[go: up one dir, main page]

EP1516393B1 - Double polarization dual-band radiating device - Google Patents

Double polarization dual-band radiating device Download PDF

Info

Publication number
EP1516393B1
EP1516393B1 EP03760720A EP03760720A EP1516393B1 EP 1516393 B1 EP1516393 B1 EP 1516393B1 EP 03760720 A EP03760720 A EP 03760720A EP 03760720 A EP03760720 A EP 03760720A EP 1516393 B1 EP1516393 B1 EP 1516393B1
Authority
EP
European Patent Office
Prior art keywords
radiating element
dipole
dipoles
cavity
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03760720A
Other languages
German (de)
French (fr)
Other versions
EP1516393A1 (en
Inventor
Mostafa Jelloul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arialcom
Original Assignee
Arialcom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0207872A external-priority patent/FR2841390B1/en
Application filed by Arialcom filed Critical Arialcom
Publication of EP1516393A1 publication Critical patent/EP1516393A1/en
Application granted granted Critical
Publication of EP1516393B1 publication Critical patent/EP1516393B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays

Definitions

  • the invention relates to antennas and their radiating elements that can be used in particular in the base stations of cellular radio communication networks of the GSM or UMTS type, for example.
  • a double polarization radiating element may be formed of two radiating dipoles, each dipole consisting of two collinear conductor strands. The length of each strand is substantially equal to one quarter of the working wavelength.
  • the dipoles are mounted on a structure allowing their feeding and their positioning above a reflector (plane-mass). This makes it possible, by reflection of the rear radiation of the dipoles, to refine the directivity of the radiation pattern of the assembly thus formed.
  • the dipoles can radiate or receive electromagnetic waves in two polarization paths, for example a horizontal polarization path and a vertical polarization path, or else two polarization paths offset by an angle of ⁇ 45 ° from horizontal or vertical.
  • the inter-band decoupling depends fundamentally on the relative orientation of the second radiating element placed in the center of the first.
  • the parallel dipoles of the elements operating in the frequency bands F1 and F2 are insufficiently decoupled in the upper frequency band of frequency F2 for which the peripheral dipoles have a large dimension relative to the wavelength corresponding to the frequency F2.
  • the interaction between the peripheral dipoles operating at the frequency F1 and the crossed dipoles operating at the frequency F2 is due to both the direct radiation, the dipoles being in line of sight, but also to the radiation reflected by the reflector.
  • the perpendicular paths of the two radiating elements are well decoupled by virtue of this geometrical orthogonality.
  • the invention aims to improve the situation.
  • the dual-polarization dual-band radiating device comprises a first radiating element operating in a first frequency band F1 which is formed of four dipoles arranged in a square and a second radiating element operating in a second frequency band F2 which is formed of at least one dipole disposed in the center of the square of the dipoles forming the first radiating element, each dipole being fed at its center by a balun.
  • the first and the second radiating elements are arranged above a reflector.
  • the dipoles forming the first radiating element and the baluns are made in the same metal plate, each balun of a dipole being formed by a short-circuit line cut into the metal plate in a direction perpendicular to the metal plate. axis of the dipole.
  • the second radiating element is formed by at least one dipole disposed inside a cavity opening at the center of the metal plate.
  • the metal plate and the cavity may be made in one piece, for example stamping.
  • the second radiating element operating in the frequency band F2 is then fixed inside and in the center of the cavity, the bottom of which serves as an electrical short-circuit plane to at least one balun or balun serving to supply the second element.
  • the first radiating element and the second radiating element have a very weak electromagnetic interaction. This is only due to the edge diffraction of the cavity. In this way the decoupling between the two frequency bands is very strong regardless of the relative orientation of the dipole or dipoles forming the second radiating element inside the cavity, that is to say its polarization.
  • the side of the square formed by each dipole has a typical length equal to the half wavelength of the frequency wave F1 radiated by the dipoles for a mid-power beam opening close to 65 ° in the horizontal plane.
  • the spacing (d) between two parallel dipoles of the radiating plate 5 and consequently the length of the sides of the square formed by the four dipoles 1 to 4 which largely determines the directivity of the radiation pattern in the horizontal plane of these dipoles, ie the half-power aperture of this diagram and that this aperture depends very little on the length (1) of the dipoles.
  • the length (1) of a dipole determines its impedance and can be greater or less depending on the thickness and width of the dipole. The larger this thickness is, the shorter the length of the dipole will be.
  • the side (d) of the square is determined as a function of the half-power opening which is sought and which may have a value other than 65 ° and the length of the dipoles is adjusted to ensure the adaptation of impedance, generally 50 Ohms, of the pair of associated parallel dipoles to form a directional pattern polarization channel.
  • the dipoles 1 to 4 and the cavity 7 can be made in one piece by cutting and stamping of the metal plate 5.
  • Each dipole 1 to 4 is fed by a balun referenced 8 to 11, respectively, of the "balun" type formed by a short-circuit line cut in the metal plate 5.
  • Each balun constitutes a support arm of the corresponding dipole.
  • the plate 5 is formed around the hole 6 through which the cavity 7 passes through a concentric ring 12 having on its outer periphery and along two right-angle directions, protuberances or arms 13 to 16 of shapes, for example, rectangular, chamfered or trapezoidal, respectively connecting the ring 12 to the dipoles 1 to 4.
  • the radial length (h) of the arms is preferably non-zero, for example greater than 0.05 ⁇ 1 so as to avoid direct contact of the inner edge of the dipoles with the outer edge of the ring 12 and thus minimize the interaction between the current flowing on the dipole and the currents flowing on the ring 12.
  • the average width (w) of the arms is typically 5 to 10 times the width of the slit line which is otherwise very small in front of the wavelength ⁇ 1 corresponding to the frequency F1.
  • the width of the ring 12 is determined to be sufficient both mechanically to support the dipoles and on the radioelectric plane to stabilize the directivity of the radiation patterns of the cavity 7 in the second frequency band F2, by making less fluctuating half-power aperture of radiation patterns as a function of frequency.
  • This width is preferably greater than 5/100-th of the wavelength ⁇ 2 corresponding to the frequency F2.
  • the dipoles 1 to 4 are fed at their base, that is to say at the open end of the slit lines of the baluns 8 to 11 by means for example of coaxial cables respectively referenced 17 to 20.
  • the geometrically parallel dipoles 2 and 4 on two opposite sides of the square are fed at equal phase and amplitude by two identical coaxial lines 18 and 20 and an association tee 21 to form a directional pattern polarization path, such as a classical network of two parallel dipoles.
  • the coaxial feed lines 17, 18, 19, 20 of the dipoles are respectively disposed along and on one side of the baluns 8, 9, 10, 11.
  • the outer conductive sheath of the coaxial lines 17 to 20 is in electrical contact with the base of the first half of the dipole it feeds and with the plate 5, and the central conductor is connected to the base of the other half of the same dipole.
  • Two orthogonal polarization paths are thus obtained whose radiation patterns are substantially identical.
  • this mode of association is not limiting, and other modes can be envisaged.
  • the baluns of the dipoles are slot lines cut into the meandering plate 5.
  • the meanders of each slot line must be in sufficient number for the slot line to have a length substantially equal to one quarter of the wavelength of the frequency wave F1 radiated by the first radiating element.
  • the slit lines can take other forms, they can for example as shown in FIG. figure 4 or the elements homologous to those of the figure 1 have the same references, be formed by a circular section followed by a rectilinear section leading to the feed base of a dipole.
  • the circular section may be anywhere on the crown 12. However, to avoid the coupling between the frequency waves F1 and F2, it is preferable that it is not near the edge of the hole 6 but rather in the middle of the crown. 12.
  • the radiating plate 5 is in electrical contact with the edge 7a of the cavity.
  • the cavity 7 is excited at its center by a radiating element 23 operating on the second frequency F2.
  • This radiating element 23 may be of simple dipole type for the case of operation in single polarization mode or cross dipole type, or turnstile commonly called in English "turnstile", for the case of operation in polarization mode orthogonal, or any other type of radiating elements suitable for other types of polarization including circular.
  • the bottom 7b of the cavity 7 is closed so that the radiation of the inner radiating element 23 is unidirectional and directional towards the front of the cavity 7.
  • balun balun means On the sectional view of the figure 2 each balun is formed by a first conductive tube 24 and a second conductive tube 25 of length substantially equal to one quarter of the wavelength of the frequency wave F2.
  • the conductors 24 and 25 are in electrical connection at their respective ends with the supply base of each half of a dipole of the radiating element 23 and the bottom 7b of the cavity.
  • the first tube 24 is traversed along its longitudinal axis by a central conductor 26, one end of which is connected to the supply base of the half-dipole opposite to that to which it is connected by one of its ends and whose other end can be connected to the central conductor of a power connector or possibly to the central conductor of a coaxial cable not shown.
  • the tubes 24 and 25 thus form with the central conductor 26 a coaxial line transforming impedance for the dipole to which they are connected.
  • the depth of the cavity 7 is close to a quarter of the wavelength ⁇ 2 of the radiated wave of frequency F2 of the radiating element 23 inside the cavity.
  • the height of the radiating element 23 with respect to the bottom 7b of the cavity is also close to a quarter of the wavelength ⁇ 2 while being less than the depth of the cavity 7.
  • the diameter of the cavity 7 can vary in large proportions, for example between 0.45 ⁇ 2 and ⁇ 2, for half-power openings less than 90 ° radiation diagrams in the diagonal planes inclined by ⁇ 45 ° with respect to the planes. main E and H of the dipole inside the cavity.
  • the necessary spacing between the dipoles 1 to 4 of the radiating plate 5 operating at the frequency F1 can limit the maximum diameter of the cavity 7.
  • a diameter of 80mm and a cavity depth of 40mm are suitable for producing a half-power aperture diagram of about 65 ° in the GSM1800 or UMTS band.
  • the cavity 7 which supports the plate 5 is fixed on a reflector 24 of sufficient size to allow the electromagnetic fields radiated at the rear of the dipoles on the reflector to be returned to the front.
  • the reflector 24 is intended to unidirectional radiation of the dipoles of the radiating structure.
  • the reflector 24 may comprise walls whose role is to stiffen the structure but also to act on the directivity of the radiated diagrams.
  • the height of the dipoles of the radiating plate 5 relative to the reflector 24 can vary typically from ⁇ 1 / 8 to ⁇ 1 / 4 in the frequency band F1 of wavelength ⁇ 1.
  • the dipoles 1 to 4 of the plate 5 are partially raised relative to the plane formed by the opening of the cavity 7, each dipole being divided into three parts, a lower part 1b respectively; 2b, 3b, 4b located in the plane of the plate 5 and two high parts respectively 1a, 1c; 2a, 2c; 3a, 3c; 4a, 4c located on either side of the lower part.
  • This elevation which preferably must retain the geometric symmetry of the structure, can also be done by tilting the parts of the dipoles located beyond the zones of the baluns 8 to 11 corresponding.
  • Geometric shapes can be envisaged to make dipoles, the only condition being the respect of the symmetry of the radiating structure, ie the identity of the dipoles, if not of the four at least two by two pairs of parallel dipoles.
  • the symmetry of the pairs of dipoles means that two parallel dipoles have the same total length so that they have the same impedance and their respective radiation is substantially the same.
  • the two pairs of dipoles are not necessarily identical because each pair of dipoles generates an independent polarization path.
  • the symmetry in question is a symmetry with respect to the center (O) of the square formed by the four dipoles.
  • the structures of the radiating elements of Figures 1 to 7 are very simple and make it possible to realize at low cost two-band radiating structures having two orthogonal polarization paths in each frequency band, inclined, for example, as shown by FIGS. figures 1 and 5 , of ⁇ 45 ° with respect to a vertical direction vv '.
  • the four channels thus formed are strongly decoupled from each other typically of 30 dB, and radiate in each frequency band according to unidirectional directivity diagrams having half-power openings less than 90 ° in the horizontal plane, for example 65 °.
  • collinear alignments of a plurality of such radiating structures may be made to form high gain vertical linear arrays, for example 18dBi, a dual band having two orthogonal polarization paths inclined by ⁇ 45 ° with respect to a vertical direction. vv 'in each frequency band.
  • the embodiment of the network shown in figure 8 comprises on the one hand bi-band and bipolarized radiating elements of the type described in figure 7 operating in the F1 (GSM900) and F2 (UMTS and / or DCS) bands and on the other hand of bipolarized mono-band radiating elements operating in the F2 band of the same type as the central elements of the figure 7 .
  • the network pitch for the F2 band is half the network pitch for the F1 band. It is thus possible to construct a highly directive, regular pitch, bi-band and bipolarized network having a good polarization purity and a strong decoupling between the different channels.
  • all the radiating elements operating in the band F2 have substantially the same phase center because of their identity, this being situated on the central axis of the cavity, which axis is perpendicular to the plane of the opening of the cavity. .
  • This property greatly facilitates the electrical pointing (or tilt) of the beam by acting on the phase shifts between radiating elements and also allows better alignment of the phases of the radiating elements in the frequency band for greater directivity of the antenna.
  • Radiating elements made in accordance with those of the invention described above and operating in the GSM1800, GSM 1900 and UMTS frequency bands have made it possible to obtain an insulation between the channels close to 30 dB, with standing wave ratios with respect to 50 Ohms for all radiating elements less than 1.7: 1 and half-power apertures of directivity patterns close to 65 ° in the horizontal plane for gains close to 9 dBi in both frequency bands.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Polarising Elements (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The invention concerns a device comprising a first radiating element operating in a first frequency band F1, consisting of four dipoles (1, 2, 3, 4) in square arrangement and a second radiating element (23) operating in a second frequency band F2 consisting of at least one dipole arranged in the center of the square of dipoles (1, 2, 3, 4) forming the first radiating element, each dipole being center-fed by a balun. The set of radiating elements is arranged above a reflector (24). The dipoles (1, 2, 3, 4) forming the first radiating element and the baluns (8, 9, 10, 11) associated therewith are produced in a common metal plate (5), each balun of a dipole consisting of a close-circuit slotted line cut out in the metal plate (5) along a direction perpendicular to the dipole axis. The second radiating element (23) consists of at least one dipole arranged inside a metal cavity (7) located in the center of the metal plate (5). The invention is applicable to cellular radio communication networks.

Description

L'invention concerne les antennes et leurs éléments rayonnants utilisables notamment dans les stations de base des réseaux de radiocommunication cellulaires de type GSM ou UMTS par exemple.The invention relates to antennas and their radiating elements that can be used in particular in the base stations of cellular radio communication networks of the GSM or UMTS type, for example.

Un élément rayonnant à double polarisation peut être formé de deux dipôles rayonnants, chaque dipôle étant constitué par deux brins de conducteurs colinéaires. La longueur de chaque brin est sensiblement égale au quart de la longueur d'onde de travail. Les dipôles sont montés sur une structure permettant leur alimentation et leur positionnement au dessus d'un réflecteur (plan-masse). Ceci permet, par réflexion du rayonnement arrière des dipôles, d'affiner la directivité du diagramme de rayonnement de l'ensemble ainsi formé.A double polarization radiating element may be formed of two radiating dipoles, each dipole consisting of two collinear conductor strands. The length of each strand is substantially equal to one quarter of the working wavelength. The dipoles are mounted on a structure allowing their feeding and their positioning above a reflector (plane-mass). This makes it possible, by reflection of the rear radiation of the dipoles, to refine the directivity of the radiation pattern of the assembly thus formed.

II est connu pour réaliser un dispositif rayonnant fonctionnant dans deux bandes de fréquence et à polarisations orthogonales, de disposer un premier élément rayonnant, formé par quatre dipôles en quadrature opérant sur une première fréquence F1, autour d'un deuxième élément rayonnant formé par deux dipôles croisés en quadrature opérant sur une deuxième fréquence F2, l'ensemble de ces éléments étant disposé au dessus d'un réflecteur.It is known to produce a radiating device operating in two frequency bands and with orthogonal polarizations, to have a first radiating element, formed by four quadrature dipoles operating on a first frequency F1, around a second radiating element formed by two dipoles. crossed in quadrature operating on a second frequency F2, all of these elements being disposed above a reflector.

Selon leur orientation dans l'espace, les dipôles peuvent rayonner ou recevoir des ondes électromagnétiques suivant deux voies de polarisation, par exemple une voie de polarisation horizontale et une voie de polarisation verticale ou encore suivant deux voies de polarisation décalées d'un angle de ± 45°par rapport à l'horizontale ou la verticale.According to their orientation in space, the dipoles can radiate or receive electromagnetic waves in two polarization paths, for example a horizontal polarization path and a vertical polarization path, or else two polarization paths offset by an angle of ± 45 ° from horizontal or vertical.

Cependant le découplage inter-bande dépend fondamentalement de l'orientation relative du deuxième élément rayonnant placé au centre du premier. En particulier les dipôles parallèles des éléments fonctionnant dans les bandes de fréquence F1 et F2 sont insuffisamment découplés dans la bande de fréquence supérieure de fréquence F2 pour laquelle les dipôles périphériques ont une dimension grande par rapport à la longueur d'onde correspondant à la fréquence F2. En effet l'interaction entre les dipôles périphériques fonctionnant à la fréquence F1 et les dipôles croisés fonctionnant à la fréquence F2 est due à la fois au rayonnement direct, les dipôles étant en visibilité directe, mais aussi au rayonnement réfléchi par le réflecteur. En revanche les voies perpendiculaires des deux éléments rayonnants sont bien découplées en vertu de cette orthogonalité géométrique. Mais si cette orthogonalité n'est plus respectée, notamment si les dipôles de l'élément rayonnant central ont des orientations arbitraires par rapport à ceux des dipôles périphériques formant le premier élément rayonnant alors un couplage inter-bande assez fort apparaît entre les différentes voies de transmission ou de réception des deux éléments rayonnants.However, the inter-band decoupling depends fundamentally on the relative orientation of the second radiating element placed in the center of the first. In particular, the parallel dipoles of the elements operating in the frequency bands F1 and F2 are insufficiently decoupled in the upper frequency band of frequency F2 for which the peripheral dipoles have a large dimension relative to the wavelength corresponding to the frequency F2. . Indeed, the interaction between the peripheral dipoles operating at the frequency F1 and the crossed dipoles operating at the frequency F2 is due to both the direct radiation, the dipoles being in line of sight, but also to the radiation reflected by the reflector. On the other hand, the perpendicular paths of the two radiating elements are well decoupled by virtue of this geometrical orthogonality. But if this orthogonality is no longer respected, especially if the dipoles of the central radiating element have arbitrary orientations relative to those of the peripheral dipoles forming the first radiating element, then a fairly strong inter-band coupling appears between the different channels of transmission or reception of the two radiating elements.

Un autre désavantage de cette structure est que le rayonnement de l'élément rayonnant central est perturbé par l'élément rayonnant périphérique. En effet ce rayonnement est partiellement diffracté en particulier par les dipôles de l'élément rayonnant périphérique, de sorte que le diagramme de rayonnement résultant présente dans le meilleur des cas des ondulations et, pour une orientation relative arbitraire des dipôles de l'élément rayonnant central, ce diagramme est dissymétrique par rapport à l'axe principal de rayonnement perpendiculaire au plan des dipôles.Another disadvantage of this structure is that the radiation of the central radiating element is disturbed by the peripheral radiating element. Indeed, this radiation is partially diffracted in particular by the dipoles of the peripheral radiating element, so that the resulting radiation pattern in the best case has undulations and, for an arbitrary relative orientation of the dipoles of the central radiating element this diagram is asymmetrical with respect to the principal axis of radiation perpendicular to the plane of the dipoles.

Il reste donc difficile d'obtenir un élément rayonnant bi-bande simple à fabriquer possédant deux voies orthogonales à polarisation linéaire fortement découplées dans une large bande de fréquence. Il est a fortiori difficile de réaliser un réseau directif bipolarisé comportant plusieurs éléments rayonnants de ce genre, et offrant une bonne pureté de polarisation.It therefore remains difficult to obtain a single-band radiating element that is simple to manufacture, having two linearly polarized orthogonal channels strongly decoupled in a wide frequency band. It is a fortiori difficult to achieve a bipolarized directional network comprising several radiating elements of this kind, and offering good polarization purity.

Sur un autre plan, il serait souhaitable d'obtenir un élément rayonnant avec deux voies orthogonales de polarisation ayant chacune un diagramme de rayonnement unidirectionnel et dont l'ouverture à mi-puissance dans les plans diagonaux c'est à dire des plans situés à ± 45°des plans principaux E et H de chaque dipôle, soit substantiellement inférieure à 90°.On another plane, it would be desirable to obtain a radiating element with two orthogonal polarization paths each having a unidirectional radiation pattern and whose half-power aperture in the diagonal planes, ie planes located at ± 45 ° of the main planes E and H of each dipole, substantially less than 90 °.

L'invention a pour but d'améliorer la situation.The invention aims to improve the situation.

Le dispositif rayonnant bi-bande à double polarisation selon l'invention, comprend un premier élément rayonnant fonctionnant dans une première bande de fréquence F1 qui est formé de quatre dipôles disposés en carré et un deuxième élément rayonnant fonctionnant dans une deuxième bande de fréquence F2 qui est formé d'au moins un dipôle disposé au centre du carré des dipôles formant le premier élément rayonnant, chaque dipôle étant alimenté en son centre par un symétriseur. Le premier et le deuxième élément rayonnant sont disposés au dessus d'un réflecteur.The dual-polarization dual-band radiating device according to the invention comprises a first radiating element operating in a first frequency band F1 which is formed of four dipoles arranged in a square and a second radiating element operating in a second frequency band F2 which is formed of at least one dipole disposed in the center of the square of the dipoles forming the first radiating element, each dipole being fed at its center by a balun. The first and the second radiating elements are arranged above a reflector.

Suivant une disposition avantageuse, les dipôles formant le premier élément rayonnant et les symétriseurs sont réalisés dans une même plaque métallique, chaque symétriseur d'un dipôle étant formé par une ligne à fente en court circuit taillée dans la plaque métallique suivant une direction perpendiculaire à l'axe du dipôle. Le deuxième élément rayonnant est formé par au moins un dipôle disposé à l'intérieur d'une cavité débouchant au centre de la plaque métallique.According to an advantageous arrangement, the dipoles forming the first radiating element and the baluns are made in the same metal plate, each balun of a dipole being formed by a short-circuit line cut into the metal plate in a direction perpendicular to the metal plate. axis of the dipole. The second radiating element is formed by at least one dipole disposed inside a cavity opening at the center of the metal plate.

Suivant un autre mode de réalisation avantageux de l'invention la plaque métallique et la cavité peuvent être réalisés en une seule pièce, par emboutissage par exemple. Le deuxième élément rayonnant fonctionnant dans la bande de fréquence F2 est ensuite fixé à l'intérieur et au centre de la cavité dont le fond sert de plan de court-circuit électrique à au moins un symétriseur ou balun servant à l'alimentation du deuxième élément rayonnantAccording to another advantageous embodiment of the invention the metal plate and the cavity may be made in one piece, for example stamping. The second radiating element operating in the frequency band F2 is then fixed inside and in the center of the cavity, the bottom of which serves as an electrical short-circuit plane to at least one balun or balun serving to supply the second element. radiant

Ainsi réalisé le premier élément rayonnant et le deuxième élément rayonnant présentent une interaction électromagnétique très faible. Celle-ci n'est due qu'à la diffraction de bord de la cavité. De la sorte le découplage entre les deux bandes de fréquence est très fort quelle que soit l'orientation relative du ou des dipôles formant le deuxième élément rayonnant à l'intérieur de la cavité, c'est à dire sa polarisation.Thus, the first radiating element and the second radiating element have a very weak electromagnetic interaction. This is only due to the edge diffraction of the cavity. In this way the decoupling between the two frequency bands is very strong regardless of the relative orientation of the dipole or dipoles forming the second radiating element inside the cavity, that is to say its polarization.

D'autres caractéristiques et avantages de l'invention apparaîtront dans la description détaillée ci-après, faite en référence aux dessins annexés, sur lesquels:

  • la figure 1 représente un premier mode de réalisation d'un premier dispositif rayonnant à double polarisation pouvant fonctionner dans deux bandes de fréquence différentes selon l'invention,
  • la figure 2 représente une vue suivant la coupe AA de la figure 1.
  • la figure 3 est une vue en perspective du dispositif représenté aux figures 1 et 2.
  • la figure 4 est une variante de réalisation du premier élément rayonnant de la figure 1
  • la figure 5 représente un deuxième mode de réalisation d'un dispositif selon l'invention.
  • la figure 6 est une vue suivant la coupe AA du dispositif de la figure 5.
  • la figure 7 est une vue en perspective du dispositif des figures 5 et 6.
  • la figure 8 est une vue partielle en perspective d'un réseau colinéaire formé d'une part d'éléments rayonnants bi-bande et bipolarisés du type décrit à la figure 7 et d'éléments rayonnants monobande et bipolarisés du même type que les éléments rayonnants centraux de la figure 7.
Other characteristics and advantages of the invention will appear in the detailed description below, made with reference to the appended drawings, in which:
  • the figure 1 represents a first embodiment of a first dual polarization radiating device that can operate in two different frequency bands according to the invention,
  • the figure 2 represents a view according to the AA section of the figure 1 .
  • the figure 3 is a perspective view of the device shown in figures 1 and 2 .
  • the figure 4 is an alternative embodiment of the first radiating element of the figure 1
  • the figure 5 represents a second embodiment of a device according to the invention.
  • the figure 6 is a view along the AA section of the device of the figure 5 .
  • the figure 7 is a perspective view of the device figures 5 and 6 .
  • the figure 8 is a partial perspective view of a collinear network formed on the one hand of bi-band and bipolarized radiating elements of the type described in FIG. figure 7 and single-band and bipolarized radiating elements of the same type as the central radiating elements of the figure 7 .

Les dessins contiennent, pour l'essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la description, mais aussi contribuer à la définition de l'invention, le cas échéant.The drawings contain, for the most part, elements of a certain character. They can therefore not only serve to better understand the description, but also contribute to the definition of the invention, if any.

Le dispositif représenté aux figures 1, 2 et 3 où les éléments homologues sont représentés avec les mêmes références, fait apparaître quatre dipôles référencés de 1 à 4 formant un carré, découpés dans une plaque métallique 5 comportant un trou central 6 dans lequel débouche l'extrémité ouverte d'une cavité rayonnante 7. Le côté du carré formé par chaque dipôle a une longueur typique égale à la demi longueur d'onde de l'onde de fréquence F1 rayonnée par les dipôles pour une ouverture à mi-puissance du faisceau voisine de 65 ° dans le plan horizontal.The device represented in figures 1 , 2 and 3 where the homologous elements are represented with the same references, shows four dipoles referenced 1 to 4 forming a square, cut in a metal plate 5 having a central hole 6 into which opens the open end of a radiating cavity 7. The side of the square formed by each dipole has a typical length equal to the half wavelength of the frequency wave F1 radiated by the dipoles for a mid-power beam opening close to 65 ° in the horizontal plane.

Il est à noter cependant, que c'est l'écartement (d) entre deux dipôles parallèles de la plaque rayonnante 5 et par conséquent la longueur des côtés du carré formé par les quatre dipôles 1 à 4 qui détermine en grande partie la directivité du diagramme de rayonnement dans le plan horizontal de ces dipôles, c'est à dire l'ouverture à mi-puissance de ce diagramme et que cette ouverture dépend assez peu de la longueur (1) des dipôles. La longueur (1) d'un dipôle détermine son impédance et peut être plus ou moins grande selon l'épaisseur et la largeur du dipôle. Plus cette épaisseur est grande plus courte sera la longueur du dipôle. En d'autres termes le côté (d) du carré est déterminé en fonction de l'ouverture à mi-puissance qui est recherchée et qui peut avoir une valeur différente de 65° et la longueur des dipôles est ajustée pour assurer l'adaptation d'impédance, en général de 50 Ohms, de la paire des dipôles parallèles associés pour former une voie de polarisation à diagramme directif.Suivant un mode de réalisation avantageux les dipôles 1 à 4 et la cavité 7 peuvent être réalisés d'une seule pièce par découpage et emboutissage de la plaque métallique 5.It should be noted, however, that it is the spacing (d) between two parallel dipoles of the radiating plate 5 and consequently the length of the sides of the square formed by the four dipoles 1 to 4 which largely determines the directivity of the radiation pattern in the horizontal plane of these dipoles, ie the half-power aperture of this diagram and that this aperture depends very little on the length (1) of the dipoles. The length (1) of a dipole determines its impedance and can be greater or less depending on the thickness and width of the dipole. The larger this thickness is, the shorter the length of the dipole will be. In other words, the side (d) of the square is determined as a function of the half-power opening which is sought and which may have a value other than 65 ° and the length of the dipoles is adjusted to ensure the adaptation of impedance, generally 50 Ohms, of the pair of associated parallel dipoles to form a directional pattern polarization channel. In accordance with an advantageous embodiment, the dipoles 1 to 4 and the cavity 7 can be made in one piece by cutting and stamping of the metal plate 5.

Chaque dipôle 1 à 4 est alimenté par un symétriseur référencé respectivement de 8 à 11 , de type "balun" formé par une ligne à fente en court circuit taillée dans la plaque métallique 5.Each dipole 1 to 4 is fed by a balun referenced 8 to 11, respectively, of the "balun" type formed by a short-circuit line cut in the metal plate 5.

Chaque symétriseur constitue un bras support du dipôle correspondant. Pour ce faire la plaque 5 est formée autour du trou 6 de passage de la cavité 7 par une couronne concentrique 12 comportant sur sa périphérie extérieure et suivant deux directions à angle droit des excroissances ou bras 13 à 16 de formes par exemple, rectangulaire, biseautée ou trapézoïdale, reliant respectivement la couronne 12 aux dipôles 1 à 4. La longueur radiale (h) des bras est de préférence non nulle, par exemple supérieure à 0,05λ1 de façon à éviter le contact direct du bord intérieur des dipôles avec le bord extérieur de la couronne 12 et ainsi minimiser l'interaction entre le courant circulant sur les dipôle et les courants circulant sur la couronne 12. La largeur moyenne (w) des bras est typiquement de 5 à 10 fois la largeur de la ligne à fente qui est par ailleurs très petite devant la longueur d'onde λ1 correspondant à la fréquence F1.Each balun constitutes a support arm of the corresponding dipole. To do this, the plate 5 is formed around the hole 6 through which the cavity 7 passes through a concentric ring 12 having on its outer periphery and along two right-angle directions, protuberances or arms 13 to 16 of shapes, for example, rectangular, chamfered or trapezoidal, respectively connecting the ring 12 to the dipoles 1 to 4. The radial length (h) of the arms is preferably non-zero, for example greater than 0.05λ1 so as to avoid direct contact of the inner edge of the dipoles with the outer edge of the ring 12 and thus minimize the interaction between the current flowing on the dipole and the currents flowing on the ring 12. The average width (w) of the arms is typically 5 to 10 times the width of the slit line which is otherwise very small in front of the wavelength λ1 corresponding to the frequency F1.

La largeur de la couronne 12 est déterminée pour être suffisante à la fois sur le plan mécanique pour supporter les dipôles et sur le plan radioélectrique pour stabiliser la directivité des diagrammes de rayonnement de la cavité 7 dans la deuxième bande de fréquence F2, en rendant moins fluctuante l'ouverture à mi-puissance des diagrammes de rayonnement en fonction de la fréquence. Cette largeur est de préférence supérieure à 5/100-ième de la longueur d'onde λ2 correspondant à la fréquence F2.The width of the ring 12 is determined to be sufficient both mechanically to support the dipoles and on the radioelectric plane to stabilize the directivity of the radiation patterns of the cavity 7 in the second frequency band F2, by making less fluctuating half-power aperture of radiation patterns as a function of frequency. This width is preferably greater than 5/100-th of the wavelength λ2 corresponding to the frequency F2.

Les dipôles 1 à 4 sont alimentés à leur base, c'est à dire à l'extrémité ouverte des lignes à fente des symétriseurs 8 à 11 au moyen par exemple de câbles coaxiaux référencés respectivement de 17 à 20. Sur la vue en coupe de la figure 2 les dipôles 2 et 4 géométriquement parallèles sur deux côtés opposés du carré sont alimentés à égalité de phase et d'amplitude par deux lignes coaxiales 18 et 20 identiques et un Té d'association 21 pour former une voie de polarisation à diagramme directif, tel un réseau classique de deux dipôles parallèles. Les lignes coaxiales d'alimentation 17, 18, 19, 20 des dipôles sont disposées respectivement le long et sur un côté des symétriseurs 8, 9, 10, 11. La gaine conductrice externe des lignes coaxiales 17 à 20 est en contact électrique avec la base de la première moitié du dipôle qu'elle alimente et avec la plaque 5, et le conducteur central est connecté à la base de l'autre moitié du même dipôle. On obtient ainsi deux voies orthogonales de polarisation dont les diagrammes de rayonnement sont sensiblement identiques. Cependant ce mode d'association n'est pas limitatif, et d'autres modes peuvent être envisagés.The dipoles 1 to 4 are fed at their base, that is to say at the open end of the slit lines of the baluns 8 to 11 by means for example of coaxial cables respectively referenced 17 to 20. On the sectional view of the figure 2 the geometrically parallel dipoles 2 and 4 on two opposite sides of the square are fed at equal phase and amplitude by two identical coaxial lines 18 and 20 and an association tee 21 to form a directional pattern polarization path, such as a classical network of two parallel dipoles. The coaxial feed lines 17, 18, 19, 20 of the dipoles are respectively disposed along and on one side of the baluns 8, 9, 10, 11. The outer conductive sheath of the coaxial lines 17 to 20 is in electrical contact with the base of the first half of the dipole it feeds and with the plate 5, and the central conductor is connected to the base of the other half of the same dipole. Two orthogonal polarization paths are thus obtained whose radiation patterns are substantially identical. However, this mode of association is not limiting, and other modes can be envisaged.

Les symétriseurs des dipôles sont des lignes à fente taillées dans la plaque 5 en forme de méandres. Les méandres de chaque ligne à fente doivent être en nombre suffisant pour que la ligne à fente ait une longueur sensiblement égale au quart de la longueur d'onde de l'onde de fréquence F1 rayonnée par le premier élément rayonnant. Cependant les lignes à fente peuvent revêtir d'autres formes, elles peuvent par exemple comme le montre la figure 4 où les éléments homologues à ceux de la figure 1 portent les mêmes références, être formées par un tronçon circulaire suivi d'un tronçon rectiligne aboutissant à la base d'alimentation d'un dipôle. Le tronçon circulaire peut être n'importe où sur la couronne 12. Cependant pour éviter le couplage entre les ondes de fréquences F1 et F2, il est préférable qu'il ne soit pas près du bord du trou 6 mais plutôt au milieu de la couronne 12.The baluns of the dipoles are slot lines cut into the meandering plate 5. The meanders of each slot line must be in sufficient number for the slot line to have a length substantially equal to one quarter of the wavelength of the frequency wave F1 radiated by the first radiating element. However, the slit lines can take other forms, they can for example as shown in FIG. figure 4 or the elements homologous to those of the figure 1 have the same references, be formed by a circular section followed by a rectilinear section leading to the feed base of a dipole. The circular section may be anywhere on the crown 12. However, to avoid the coupling between the frequency waves F1 and F2, it is preferable that it is not near the edge of the hole 6 but rather in the middle of the crown. 12.

La cavité métallique 7 peut revêtir une forme cylindrique ou légèrement conique, de section circulaire ou plus généralement polygonale à 2 puissance N cotés égaux avec N=2, 3, 4.... La plaque rayonnante 5 est en contact électrique avec le bord 7a de la cavité.The metal cavity 7 may take a cylindrical or slightly conical shape, of circular section or more generally polygonal at 2 N power sides equal to N = 2, 3, 4 .... The radiating plate 5 is in electrical contact with the edge 7a of the cavity.

La cavité 7 est excitée en son centre par un élément rayonnant 23 fonctionnant sur la deuxième fréquence F2. Cet élément rayonnant 23 peut être de type dipôle simple pour le cas d'un fonctionnement en mode de polarisation unique ou de type à dipôles croisés, ou tourniquet communément appelé en anglais "turnstile", pour le cas d'un fonctionnement en mode de polarisations orthogonales, ou tout autre type d'éléments rayonnants adapté à d'autres types de polarisation y compris circulaire. Le fond 7b de la cavité 7 est fermé de façon à ce que le rayonnement de l'élément rayonnant intérieur 23 soit unidirectionnel et directif vers l'avant de la cavité 7.The cavity 7 is excited at its center by a radiating element 23 operating on the second frequency F2. This radiating element 23 may be of simple dipole type for the case of operation in single polarization mode or cross dipole type, or turnstile commonly called in English "turnstile", for the case of operation in polarization mode orthogonal, or any other type of radiating elements suitable for other types of polarization including circular. The bottom 7b of the cavity 7 is closed so that the radiation of the inner radiating element 23 is unidirectional and directional towards the front of the cavity 7.

L'alimentation des dipôles formant l'élément rayonnant 23 s'effectue aux moyens de symétriseurs de type "balun". Sur la vue en coupe de la figure 2 chaque symétriseur est formé par un premier tube conducteur 24 et un deuxième tube conducteur 25 de longueurs sensiblement égales au quart de la longueur d'onde de l'onde de fréquence F2. Les conducteurs 24 et 25 sont en liaison électrique par leurs extrémités respectives avec la base d'alimentation de chaque moitié d'un dipôle de l'élément rayonnant 23 et le fond 7b de la cavité. Le premier tube 24 est traversé le long de son axe longitudinal par un conducteur central 26 dont une extrémité est reliée à la base d'alimentation du demi dipôle opposé à celui auquel il est relié par une de ses extrémités et dont l'autre extrémité peut être reliée au conducteur central d'un connecteur d'alimentation ou éventuellement au conducteur central d'un câble coaxial non représentés. Les tubes 24 et 25 forment ainsi avec le conducteur central 26 une ligne coaxiale transformatrice d'impédance pour le dipôle auquel ils sont reliés.The power supply of the dipoles forming the radiating element 23 is effected by balun balun means. On the sectional view of the figure 2 each balun is formed by a first conductive tube 24 and a second conductive tube 25 of length substantially equal to one quarter of the wavelength of the frequency wave F2. The conductors 24 and 25 are in electrical connection at their respective ends with the supply base of each half of a dipole of the radiating element 23 and the bottom 7b of the cavity. The first tube 24 is traversed along its longitudinal axis by a central conductor 26, one end of which is connected to the supply base of the half-dipole opposite to that to which it is connected by one of its ends and whose other end can be connected to the central conductor of a power connector or possibly to the central conductor of a coaxial cable not shown. The tubes 24 and 25 thus form with the central conductor 26 a coaxial line transforming impedance for the dipole to which they are connected.

De façon avantageuse la profondeur de la cavité 7 est proche du quart de la longueur d'onde λ2 de l'onde rayonnée de fréquence F2 de l'élément rayonnant 23 intérieur à la cavité. La hauteur de l'élément rayonnant 23 par rapport au fond 7b de la cavité est également proche du quart de la longueur d'onde λ2 tout en étant inférieure à la profondeur de la cavité 7.Advantageously, the depth of the cavity 7 is close to a quarter of the wavelength λ2 of the radiated wave of frequency F2 of the radiating element 23 inside the cavity. The height of the radiating element 23 with respect to the bottom 7b of the cavity is also close to a quarter of the wavelength λ2 while being less than the depth of the cavity 7.

Le diamètre de la cavité 7 peut varier dans de larges proportions, entre par exemple 0,45λ2 et λ2, pour des ouvertures à demi-puissance inférieures à 90° des diagrammes de rayonnement dans les plans diagonaux inclinés de ± 45° par rapport aux plans principaux E et H du dipôle à l'intérieur de la cavité. Toutefois selon le rapport des fréquences F1 /F2 l'écartement nécessaire entre les dipôles 1 à 4 de la plaque rayonnante 5 fonctionnant à la fréquence F1 peut limiter le diamètre maximum de la cavité 7. Par exemple, avec un écartement de 170mm entre deux dipôles parallèles de la plaque rayonnante fonctionnant dans la bande GSM900, un diamètre de 80mm et une profondeur de cavité de 40mm conviennent pour réaliser un diagramme d'ouverture à mi-puissance 65° environ dans la bande GSM1800 ou UMTS.The diameter of the cavity 7 can vary in large proportions, for example between 0.45λ2 and λ2, for half-power openings less than 90 ° radiation diagrams in the diagonal planes inclined by ± 45 ° with respect to the planes. main E and H of the dipole inside the cavity. However, according to the ratio of the frequencies F1 / F2 the necessary spacing between the dipoles 1 to 4 of the radiating plate 5 operating at the frequency F1 can limit the maximum diameter of the cavity 7. For example, with a spacing of 170mm between two dipoles Parallels of the radiating plate operating in the GSM900 band, a diameter of 80mm and a cavity depth of 40mm are suitable for producing a half-power aperture diagram of about 65 ° in the GSM1800 or UMTS band.

Comme il apparaît sur les figures 2 et 3 la cavité 7 qui supporte la plaque 5 est fixée sur un réflecteur 24 de dimensions suffisantes pour permettre aux champs électromagnétiques rayonnés à l'arrière des dipôles sur le réflecteur d'être renvoyés sur l'avant. Outre son rôle mécanique, le réflecteur 24 est destiné à rendre unidirectionnel le rayonnement des dipôles de la structure rayonnante. Le réflecteur 24 peut comporter des murets dont le rôle est de rigidifier la structure mais également d'agir sur la directivité des diagrammes rayonnés. La hauteur des dipôles de la plaque rayonnante 5 par rapport au réflecteur 24 peut varier typiquement de λ1/8 à λ1/4 dans la bande de fréquence F1 de longueur d'onde λ1.As it appears on Figures 2 and 3 the cavity 7 which supports the plate 5 is fixed on a reflector 24 of sufficient size to allow the electromagnetic fields radiated at the rear of the dipoles on the reflector to be returned to the front. In addition to its mechanical role, the reflector 24 is intended to unidirectional radiation of the dipoles of the radiating structure. The reflector 24 may comprise walls whose role is to stiffen the structure but also to act on the directivity of the radiated diagrams. The height of the dipoles of the radiating plate 5 relative to the reflector 24 can vary typically from λ1 / 8 to λ1 / 4 in the frequency band F1 of wavelength λ1.

Suivant un autre mode de réalisation illustré aux figures 5 à 7 où les éléments homologues à ceux des figures 1 à 4 portent les mêmes références, les dipôles 1 à 4 de la plaque 5 sont en partie surélevés par rapport au plan formé par l'ouverture de la cavité 7, chaque dipôle étant partagé en trois parties, une partie basse respectivement 1b; 2b, 3b, 4b située dans le plan de la plaque 5 et deux parties hautes respectivement 1a, 1c; 2a, 2c; 3a,3c; 4a, 4c situées de part et d'autre de la partie basse. Cette surélévation qui de préférence doit conserver la symétrie géométrique de la structure, peut également se faire en inclinant les parties des dipôles situés au-delà des zones des symétriseurs 8 à 11 correspondants. Diverses autres formes géométriques peuvent être envisagées pour réaliser des dipôles, la seule condition étant le respect de la symétrie de la structure rayonnante, c'est à dire l'identité des dipôles, si non des quatre au moins deux à deux par paires de dipôles parallèles. La symétrie des dipôles par paire signifie que deux dipôles parallèles ont une même longueur totale de façon à ce qu'ils aient la même impédance et que leur rayonnement respectif soit sensiblement le même. Les deux paires de dipôles ne sont pas obligatoirement identiques car chaque paire de dipôles engendre une voie de polarisation indépendante. La symétrie dont il s'agit est une symétrie par rapport au centre (O) du carré formé par les quatre dipôles.According to another embodiment illustrated in Figures 5 to 7 where the elements homologous to those of Figures 1 to 4 have the same references, the dipoles 1 to 4 of the plate 5 are partially raised relative to the plane formed by the opening of the cavity 7, each dipole being divided into three parts, a lower part 1b respectively; 2b, 3b, 4b located in the plane of the plate 5 and two high parts respectively 1a, 1c; 2a, 2c; 3a, 3c; 4a, 4c located on either side of the lower part. This elevation, which preferably must retain the geometric symmetry of the structure, can also be done by tilting the parts of the dipoles located beyond the zones of the baluns 8 to 11 corresponding. Various others Geometric shapes can be envisaged to make dipoles, the only condition being the respect of the symmetry of the radiating structure, ie the identity of the dipoles, if not of the four at least two by two pairs of parallel dipoles. The symmetry of the pairs of dipoles means that two parallel dipoles have the same total length so that they have the same impedance and their respective radiation is substantially the same. The two pairs of dipoles are not necessarily identical because each pair of dipoles generates an independent polarization path. The symmetry in question is a symmetry with respect to the center (O) of the square formed by the four dipoles.

Les structures des éléments rayonnants des figures 1 à 7 sont très simples et permettent de réaliser à moindre coût des structures rayonnantes bi-bande ayant deux voies orthogonales de polarisation dans chaque bande de fréquence, inclinées par exemple, comme le montrent les figures 1 et 5, de ± 45° par rapport à une direction verticale vv'. Les quatre voies ainsi formées sont fortement découplées entre elles de typiquement 30dB, et rayonnent dans chaque bande de fréquence suivant des diagrammes de directivité unidirectionnels ayant des ouvertures à mi-puissance inférieures à 90° dans le plan horizontal, par exemple 65°. Avantageusement il pourra être réalisé des alignements colinéaires d'une pluralité de telles structures rayonnantes pour former des réseaux linéaires verticaux de gain élevé, par exemple 18dBi, bi-bande ayant deux voies de polarisation orthogonales inclinées de ±45° par rapport à une direction verticale vv' dans chaque bande de fréquence.The structures of the radiating elements of Figures 1 to 7 are very simple and make it possible to realize at low cost two-band radiating structures having two orthogonal polarization paths in each frequency band, inclined, for example, as shown by FIGS. figures 1 and 5 , of ± 45 ° with respect to a vertical direction vv '. The four channels thus formed are strongly decoupled from each other typically of 30 dB, and radiate in each frequency band according to unidirectional directivity diagrams having half-power openings less than 90 ° in the horizontal plane, for example 65 °. Advantageously, collinear alignments of a plurality of such radiating structures may be made to form high gain vertical linear arrays, for example 18dBi, a dual band having two orthogonal polarization paths inclined by ± 45 ° with respect to a vertical direction. vv 'in each frequency band.

Le mode de réalisation du réseau montré à la figure 8 comprend d'une part des éléments rayonnants bi-bande et bipolarisés du type décrit à la figure 7 fonctionnant dans les bandes F1 (GSM900) et F2(UMTS et/ou DCS) et d'autre part d'éléments rayonnants mono bande bipolarisés fonctionnant dans la bande F2 du même type que les éléments centraux de la figure 7. Le pas du réseau pour la bande F2 est moitié du pas du réseau pour la bande F1. On peut ainsi construire un réseau hautement directif et à pas régulier, bi-bande et bipolarisé ayant une bonne pureté de polarisation et un fort découplage entre les différentes voies. On notera que tous les éléments rayonnants fonctionnant dans la bande F2 ont sensiblement le même centre de phase du fait de leur identité, celui-ci étant situé sur l'axe central de la cavité, axe perpendiculaire au plan de l'ouverture de la cavité. Cette propriété facilite grandement le pointage électrique (ou Tilt) du faisceau par action sur les déphasages entre éléments rayonnants et permet également un meilleur alignement des phases des éléments rayonnants dans la bande de fréquence pour une plus grande directivité de l'antenne.The embodiment of the network shown in figure 8 comprises on the one hand bi-band and bipolarized radiating elements of the type described in figure 7 operating in the F1 (GSM900) and F2 (UMTS and / or DCS) bands and on the other hand of bipolarized mono-band radiating elements operating in the F2 band of the same type as the central elements of the figure 7 . The network pitch for the F2 band is half the network pitch for the F1 band. It is thus possible to construct a highly directive, regular pitch, bi-band and bipolarized network having a good polarization purity and a strong decoupling between the different channels. It should be noted that all the radiating elements operating in the band F2 have substantially the same phase center because of their identity, this being situated on the central axis of the cavity, which axis is perpendicular to the plane of the opening of the cavity. . This property greatly facilitates the electrical pointing (or tilt) of the beam by acting on the phase shifts between radiating elements and also allows better alignment of the phases of the radiating elements in the frequency band for greater directivity of the antenna.

Des éléments rayonnants réalisés conformément à ceux de l'invention décrits précédemment et fonctionnant dans les bandes de fréquence GSM1800, GSM 1900 et UMTS ont permi d'obtenir une isolation entre les voies proche de 30dB, avec des rapports d'onde stationnaire par rapport à 50 Ohms pour tous les éléments rayonnants inférieurs à 1,7:1 et des ouvertures à mi-puissance des diagrammes de directivité proches de 65° dans le plan horizontal pour des gains voisins de 9dBi dans les deux bandes de fréquence.Radiating elements made in accordance with those of the invention described above and operating in the GSM1800, GSM 1900 and UMTS frequency bands have made it possible to obtain an insulation between the channels close to 30 dB, with standing wave ratios with respect to 50 Ohms for all radiating elements less than 1.7: 1 and half-power apertures of directivity patterns close to 65 ° in the horizontal plane for gains close to 9 dBi in both frequency bands.

Claims (17)

  1. Radiating device of the type comprising a first radiating element operating in a first frequency band F1 formed by four dipoles (1, 2, 3, 4) arranged in a square and a second radiating element (23) operating in a second frequency band F2 formed by at least one dipole arranged in the centre of the square of dipoles (1, 2, 3, 4) forming the first radiating element, each dipole being supplied at its centre by a balancing unit, all the radiating elements being arranged above a reflector (24),
    characterised in that the dipoles (1, 2, 3, 4) forming the first radiating element and the balancing units (8, 9,10, 11) associated with them are produced from the same metal plate (5),
    in that the balancing unit of each dipole of the first radiating element is formed by a short-circuit slot line cut in the metal plate (5) in a direction perpendicular to the axis of the dipole, and
    in that the dipole of the second radiating element (23) is arranged inside a metal cavity (7) placed in the centre of the metal plate (5).
  2. Device according to claim 1, characterised in that the cavity (7) is cylindrical, conical or polygonal in section with 2 power N equal sides with N=2, 3, 4, ...etc.
  3. Device according to claims 1 and 2, characterised in that the cavity is formed by stamping the metal plate (5).
  4. Device according to one of claims 1 to 3, characterised in that the balancing units (8, 9, 10, 11) are formed by short-circuit slot lines the length of which is substantially equal to a quarter of the operating wavelength of the first radiating element.
  5. Device according to claim 4, characterised in that the slot lines (8, 9, 10, 11) are meandering in shape.
  6. Device according to claim 4, characterised in that the slot lines (8, 9, 10, 11) comprise a first straight section followed by a second circular section.
  7. Device according to one of claims 1 to 6, characterised in that each dipole (1, 2, 3, 4) of the first radiating element is supplied by a coaxial cable (17, 18, 19, 20) arranged along the balancing unit associated with it, the outer conductive sheath of said cable being in electrical contact with a first half of said dipole and the central conductor of said cable being connected to the base of the other half of said dipole.
  8. Device according to one of claims 1 to 7, characterised in that the dipoles (1, 2, 3, 4) forming the first radiating element are partly raised relative to the plane formed by the opening of the cavity (7).
  9. Device according to one of claims 1 to 8, characterised in that the cavity (7) comprises a base (7b) on which the dipole(s) of the second radiating element (23) rest(s) via support tubes (24, 25).
  10. Device according to claim 9, characterised in that the support tubes (24, 25) respectively form a two-wire line of the "balun" type for supplying a respective dipole.
  11. Device according to claim 1, characterised in that the second radiating element (23) is formed by two dipoles crossing at right angles.
  12. Device according to one of claims 9 and 10, characterised in that the height of the radiating element (23) relative to the base (7b) of the cavity (7) is approximately one quarter of the wavelength radiated by the second radiating element while being less than the depth of the cavity (7).
  13. Device according to one of claims 1 to 12, characterised in that the depth of the cavity (7) is substantially equal to one quarter of the wavelength radiated by the second radiating element (23).
  14. Device according to claim 13, characterised in that for cylindrical cavities of circular section, or for cavities of polygonal section, the diameter of the cavity (7) or that of the circle circumscribed in the polygonal section is substantially between 0.45λ2 and λ2, where λ2 denotes the wavelength of the wave radiated by the second radiating element (23).
  15. Device according to one of claims 1 to 14, characterised in that the first radiating element (1, 2, 3, 4) and the second radiating element (23) are oriented in space so as to radiate two waves, respectively, with orthogonal polarisations inclined at ± 45° to a longitudinal axis of the balancing unit (24).
  16. Antenna network, characterised in that it comprises an alignment of a number of devices according to one of claims 1 to 15, arranged on a same reflector (24) so as to form two orthogonal polarisation pathways inclined at ± 45° to the direction of said alignment.
  17. Antenna network according to claim 16, characterized in that it further comprises a plurality of second radiating elements (23) intercaled in said alignment.
EP03760720A 2002-06-25 2003-06-11 Double polarization dual-band radiating device Expired - Lifetime EP1516393B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR0207872A FR2841390B1 (en) 2002-06-25 2002-06-25 DUAL POLARIZATION TWO-BAND RADIATION DEVICE
FR0207872 2002-06-25
FR0215350 2002-12-05
FR0215350A FR2841391B3 (en) 2002-06-25 2002-12-05 DUAL POLARIZATION TWO-BAND RADIATION DEVICE
PCT/FR2003/001745 WO2004001902A1 (en) 2002-06-25 2003-06-11 Double polarization dual-band radiating device

Publications (2)

Publication Number Publication Date
EP1516393A1 EP1516393A1 (en) 2005-03-23
EP1516393B1 true EP1516393B1 (en) 2010-01-20

Family

ID=29720859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03760720A Expired - Lifetime EP1516393B1 (en) 2002-06-25 2003-06-11 Double polarization dual-band radiating device

Country Status (9)

Country Link
EP (1) EP1516393B1 (en)
CN (1) CN100570953C (en)
AT (1) ATE456168T1 (en)
AU (1) AU2003255660A1 (en)
DE (1) DE60331067D1 (en)
ES (1) ES2339764T3 (en)
FR (1) FR2841391B3 (en)
PT (1) PT1516393E (en)
WO (1) WO2004001902A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005015708U1 (en) 2005-10-06 2005-12-29 Kathrein-Werke Kg Dual-polarized broadside dipole array, e.g. for crossed antennas, has a dual-polarized radiator with polarizing planes and a structure like a dipole square
US7358924B2 (en) 2005-10-07 2008-04-15 Kathrein-Werke Kg Feed network, and/or antenna having at least one antenna element and a feed network
CN101689707A (en) * 2007-07-05 2010-03-31 三菱电线工业株式会社 Antenna device
CN101425626B (en) 2007-10-30 2013-10-16 京信通信系统(中国)有限公司 Wide-band annular dual polarized radiating element and linear array antenna
EP2120293A1 (en) * 2008-05-16 2009-11-18 Kildal Antenna Consulting AB Improved broadband multi-dipole antenna with frequency-independent radiation characteristics
WO2010135862A1 (en) 2009-05-26 2010-12-02 华为技术有限公司 Antenna device
CN102013560B (en) 2010-09-25 2013-07-24 广东通宇通讯股份有限公司 Broadband high-performance dual-polarized radiation unit and antenna
CN102723577B (en) * 2012-05-18 2014-08-13 京信通信系统(中国)有限公司 Wide-band annular dual polarized radiating element and array antenna
CN106099328A (en) * 2016-06-27 2016-11-09 广州杰赛科技股份有限公司 A kind of Bipolarization antenna for base station
TWI682585B (en) * 2018-10-04 2020-01-11 和碩聯合科技股份有限公司 Antenna device
CN111129773B (en) 2019-09-30 2021-05-28 京信通信技术(广州)有限公司 Deviation adjusting device and radiation unit
US12230867B2 (en) * 2019-12-11 2025-02-18 Outdoor Wireless Networks, LLC Slant cross-polarized antenna arrays composed of non-slant polarized radiating elements
CN111129738B (en) * 2020-01-06 2025-01-17 南京锐码毫米波太赫兹技术研究院有限公司 Embedded broadband vertical polarization multiple-input multiple-output antenna
CN117063348A (en) * 2021-03-25 2023-11-14 拓普康定位系统公司 Compact circularly polarized patch antenna with slot excitation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789416A (en) * 1972-04-20 1974-01-29 Itt Shortened turnstile antenna
US3740754A (en) * 1972-05-24 1973-06-19 Gte Sylvania Inc Broadband cup-dipole and cup-turnstile antennas
DE2310672A1 (en) * 1973-03-03 1974-09-19 Fte Maximal Fernsehtech ROOM ANTENNA FOR VHF AND / OR UHF TELEVISION AREAS
US4218685A (en) * 1978-10-17 1980-08-19 Nasa Coaxial phased array antenna
DE19823749C2 (en) * 1998-05-27 2002-07-11 Kathrein Werke Kg Dual polarized multi-range antenna
US6429824B2 (en) * 2000-05-02 2002-08-06 Bae Systems Information And Electronic Systems Integration Inc. Low profile, broadband, dual mode, modified notch antenna

Also Published As

Publication number Publication date
EP1516393A1 (en) 2005-03-23
AU2003255660A1 (en) 2004-01-06
PT1516393E (en) 2010-04-15
WO2004001902A1 (en) 2003-12-31
FR2841391B3 (en) 2004-09-24
DE60331067D1 (en) 2010-03-11
CN100570953C (en) 2009-12-16
CN1663075A (en) 2005-08-31
ATE456168T1 (en) 2010-02-15
FR2841391A1 (en) 2003-12-26
ES2339764T3 (en) 2010-05-25

Similar Documents

Publication Publication Date Title
EP1516393B1 (en) Double polarization dual-band radiating device
FR2966986A1 (en) RADIANT ELEMENT OF ANTENNA
FR2960710A1 (en) RADIANT ELEMENT WITH DUAL POLARIZATION OF MULTIBAND ANTENNA
EP1690317B1 (en) Multiband dual-polarised array antenna
FR2652453A1 (en) COAXIAL ANTENNA HAVING A PROGRESSIVE WAVE POWER TYPE.
FR2863111A1 (en) Multi-band aerial with double polarization includes three sets of radiating elements including crossed dipoles for maximum polarization decoupling
EP1228552A1 (en) Dual-frequency band printed antenna
FR2826185A1 (en) MULTI-FREQUENCY WIRE-PLATE ANTENNA
EP2079131A1 (en) Improvement of planar antennas comprising at least one radiating element such as a slot with longitudinal radiation
EP2416449A1 (en) Parabolic-reflector antenna
EP1466384B1 (en) Device for receiving and/or emitting electromagnetic waves with radiation diversity
EP1550183A2 (en) Essentially square broadband, dual polarised radiating element
EP2610966B1 (en) Very-thin broadband compact antenna with dual orthogonal linear polarisations operating in the V/UHF bands
EP1516392B1 (en) Wire antenna
EP2543111B1 (en) Antenna structure with dipoles
EP1432073B1 (en) Coaxial collinear antenna
EP0934608B1 (en) Antenna system for portable radiotelephone station
EP1649547B1 (en) Diversity reception slotted flat-plate antenna
FR2980647A1 (en) ULTRA-LARGE BAND ANTENNA
FR2841390A1 (en) Double polarization dual-band radiating antenna, particularly for use in cellular radio communications, has first and second radiating elements produced in a common metal plate with the dipoles center-fed by baluns
EP3182512A1 (en) Multi-access antenna
CN107706522B (en) Micro base station antenna
EP2880712B1 (en) Method for the electromagnetic decoupling of an antenna and the supporting pole thereof, and corresponding supporting pole
EP4485687A1 (en) Radiation pattern adaptable by obstacle polarization
EP2889955B1 (en) Compact antenna structure for satellite telecommunication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAX Requested extension states of the european patent have changed

Extension state: LV

Payment date: 20041223

Extension state: LT

Payment date: 20041223

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: LT LV

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60331067

Country of ref document: DE

Date of ref document: 20100311

Kind code of ref document: P

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20100407

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2339764

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100120

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 7160

Country of ref document: SK

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100420

26N No opposition filed

Effective date: 20101021

BERE Be: lapsed

Owner name: ARIALCOM

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100120

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: EE

Payment date: 20180523

Year of fee payment: 16

Ref country code: CZ

Payment date: 20180528

Year of fee payment: 16

Ref country code: PT

Payment date: 20180601

Year of fee payment: 16

Ref country code: SK

Payment date: 20180522

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180605

Year of fee payment: 16

Ref country code: RO

Payment date: 20180611

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180702

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190611

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190611

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191211

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E004257

Country of ref document: EE

Effective date: 20190630

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 7160

Country of ref document: SK

Effective date: 20190611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190612