorgeschlagen, dass zumindest ein Teilstrom des aus dem Sammelbehälter abgezogenen Flashgases zumindest zeitweilig gegen wenigstens einen Teilstrom des verdichteten Kältemittels überhitzt wird.The method according to the invention for operating a refrigeration cycle further develops that at least a partial flow of the flash gas withdrawn from the collecting container is at least temporarily overheated against at least a partial flow of the compressed refrigerant.

Die Figur 4 zeigt eine mögliche Ausgestaltung des erfindungsgemäßen Verfahrens, bei der zumindest zeitweilig ein Teilstrom des aus dem Sammelbehälter 3 über Leitung 12 abgezogenen Flashgases über die Leitung 16 einem Wärmetauscher E6 zugeführt und in diesem gegen das in der Verdichtereinheit 6 verdichtete Kältemittel überhitzt wird.The FIG. 4 shows a possible embodiment of the method according to the invention, in which at least temporarily a partial flow of the withdrawn from the reservoir 3 via line 12 flash gas via line 16 to a heat exchanger E6 and superheated in this against the compressed in the compressor unit 6 refrigerant.

Bei der in der Figur 4 dargestellten Verfahrensweise wird der zu überhitzende Flashgasstrom im Wärmetauscher E6 gegen den gesamten, in der Verdichtereinheit 6 verdichteten Kältemittelstrom, der über Leitung 7 dem in der Figur 4 nicht dargestellten Verflüssiger bzw. Enthitzer zugeführt wird, überhitzt.When in the FIG. 4 As shown, the Flashgasstrom to be overheated in the heat exchanger E6 against the entire, compressed in the compressor unit 6 refrigerant flow via line 7 in the FIG. 4 not shown condenser or desuperheater is supplied, superheated.

Nach Durchgang durch den Wärmetauscher/Überhitzer E6 wird der Flashgasstrom über Leitung 16' dem Eingang des Verdichters 6' der Verdichtereinheit 6 zugeführt.After passing through the heat exchanger / superheater E6, the flash gas stream is supplied via line 16 'to the inlet of the compressor 6' of the compressor unit 6.

Die in der Figur 4 dargestellte Verfahrensweise ermöglicht es sicherzustellen, dass in dem Flashgas enthaltene Flüssiganteile zweifelsfrei verdampft werden, woraus eine erhöhte Sicherheit für die Verdichter bzw. die Verdichtereinheit 6 resultiert. The in the FIG. 4 The procedure described makes it possible to ensure that liquid components contained in the flash gas are unambiguously vaporized, resulting in increased safety for the compressor or compressor unit 6.

Claims (14)

  1. A refrigeration circuit in which a single-component or multi-component refrigerant, in particular CO2, circulates, said refrigeration circuit enabling transcritical operation and comprising, in the direction of flow, a condenser/gas cooler (1), an intermediate relief device (a), a collecting container (3), a relief device (b, c) disposed upstream of an evaporator (E2, E3), an evaporator (E2, E3), and a compressor unit (6) connected to the evaporator (E2, E3) by a suction line (5), the compressor unit (6) being connected to the condenser/gas cooler (1) by means of a pressure line (7), and the gas space of the collecting container (3) being connected or connectable to an input of the compressor unit (6) via a line (12, 16), characterized in that a heat exchanger (E6) is provided, to which a partial flow of the flash gas that is drawn out of the collecting container (3) via the line (12, 16) is fed, at least intermittently, and in which this partial flow is superheated in relation to the compressed refrigerant in the pressure line (7).
  2. The refrigeration circuit according to Claim 1, wherein, after passing through the heat exchanger/superheater (E6), the flash gas is fed via a line (16') to the input of the compressor (6') of the compressor unit (6).
  3. The refrigeration circuit according to Claim 1 or 2, wherein a heat transfer means (E1) is connected upstream of the collecting container (3).
  4. The refrigeration circuit according to Claim 3, wherein the heat transfer means (E1) is connected or connectable (2, 13) on an input side to the output of the condenser/gas cooler (1).
  5. The refrigeration circuit according to Claim 3 or 4, wherein the line (2) from the condenser/gas cooler (1) is divided into a first line section (2') and a second line section (13), wherein a relief valve (f) is located in the second line section (13), and wherein the refrigerant in the second line section (13) is evaporated in the heat transfer means (E1) against the refrigerant in the first line section (2').
  6. The refrigeration circuit according to Claim 5, wherein the second line section (13, 14) downstream of the heat transfer means (E1) is connected or connectable to the input of the compressor (6') of the compressor unit (6).
  7. The refrigeration circuit according to Claim 5 or 6, wherein the pressure line (7) is connected or connectable to the line (2, 2', 2") that connects the condenser/gas cooler (1) to the collecting container (3).
  8. The refrigeration circuit according to any of Claims 5 to 7, wherein the line (18) with a valve (j) disposed therein connects the first line section (2') downstream of the heat transfer unit (E1) to the pressure line (7) downstream of the compressor unit (6).
  9. The refrigeration circuit according to any of the preceding claims, wherein the pressure line (7) is connected or connectable to the collecting container (3), preferably to the gas space thereof.
  10. The refrigeration circuit according to Claim 9, wherein a relief valve (h) is provided in the line (17) that connects the pressure line (7) to the collecting container (3).
  11. The refrigeration circuit according to any of the preceding claims, wherein the refrigerant drawn from the collecting container (3) is fed via a line (8) to one or more deep-freeze consumers (E4) having a relief valve (d) connected upstream thereof.
  12. The refrigeration circuit according to Claim 11, wherein a compressor unit (10) is provided which is supplied via a suction line (9) with refrigerant evaporated in the deep-freeze consumer (E4), and wherein the refrigerant compressed in the compressor unit (10) is fed via a suction line (11) to the compressor unit (6).
  13. A method for operating a refrigeration circuit, in which a single-component or multi-component refrigerant, in particular CO2, circulates in the direction of flow through a condenser/gas cooler (1), an intermediate relief device (a), a collecting container (3), a relief device (b, c) connected upstream of an evaporator (E2, E3), an evaporator (E2, E3), and a compressor unit (6) connected to the evaporator (E2, E3) via a suction line (5), in which flash gas from the gas space of the collecting container (3) is fed via a line (12, 16) to the input of the compressor unit (6), characterized in that, in the intermediate relief device (a) disposed between the condenser/gas cooler (1) and the collecting container (3), a pressure release of the refrigerant to an intermediate pressure of 5 to 40 bar is effected, and a partial flow of the flash gas (12, 16) drawn from the collecting container (3) is superheated (E6), at least intermittently, in relation to the compressed refrigerant (7) in the pressure line (7) that connects the compressor unit (6) to the condenser/gas cooler (1).
  14. The method according to Claim 13, wherein the refrigerant (2) is cooled before its intermediate relief (a).
EP10181303.8A 2004-08-09 2005-07-29 Refrigeration cycle and method of operating a refrigerating cycle Active EP2264385B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004038640A DE102004038640A1 (en) 2004-08-09 2004-08-09 Refrigeration circuit and method for operating a refrigeration cycle
EP05775838A EP1789732B1 (en) 2004-08-09 2005-07-29 Refrigeration circuit and method for operating a refrigeration circuit

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP05775838A Division EP1789732B1 (en) 2004-08-09 2005-07-29 Refrigeration circuit and method for operating a refrigeration circuit
EP05775838.5 Division 2005-07-29

Publications (3)

Publication Number Publication Date
EP2264385A2 EP2264385A2 (en) 2010-12-22
EP2264385A3 EP2264385A3 (en) 2011-10-19
EP2264385B1 true EP2264385B1 (en) 2018-04-11

Family

ID=34961069

Family Applications (6)

Application Number Title Priority Date Filing Date
EP05715407.2A Expired - Lifetime EP1782001B1 (en) 2004-08-09 2005-02-18 Flashgas removal from a receiver in a refrigeration circuit
EP05723393A Expired - Lifetime EP1794510B1 (en) 2004-08-09 2005-02-18 Co2 refrigeration circuit with sub-cooling of the liquid refrigerant against the receiver flash gas and method for operating the same
EP05775838A Active EP1789732B1 (en) 2004-08-09 2005-07-29 Refrigeration circuit and method for operating a refrigeration circuit
EP10167202.0A Active EP2244040B1 (en) 2004-08-09 2005-07-29 Flashgas removal from a receiver in a refrigeration circuit
EP10181303.8A Active EP2264385B1 (en) 2004-08-09 2005-07-29 Refrigeration cycle and method of operating a refrigerating cycle
EP07020311.2A Active EP1895246B3 (en) 2004-08-09 2005-07-29 Refrigeration circuit and method for operating a refrigeration circuit

Family Applications Before (4)

Application Number Title Priority Date Filing Date
EP05715407.2A Expired - Lifetime EP1782001B1 (en) 2004-08-09 2005-02-18 Flashgas removal from a receiver in a refrigeration circuit
EP05723393A Expired - Lifetime EP1794510B1 (en) 2004-08-09 2005-02-18 Co2 refrigeration circuit with sub-cooling of the liquid refrigerant against the receiver flash gas and method for operating the same
EP05775838A Active EP1789732B1 (en) 2004-08-09 2005-07-29 Refrigeration circuit and method for operating a refrigeration circuit
EP10167202.0A Active EP2244040B1 (en) 2004-08-09 2005-07-29 Flashgas removal from a receiver in a refrigeration circuit

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07020311.2A Active EP1895246B3 (en) 2004-08-09 2005-07-29 Refrigeration circuit and method for operating a refrigeration circuit

Country Status (11)

Country Link
US (2) US7644593B2 (en)
EP (6) EP1782001B1 (en)
KR (2) KR20070050046A (en)
CN (3) CN100507402C (en)
AT (1) ATE544992T1 (en)
AU (2) AU2005278162A1 (en)
DK (4) DK1794510T3 (en)
HK (2) HK1101199A1 (en)
NO (1) NO343330B1 (en)
RU (1) RU2362096C2 (en)
WO (1) WO2006022829A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016116028B4 (en) 2016-07-18 2019-12-12 imbut GmbH Method for fixing electronic components on a flexible, in particular textile fabric

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1782001T3 (en) * 2004-08-09 2017-03-13 Carrier Corp FLASH GAS REMOVAL FROM A RECEIVER IN A COOLING CIRCUIT
WO2007111595A1 (en) 2006-03-27 2007-10-04 Carrier Corporation Refrigerating system with parallel staged economizer circuits discharging to interstage pressures of a main compressor
US8418482B2 (en) * 2006-03-27 2013-04-16 Carrier Corporation Refrigerating system with parallel staged economizer circuits using multistage compression
WO2007111594A1 (en) 2006-03-27 2007-10-04 Carrier Corporation Refrigerating system with parallel staged economizer circuits and a single or two stage main compressor
US8196421B2 (en) * 2006-06-01 2012-06-12 Carrier Corporation System and method for controlled expansion valve adjustment
EP2021703A4 (en) * 2006-06-01 2012-02-15 Carrier Corp Multi-stage compressor unit for a refrigeration system
WO2008019689A2 (en) * 2006-08-18 2008-02-21 Knudsen Køling A/S A transcritical refrigeration system with a booster
DE102006050232B9 (en) * 2006-10-17 2008-09-18 Bitzer Kühlmaschinenbau Gmbh refrigeration plant
US20080289350A1 (en) * 2006-11-13 2008-11-27 Hussmann Corporation Two stage transcritical refrigeration system
CN101413738A (en) 2007-10-17 2009-04-22 开利公司 Middle and low temperature integrated type refrigerated storage / refrigerating system
JP2009139037A (en) * 2007-12-07 2009-06-25 Mitsubishi Heavy Ind Ltd Refrigerant circuit
US20110146313A1 (en) * 2008-07-07 2011-06-23 Carrier Corporation Refrigeration circuit
DK2313711T3 (en) * 2008-07-07 2013-10-07 Carrier Corp Refrigeration Cycle
US8631666B2 (en) 2008-08-07 2014-01-21 Hill Phoenix, Inc. Modular CO2 refrigeration system
WO2010045743A1 (en) 2008-10-23 2010-04-29 Dube Serge Co2 refrigeration system
ITTV20080140A1 (en) * 2008-11-04 2010-05-05 Enex Srl REFRIGERATOR SYSTEM WITH ALTERNATIVE COMPRESSOR AND ECONOMISER.
US20100281914A1 (en) * 2009-05-07 2010-11-11 Dew Point Control, Llc Chilled water skid for natural gas processing
MX2012005191A (en) * 2009-11-03 2012-06-08 Du Pont Cascade refrigeration system with fluoroolefin refrigerant.
JP5595025B2 (en) * 2009-12-10 2014-09-24 三菱重工業株式会社 Air conditioner and refrigerant amount detection method for air conditioner
CA2724255C (en) * 2010-09-28 2011-09-13 Serge Dube Co2 refrigeration system for ice-playing surfaces
CN102589217B (en) * 2011-01-10 2016-02-03 珠海格力电器股份有限公司 Refrigerant quantity control device and method and air conditioning unit with control device
EP2663817B1 (en) * 2011-01-14 2018-10-17 Carrier Corporation Refrigeration system and method for operating a refrigeration system
DK177329B1 (en) 2011-06-16 2013-01-14 Advansor As Refrigeration system
US8863494B2 (en) 2011-10-06 2014-10-21 Hamilton Sundstrand Space Systems International, Inc. Turbine outlet frozen gas capture apparatus and method
US9109816B2 (en) * 2012-02-23 2015-08-18 Systemes Lmp Inc. Mechanical subcooling of transcritical R-744 refrigeration systems with heat pump heat reclaim and floating head pressure
WO2013159827A1 (en) * 2012-04-27 2013-10-31 Carrier Corporation Cooling system
WO2013174379A1 (en) 2012-05-22 2013-11-28 Danfoss A/S A method for operating a vapour compression system in hot climate
JP6292480B2 (en) * 2012-10-31 2018-03-14 パナソニックIpマネジメント株式会社 Refrigeration equipment
US9194615B2 (en) 2013-04-05 2015-11-24 Marc-Andre Lesmerises CO2 cooling system and method for operating same
NZ714420A (en) 2013-05-03 2018-11-30 Hill Phoenix Inc Systems and methods for pressure control in a co2 refrigeration system
JP6091399B2 (en) * 2013-10-17 2017-03-08 三菱電機株式会社 Air conditioner
EP2889558B1 (en) 2013-12-30 2019-05-08 Rolls-Royce Corporation Cooling system with expander and ejector
US9739200B2 (en) 2013-12-30 2017-08-22 Rolls-Royce Corporation Cooling systems for high mach applications
US9696074B2 (en) * 2014-01-03 2017-07-04 Woodward, Inc. Controlling refrigeration compression systems
US9726411B2 (en) * 2015-03-04 2017-08-08 Heatcraft Refrigeration Products L.L.C. Modulated oversized compressors configuration for flash gas bypass in a carbon dioxide refrigeration system
CA2928553C (en) 2015-04-29 2023-09-26 Marc-Andre Lesmerises Co2 cooling system and method for operating same
EP3187796A1 (en) 2015-12-28 2017-07-05 Thermo King Corporation Cascade heat transfer system
US11125483B2 (en) 2016-06-21 2021-09-21 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
US10352604B2 (en) 2016-12-06 2019-07-16 Heatcraft Refrigeration Products Llc System for controlling a refrigeration system with a parallel compressor
CN106766297B (en) * 2016-12-22 2019-08-16 广州协义自动化科技有限公司 A kind of ultralow temperature steam trapping pumping system for the pressure that can quickly restore balance
KR101891993B1 (en) * 2017-01-19 2018-08-28 주식회사 신진에너텍 Triple cooling system for rapid freezing chamber, freezing chamber and refrigerating chamber
US10830499B2 (en) * 2017-03-21 2020-11-10 Heatcraft Refrigeration Products Llc Transcritical system with enhanced subcooling for high ambient temperature
US10648701B2 (en) 2018-02-06 2020-05-12 Thermo Fisher Scientific (Asheville) Llc Refrigeration systems and methods using water-cooled condenser and additional water cooling
US11022382B2 (en) 2018-03-08 2021-06-01 Johnson Controls Technology Company System and method for heat exchanger of an HVAC and R system
US11796227B2 (en) 2018-05-24 2023-10-24 Hill Phoenix, Inc. Refrigeration system with oil control system
US10907869B2 (en) 2018-05-24 2021-02-02 Honeywell International Inc. Integrated vapor cycle and pumped two-phase cooling system with latent thermal storage of refrigerants for transient thermal management
US11397032B2 (en) 2018-06-05 2022-07-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
US11187445B2 (en) 2018-07-02 2021-11-30 Heatcraft Refrigeration Products Llc Cooling system
US10663201B2 (en) 2018-10-23 2020-05-26 Hill Phoenix, Inc. CO2 refrigeration system with supercritical subcooling control
CN110332635B (en) * 2019-07-09 2024-03-19 珠海格力节能环保制冷技术研究中心有限公司 Double-stage compression multi-air-supplementing refrigeration heat pump system, control method and air conditioner
CN110319613B (en) * 2019-07-22 2023-05-26 北京市京科伦冷冻设备有限公司 Single-stage carbon dioxide refrigerating system
US12092113B2 (en) * 2019-09-18 2024-09-17 Hitachi Industrial Equipment Systems Co., Ltd. Heat recovery device
US11686513B2 (en) 2021-02-23 2023-06-27 Johnson Controls Tyco IP Holdings LLP Flash gas bypass systems and methods for an HVAC system
CN114459179B (en) * 2021-12-27 2023-05-12 华北理工大学 Artificial ice rink carbon dioxide direct evaporation type ice making system and application method thereof
CN115077114A (en) * 2022-06-08 2022-09-20 松下冷机系统(大连)有限公司 CO 2 Transcritical carbon capture refrigerating unit for ship

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US933682A (en) * 1908-07-03 1909-09-07 Gardner Tufts Voorhees Multiple-effect receiver.
US1860447A (en) * 1928-07-21 1932-05-31 York Ice Machinery Corp Refrigeration
US2585908A (en) * 1944-12-19 1952-02-19 Electrolux Ab Multiple temperature refrigeration system
US2680956A (en) * 1951-12-19 1954-06-15 Haskris Co Plural stage refrigeration system
US3150498A (en) * 1962-03-08 1964-09-29 Ray Winther Company Method and apparatus for defrosting refrigeration systems
US4151724A (en) * 1977-06-13 1979-05-01 Frick Company Pressurized refrigerant feed with recirculation for compound compression refrigeration systems
JPS5523859A (en) * 1978-08-08 1980-02-20 Tokyo Shibaura Electric Co Pluralltemperature refrigeration cycle
FR2513747A1 (en) * 1981-09-25 1983-04-01 Satam Brandt Froid MULTIMOTOCOMPRESSOR REFRIGERATION SYSTEM
US4430866A (en) * 1982-09-07 1984-02-14 Emhart Industries, Inc. Pressure control means for refrigeration systems of the energy conservation type
JPS60262A (en) * 1983-06-17 1985-01-05 株式会社日立製作所 refrigeration cycle
US4947655A (en) * 1984-01-11 1990-08-14 Copeland Corporation Refrigeration system
US4599873A (en) * 1984-01-31 1986-07-15 Hyde Robert E Apparatus for maximizing refrigeration capacity
JPS6164526A (en) * 1984-09-06 1986-04-02 Nippon Denso Co Ltd Cooling and refrigerating device for car
DE3440253A1 (en) 1984-11-03 1986-05-15 Bitzer Kühlmaschinenbau GmbH & Co KG, 7032 Sindelfingen COOLING DEVICE
US4621505A (en) * 1985-08-01 1986-11-11 Hussmann Corporation Flow-through surge receiver
US4742694A (en) * 1987-04-17 1988-05-10 Nippondenso Co., Ltd. Refrigerant apparatus
FR2620205A1 (en) 1987-09-04 1989-03-10 Zimmern Bernard HERMETIC COMPRESSOR FOR REFRIGERATION WITH ENGINE COOLED BY GAS ECONOMIZER
US4779427A (en) * 1988-01-22 1988-10-25 E. Squared Incorporated Heat actuated heat pump
US4831835A (en) * 1988-04-21 1989-05-23 Tyler Refrigeration Corporation Refrigeration system
JPH01318860A (en) * 1988-06-20 1989-12-25 Toshiba Corp Refrigeration cycle device
US5042268A (en) * 1989-11-22 1991-08-27 Labrecque James C Refrigeration
US5042262A (en) * 1990-05-08 1991-08-27 Liquid Carbonic Corporation Food freezer
US5103650A (en) * 1991-03-29 1992-04-14 General Electric Company Refrigeration systems with multiple evaporators
GB2258298B (en) * 1991-07-31 1995-05-17 Star Refrigeration Cooling method and apparatus
JPH0545007A (en) * 1991-08-09 1993-02-23 Nippondenso Co Ltd Freezing cycle
US5174123A (en) 1991-08-23 1992-12-29 Thermo King Corporation Methods and apparatus for operating a refrigeration system
US5191776A (en) * 1991-11-04 1993-03-09 General Electric Company Household refrigerator with improved circuit
JPH06159826A (en) * 1992-11-24 1994-06-07 Hitachi Ltd Multistage compression refrigerating apparatus
DE4309137A1 (en) * 1993-02-02 1994-08-04 Otfried Dipl Ing Knappe Cold process working cycle for refrigerator
EP0658730B1 (en) * 1993-12-14 1998-10-21 Carrier Corporation Economizer control for two-stage compressor systems
JPH07225059A (en) * 1994-02-14 1995-08-22 Teruo Kinoshita Multifunctional refrigerating cycle system
JPH085163A (en) 1994-06-16 1996-01-12 Mitsubishi Heavy Ind Ltd Refrigerating cycle device
US5522233A (en) * 1994-12-21 1996-06-04 Carrier Corporation Makeup oil system for first stage oil separation in booster system
DE19522884A1 (en) 1995-06-23 1997-01-02 Inst Luft Kaeltetech Gem Gmbh Compression refrigeration circuit operating system
FR2738331B1 (en) * 1995-09-01 1997-11-21 Profroid Ind Sa DEVICE FOR ENERGY OPTIMIZATION OF A COMPRESSION AND DIRECT EXPANSION REFRIGERATION ASSEMBLY
NO970066D0 (en) * 1997-01-08 1997-01-08 Norild As Cooling system with closed circulation circuit
JPH1163694A (en) * 1997-08-21 1999-03-05 Zexel Corp Refrigeration cycle
JP2000154941A (en) * 1998-11-19 2000-06-06 Matsushita Electric Ind Co Ltd Refrigerator
DE69931816D1 (en) 1999-02-17 2006-07-20 Yanmar Co CIRCUIT WITH REFRIGERANT COOLING
EP1046869B1 (en) * 1999-04-20 2005-02-02 Sanden Corporation Refrigeration/air conditioning system
DE19920726A1 (en) * 1999-05-05 2000-11-09 Linde Ag Refrigeration system
US6276148B1 (en) * 2000-02-16 2001-08-21 David N. Shaw Boosted air source heat pump
CA2422755C (en) * 2000-09-15 2007-07-24 Mile High Equipment Company Quiet ice making apparatus
JP2002156161A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Air conditioner
US6470693B1 (en) * 2001-07-11 2002-10-29 Ingersoll-Rand Company Compressed air refrigeration system
JP3603848B2 (en) * 2001-10-23 2004-12-22 ダイキン工業株式会社 Refrigeration equipment
US6981377B2 (en) * 2002-02-25 2006-01-03 Outfitter Energy Inc System and method for generation of electricity and power from waste heat and solar sources
JP2003254661A (en) * 2002-02-27 2003-09-10 Toshiba Corp Refrigerator
US6694763B2 (en) * 2002-05-30 2004-02-24 Praxair Technology, Inc. Method for operating a transcritical refrigeration system
DE10258524A1 (en) * 2002-12-14 2004-07-15 Volkswagen Ag Refrigerant circuit for an automotive air conditioning system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016116028B4 (en) 2016-07-18 2019-12-12 imbut GmbH Method for fixing electronic components on a flexible, in particular textile fabric

Also Published As

Publication number Publication date
DK1794510T3 (en) 2012-05-21
CN101713596B (en) 2012-08-08
AU2005270472A1 (en) 2006-02-16
EP1782001B1 (en) 2016-11-30
EP1789732B1 (en) 2011-03-23
EP2244040B1 (en) 2019-08-28
EP1895246A2 (en) 2008-03-05
CN100507402C (en) 2009-07-01
WO2006022829A1 (en) 2006-03-02
CN101713596A (en) 2010-05-26
ATE544992T1 (en) 2012-02-15
DK2264385T3 (en) 2018-07-23
AU2005278162A1 (en) 2006-03-02
EP2244040A3 (en) 2011-10-12
US8113008B2 (en) 2012-02-14
EP1895246B3 (en) 2018-05-02
CN101040153A (en) 2007-09-19
CN101014815A (en) 2007-08-08
KR20070050046A (en) 2007-05-14
US7644593B2 (en) 2010-01-12
US20080078203A1 (en) 2008-04-03
DK2244040T3 (en) 2019-12-02
WO2006022829A8 (en) 2007-03-22
RU2007107807A (en) 2008-09-20
US20080104981A1 (en) 2008-05-08
NO343330B1 (en) 2019-02-04
RU2362096C2 (en) 2009-07-20
EP2244040A2 (en) 2010-10-27
DK1895246T3 (en) 2017-03-06
AU2005270472B2 (en) 2011-01-06
DK1895246T6 (en) 2019-06-11
EP1794510A1 (en) 2007-06-13
HK1144011A1 (en) 2011-01-21
EP2264385A3 (en) 2011-10-19
EP2264385A2 (en) 2010-12-22
EP1895246A3 (en) 2009-02-11
EP1794510B1 (en) 2012-02-08
EP1895246B1 (en) 2016-11-23
HK1101199A1 (en) 2007-10-12
EP1789732A1 (en) 2007-05-30
KR20070046847A (en) 2007-05-03
CN100582603C (en) 2010-01-20
NO20071229L (en) 2007-03-06
EP1782001A1 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
EP2264385B1 (en) Refrigeration cycle and method of operating a refrigerating cycle
DE102004038640A1 (en) Refrigeration circuit and method for operating a refrigeration cycle
DE112004002189T5 (en) Cooling system with evaporator and compressor
EP3099985B1 (en) Refrigeration plant
WO2017054929A1 (en) Method for liquefying a hydrocarbon-rich fraction
EP1050726B1 (en) Refrigeration system
DE102020130063A1 (en) Temperature control system and method for operating a temperature control system
DE102020121275B4 (en) Heat exchanger of a refrigerant circuit of a vehicle air conditioning system
EP1498673B1 (en) Hot gas defrost system for refrigeration systems
DE102011012644A1 (en) Cooling system for cooling and freezing of foods in warehouses or supermarkets, has refrigerant circuit, which is provided for circulation of refrigerant, particularly carbon dioxide, in operating flow direction
DE10233411B4 (en) Refrigeration system with at least one refrigeration cycle and method for defrosting the cold consumer or a refrigeration system
DE102007043162B4 (en) Air conditioning with automatic refrigerant shift
DE102010003564A1 (en) System for simultaneous production of heat and cold for storage of temperature sensitive food product in e.g. supermarket, has re-cooler and control valve arranged between cooler and collector to control pressure in carbon dioxide circuit
DE102019111309A1 (en) Ejector-based cooling system and cooling method
EP1050723B1 (en) Refrigeration system and method for operating a refrigeration system
WO2011097748A2 (en) Heat pump
CH665708A5 (en) METHOD FOR OPERATING A REFRIGERANT CIRCUIT AND REFRIGERANT CIRCUIT FOR CARRYING OUT THE METHOD.
EP1050724A2 (en) Refrigeration system
WO2005075901A1 (en) Refrigerating system and method for operating a refrigerating system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1789732

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GERNEMANN, ANDREAS

Inventor name: HEINBOKEL, BERND

Inventor name: SCHIERHORN, UWE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502005015812

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25B0041040000

Ipc: F25B0009000000

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 9/00 20060101AFI20110914BHEP

Ipc: F25B 40/06 20060101ALI20110914BHEP

17P Request for examination filed

Effective date: 20120320

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170918

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20180219

AC Divisional application: reference to earlier application

Ref document number: 1789732

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 988470

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015812

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180716

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180411

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015812

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 988470

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210623

Year of fee payment: 17

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240619

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240619

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 20