EP2156511A1 - Omnidirectional volumetric antenna - Google Patents
Omnidirectional volumetric antennaInfo
- Publication number
- EP2156511A1 EP2156511A1 EP08760450A EP08760450A EP2156511A1 EP 2156511 A1 EP2156511 A1 EP 2156511A1 EP 08760450 A EP08760450 A EP 08760450A EP 08760450 A EP08760450 A EP 08760450A EP 2156511 A1 EP2156511 A1 EP 2156511A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- elements
- antenna according
- conductive
- antenna
- conductive elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/28—Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q23/00—Antennas with active circuits or circuit elements integrated within them or attached to them
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/24—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
- H01Q3/247—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching by switching different parts of a primary active element
Definitions
- the field of the invention is that of omnidirectional volume antennas such as biconical or discone antennas, to which the addition of elements in the formation zone of the radiation pattern allows a division of the azimuthal angular space.
- a biconical antenna is obtained by the superposition of two cones facing each other by their pointed end, the supply being effected by the center of the cones.
- the shape of the cones makes it possible to determine a zone of progressive flare where the wave propagates.
- This flaring zone may be of various shapes and may in particular provide an outline such as those used for "Vivaldi" type antennas with quasi-shear profiles; this outline can just as easily be reduced to a simple straight line.
- the discone antenna is made by means of a reflector plane on which a cone is arranged, this association has substantially the same characteristics as the bi-conical antenna in terms of performance.
- the omnidirectional antennas of the known art may have a good directivity in all directions in an azimuth plane but do not allow to benefit from latitude to preferentially influence the directivity in a subset of directions. The transition without contact then makes it easier to integrate the antenna.
- an omnidirectional antenna in which the directivity of the antenna can be modified by varying the electric field at the excitation source thereof, this by means of switching diodes.
- the present invention proposes an antenna integrating a contactless three-dimensional transition between a coaxial excitation line and two conductive elements having a symmetry of revolution, corresponding to the three-dimensional transposition of a micro-ribbon line planar transition. slit line and having elements modifying the radiation of the antenna in at least one flared part of the antenna.
- the invention relates to a wideband omnidirectional antenna comprising at least a first conductive element and a second conductive element having a symmetry of revolution about a common axis of revolution and central openings, said elements being positioned opposite one of the other, at least one of the elements having a progressive flaring zone characterized in that it comprises a central coaxial excitation line and a space between the two conductive elements so as to achieve a contactless transition in three dimensions between the coaxial exciter line and the conductive elements and modifying elements of the radiation pattern in the splay area.
- one of the conductive elements is plane. According to a variant of the invention, at least one of the conductive elements is a cone.
- the smallest diameter of the cone is of greater dimension than the section of the coaxial exciter line.
- At least one of the conductive elements is a half-sphere.
- the modifying elements comprise diodes that can switch from a conductive state to an insulating state or MEMS-type components.
- at least one of the conductive elements comprises radial insulating sectors supporting the modifying elements.
- At least one of the conductive elements comprising insulating sectors is made of plastic and comprises metallized parts.
- the modifying elements are fed by printed tracks directly on the plastic element comprising metallized parts.
- the antenna further comprises metal rods connecting the two conductive elements so as to ensure a continuity of mass.
- the antenna comprises at least one solid insulating part in which is formed a conductive element having a progressive flaring zone.
- FIG. 1 illustrates a first example of an omnidirectional antenna according to the art known
- FIGS. 2a and 2b illustrate two other examples of omnidirectional antenna according to the known art
- FIG. 3 illustrates an antenna structure according to the invention comprising two conical elements and a central coaxial line
- FIGS. a and 4b respectively illustrate a perspective view and a sectional view of an example of an antenna according to the invention and having modifying elements of the radiation pattern;
- FIGS. 5a, 5b and 5c respectively show the radiation patterns of the antenna illustrated in FIGS. 4a and 4b in a three-dimensional view, a view in the azimuth plane and a view in the elevation plane;
- FIG. 6 illustrates the reflection losses of the antenna illustrated in FIGS. 4a and 4b;
- FIG. 7 illustrates a variant in which the cones have an enlargement of the central opening with respect to the dimension of the central exciter line
- FIG. 8 illustrates a variant of the invention in which the conductive elements are made in a solid piece of plastic
- FIGS. 9a and 9b illustrate a variant of the invention in which one of the conductive elements is plane
- FIG. 10 illustrates a variant of the invention in which the conductive elements are half-spheres.
- the antenna according to the invention comprises at least a first element of flared and conductive shape and a second element which is also conductive and which can also be of flared or planar shape.
- the assembly consisting of these two elements is coupled to a coaxial central excitation line.
- This exciting line comprises a metal central rod that provides the antenna power function by bringing a short circuit at the opening between the two conductive elements to allow coupling between the coaxial type of access and the together constituted by the two conductive elements.
- This short circuit is achieved by placing an "open circuit" at a distance of ⁇ / 4 at the end of the metal rod.
- the height above the end of this central rod is also a setting parameter of the adaptation of the antenna.
- FIG. 3 shows an example of an omnidirectional antenna structure, more precisely comprising a first conical element C c i, a second conical element C2 , a central coaxial excitation line L c .
- Each conductive element has a central opening O 1 , O 2 allowing the insertion of the exciter line within said elements and a symmetry of revolution about a central axis A 0 .
- This exciting line comprises a metal central rod Lc-i, the length of penetration of this central rod at the first conductive element is typically of the order of ⁇ / 4 to bring a short circuit at the opening of the biconical antenna.
- the spacing e in the vertical direction Dz between the two conical elements allows the coupling between the coaxial excitatory line mode and the mode of the assembly constituted by the two cones.
- the antenna further comprises modifying elements of the radiation pattern Ri, (guiding elements and reflectors) in the flaring zone of the voluminal antenna as illustrated in FIGS. 4a and 4b.
- These elements are advantageously semiconductor elements that can pass from an insulating state to a conductive state and which fit into the flaring zone of the voluminal antenna. They are fed by printed tracks pi connected to a control circuit and positioned on insulating sectors integrated with one of the conductive elements constituting the voluminal antenna.
- 6a, 6b (4-sector configuration) can be, for example, components such as PIN diodes, varactor diodes or even MEMS-type components which are connected to a control circuit. placed under the structure.
- the conductive element comprising insulating sectors and conducting sectors may advantageously be a plastic part on which metallized sectors S d are made .
- the main piece of plastic can be interconnected to the circuit by means of a mechanical system of clips or pins, it can also be reported for example by welding.
- the continuity of mass between the cones is ensured by means of metal rods Mi connecting the two elements Cc i and C c2 .
- Exemplary embodiment of the omnidirectional antenna illustrated in Figure 4a and 4b comprising four sectors and calibrated to be operational at 5 GHz:
- This antenna comprises a three-dimensional main piece made of "metallized plastic” technology which constitutes the support of the "reference” antenna device and which comprises in a "traditional” configuration two plastic cones positioned head-to-tail, with a hole central to allow the supply of the antenna which can be achieved for example by means of a coaxial cable type access.
- the height of this main room in this example is
- the space between the two cones set at 4mm in this example is an important parameter of optimization, this opening plays a role in the antenna power system which is achieved by a coupling between the mode of the coaxial cable and the mode of the biconical antenna.
- This method The power supply is similar to a coaxial-slot slot-type power supply system that is transposed into a three-dimensional configuration.
- FIGS. 5a, 5b and 5c relating to this type of antenna having 5GHz radiation patterns. These diagrams are shown in Figure 5a (three-dimensional view), 5b (seen in the azimuth plane) and 5c (seen in the elevation plane).
- the directivity is 4.92dB
- the beamwidth at -3dB is 90 ° in elevation and 160 ° in the azimuth plane for a front-to-back ratio of less than -8dB.
- the omnidirectional antenna has an enlargement of the small diameter of the cone x c with respect to the dimensions of the outer cylinder of the coaxial supply cable XL and more precisely with respect to the cylindrical recessed zone. constituting the outer wall of the coaxial cable.
- This variant has the advantage of simpler manufacturing, especially in view of molding constraints when using a plastic part.
- the omnidirectional antenna comprises parts that are no longer hollowed out as in the previously described variants but parts made of "solid" plastic, making it possible to reinforce the mechanical strength of said antenna.
- the figure illustrates this configuration.
- the conductive elements C d and Cc 2 are then formed inside said plastic part P.
- the antenna is a discone antenna having a small footprint due to one of the conductive elements which is plane facing the first conductive element.
- the antenna comprises an upper cone metallized to the interior Bcc, a reflective ground plane Pc 2 with access to the coaxial cable Lc, an opening between the cone and the reflector ground plane.
- the conductive parts comprise a contour of the flaring zone such as those encountered for "Vivaldi” type antennas with quasi-spherical profiles and therefore made up of two Sci half-spheres. and Sc2 coupled to the coaxial excitation line 1c .
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Description
Antenne volumique omnidirectïonnelle Omnidirectial aerial antenna
Le domaine de l'invention est celui des antennes volumiques omnidirectionnelles telles que les antennes biconique ou discone, auxquelles l'ajout d'éléments dans la zone de formation du diagramme de rayonnement permet une sectorisation de l'espace angulaire azimutal. De manière générale une antenne biconique est obtenue par la superposition de deux cônes mis en regard par leur extrémité pointue, l'alimentation s'effectuant par le centre des cônes. La forme des cônes permet de déterminer une zone d'évasement progressif où l'onde se propage. Cette zone d'évasement peut être de formes diverses et peut notamment offrir un contour tels que ceux utilisés pour des antennes de type « Vivaldi » avec des profils quasi-shérique; ce contour peut tout aussi bien être réduit à une simple droite. L'antenne discône est, elle, réaiisée au moyen d'un plan réflecteur sur lequel un cône est disposé, cette association présente sensiblement les mêmes caractéristiques que l'antenne bi-conique en terme de performances.The field of the invention is that of omnidirectional volume antennas such as biconical or discone antennas, to which the addition of elements in the formation zone of the radiation pattern allows a division of the azimuthal angular space. In general, a biconical antenna is obtained by the superposition of two cones facing each other by their pointed end, the supply being effected by the center of the cones. The shape of the cones makes it possible to determine a zone of progressive flare where the wave propagates. This flaring zone may be of various shapes and may in particular provide an outline such as those used for "Vivaldi" type antennas with quasi-shear profiles; this outline can just as easily be reduced to a simple straight line. The discone antenna is made by means of a reflector plane on which a cone is arranged, this association has substantially the same characteristics as the bi-conical antenna in terms of performance.
Il est connu des antennes omnidirectionnelles comportant deux éléments conducteurs de type cône Ci et plan P2 comme illustré en figure 1 , dans laquelle l'âme centrale du câble coaxial est en contact avec le cône supérieur tandis que le plan inférieur est en contact avec la masse extérieure du câble coaxial d'alimentation.It is known omnidirectional antennas comprising two conductive elements Ci-cone type and plane P 2 as shown in Figure 1, wherein the central core of the coaxial cable is in contact with the upper cone while the lower plane is in contact with the external mass of the coaxial power cable.
Il est également connu des antennes comportant deux cônes Ci et C2 avec deux câbles coaxiaux Li et L2 (illustrée en figure 2a) ou comme décrit dans la demande de brevet publiée 2 246 090, une antenne comportant deux cônes 1 , 2 dans laquelle il est proposé d'intégrer un élément coaxial central 3,4 et de le connecter aux portions de cône, électriquement via deux réseaux de conducteurs 5,6 le tout étant noyé dans un matériau 7 (illustrée en figure 2b).It is also known antennas having two cones Ci and C 2 with two coaxial cables Li and L 2 (illustrated in Figure 2a) or as described in the published patent application 2,246,090, an antenna having two cones 1, 2 in which it is proposed to integrate a central coaxial element 3,4 and connect it to the cone portions, electrically via two networks of conductors 5,6 all embedded in a material 7 (illustrated in Figure 2b).
Les antennes omnidirectionnelles de l'art connu peuvent présenter une bonne directivité dans l'ensemble des directions dans un plan azimutal mais ne permettent pas de bénéficier de latitude pour influencer de manière préférentielle la directivité dans un sous-ensemble de directions. La transition sans contact permet alors de faciliter l'intégration de l'antenne. 11 est également connu et notamment décrit dans ia demande de brevet EP 1 460 717, une antenne omnidirectionnelie, dans laquelle la directivité de l'antenne peut être modifiée par variation du champ électrique au niveau de la source d'excitation de celle-ci, ce au moyen de diodes de commutation. Dans ce contexte, la présente invention propose une antenne intégrant une transition sans contact en trois dimensions entre une ligne excitatrice coaxiale et deux éléments conducteurs présentant une symétrie de révolution, correspondant à la transposition en trois dimensions d'une transition planaire ligne micro-ruban/iigne à fente et présentant des éléments modificateurs du rayonnement de l'antenne dans au moins une partie évasée de l'antenne.The omnidirectional antennas of the known art may have a good directivity in all directions in an azimuth plane but do not allow to benefit from latitude to preferentially influence the directivity in a subset of directions. The transition without contact then makes it easier to integrate the antenna. It is also known, and in particular described in the patent application EP 1 460 717, an omnidirectional antenna, in which the directivity of the antenna can be modified by varying the electric field at the excitation source thereof, this by means of switching diodes. In this context, the present invention proposes an antenna integrating a contactless three-dimensional transition between a coaxial excitation line and two conductive elements having a symmetry of revolution, corresponding to the three-dimensional transposition of a micro-ribbon line planar transition. slit line and having elements modifying the radiation of the antenna in at least one flared part of the antenna.
Plus précisément l'invention a pour objet une antenne omnidirectionnelie à large bande comportant au moins un premier élément conducteur et un second élément conducteur présentant une symétrie de révolution autour d'un axe commun de révolution et des ouvertures centrales, lesdits éléments étant positionnés en regard l'un de l'autre, au moins un des éléments présentant une zone d'évasement progressif caractérisée en ce qu'elle comprend une ligne excitatrice coaxiaie centrale et un espace entre les deux éléments conducteurs de manière à réaliser une transition sans contact en trois dimensions entre la ligne excitatrice coaxiale et les éléments conducteurs et des éléments modificateurs du diagramme de rayonnement dans Ia zone d'évasement.More specifically, the invention relates to a wideband omnidirectional antenna comprising at least a first conductive element and a second conductive element having a symmetry of revolution about a common axis of revolution and central openings, said elements being positioned opposite one of the other, at least one of the elements having a progressive flaring zone characterized in that it comprises a central coaxial excitation line and a space between the two conductive elements so as to achieve a contactless transition in three dimensions between the coaxial exciter line and the conductive elements and modifying elements of the radiation pattern in the splay area.
Selon une variante de l'invention, l'un des éléments conducteurs est plan. Selon une variante de l'invention, au moins un des éléments conducteurs est un cône.According to a variant of the invention, one of the conductive elements is plane. According to a variant of the invention, at least one of the conductive elements is a cone.
Selon une variante de l'invention, le plus petit diamètre du cône est de plus grande dimension que la section de la ligne excitatrice coaxiale.According to a variant of the invention, the smallest diameter of the cone is of greater dimension than the section of the coaxial exciter line.
Selon une variante de l'invention, au moins un des éléments conducteurs est une demi-sphère.According to a variant of the invention, at least one of the conductive elements is a half-sphere.
Selon une variante de l'invention, les éléments modificateurs comportent des diodes pouvant commuter d'un état conducteur passant à un état isolant ou des composants de type MEMS. Selon une variante de l'invention, au moins un des éléments conducteurs comprend des secteurs isolants radiaux supportant les éléments modificateurs.According to a variant of the invention, the modifying elements comprise diodes that can switch from a conductive state to an insulating state or MEMS-type components. According to a variant of the invention, at least one of the conductive elements comprises radial insulating sectors supporting the modifying elements.
Avantageusement, au moins un des éléments conducteurs comportant des secteurs isolants est en plastique et comporte des parties métallisées.Advantageously, at least one of the conductive elements comprising insulating sectors is made of plastic and comprises metallized parts.
Avantageusement, les éléments modificateurs sont alimentés par des pistes imprimées directement sur l'élément en plastique comportant des parties métallisées. Selon une variante de l'invention, l'antenne comporte en outre des tiges métalliques reliant les deux éléments conducteurs de manière à assurer une continuité de masse.Advantageously, the modifying elements are fed by printed tracks directly on the plastic element comprising metallized parts. According to a variant of the invention, the antenna further comprises metal rods connecting the two conductive elements so as to ensure a continuity of mass.
Selon une variante de l'invention, l'antenne comporte au moins une pièce pleine isolante dans laquelle est réalisé un élément conducteur présentant une zone d'évasement progressif.According to a variant of the invention, the antenna comprises at least one solid insulating part in which is formed a conductive element having a progressive flaring zone.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles : - la figure 1 illustre un premier exemple d'antenne omnidirectionnelle selon l'art connu ;The invention will be better understood and other advantages will become apparent on reading the description which follows given by way of nonlimiting example and with reference to the appended figures in which: FIG. 1 illustrates a first example of an omnidirectional antenna according to the art known;
- les figures 2a et 2b illustrent deux autres exemples d'antenne omnidirectionnelle selon l'art connu ;FIGS. 2a and 2b illustrate two other examples of omnidirectional antenna according to the known art;
- la figure 3 illustre une structure d'antenne selon l'invention comportant deux éléments coniques et une ligne coaxiale centrale ;FIG. 3 illustrates an antenna structure according to the invention comprising two conical elements and a central coaxial line;
- les figures a et 4b illustrent respectivement une vue en perspective et une vue en coupe d'un exemple d'antenne selon l'invention et comportant des éléments modificateurs du diagramme de rayonnement ;- Figures a and 4b respectively illustrate a perspective view and a sectional view of an example of an antenna according to the invention and having modifying elements of the radiation pattern;
- les figures 5a, 5b et 5c illustrent respectivement les diagrammes de rayonnement de l'antenne illustrée en figure 4a et 4b selon une vue en trois dimensions, une vue dans le plan azimutai et une vue dans le plan d'élévation ; - la figure 6 illustre les pertes par réflexion de ['antenne illustrée en figure 4a et 4b ;FIGS. 5a, 5b and 5c respectively show the radiation patterns of the antenna illustrated in FIGS. 4a and 4b in a three-dimensional view, a view in the azimuth plane and a view in the elevation plane; FIG. 6 illustrates the reflection losses of the antenna illustrated in FIGS. 4a and 4b;
- la figure 7 illustre une variante dans laquelle les cônes présentent un élargissement de l'ouverture centrale par rapport à la dimension de la ligne excitatrice centrale ;FIG. 7 illustrates a variant in which the cones have an enlargement of the central opening with respect to the dimension of the central exciter line;
- la figure 8 illustre une variante de l'invention dans laquelle les éléments conducteurs sont réalisés dans une pièce pleine en plastique ;FIG. 8 illustrates a variant of the invention in which the conductive elements are made in a solid piece of plastic;
- les figures 9a et 9b illustrent une variante de l'invention dans laquelle l'un des éléments conducteurs est plan ;FIGS. 9a and 9b illustrate a variant of the invention in which one of the conductive elements is plane;
- la figure 10 illustre une n variante de l'invention dans laquelle les éléments conducteurs sont des demi-sphères.FIG. 10 illustrates a variant of the invention in which the conductive elements are half-spheres.
De manière générale, l'antenne selon l'invention comporte au moins un premier élément de forme évasée et conducteur et un second élément également conducteur pouvant également être de forme évasée ou de forme plane. L'ensemble constitué pas ces deux éléments est couplé à une ligne excitatrice centrale coaxiale. Cette iigne excitatrice comprend une tige centrale métallique qui assure la fonction d'alimentation de l'antenne en ramenant un court circuit au niveau de l'ouverture entre les deux éléments conducteurs afin de permettre le couplage entre l'accès de type coaxial et l'ensemble constitué par les deux éléments conducteurs. Ce court-circuit est réalisé en plaçant un « circuit ouvert » à une distance de λ/4 à l'extrémité de la tige métallique. La hauteur au dessus de l'extrémité de cette tige centrale est également un paramètre de réglage de l'adaptation de l'antenne.In general, the antenna according to the invention comprises at least a first element of flared and conductive shape and a second element which is also conductive and which can also be of flared or planar shape. The assembly consisting of these two elements is coupled to a coaxial central excitation line. This exciting line comprises a metal central rod that provides the antenna power function by bringing a short circuit at the opening between the two conductive elements to allow coupling between the coaxial type of access and the together constituted by the two conductive elements. This short circuit is achieved by placing an "open circuit" at a distance of λ / 4 at the end of the metal rod. The height above the end of this central rod is also a setting parameter of the adaptation of the antenna.
La figure 3 détaille un exemple de structure d'antenne omnidirectionnelle, comportant plus précisément un premier élément de forme conique Cci , un second élément de forme conique CC2, une iigne excitatrice coaxiale centrale Lc. Chaque élément conducteur présente une ouverture centrale O1, O2 permettant l'insertion de la ligne excitatrice au sein desdits éléments et une symétrie de révolution autour d'un axe central A0. Cette ligne excitatrice comprend une tige centrale métallique Lc-i, la longueur de pénétration de cette tige centrale au niveau du premier élément conducteur est typiquement de l'ordre de λ/4 afin de ramener un court circuit au niveau de l'ouverture de l'antenne biconique. Par ailleurs l'espacement e selon la direction verticale Dz entre les deux éléments coniques permet le couplage entre ie mode de la ligne excitatrice coaxiale et le mode de l'ensemble constitué par les deux cônes.FIG. 3 shows an example of an omnidirectional antenna structure, more precisely comprising a first conical element C c i, a second conical element C2 , a central coaxial excitation line L c . Each conductive element has a central opening O 1 , O 2 allowing the insertion of the exciter line within said elements and a symmetry of revolution about a central axis A 0 . This exciting line comprises a metal central rod Lc-i, the length of penetration of this central rod at the first conductive element is typically of the order of λ / 4 to bring a short circuit at the opening of the biconical antenna. Moreover the spacing e in the vertical direction Dz between the two conical elements allows the coupling between the coaxial excitatory line mode and the mode of the assembly constituted by the two cones.
Typiquement l'espacement e selon la direction Dz peut être de l'ordre de 4mm. Les éléments coniques peuvent présenter un rayon de 15 mm, la structure mesurant environ 48 mm. Selon l'invention, l'antenne comprend en outre des éléments modificateurs du diagramme de rayonnement Ri, (éléments directeurs et réflecteurs) dans la zone d'évasement de l'antenne volumique comme illustrée en figures 4a et 4b. Ces éléments sont avantageusement des éléments semiconducteurs pouvant passer d'un état isolant à un état conducteur et qui s'insèrent dans la zone d'évasement de l'antenne volumique. Ils sont alimentés par des pistes imprimées pi reliées à un circuit de contrôle et positionnées sur des secteurs isolants intégrés à l'un des éléments conducteurs constitutifs de l'antenne volumique. Ces éléments représentés par des tiges métalliques sur les schémas des figures 6a, 6b (configuration à 4 secteurs) peuvent être par exemple des composants comme des diodes PIN, des diodes varactor ou encore des composants de type MEMS qui sont reliés à un circuit de contrôle placé sous la structure. Les éléments modificateurs sont représentés schématiquement par des lignes discontinues lorsqu'ils sont dans un état bloquant. Ces composants sont disposés de telle manière à pouvoir générer un court circuit à une distance de λg/4 (avec λg =longueur d'onde guidée entre les deux cônes) du centre du cône où se situe la tige centrale métallique du câble coaxial afin de générer un couplage maximal et d'assurer le passage de l'énergie du câble coaxial à l'antenne biconique. Ces composants sont donc soit dans un état permettant de réaliser un court circuit afin de relier électriquement les masses des deux cônes entre elles et de ce fait de se comporter comme un élément réflecteur, soit dans un état rendant ces composants des éléments directeurs. Le contrôle des états de ces multiples composants permet une sectorisation de l'espace. Leur nombre détermine également le nombre de secteurs pouvant être couverts par le système.Typically the spacing e along the direction Dz can be of the order of 4mm. The conical elements may have a radius of 15 mm, the structure measuring approximately 48 mm. According to the invention, the antenna further comprises modifying elements of the radiation pattern Ri, (guiding elements and reflectors) in the flaring zone of the voluminal antenna as illustrated in FIGS. 4a and 4b. These elements are advantageously semiconductor elements that can pass from an insulating state to a conductive state and which fit into the flaring zone of the voluminal antenna. They are fed by printed tracks pi connected to a control circuit and positioned on insulating sectors integrated with one of the conductive elements constituting the voluminal antenna. These elements represented by metal rods in the diagrams of FIGS. 6a, 6b (4-sector configuration) can be, for example, components such as PIN diodes, varactor diodes or even MEMS-type components which are connected to a control circuit. placed under the structure. The modifying elements are schematically represented by broken lines when in a blocking state. These components are arranged in such a way as to be able to generate a short circuit at a distance of λg / 4 (with λg = guided wavelength between the two cones) of the center of the cone where the metal central rod of the coaxial cable is located in order to generate a maximum coupling and ensure the passage of energy from the coaxial cable to the biconical antenna. These components are therefore either in a state allowing a short circuit to electrically connect the masses of the two cones together and thus behave as a reflective element, or in a state making these components of the guiding elements. Controlling the states of these multiple components allows sectorization of the space. Their number also determines the number of sectors that can be covered by the system.
La configuration précédente a été décrite avec quatre secteurs, on peut avantageusement jouer sur le nombre de secteurs, typiquement il est intéressant d'en réaliser huit pour moduler davantage le diagramme de rayonnement de l'antenne selon l'invention.The previous configuration has been described with four sectors, we can advantageously play on the number of sectors, typically it is interesting to achieve eight to further modulate the radiation pattern of the antenna according to the invention.
Par ailleurs, l'élément conducteur comportant des secteurs isolants et des secteurs conducteurs peut avantageusement être une pièce en plastique sur laquelle sont réaiisés des secteurs métallisés Sd. La pièce principale en plastique peut être interconnectée au circuit au moyen d'un système mécanique de clips ou de picots, elle peut également être reportée par exemple par soudure. La continuité de masse entre les cônes est assurée au moyen de tiges métalliques Mi reliant les deux éléments Cci et Cc2.Moreover, the conductive element comprising insulating sectors and conducting sectors may advantageously be a plastic part on which metallized sectors S d are made . The main piece of plastic can be interconnected to the circuit by means of a mechanical system of clips or pins, it can also be reported for example by welding. The continuity of mass between the cones is ensured by means of metal rods Mi connecting the two elements Cc i and C c2 .
Ainsi, la possibilité au sein d'un unique bloc antenne d'intégrer une fonction de sectorisation offre un gain de place très conséquent. D'un point de vue réalisation, le recours à la technologie plastique, qui offre une voie de réalisation du système antennaire de type bi-conique ou discone, autorise grâce à la dualité et la versatilité du matériau plastique de pouvoir utiliser le plastique comme support de propagation de l'énergie et de ce fait ouvre de nouvelles perspectives en terme de gain de place, de poids et de facilité d'interconnexion avec le reste de la chaîne de communication.Thus, the possibility within a single antenna block to integrate a sectoring function offers a very substantial space saving. From a production point of view, the use of plastic technology, which offers a way of realization of the antennal system of bi-conic or discone type, allows thanks to the duality and the versatility of the plastic material to be able to use the plastic as support of energy propagation and thus opens up new perspectives in terms of gaining space, weight and ease of interconnection with the rest of the communication chain.
Exemple de réalisation de l'antenne omnidirectionneile illustrée en figure 4a et 4b comportant quatre secteurs et calibrée pour être opérationnelle à 5 GHz :Exemplary embodiment of the omnidirectional antenna illustrated in Figure 4a and 4b comprising four sectors and calibrated to be operational at 5 GHz:
Cette antenne comprend une pièce principale en trois dimensions réalisée en technologie « plastique métallisé» qui constitue le support du dispositif antennaire « de référence » et qui comprend dans une configuration « traditionnelle » deux cônes en plastique positionnés de manière tête-bêche, avec un trou central afin de permettre l'alimentation de l'antenne qui peut-être réalisée par exemple au moyen d'un accès de type câble coaxial. La hauteur de cette pièce principale dans cet exemple est deThis antenna comprises a three-dimensional main piece made of "metallized plastic" technology which constitutes the support of the "reference" antenna device and which comprises in a "traditional" configuration two plastic cones positioned head-to-tail, with a hole central to allow the supply of the antenna which can be achieved for example by means of a coaxial cable type access. The height of this main room in this example is
48 mm, le rayon des cônes de 20 mm pour un fonctionnement à 5GHz.48 mm, the cone radius of 20 mm for operation at 5GHz.
L'espace entre les deux cônes réglée à 4mm dans cet exemple, est un paramètre important d'optimisation, cette ouverture joue un rôle dans le système d'alimentation de l'antenne qui est réalisée par un couplage entre le mode du câble coaxial et le mode de l'antenne biconique. Cette méthode d'alimentation s'apparente à un système d'alimentation de type transition câble coaxial-iigne à fente transposé dans une configuration en trois dimensions.The space between the two cones set at 4mm in this example is an important parameter of optimization, this opening plays a role in the antenna power system which is achieved by a coupling between the mode of the coaxial cable and the mode of the biconical antenna. This method The power supply is similar to a coaxial-slot slot-type power supply system that is transposed into a three-dimensional configuration.
La présence et surtout le contrôle des éléments réflecteurs permettent d'éclairer des secteurs donnés et de manière séiective l'espace grâce à l'utilisation d'un unique dispositif central. Ceci est illustré avec une structure à quatre secteurs isolants comportant de tels éléments et grâce aux figures 5a, 5b et 5c relatives à ce type d'antenne présentant des diagrammes de rayonnement à 5GHz. Ces diagrammes sont présentés en figure 5a (vue en trois dimensions), 5b (vue dans le plan azimutal) et 5c (vue dans le plan d'élévation). La directivité est de 4.92dB, la largeur de faisceau à -3dB est de 90° en élévation et 160° dans le plan azimutal pour un rapport avant- arrière inférieur à -8dB.The presence and especially the control of the reflective elements make it possible to illuminate given sectors and in a selective way the space thanks to the use of a single central device. This is illustrated with a structure with four insulating sectors comprising such elements and with FIGS. 5a, 5b and 5c relating to this type of antenna having 5GHz radiation patterns. These diagrams are shown in Figure 5a (three-dimensional view), 5b (seen in the azimuth plane) and 5c (seen in the elevation plane). The directivity is 4.92dB, the beamwidth at -3dB is 90 ° in elevation and 160 ° in the azimuth plane for a front-to-back ratio of less than -8dB.
Cet exemple de structure réalisée pour fonctionner à 5GHz, présente typiquement des pertes par réflexion illustrées en figure 6.This exemplary structure made to operate at 5GHz, typically has reflection losses illustrated in FIG. 6.
Selon une variante de l'invention illustrée en figure 7, l'antenne omnidirectionnelie présente un élargissement du petit diamètre du cône xc par rapport aux dimensions du cylindre extérieur du câble coaxial d'alimentation XL et plus précisément par rapport à ia zone évidée cylindrique constituant la paroi externe du câble coaxial. Cette variante présente l'intérêt d'une fabrication plus simple compte tenu notamment des contraintes de moulage lorsque l'on utilise une pièce en matière plastique.According to a variant of the invention illustrated in FIG. 7, the omnidirectional antenna has an enlargement of the small diameter of the cone x c with respect to the dimensions of the outer cylinder of the coaxial supply cable XL and more precisely with respect to the cylindrical recessed zone. constituting the outer wall of the coaxial cable. This variant has the advantage of simpler manufacturing, especially in view of molding constraints when using a plastic part.
Selon une variante de l'invention, l'antenne omnidirectionnelle comporte des pièces non plus évidées comme dans les variantes précédemment décrites mais des pièces constituées de plastique « plein » , permettant de renforcer ia tenue mécanique de ladite antenne. La figure δillustre cette configuration. Les éléments conducteurs Cd et Cc2 sont alors réalisés à l'intérieur de ladite pièce en plastique P.According to one variant of the invention, the omnidirectional antenna comprises parts that are no longer hollowed out as in the previously described variants but parts made of "solid" plastic, making it possible to reinforce the mechanical strength of said antenna. The figure illustrates this configuration. The conductive elements C d and Cc 2 are then formed inside said plastic part P.
Selon une variante de l'invention, l'antenne est une antenne discone présentant un faible encombrement en raison d'un des éléments conducteurs qui est plan en regard du premier élément conducteur. Comme illustré en figure 9a et 9b, l'antenne comporte un cône supérieur métallisé à l'intérieur Cci, un plan de masse réflecteur Pc2 avec un accès vers le câble coaxial Lc, une ouverture entre le cône et le plan de masse réflecteur.According to a variant of the invention, the antenna is a discone antenna having a small footprint due to one of the conductive elements which is plane facing the first conductive element. As illustrated in FIGS. 9a and 9b, the antenna comprises an upper cone metallized to the interior Bcc, a reflective ground plane Pc 2 with access to the coaxial cable Lc, an opening between the cone and the reflector ground plane.
Seion une variante de l'invention illustrée en figure 10, les pièces conductrices comportent un contour de la zone d'évasement tel que ceux rencontrées pour des antennes de type « Vivaldi » avec des profils quasi sphérique et donc constitués de deux demi-sphères Sci et Sc2 couplées à la ligne excitatrice coaxiale l_c. According to a variant of the invention illustrated in FIG. 10, the conductive parts comprise a contour of the flaring zone such as those encountered for "Vivaldi" type antennas with quasi-spherical profiles and therefore made up of two Sci half-spheres. and Sc2 coupled to the coaxial excitation line 1c .
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0755695 | 2007-06-12 | ||
PCT/EP2008/056867 WO2008155219A1 (en) | 2007-06-12 | 2008-06-04 | Omnidirectional volumetric antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2156511A1 true EP2156511A1 (en) | 2010-02-24 |
Family
ID=38662810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08760450A Withdrawn EP2156511A1 (en) | 2007-06-12 | 2008-06-04 | Omnidirectional volumetric antenna |
Country Status (5)
Country | Link |
---|---|
US (1) | US11271316B2 (en) |
EP (1) | EP2156511A1 (en) |
JP (1) | JP5416100B2 (en) |
CN (1) | CN101682115B (en) |
WO (1) | WO2008155219A1 (en) |
Families Citing this family (184)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010028881A1 (en) | 2009-06-03 | 2010-12-09 | Continental Teves Ag & Co. Ohg | Vehicle antenna device with horizontal main beam direction |
CN102110885B (en) * | 2010-12-24 | 2013-08-07 | 哈尔滨工业大学 | Omnidirectionally radiated ultra wideband antenna |
CN102593580B (en) * | 2012-03-29 | 2014-04-02 | 哈尔滨工业大学 | Ultra-wideband omnidirectional radiation bipolar wire antenna |
CN103000988B (en) * | 2012-07-25 | 2015-02-25 | 中国联合网络通信集团有限公司 | Antenna assembly and manufacturing method thereof |
CN203312446U (en) * | 2012-10-30 | 2013-11-27 | 盖尔创尼克斯有限公司 | Compact broadband omnidirectional antenna used in indoor/outdoor applications |
US9113347B2 (en) | 2012-12-05 | 2015-08-18 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9768520B2 (en) * | 2013-08-09 | 2017-09-19 | Harris Corporation | Broadband dual polarization omni-directional antenna and associated methods |
US10158178B2 (en) | 2013-11-06 | 2018-12-18 | Symbol Technologies, Llc | Low profile, antenna array for an RFID reader and method of making same |
US9847571B2 (en) * | 2013-11-06 | 2017-12-19 | Symbol Technologies, Llc | Compact, multi-port, MIMO antenna with high port isolation and low pattern correlation and method of making same |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
US9209902B2 (en) | 2013-12-10 | 2015-12-08 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
CN104112899B (en) * | 2014-04-28 | 2017-02-22 | 西安电子工程研究所 | High-power discone antenna |
KR101477985B1 (en) * | 2014-07-09 | 2015-01-02 | 한밭대학교 산학협력단 | Omni-directional antenna |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US9705571B2 (en) | 2015-09-16 | 2017-07-11 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
CN105552560B (en) * | 2015-12-14 | 2018-06-19 | 武汉大学 | A kind of VHF-UHF wave bands broadband isotropic receiving antenna |
EP3285332B1 (en) * | 2016-08-19 | 2019-04-03 | Swisscom AG | Antenna system |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
EP3791443A1 (en) * | 2018-05-08 | 2021-03-17 | Systems and Software Enterprises, LLC | Antenna with modular radiating elements |
EP3826106B1 (en) | 2018-08-27 | 2023-11-22 | Yamaha Hatsudoki Kabushiki Kaisha | V2x communication antenna-mounted leaning vehicle |
US10833399B1 (en) * | 2018-08-30 | 2020-11-10 | Bae Systems Information And Electronic Systems Integration Inc. | Embedded wide band monocone antenna |
US10431893B1 (en) | 2018-12-31 | 2019-10-01 | King Saud University | Omnidirectional multiband antenna |
US10483640B1 (en) | 2018-12-31 | 2019-11-19 | King Saud University | Omnidirectional ultra-wideband antenna |
USD891404S1 (en) * | 2019-01-28 | 2020-07-28 | King Saud University | Omnidirectional ultra-wideband antenna |
US10411357B1 (en) | 2019-01-28 | 2019-09-10 | Kind Saud University | Ultra-wideband unipole antenna |
USD889445S1 (en) * | 2019-01-28 | 2020-07-07 | King Saud University | Omnidirectional multiband antenna |
USD890145S1 (en) * | 2019-01-29 | 2020-07-14 | King Saud University | Ultra-wideband unipole antenna |
US11342679B1 (en) * | 2020-09-30 | 2022-05-24 | Bae Systems Information And Electronic Systems Integration Inc. | Low profile monocone antenna |
US12040539B2 (en) | 2020-11-25 | 2024-07-16 | Raytheon Company | Mitigation of ripple in element pattern of geodesic antenna |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2602894A (en) * | 1946-02-19 | 1952-07-08 | Wilmer L Barrow | Biconical electromagnetic horn |
US2556046A (en) * | 1946-03-28 | 1951-06-05 | Philco Corp | Directional antenna system |
US3373430A (en) * | 1965-03-15 | 1968-03-12 | Nasa Usa | Omnidirectional microwave spacecraft antenna |
FR2246090B1 (en) | 1973-08-31 | 1977-05-13 | Thomson Csf | |
US4074268A (en) | 1976-06-21 | 1978-02-14 | Hoffman Electronics Corporation | Electronically scanned antenna |
JPH09153727A (en) * | 1995-11-29 | 1997-06-10 | Furukawa C & B Kk | Broad band antenna |
JPH11355031A (en) * | 1998-06-03 | 1999-12-24 | Dx Antenna Co Ltd | Antenna |
US6154182A (en) * | 1999-03-23 | 2000-11-28 | Emc Automation, Inc. | Extensible top-loaded biconical antenna |
US6667721B1 (en) | 2002-10-09 | 2003-12-23 | The United States Of America As Represented By The Secretary Of The Navy | Compact broad band antenna |
JP4212046B2 (en) * | 2003-03-20 | 2009-01-21 | 株式会社リコー | Variable directivity antenna, electronic device using the antenna, and antenna directivity control method using the antenna |
US7567154B2 (en) * | 2004-05-21 | 2009-07-28 | Corridor Systems, Inc. | Surface wave transmission system over a single conductor having E-fields terminating along the conductor |
US7221326B2 (en) | 2004-07-27 | 2007-05-22 | Git Japan, Inc. | Biconical antenna |
JP2005218080A (en) * | 2004-12-20 | 2005-08-11 | Tdk Corp | Antenna system |
US7245263B2 (en) * | 2005-02-18 | 2007-07-17 | Ricoh Company, Ltd. | Antenna |
US7408521B2 (en) * | 2006-04-12 | 2008-08-05 | Innerwireless, Inc. | Low profile bicone antenna |
-
2008
- 2008-06-04 US US12/452,003 patent/US11271316B2/en active Active
- 2008-06-04 CN CN200880020242.XA patent/CN101682115B/en not_active Expired - Fee Related
- 2008-06-04 JP JP2010511581A patent/JP5416100B2/en not_active Expired - Fee Related
- 2008-06-04 EP EP08760450A patent/EP2156511A1/en not_active Withdrawn
- 2008-06-04 WO PCT/EP2008/056867 patent/WO2008155219A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2008155219A1 * |
Also Published As
Publication number | Publication date |
---|---|
US11271316B2 (en) | 2022-03-08 |
US20120068903A1 (en) | 2012-03-22 |
CN101682115A (en) | 2010-03-24 |
JP5416100B2 (en) | 2014-02-12 |
CN101682115B (en) | 2015-03-11 |
WO2008155219A1 (en) | 2008-12-24 |
JP2010529795A (en) | 2010-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008155219A1 (en) | Omnidirectional volumetric antenna | |
CA2640481C (en) | Circularly or linearly polarized antenna | |
FR2863109A1 (en) | CONFIGURABLE AND ORIENTABLE SENDING / RECEIVING RADIATION DIAGRAM ANTENNA, CORRESPONDING BASE STATION | |
EP2710676B1 (en) | Radiating element for an active array antenna consisting of elementary tiles | |
FR2960710A1 (en) | RADIANT ELEMENT WITH DUAL POLARIZATION OF MULTIBAND ANTENNA | |
EP1516393B1 (en) | Double polarization dual-band radiating device | |
EP1551078B1 (en) | Omnidirectional antenna with steerable diagram | |
CA2489776C (en) | Circularly polarized wire antenna | |
FR3090220A1 (en) | MONOPOLAR WIRE-PLATE ANTENNA | |
EP1550183A2 (en) | Essentially square broadband, dual polarised radiating element | |
EP2543111B1 (en) | Antenna structure with dipoles | |
EP1432073B1 (en) | Coaxial collinear antenna | |
WO2002052680A1 (en) | Printed patch antenna | |
FR2794290A1 (en) | VERTICAL POLARIZATION ANTENNA | |
EP0337841A1 (en) | Broadband transmitting antenna loop with asymmetric feed and array of a plurality of these loops | |
EP2226896B1 (en) | Multiband omnidirectional antenna | |
EP0831550B1 (en) | Versatile array antenna | |
EP1376758A1 (en) | Compact patch antenna with a matching circuit | |
WO2004006386A1 (en) | Coplanar polarization dual-band radiating device | |
EP4485687A1 (en) | Radiation pattern adaptable by obstacle polarization | |
EP1873864A1 (en) | Symmetric antenna using microwave-strip technology. | |
FR2874748A1 (en) | Hyper frequency splitter for feeding electronically scanned antenna, has ring wave guide with rectangular section and with inlets connected to side that corresponds to side of section | |
FR3000844A1 (en) | Circular network antenna for use in e.g. rubber boat, has aerial elements, and support structure comprising base with upper part having external and internal walls, where external wall is designed planar and arranged transverse to axis | |
EP2733788A1 (en) | Single-band omnidirectional antenna | |
EP2880712A1 (en) | Method for the electromagnetic decoupling of an antenna and the supporting pole thereof, and corresponding supporting pole |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20091203 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LO HINE TONG, DOMINIQUE Inventor name: COUPEZ, JEAN-PHILIPPE Inventor name: NICOLAS, CORINNE Inventor name: LOUZIR, ALI Inventor name: THEVENARD, JULIAN Inventor name: PERSON, CHRISTIAN |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20110218 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160708 |