EP2122427B1 - Operating method for a sprayer and corresponding coating device - Google Patents
Operating method for a sprayer and corresponding coating device Download PDFInfo
- Publication number
- EP2122427B1 EP2122427B1 EP07818258.1A EP07818258A EP2122427B1 EP 2122427 B1 EP2122427 B1 EP 2122427B1 EP 07818258 A EP07818258 A EP 07818258A EP 2122427 B1 EP2122427 B1 EP 2122427B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- guide air
- air flow
- lack
- spray jet
- coating agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B3/00—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
- B05B3/02—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
- B05B3/10—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
- B05B3/1007—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member
- B05B3/1014—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member with a spraying edge, e.g. like a cup or a bell
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B12/00—Arrangements for controlling delivery; Arrangements for controlling the spray area
- B05B12/08—Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B13/00—Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
- B05B13/02—Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
- B05B13/04—Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
- B05B13/0405—Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with reciprocating or oscillating spray heads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B13/00—Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
- B05B13/02—Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
- B05B13/04—Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
- B05B13/0426—Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with spray heads moved along a closed path
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B5/00—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
- B05B5/025—Discharge apparatus, e.g. electrostatic spray guns
- B05B5/04—Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
- B05B5/0426—Means for supplying shaping gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B12/00—Arrangements for controlling delivery; Arrangements for controlling the spray area
- B05B12/08—Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
- B05B12/084—Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to condition of liquid or other fluent material already sprayed on the target, e.g. coating thickness, weight or pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B12/00—Arrangements for controlling delivery; Arrangements for controlling the spray area
- B05B12/08—Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
- B05B12/10—Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to temperature or viscosity of liquid or other fluent material discharged
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B13/00—Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
- B05B13/02—Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
- B05B13/04—Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
- B05B13/0431—Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with spray heads moved by robots or articulated arms, e.g. for applying liquid or other fluent material to 3D-surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B5/00—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
- B05B5/025—Discharge apparatus, e.g. electrostatic spray guns
- B05B5/04—Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
- B05B5/0403—Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces characterised by the rotating member
Definitions
- the invention relates to an operating method for an atomizer for coating components, in particular of motor vehicle body parts. Furthermore, the invention relates to a corresponding coating device.
- a rotary atomizer which emits a spray of a coating agent by means of a rotating bell cup.
- this rotary atomizer has a plurality of shaping nozzles arranged in concentric rings around the bell cup and discharging a directing air flow substantially axially from behind onto the spray jet, whereby the spray jet width can be adjusted.
- a broad spray jet is preferably set in order to be able to quickly and efficiently coat large component surfaces.
- a small steering air flow is delivered, so that the spray is compressed only to a small extent.
- a disadvantage of the above-described method for adjusting the shaping air flow is the fact that the relationship between a certain shaping air flow and the resulting spray jet width fluctuates during operation of the rotary atomizer, which makes precise adjustment of the spray jet width more difficult.
- the invention is therefore based on the object to improve the above-described known rotary atomizer and the associated operating method accordingly.
- the invention is based on the technical knowledge that the spray jet width not only depends on the guide air flow, but also on the kinetic energy of the individual paint droplets in the applied spray.
- individual coating agent parameters eg paint viscosity, paint surface tension
- individually adapted atomizer parameters eg speed of the bell cup
- this adaptation of the Zerstäuberparameter (eg speed of the bell cup) to the current coating agent parameters leads to corresponding individually different kinetic energies of the coating agent droplets, which makes a corresponding adjustment of the Lenkluftstroms required in order to achieve the desired spray jet width.
- the invention therefore provides that, during operation of the atomizer, at least one application parameter is determined which has a property (eg viscosity, surface tension) of the applied coating agent or an operating variable (Eg speed) of the atomizer and has an influence on the applied spray, in particular on the kinetic energy of sprayed coating agent droplets.
- a property eg viscosity, surface tension
- Eg speed operating variable
- the steering air flow is then influenced as a function of this application parameter in order to set the desired shape or width of the applied spray jet.
- the consideration of the application parameter in influencing the steering air flow offers the advantage that the different kinetic energies of the applied paint droplets can be taken into account, whereby the desired spray jet width can be set more precisely than in the conventional rotary atomizer described above.
- the invention preferably provides for control of spray jet width, i. without a measurement and feedback of the spray jet width as the variable to be controlled.
- the spray jet width is the variable to be controlled (control variable) which is controlled as a disturbance variable as a function of the variable application parameter (for example paint viscosity, paint temperature, atomizer speed, etc.).
- the steering air flow is set as a control variable as a function of the variable application parameter.
- the aim of the control is to set the spray jet width independent of fluctuations of the application parameter to a predetermined target value.
- the spray jet width is not controlled, but fluctuations in the spray jet width are compensated for by the web spacing and / or the coating speed (drawing speed). is adjusted accordingly between the adjacent coating center lines.
- the term of the coating speed used in the context of the invention is preferably based on the feed rate of the application device during painting.
- the web spacing is correspondingly reduced to maintain the desired web overlap.
- the web spacing is increased accordingly to obtain the desired web overlap.
- the invention provides that the web overlap between the adjacent coating center webs is controlled to a predetermined, desired web overlap by adjusting the web distance as a function of the variable application parameter (eg paint viscosity, paint temperature, atomizer speed, etc.) ,
- the variable application parameter eg paint viscosity, paint temperature, atomizer speed, etc.
- control of the spray jet width or control of the web overlap can also be combined with one another within the scope of the invention.
- the film thickness can be controlled by adjusting the painting speed (i.e., the advancing speed of the atomizer in the web direction).
- the control of the layer thickness can also take place in the context of the invention as a function of the variable application parameter.
- an application parameter used in the context of the invention therefore includes all variables which have an influence on the spray jet in the coating operation, in particular on the kinetic energy of the sprayed coating agent droplets or the spray jet form. Moreover, this term is not limited to a single size but also includes several different sizes. Thus, the control of the spray jet width or the web overlap can also be carried out as a function of a plurality of different application parameters.
- the amount of discharged steering air per unit time to understand ie in the physical sense of the volume flow or the mass flow of the discharged shaping air.
- the invention provides that not only a single Lenkluftstrom is delivered, but - as in the aforementioned patent application EP 1 331 037 A2 - At least one additional Lenkluftstrom.
- the application parameter eg paint viscosity, Bell plate speed
- the individual shaping air streams are preferably discharged in different directions, which in itself from the already cited patent application EP 1 331 037 A2 is known.
- the individual shaping air flows are superposed to form a resulting shaping air flow, the direction of which depends on the individual shaping air flows.
- the influencing of the direction of the resulting shaping air flow preferably takes place here as a function of the abovementioned application parameter (eg viscosity of the coating agent, speed of the atomizer).
- the invention enables a variable directional orientation of the resulting shaping air flow for extended and flexible parameterization of the atomizer in order to achieve an economical coating application for a wide variety of requirements with optimum layer thickness (application efficiency), layer distribution and quality.
- the application parameter used for influencing the shaping air flow may be the viscosity of the applied coating agent or the speed of the atomizer.
- the invention is not limited to these two parameters with regard to the application parameter of interest, but can also be implemented with other parameters.
- the application parameter may be the surface tension of the applied coating agent, the electrical voltage of an electrostatic charge of the coating agent, the temperature of the applied coating agent, the ambient temperature, the coating agent flow and / or the type of applied coating agent.
- the invention there is in the frame the invention the possibility that several of the above-mentioned application parameters are evaluated together and jointly influence the Lenkluftstrom.
- the individual shaping air flows can be fed optionally by a common air supply or by separate air supplies with shaping air.
- the fact that the individual shaping air flows can be adjusted flexibly and independently of each other is advantageous for feeding the individual shaping air streams through their own air supplies.
- the steering air flow influencing within the scope of the invention preferably takes place automatically, so that no user intervention is required to compensate for the influence of the varying application parameter in the adjustment of the spray jet width.
- coating compositions in the context of the invention may optionally be powder coating or wet paint (solvent-based paint or water-based paint).
- the invention is therefore not limited to certain types of coating agent with regard to the coating agent to be applied.
- the invention is not limited to the operating method described above, but also includes a corresponding coating device, as already apparent from the above description.
- the influencing of the steering air flow is effected by a control device which, for example, controls a steering air valve in order to take into account the application parameter (for example paint viscosity, Bell plate rotational speed) in influencing the shaping air flow.
- control device preferably influences both directing air streams, wherein the influencing of the individual directing air streams can take place independently of one another.
- a shaping air nozzle arrangement is provided, each of which has a plurality of concentrically arranged nozzle openings, which is known per se from the prior art.
- the individual shaping air streams can each be delivered by a separate ring of shaping air nozzles, the individual shaping air nozzle rings preferably being arranged concentrically with one another.
- the individual shaping air nozzle rings can have substantially the same diameter, so that nozzle openings of the first shaping air nozzle arrangement and of the second shaping air nozzle arrangement are alternately distributed over the circumference.
- the nozzle openings of the two shaping air nozzle arrangements can in each case be combined in pairs so that numerous pairs of shaping air nozzles are arranged distributed over the circumference, wherein each of these pairs has a shaping air nozzle for each shaping air stream.
- the individual nozzle openings have a swirl in the circumferential direction and Although either in the direction of rotation or counter to the direction of rotation of the bell plate.
- the nozzle openings of the one shaping air nozzle arrangement can also have a swirl in the circumferential direction, while the nozzle openings of the other shaping air nozzle arrangement have no swirl in the circumferential direction.
- the nozzle openings provided with a swirl in the circumferential direction can have a helix angle between 30 ° and 75 °, wherein a helix angle of 45 ° has proven to be advantageous.
- three or more shaping air streams can be discharged in order to form the spray jet.
- the additional third shaping air flow can be influenced in the same way as the two shaping air flows described above.
- the individual guide air flows can also be used as a free-hold air to keep the bell cup of contamination free.
- the individual steering air flows are heated or conditioned in other wise, which is known per se from the prior art.
- FIG. 1 shows a rotary atomizer 1 for the application of wet paint, such as solvent or water-based paint.
- the rotary atomizer 1 on a bell cup 2 which rotates in operation at high speed and emits a spray jet 4 at an annular orbiting Absprühkante 3.
- the wet paint to be applied is in this case fed through a paint tube 5 and then hits first in the bell cup 2 on a rotatable with the bell plate 2 deflection plate 6 with a through hole 7, wherein the deflection plate 6 divides the axially incident paint stream into two streams 8, 9.
- the partial flow 8 is laterally deflected by the deflecting disk 6 in the radial direction and, due to the centrifugal force occurring during operation, flows outward along an inner overflow surface to the spray-off edge 3, where the paint is then finally discharged in the form of the spray jet 4.
- the partial flow 9 passes axially through the through hole 7 in the deflection plate 6 and then flows on the end face of the deflection plate 6 due to the centrifugal force in the radial direction to the outside, so that the end face of the deflection plate 6 is permanently covered in paint during operation.
- the rotary atomizer 1 has a shaping air ring 10, via which two shaping air streams 11, 12 are delivered to the front in order to form the spray jet 4.
- the shaping air ring 10 has a ring of shaping air nozzles 13, which are arranged distributed over the circumference of the shaping air ring 10 in a predetermined radius to the axis of rotation of the bell cup 2.
- the delivery of the inner directing air flow 11 is likewise effected by a ring of shaping air nozzles 14, which are arranged in the shaping air ring 11 in a predetermined radius with respect to the axis of rotation of the bell cup 2.
- the Lenkluftdüsen 13 give the guide air flow 12 slightly obliquely forward to the outside, the guide air flow 12 with the axis of rotation of the bell cup 2 forms an angle of approximately 15 °.
- the steering air flow 11 is emitted by the shaping air nozzles 14 almost coaxially with the axis of rotation of the bell cup 2.
- the two shaping air flows 11, 12 are then superimposed during operation of the rotary atomizer 1 to a resulting shaping air flow with a certain flow velocity and a specific flow direction.
- the flow direction and the flow velocity of the resulting shaping air flow can then be varied by setting the shaping air flow through the shaping air nozzles 13, 14 independently of one another.
- the two shaping air streams 11, 12 are then adjusted so that the desired shape and width of the spray jet 4 are always set independently of the paint used and independently of the operating parameters (for example bell-plate rotational speed) of the rotary atomizer 1.
- the rotary atomizer 1 still allows an external rinse by a detergent flow 15, which is passed over the outer surface of the bell cup 2 and thereby frees it from possibly adhering paint residues.
- a detergent flow 15 which is passed over the outer surface of the bell cup 2 and thereby frees it from possibly adhering paint residues.
- external rinsing is known per se from the prior art and therefore need not be described in detail.
- FIG. 2 shows a cross-sectional view of the complete rotary atomizer 1 with the bell cup 2 and a mounting pin 16 for attachment of the rotary atomizer 1 on a robot hand axis of a painting robot, which is also known per se from the prior art and therefore need not be described in detail.
- EP 1 331 037 A2 The content of the present description is to be considered in its entirety.
- FIGS. 3A and 3B show a front view and a cross-sectional view of the shaping air ring 10 in a possible alternative embodiment.
- reference is therefore made essentially to the above description, wherein the same reference numerals are used for corresponding details in the following.
- a special feature of the shaping air ring 10 in this exemplary embodiment is that the inner shaping air nozzles 14 and the outer shaping air nozzles 13 deliver the respective shaping air flow axially parallel to the axis of rotation of the bell cup 2.
- FIG. 4 shows a further embodiment of a shaping air ring 10, which also largely coincides with the embodiments described above, so to avoid repetition, reference is made to the above description, again using the same reference numerals as before for corresponding details.
- a special feature of this embodiment is that in the shaping air ring 10 on a predetermined diameter 17 are each pairwise arranged the shaping air nozzles 13 for the one shaping air flow and the shaping air nozzles 14 for the other shaping air flow. Distributed over the circumference here are numerous such pairs of Lenkluftdüsen 13, 14 are arranged. The two shaping air streams emerging from the shaping air nozzles 13, 14 can hereby be controlled independently of one another and overlap to a resulting shaping air flow with a specific flow direction and a specific flow velocity.
- FIG. 5 shows a further, greatly simplified embodiment of a rotary atomizer 1 according to the invention, which is largely consistent with the embodiments described above, so reference is made to avoid repetition of the above description, wherein for corresponding details in the following the same reference numerals are used.
- the inner guide air flow 11 is emitted axially parallel to the axis of rotation of the bell cup 2, whereas the guide air flow 12 is discharged obliquely outwards at an acute angle.
- the two shaping air flows 11, 12 are therefore superimposed on a resulting shaping air flow 18 having a certain resulting flow direction and a corresponding flow velocity.
- the two shaping air streams 11, 12 can be set independently of one another in order to set the flow direction and the flow velocity of the resulting shaping air flow 18 in accordance with the current requirements.
- FIG. 6 shows in greatly simplified schematized form an embodiment of a coating device, which accordingly the invention allows the adjustment of the shaping air flows 11, 12.
- the coating device has a second shaping air supply 21 which supplies the second directing air flow 12 to the rotary atomizer 1, whereby the guiding air supply 21 is also controlled by the control unit 20 such that the rotary atomizer 1 emits a predetermined directing air flow Q LL2 .
- the coating device in a conventional manner to a paint supply 22, which supplies the rotary atomizer 1 with a predetermined paint flow Q LACK , wherein the desired paint flow Q LACK is set by a control unit 23.
- the coating device has a high voltage generator 24, which supplies the rotary atomizer 1 with an electrostatic charging voltage U, with which the spray jet 4 emitted by the bell cup 2 is charged electrostatically.
- the electrostatic charge of the spray jet 4 is known from the prior art and therefore need not be further described.
- control unit 23 outputs a speed value n to a turbine controller 25, wherein the turbine controller 25 a corresponding turbine air flow to the rotary atomizer 1, so that the bell cup 2 rotates at the desired speed n.
- the turbine control 25 in this case includes a control with a feedback, since the actual speed is determined and used to control and possibly adjust the speed.
- the control unit 20 calculates the two steering air flows Q LL1 , Q LL2 as a function of a plurality of application parameters, which are partially operating variables of the rotary atomizer and in part reflect properties of the applied paint.
- the control unit 20 takes into account the applied paint flow Q LACK , the electrostatic charging voltage U and the rotational speed n of the bell cup 2 as operating variables of the rotary atomizer 1.
- control unit 20 also takes into account the viscosity ⁇ , the surface tension y and the temperature T of the applied paint.
- the control unit 20 also takes into account the type of paint used (BC: Base Coat or CC: Clear Coat).
- the control unit takes into account that different droplet spectra are formed in the applied spray jet 4 depending on the individual application parameters , which accordingly have different kinetic energies, so that the two shaping air flows 11, 12 are aligned accordingly or must be measured.
- the coating device has a multi-axis painting robot 26, which is controlled by a robot controller 27 and guides the rotary atomizer 1, so that the rotary atomizer 1 is to be coated on the Plates coating agent webs 28, which are parallel to each other, as in the FIGS. 7A and 7B is shown.
- the adjacent coating center webs 28 each have a specific web spacing d and a specific web width b B between their center axes, resulting in a specific web overlap b Ü .
- the coating device also allows another variant for taking into account variations in the application parameters.
- the spray jet width is not controlled to a constant, predetermined value, the control taking into account variations in the application parameters. Instead, it is provided in this variant that fluctuations in the spray jet width are permitted and compensated for by adjusting the track distance d accordingly.
- the coating device has for this purpose a control unit 29, the input side of the application parameters ⁇ , ⁇ . T BC / CC, Q LACK , n, U absorbs, wherein the application parameters ⁇ , ⁇ , T, BC / CC, Q LACK , n, U are disturbances in the control technical sense, since fluctuations in the application parameters ⁇ , y, T, BC / CC , Q LACK , n, U influence the web overlap b Ü if the web distance d is kept constant.
- the control unit 29 therefore controls the web overlap b Ü to a predetermined constant value by the control unit 29 adjusts the web distance d accordingly and thus controls the robot controller 27 accordingly.
- the spray jet width decreases due to fluctuations in the application parameters (eg paint viscosity, paint temperature, atomizer speed, etc.)
- the web distance d is correspondingly reduced so that the desired web overlap b Ü is maintained.
- the spray jet width increases due to fluctuations in the application parameters (eg paint viscosity, paint temperature, atomizer speed, etc.), the web distance d is correspondingly increased in order to obtain the desired web overlap b Ü .
- control unit 29 controls the layer thickness to a predetermined value by setting the coating speed v as a function of the application parameters ⁇ , ⁇ , T, BC / CC, Q LACK , n, U.
- the coating speed v is in this case the feed rate of the rotary atomizer 1 along the coating center webs 28. In this way, the film thickness is maintained at a constant value, irrespective of fluctuations in the application parameters ⁇ , y, T, BC / CC, Q LACK , n, U contributes to a good coating quality.
- the desired nominal value for the spray jet width depends on the type of coating. When painting exterior surfaces, a large spray jet width usually makes sense, so that it can be painted over a large area. In the interior painting and the painting of small details, however, no spray jet width makes sense.
Landscapes
- Electrostatic Spraying Apparatus (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Nozzles (AREA)
- Spray Control Apparatus (AREA)
Description
Die Erfindung betrifft ein Betriebsverfahren für einen Zerstäuber zur Beschichtung von Bauteilen, insbesondere von Kraftfahrzeugkarosserieteilen. Weiterhin betrifft die Erfindung eine entsprechende Beschichtungseinrichtung.The invention relates to an operating method for an atomizer for coating components, in particular of motor vehicle body parts. Furthermore, the invention relates to a corresponding coating device.
Aus
Bei einer Innenlackierung wird dann aufgrund der beengten Raumverhältnisse eine kleine Sprühstrahlbreite eingestellt, indem über die Lenkluftdüsen ein großer Lenkluftstrom abgegeben wird, der den Sprühstrahl von außen zusammendrückt.In interior painting, a small spray jet width is then set due to the confined space conditions, by the Lenkluftdüsen a large Lenkluftstrom is discharged, which compresses the spray jet from the outside.
Bei einer Außenlackierung wird dagegen vorzugsweise ein breiter Sprühstrahl eingestellt, um schnell und effizient große Bauteilflächen lackieren zu können. Hierzu wird allenfalls ein kleiner Lenkluftstrom abgegeben, so dass der Sprühstrahl nur in geringem Maße zusammengedrückt wird.In the case of exterior painting, by contrast, a broad spray jet is preferably set in order to be able to quickly and efficiently coat large component surfaces. For this purpose, at most a small steering air flow is delivered, so that the spray is compressed only to a small extent.
Bei dem bekannten Rotationszerstäuber werden also verschiedene Werte für den Lenkluftstrom eingestellt, um wahlweise einen schmalen Sprühstrahl oder einen breiten Sprühstrahl zu erzielen.In the known rotary atomizer, therefore, different values for the shaping air flow are set in order to selectively achieve a narrow spray jet or a wide spray jet.
Nachteilig an dem vorstehend beschriebenen Verfahren zur Einstellung des Lenkluftstroms ist die Tatsache, dass der Zusammenhang zwischen einem bestimmten Lenkluftstrom und der resultierenden Sprühstrahlbreite im Betrieb des Rotationszerstäubers Schwankungen unterliegt, was eine genaue Einstellung der Sprühstrahlbreite erschwert.A disadvantage of the above-described method for adjusting the shaping air flow is the fact that the relationship between a certain shaping air flow and the resulting spray jet width fluctuates during operation of the rotary atomizer, which makes precise adjustment of the spray jet width more difficult.
Aus
Aus
Schließlich offenbart
Zum allgemeinen technischen Hintergrund ist noch hinzuweisen auf
Der Erfindung liegt deshalb die Aufgabe zugrunde, den vorstehend beschriebenen bekannten Rotationszerstäuber und das zugehörige Betriebsverfahren entsprechend zu verbessern.The invention is therefore based on the object to improve the above-described known rotary atomizer and the associated operating method accordingly.
Diese Aufgabe wird durch ein Betriebsverfahren bzw. eine Beschichtungseinrichtung gemäß den nebengeordneten Ansprüchen gelöst.This object is achieved by an operating method or a coating device according to the independent claims.
Die Erfindung beruht auf der technischen Erkenntnis, dass die Sprühstrahlbreite nicht nur von dem Lenkluftstrom anhängt, sondern auch von der kinetischen Energie der einzelnen Lacktröpfchen in dem applizierten Sprühstrahl. So erfordern individuelle Beschichtungsmittelparameter (z.B. Lackviskosität, Lackoberflächenspannung) individuell angepasst Zerstäuberparameter (z.B. Drehzahl des Glockentellers), um die individuell erforderlichen Tropfenspektren für einen optimalen Lackauftrag zu erreichen. Diese Anpassung der Zerstäuberparameter (z.B. Drehzahl des Glockentellers) an die aktuellen Beschichtungsmittelparameter (z.B. Lackviskosität) führt jedoch zu entsprechend individuell unterschiedlichen kinetischen Energien der Beschichtungsmitteltröpfchen, was in der Folge eine entsprechende Anpassung des Lenkluftstroms erforderlich macht, um die gewünschte Sprühstrahlbreite zu erzielen.The invention is based on the technical knowledge that the spray jet width not only depends on the guide air flow, but also on the kinetic energy of the individual paint droplets in the applied spray. Thus, individual coating agent parameters (eg paint viscosity, paint surface tension) require individually adapted atomizer parameters (eg speed of the bell cup) in order to achieve the individually required drop spectra for an optimal paint application. However, this adaptation of the Zerstäuberparameter (eg speed of the bell cup) to the current coating agent parameters (eg paint viscosity) leads to corresponding individually different kinetic energies of the coating agent droplets, which makes a corresponding adjustment of the Lenkluftstroms required in order to achieve the desired spray jet width.
Die Erfindung sieht deshalb vor, dass im Betrieb des Zerstäubers mindestens ein Applikationsparameter ermittelt wird, der eine Eigenschaft (z.B. Viskosität, Oberflächenspannung) des applizierten Beschichtungsmittels oder eine Betriebsgröße (z.B. Drehzahl) des Zerstäubers wiedergibt und einen Einfluss auf den applizierten Sprühstrahl hat, insbesondere auf die kinetische Energie der abgesprühten Beschichtungsmitteltröpfchen.The invention therefore provides that, during operation of the atomizer, at least one application parameter is determined which has a property (eg viscosity, surface tension) of the applied coating agent or an operating variable (Eg speed) of the atomizer and has an influence on the applied spray, in particular on the kinetic energy of sprayed coating agent droplets.
In einer ersten Variante der Erfindung wird dann in Abhängigkeit von diesem Applikationsparameter der Lenkluftstrom beeinflusst, um die gewünschte Form bzw. Breite des applizierten Sprühstrahls einzustellen. Die Berücksichtigung des Applikationsparameters bei der Beeinflussung des Lenkluftstroms bietet den Vorteil, dass die unterschiedlichen kinetischen Energien der applizierten Lacktröpfchen berücksichtigt werden können, wodurch sich die gewünschte Sprühstrahlbreite genauer einstellen lässt als bei dem eingangs beschriebenen herkömmlichen Rotationszerstäuber.In a first variant of the invention, the steering air flow is then influenced as a function of this application parameter in order to set the desired shape or width of the applied spray jet. The consideration of the application parameter in influencing the steering air flow offers the advantage that the different kinetic energies of the applied paint droplets can be taken into account, whereby the desired spray jet width can be set more precisely than in the conventional rotary atomizer described above.
Die Erfindung sieht also vorzugsweise eine Steuerung der Sprühstrahlbreite vor, d.h. ohne eine Messung und Rückkopplung der Sprühstrahlbreite als der zu steuernden Größe. Hierbei ist die Sprühstrahlbreite die zu steuernde Größe (Steuergröße), die in Abhängigkeit von dem variablen Applikationsparameter (z.B. Lackviskosität, Lacktemperatur, Zerstäuberdrehzahl, etc.) als Störgröße gesteuert wird. Zur Steuerung der Sprühstrahlbreite auf den vorgegebenen Soll-Wert wird der Lenkluftstrom als Stellgröße in Abhängigkeit von dem variablen Applikationsparameter eingestellt. Das Ziel der Steuerung besteht hierbei darin, die Sprühstrahlbreite unabhängig von Schwankungen des Applikationsparameters auf einen vorgegebenen Soll-Wert einzustellen.Thus, the invention preferably provides for control of spray jet width, i. without a measurement and feedback of the spray jet width as the variable to be controlled. In this case, the spray jet width is the variable to be controlled (control variable) which is controlled as a disturbance variable as a function of the variable application parameter (for example paint viscosity, paint temperature, atomizer speed, etc.). To control the spray jet width to the predetermined target value, the steering air flow is set as a control variable as a function of the variable application parameter. The aim of the control here is to set the spray jet width independent of fluctuations of the application parameter to a predetermined target value.
In einer anderen Variante der Erfindung wird dagegen nicht die Sprühstrahlbreite gesteuert, sondern es werden Schwankungen der Sprühstrahlbreite kompensiert, indem der Bahnabstand und/oder die Lackiergeschwindigkeit (Ziehgeschwindigkeit) zwischen den benachbarten Beschichtungsmittelbahnen entsprechend angepasst wird. Der im Rahmen der Erfindung verwendete Begriff der Lackiergeschwindigkeit stellt vorzugsweise auf die Vorschubgeschwindigkeit des Applikationsgeräts beim Lackieren ab.In another variant of the invention, however, the spray jet width is not controlled, but fluctuations in the spray jet width are compensated for by the web spacing and / or the coating speed (drawing speed). is adjusted accordingly between the adjacent coating center lines. The term of the coating speed used in the context of the invention is preferably based on the feed rate of the application device during painting.
Falls beispielsweise die Sprühstrahlbreite aufgrund von Schwankungen der Applikationsparameter (z.B. Lackviskosität, Lacktemperatur, Zerstäuberdrehzahl, etc.) abnimmt, so wird der Bahnabstand entsprechend verringert, damit die gewünschte Bahnüberlappung erhalten bleibt.For example, if the spray jet width decreases due to variations in application parameters (e.g., paint viscosity, paint temperature, atomizer speed, etc.), the web spacing is correspondingly reduced to maintain the desired web overlap.
Falls dagegen die Sprühstrahlbreite aufgrund von Schwankungen der Applikationsparameter (z.B. Lackviskosität, Lacktemperatur, Zerstäuberdrehzahl, etc.) zunimmt, so wird der Bahnabstand entsprechend vergrößert, um die gewünschte Bahnüberlappung zu erhalten.On the other hand, if the spray jet width increases due to variations in the application parameters (e.g., paint viscosity, paint temperature, atomizer speed, etc.), the web spacing is increased accordingly to obtain the desired web overlap.
Die Erfindung sieht deshalb in dieser Variante der Erfindung vor, dass die Bahnüberlappung zwischen den benachbarten Beschichtungsmittelbahnen auf eine vorgegebene, gewünschte Bahnüberlappung gesteuert wird, indem der Bahnabstand in Abhängigkeit von dem variablen Applikationsparameter (z.B. Lackviskosität, Lacktemperatur, Zerstäuberdrehzahl, etc.) entsprechend eingestellt wird.Therefore, in this variant of the invention, the invention provides that the web overlap between the adjacent coating center webs is controlled to a predetermined, desired web overlap by adjusting the web distance as a function of the variable application parameter (eg paint viscosity, paint temperature, atomizer speed, etc.) ,
Die beiden vorstehend beschriebenen Varianten der Erfindung (Steuerung der Sprühstrahlbreite bzw. Steuerung der Bahnüberlappung) können im Rahmen der Erfindung auch miteinander kombiniert werden.The two variants of the invention described above (control of the spray jet width or control of the web overlap) can also be combined with one another within the scope of the invention.
Gemeinsam ist den beiden Varianten der Erfindung die technische Lehre, dass Schwankungen der Applikationsparameter kompensiert werden und zwar durch eine Anpassung der Sprühstrahlbreite oder durch eine Anpassung des Bahnabstands.Common to the two variants of the invention is the technical teaching that compensates for fluctuations in the application parameters be done by adjusting the spray jet width or by adjusting the track distance.
Bei der Steuerung der Bahnüberlappung kann ferner die Schichtdicke gesteuert werden, indem die Lackiergeschwindigkeit (d.h. die Vorschubgeschwindigkeit des Zerstäubers in Bahnrichtung) eingestellt wird. Die Steuerung der Schichtdicke kann im Rahmen der Erfindung ebenfalls in Abhängigkeit von dem variablen Applikationsparameter erfolgen.Further, in the control of the web overlap, the film thickness can be controlled by adjusting the painting speed (i.e., the advancing speed of the atomizer in the web direction). The control of the layer thickness can also take place in the context of the invention as a function of the variable application parameter.
Der im Rahmen der Erfindung verwendete Begriff eines Applikationsparameters umfasst also alle Größen, die im Beschichtungsbetrieb einen Einfluss auf den Sprühstrahl haben, insbesondere auf die kinetische Energie der abgesprühten Beschichtungsmitteltröpfchen oder die Sprühstrahlform. Darüber hinaus ist dieser Begriff nicht auf eine einzelne Größen beschränkt, sondern umfasst auch mehreren verschiedene Größen. So kann die Steuerung der Sprühstrahlbreite bzw. der Bahnüberlappung auch in Abhängigkeit von mehreren verschiedenen Applikationsparametern erfolgen.The term of an application parameter used in the context of the invention therefore includes all variables which have an influence on the spray jet in the coating operation, in particular on the kinetic energy of the sprayed coating agent droplets or the spray jet form. Moreover, this term is not limited to a single size but also includes several different sizes. Thus, the control of the spray jet width or the web overlap can also be carried out as a function of a plurality of different application parameters.
Weiterhin ist unter einem Lenkluftstrom im Rahmen der Erfindung die Menge der abgegebenen Lenkluft pro Zeiteinheit zu verstehen, also im physikalischen Sinne der Volumenstrom oder der Massenstrom der abgegebenen Lenkluft.Furthermore, under a guide air flow in the context of the invention, the amount of discharged steering air per unit time to understand, ie in the physical sense of the volume flow or the mass flow of the discharged shaping air.
Vorzugsweise sieht die Erfindung vor, dass nicht nur ein einziger Lenkluftstrom abgegeben wird, sondern - wie bei der eingangs erwähnten Patentanmeldung
Hierbei werden die einzelnen Lenkluftströme vorzugsweise in unterschiedliche Richtungen abgegeben, was an sich aus der bereits eingangs zitierten Patentanmeldung
Es wurde bereits vorstehend erwähnt, dass es sich bei dem zur Beeinflussung des Lenkluftstroms herangezogenen Applikationsparameter um die Viskosität des applizierten Beschichtungsmittels oder die Drehzahl des Zerstäubers handeln kann. Die Erfindung ist jedoch hinsichtlich des interessierenden Applikationsparameters nicht auf diese beiden Parameter beschränkt, sondern auch mit anderen Parametern realisierbar. Beispielsweise kann es sich bei dem Applikationsparameter um die Oberflächenspannung des applizierten Beschichtungsmittels, die elektrische Spannung einer elektrostatischen Aufladung des Beschichtungsmittels, die Temperatur des applizierten Beschichtungsmittels, die Umgebungstemperatur, den Beschichtungsmittelstrom und/oder den Typ des applizierten Beschichtungsmittels handeln. Darüber hinaus besteht im Rahmen der Erfindung die Möglichkeit, dass mehrere der vorstehend genannten Applikationsparameters gemeinsam ausgewertet werden und gemeinsam den Lenkluftstrom beeinflussen.It has already been mentioned above that the application parameter used for influencing the shaping air flow may be the viscosity of the applied coating agent or the speed of the atomizer. However, the invention is not limited to these two parameters with regard to the application parameter of interest, but can also be implemented with other parameters. For example, the application parameter may be the surface tension of the applied coating agent, the electrical voltage of an electrostatic charge of the coating agent, the temperature of the applied coating agent, the ambient temperature, the coating agent flow and / or the type of applied coating agent. In addition, there is in the frame the invention the possibility that several of the above-mentioned application parameters are evaluated together and jointly influence the Lenkluftstrom.
Die einzelnen Lenkluftströme können im Rahmen der Erfindung wahlweise von einer gemeinsamen Luftversorgung oder von jeweils eigenen Luftversorgungen mit Lenkluft gespeist werden. Vorteilhaft an einer Speisung der einzelnen Lenkluftströme durch jeweils eigene Luftversorgungen ist jedoch die Tatsache, dass die einzelnen Lenkluftströme flexibel und unabhängig voneinander eingestellt werden können.In the context of the invention, the individual shaping air flows can be fed optionally by a common air supply or by separate air supplies with shaping air. However, the fact that the individual shaping air flows can be adjusted flexibly and independently of each other is advantageous for feeding the individual shaping air streams through their own air supplies.
Weiterhin ist zu erwähnen, dass die Lenkluftstrombeeinflussung im Rahmen der Erfindung vorzugsweise automatisch erfolgt, so dass kein Benutzereingriff erforderlich ist, um den Einfluss des variierenden Applikationsparameters bei der Einstellung der Sprühstrahlbreite zu kompensieren.It should also be mentioned that the steering air flow influencing within the scope of the invention preferably takes place automatically, so that no user intervention is required to compensate for the influence of the varying application parameter in the adjustment of the spray jet width.
Ferner ist zu erwähnen, dass es sich bei den Beschichtungsmittel im Rahmen der Erfindung wahlweise um Pulverlack oder Nasslack (Lösemittellack oder Wasserlack) handeln kann. Die Erfindung ist also hinsichtlich des zu applizierenden Beschichtungsmittels nicht auf bestimmte Beschichtungsmitteltypen beschränkt.It should also be mentioned that the coating compositions in the context of the invention may optionally be powder coating or wet paint (solvent-based paint or water-based paint). The invention is therefore not limited to certain types of coating agent with regard to the coating agent to be applied.
Weiterhin ist zu erwähnen, dass die Erfindung nicht nur auf das vorstehend beschriebene Betriebsverfahren beschränkt ist, sondern auch eine entsprechende Beschichtungseinrichtung umfasst, wie sich bereits aus der vorstehenden Beschreibung ergibt. Die Beeinflussung des Lenkluftstroms erfolgt hierbei durch eine Steuereinrichtung, die beispielsweise ein Lenkluftventil ansteuert, um den Applikationsparameter (z.B. Lackviskosität, Glockentellerdrehzahl) bei der Beeinflussung des Lenkluftstroms zu berücksichtigen.Furthermore, it should be mentioned that the invention is not limited to the operating method described above, but also includes a corresponding coating device, as already apparent from the above description. In this case, the influencing of the steering air flow is effected by a control device which, for example, controls a steering air valve in order to take into account the application parameter (for example paint viscosity, Bell plate rotational speed) in influencing the shaping air flow.
Bei zwei getrennten Lenkluftströmen beeinflusst die Steuereinrichtung vorzugsweise beide Lenkluftströme, wobei die Beeinflussung der einzelnen Lenkluftströme unabhängig voneinander erfolgen kann.In the case of two separate directing air flows, the control device preferably influences both directing air streams, wherein the influencing of the individual directing air streams can take place independently of one another.
In einem Ausführungsbeispiel der Erfindung ist eine Lenkluftdüsenanordnung vorgesehen, die jeweils mehrere konzentrisch angeordnete Düsenöffnungen aufweißt, was an sich aus dem Stand der Technik bekannt ist. Die einzelnen Lenkluftströme können hierbei jeweils durch einen eigenen Kranz von Lenkluftdüsen abgegeben werden, wobei die einzelnen Lenkluftdüsenkränze vorzugsweise konzentrisch zueinander angeordnet sind.In one embodiment of the invention, a shaping air nozzle arrangement is provided, each of which has a plurality of concentrically arranged nozzle openings, which is known per se from the prior art. The individual shaping air streams can each be delivered by a separate ring of shaping air nozzles, the individual shaping air nozzle rings preferably being arranged concentrically with one another.
Hierbei besteht die Möglichkeit, dass die einzelnen Lenkluftdüsenkränze einen unterschiedlichen Durchmesser aufweisen. Ein Lenkluftstrom kann dann aus den außen liegenden Lenkluftdüsen abgegeben werden, während ein anderer Lenkluftstrom aus den innen liegenden Lenkluftdüsen abgegeben wird.In this case, there is the possibility that the individual steering air nozzle rings have a different diameter. A steering air flow can then be discharged from the outer shaping air nozzles, while another guide air flow is discharged from the inner shaping air nozzles.
Alternativ besteht jedoch auch die Möglichkeit, dass die einzelnen Lenkluftdüsenkränze im Wesentlichen den gleichen Durchmesser aufweisen, so dass über den Umfang verteilt abwechselnd Düsenöffnungen der ersten Lenkluftdüsenanordnung und der zweiten Lenkluftdüsenanordnung angeordnet sind. Die Düsenöffnungen der beiden Lenkluftdüsenanordnungen können hierbei jeweils paarweise zusammengefasst sein, so dass über den Umfang verteilt zahlreiche Paare von Lenkluftdüsen angeordnet sind, wobei jedes dieser Paare für jeden Lenkluftstrom jeweils eine Lenkluftdüse aufweist.Alternatively, however, it is also possible for the individual shaping air nozzle rings to have substantially the same diameter, so that nozzle openings of the first shaping air nozzle arrangement and of the second shaping air nozzle arrangement are alternately distributed over the circumference. The nozzle openings of the two shaping air nozzle arrangements can in each case be combined in pairs so that numerous pairs of shaping air nozzles are arranged distributed over the circumference, wherein each of these pairs has a shaping air nozzle for each shaping air stream.
Weiterhin besteht hierbei die Möglichkeit, dass die einzelnen Düsenöffnungen einen Drall in Umfangsrichtung aufweisen und zwar wahlweise in Drehrichtung oder entgegen der Drehrichtung des Glockentellers. Beispielsweise können auch die Düsenöffnungen der einen Lenkluftdüsenanordnung einen Drall in Umfangsrichtung aufweisen, während die Düsenöffnungen der anderen Lenkluftdüsenanordnung keinen Drall in Umfangsrichtung aufweisen. Hierbei können die mit einem Drall in Umfangsrichtung versehenen Düsenöffnungen einen Drallwinkel zwischen 30° und 75° aufweisen, wobei sich ein Drallwinkel von 45° als vorteilhaft erwiesen hat.Furthermore, there is the possibility that the individual nozzle openings have a swirl in the circumferential direction and Although either in the direction of rotation or counter to the direction of rotation of the bell plate. For example, the nozzle openings of the one shaping air nozzle arrangement can also have a swirl in the circumferential direction, while the nozzle openings of the other shaping air nozzle arrangement have no swirl in the circumferential direction. Here, the nozzle openings provided with a swirl in the circumferential direction can have a helix angle between 30 ° and 75 °, wherein a helix angle of 45 ° has proven to be advantageous.
Schließlich ist zu erwähnen, dass im Rahmen der Erfindung auch drei oder mehr Lenkluftströme abgegeben werden können, um den Sprühstrahl zu formen. Der zusätzliche dritte Lenkluftstrom kann dabei in gleicher Weise beeinflusst werden, wie die beiden vorstehend beschriebenen Lenkluftströme. Darüber hinaus können die einzelnen Lenkluftströme auch als Freihalteluft eingesetzt werden, um den Glockenteller von Verschmutzungen frei zu halten. Ferner besteht auch die Möglichkeit, dass die einzelnen Lenkluftströme erwärmt oder in sonstiger Weiser klimatisiert werden, was an sich aus dem Stand der Technik bekannt ist.Finally, it should be mentioned that in the context of the invention, three or more shaping air streams can be discharged in order to form the spray jet. The additional third shaping air flow can be influenced in the same way as the two shaping air flows described above. In addition, the individual guide air flows can also be used as a free-hold air to keep the bell cup of contamination free. Furthermore, there is also the possibility that the individual steering air flows are heated or conditioned in other wise, which is known per se from the prior art.
Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Figuren näher erläutert. Es zeigen:
Figur 1- eine aufgeschnittene Perspektivansicht eines Rotationszerstäubers mit zwei Lenklüften,
Figur 2- ein weiteres Ausführungsbeispiel eines Rotationszerstäubers mit zwei Lenklüften,
- Figur 3A
- eine Frontansicht eines Lenkluftrings mit zwei Lenkluftdüsenkränzen,
- Figur 3B
- eine Querschnittsansicht des Lenkluftrings aus
Figur 3A , - Figur 4
- eine Frontansicht eines alternativen Ausführungsbeispiels eines Lenkluftrings zur Verwendung im Rahmen der Erfindung,
- Figur 5
- eine schematische Seitenansicht eines Rotationszerstäubers mit zwei Lenklüften,
- Figur 6
- ein vereinfachtes Bild einer erfindungsgemäßen Beschichtungseinrichtung, sowie
- Figuren 7A, 7B
- eine vereinfachte Darstellung von Lackierbahnen auf den Bauteilen.
- FIG. 1
- a cutaway perspective view of a rotary atomizer with two Lenklüften,
- FIG. 2
- Another embodiment of a rotary atomizer with two Lenklüften,
- FIG. 3A
- a front view of a shaping air ring with two shaping air nozzle rings,
- FIG. 3B
- a cross-sectional view of the shaping air ring
FIG. 3A . - FIG. 4
- a front view of an alternative embodiment of a shaping air ring for use in the invention,
- FIG. 5
- a schematic side view of a rotary atomizer with two Lenklüften,
- FIG. 6
- a simplified picture of a coating device according to the invention, and
- FIGS. 7A, 7B
- a simplified representation of painting tracks on the components.
Die Querschnittsansicht in
Als Applikationselement weist der Rotationszerstäuber 1 einen Glockenteller 2 auf, der im Betrieb mit großer Geschwindigkeit rotiert und an einer ringförmig umlaufenden Absprühkante 3 einen Sprühstrahl 4 abgibt.As an application element, the
Der zu applizierende Nasslack wird hierbei durch ein Farbrohr 5 zugeführt und trifft dann zunächst in dem Glockenteller 2 auf eine mit dem Glockenteller 2 rotierende Umlenkscheibe 6 mit einer Durchgangsbohrung 7, wobei die Umlenkscheibe 6 den axial auftreffenden Lackstrom in zwei Teilströme 8, 9 aufteilt.The wet paint to be applied is in this case fed through a paint tube 5 and then hits first in the
Der Teilstrom 8 wird von der Umlenkscheibe 6 in radialer Richtung seitlich abgelenkt und strömt aufgrund der im Betrieb auftretenden Zentrifugalkraft entlang einer innenliegenden Überstromfläche nach außen zu der Absprühkante 3, wo der Lack dann schließlich im Form des Sprühstrahls 4 abgegeben wird.The
Der Teilstrom 9 tritt dagegen axial durch die Durchgangsbohrung 7 in der Umlenkscheibe 6 hindurch und strömt dann auf der Stirnfläche der Umlenkscheibe 6 aufgrund der Zentrifugalkraft in radialer Richtung nach außen, so dass auch die Stirnfläche der Umlenkscheibe 6 im Betrieb permanent von Lack überströmt wird.The partial flow 9, however, passes axially through the through hole 7 in the deflection plate 6 and then flows on the end face of the deflection plate 6 due to the centrifugal force in the radial direction to the outside, so that the end face of the deflection plate 6 is permanently covered in paint during operation.
Weiterhin weist der Rotationszerstäuber 1 einen Lenkluftring 10 auf, über den zwei Lenkluftströme 11, 12 nach vorne abgegeben werden, um den Sprühstrahl 4 zu formen.Furthermore, the
Zur Abgabe des äußeren Lenkluftstroms 12 weist der Lenkluftring 10 einen Kranz von Lenkluftdüsen 13 auf, die über den Umfang des Lenkluftrings 10 verteilt in einem vorgegebenen Radius zu der Drehachse des Glockentellers 2 angeordnet sind.To deliver the outer
Die Abgabe des inneren Lenkluftstroms 11 erfolgt ebenfalls durch einen Kranz von Lenkluftdüsen 14, die in dem Lenkluftring 11 in einem vorgegebenen Radius bezüglich der Drehachse des Glockentellers 2 angeordnet sind.The delivery of the inner
Die Lenkluftdüsen 13 geben den Lenkluftstrom 12 leicht schräg nach vorne außen ab, wobei der Lenkluftstrom 12 mit der Drehachse des Glockentellers 2 einen Winkel von ungefähr 15° einschließt.The
Der Lenkluftstrom 11 wird dagegen von den Lenkluftdüsen 14 nahezu koaxial zu der Drehachse des Glockentellers 2 abgegeben.By contrast, the steering
Die beiden Lenkluftströme 11, 12 überlagern sich dann im Betrieb des Rotationszerstäubers 1 zu einer resultierenden Lenkluftströmung mit einer bestimmten Strömungsgeschwindigkeit und einer bestimmten Strömungsrichtung. Im Betrieb des Rotationszerstäubers 1 kann dann die Strömungsrichtung und die Strömungsgeschwindigkeit der resultierenden Lenkluftströmung variiert werden, indem der Lenkluftstrom durch die Lenkluftdüsen 13, 14 unabhängig voneinander eingestellt wird. Die beiden Lenkluftströme 11, 12 werden dann so eingestellt, dass unabhängig von dem verwendeten Lack und unabhängig von den Betriebsparametern (z.B. Glockentellerdrehzahl) des Rotationszerstäubers 1 stets die gewünschte Form und Breite des Sprühstrahls 4 eingestellt wird. Bei dieser Einstellung wird berücksichtigt, dass individuelle Lackparameter, wie beispielsweise Lackviskosität und Lackoberflächenspannung, entsprechend angepasste Betriebsparameter (z.B. Drehzahl) des Rotationszerstäubers 1 erfordern, um die individuell erforderlichen Tropfenspektren für einen optimalen Lackauftrag zu erreichen, so dass die Tropfenspektren entsprechend unterschiedliche kinetische Energien aufweisen.The two shaping air flows 11, 12 are then superimposed during operation of the
Darüber hinaus ermöglicht der Rotationszerstäuber 1 noch eine Außenspülung durch einen Spülmittelstrom 15, der über die Außenfläche des Glockentellers 2 geleitet wird und diesen dadurch von möglicherweise anhaftenden Lackresten befreit. Eine derartige Außenspülung ist jedoch an sich aus dem Stand der Technik bekannt und muss deshalb nicht näher beschrieben werden.In addition, the
Die
Eine Besonderheit des Lenkluftrings 10 besteht in diesem Ausführungsbeispiel darin, dass die inneren Lenkluftdüsen 14 und die äußeren Lenkluftdüsen 13 den jeweiligen Lenkluftstrom jeweils achsparallel zu der Drehachse des Glockentellers 2 abgegeben.A special feature of the shaping
Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass in dem Lenkluftring 10 auf einem vorgegebenen Durchmesser 17 jeweils paarweise die Lenkluftdüsen 13 für den einen Lenkluftstrom und die Lenkluftdüsen 14 für den anderen Lenkluftstrom angeordnet sind. Über den Umfang verteilt sind hierbei zahlreiche derartige Paare der Lenkluftdüsen 13, 14 angeordnet. Die aus den Lenkluftdüsen 13, 14 austretenden beiden Lenkluftströme können hierbei unabhängig voneinander gesteuert werden und überlagern sich zu einer resultierenden Lenkluftströmung mit einer bestimmten Strömungsrichtung und einer bestimmten Strömungsgeschwindigkeit.A special feature of this embodiment is that in the shaping
Bei diesem Ausführungsbeispiel wird der innere Lenkluftstrom 11 achsparallel zur Rotationsachse des Glockentellers 2 abgegeben, wohingegen der Lenkluftstrom 12 in einem spitzen Winkel schräg nach außen abgegeben wird. Die beiden Lenkluftströme 11, 12 überlagern sich deshalb zu einer resultierenden Lenkluftströmung 18 mit einer bestimmten resultierenden Strömungsrichtung und einer entsprechenden Strömungsgeschwindigkeit. Die beiden Lenkluftströme 11, 12 können hierbei unabhängig voneinander eingestellt werden, um die Strömungsrichtung und die Strömungsgeschwindigkeit der resultierenden Lenkluftströmung 18 entsprechend den aktuellen Erfordernissen einzustellen.In this embodiment, the inner
Zunächst weist die Beschichtungseinrichtung eine Lenkluftversorgung 19 auf, die den Rotationszerstäuber 1 mit dem Lenkluftstrom 11 versorgt, wobei die Lenkluftversorgung 19 von einer Steuereinheit 20 so angesteuert wird, dass die Lenkluftversorgung 19 einen vorgegebenen Lenkluftstrom QLL1 abgibt.First, the coating device on a
Weiterhin weist die Beschichtungseinrichtung eine zweite Lenkluftversorgung 21 auf, die dem Rotationszerstäuber 1 den zweiten Lenkluftstrom 12 zuführt, wobei auch die Lenkluftversorgung 21 von der Steuereinheit 20 so angesteuert wird, dass der Rotationszerstäuber 1 einen vorgegebenen Lenkluftstrom QLL2 abgibt.Furthermore, the coating device has a second shaping air supply 21 which supplies the second directing air flow 12 to the
Weiterhin weist die Beschichtungseinrichtung in herkömmlicher Weise eine Lackversorgung 22 auf, die den Rotationszerstäuber 1 mit einem vorgegebenen Lackstrom QLACK versorgt, wobei der gewünschte Lackstrom QLACK von einer Steuereinheit 23 vorgegeben wird.Furthermore, the coating device in a conventional manner to a
Darüber hinaus weist die Beschichtungseinrichtung einen Hochspannungsgenerator 24 auf, der den Rotationszerstäuber 1 mit einer elektrostatischen Aufladungsspannung U versorgt, mit welcher der von dem Glockenteller 2 abgegebene Sprühstrahl 4 elektrostatisch aufgeladen wird. Die elektrostatische Aufladung des Sprühstrahls 4 ist aus dem Stand der Technik bekannt und muss deshalb nicht weiter beschrieben werden.In addition, the coating device has a
Ferner gibt die Steuereinheit 23 einen Drehzahlwert n an eine Turbinensteuerung 25 weiter, wobei die Turbinensteuerung 25 einen entsprechenden Turbinenluftstrom an den Rotationszerstäuber 1 abgibt, damit sich der Glockenteller 2 mit der gewünschten Drehzahl n dreht. Die Turbinensteuerung 25 beinhaltet hierbei eine Regelung mit einer Rückkopplung, da die IstDrehzahl ermittelt und zur Kontrolle und ggf. Anpassung der Drehzahl verwendet wird.Further, the
Die Steuereinheit 20 berechnet die beiden Lenkluftströme QLL1, QLL2 in Abhängigkeit von mehreren Applikationsparametern, die teilweise Betriebsgrößen des Rotationszerstäubers sind und teilweise Eigenschaften des applizierten Lacks wiedergeben. So berücksichtigt die Steuereinheit 20 den applizierten Lackstrom QLACK, die elektrostatische Aufladungsspannung U und die Drehzahl n des Glockentellers 2 als Betriebsgrößen des Rotationszerstäubers 1.The
Weiterhin berücksichtigt die Steuereinheit bei der Berechnung der Lenkluftströme QLL1, QLL2 auch die Viskosität η, die Oberflächenspannung y und die Temperatur T des applizierten Lacks. Schließlich berücksichtigt die Steuereinheit 20 auch die Art des verwendeten Lacks (BC:Base Coat oder CC:Clear Coat) .Furthermore, in the calculation of the shaping air flows Q LL1 , Q LL2 , the control unit also takes into account the viscosity η, the surface tension y and the temperature T of the applied paint. Finally, the
Bei der Berechnung der beiden Lenkluftströme QLL1, QLL2 berücksichtigt die Steuereinheit, dass sich in Abhängigkeit von den einzelnen Applikationsparametern unterschiedliche Tropfenspektren in den applizierten Sprühstrahl 4 ausbilden, die entsprechend unterschiedliche kinetische Energien aufweisen, so dass die beiden Lenkluftströme 11, 12 entsprechend angepasst ausgerichtet bzw. bemessen sein müssen.When calculating the two steering air flows Q LL1 , Q LL2 , the control unit takes into account that different droplet spectra are formed in the applied spray jet 4 depending on the individual application parameters , which accordingly have different kinetic energies, so that the two shaping air flows 11, 12 are aligned accordingly or must be measured.
Darüber hinaus weist die Beschichtungseinrichtung einen mehrachsigen Lackierroboter 26 auf, der von einer Robotersteuerung 27 angesteuert wird und den Rotationszerstäuber 1 führt, so dass der Rotationszerstäuber 1 auf die zu beschichtende Bauteile Beschichtungsmittelbahnen 28 aufträgt, die parallel nebeneinander liegen, wie in den
Die benachbarten Beschichtungsmittelbahnen 28 weisen zwischen ihren Mittelachsen jeweils einen bestimmten Bahnabstand d und eine bestimmte Bahnbreite bB auf, woraus sich eine bestimmte Bahnüberlappung bÜ ergibt.The adjacent
Aus einem Vergleich der
Bei einem konstanten Bahnabstand d führen die Schwankungen der Bahnbreite bB jedoch zu unerwünschten Schwankungen der Bahnüberlappung bÜ. Im Extremfall kann eine Verringerung der Bahnbreite bB sogar dazu führen, dass die Bahnüberlappung bÜ negativ wird, so dass die benachbarten Beschichtungsmittelbahnen 28 nicht mehr lückenlos aneinander grenzen.At a constant path distance d, however, the variations in the web width b B lead to undesirable fluctuations in the web overlap b Ü . In extreme cases, a reduction of the web width b B may even lead to the web overlap b Ü becoming negative, so that the adjacent
Die Beschichtungseinrichtung ermöglicht deshalb auch eine andere Variante zur Berücksichtigung von Schwankungen der Applikationsparameter. In dieser Variante der Erfindung wird die Sprühstrahlbreite nicht auf einen konstanten, vorgegebenen Wert gesteuert, wobei die Steuerung Schwankungen der Applikationsparameter berücksichtigt. Stattdessen ist in dieser Variante vorgesehen, dass Schwankungen der Sprühstrahlbreite zugelassen und kompensiert werden, indem der Bahnabstand d entsprechend angepasst wird.Therefore, the coating device also allows another variant for taking into account variations in the application parameters. In this variant of the invention, the spray jet width is not controlled to a constant, predetermined value, the control taking into account variations in the application parameters. Instead, it is provided in this variant that fluctuations in the spray jet width are permitted and compensated for by adjusting the track distance d accordingly.
Die Beschichtungseinrichtung weist hierzu eine Steuereinheit 29 auf, die eingangsseitig die Applikationsparameter η, γ. T, BC/CC, QLACK, n, U aufnimmt, wobei die Applikationsparameter η, γ, T, BC/CC, QLACK, n, U im regelungstechnischen Sinne Störgrößen sind, da Schwankungen der Applikationsparameter η, y, T, BC/CC, QLACK, n, U die Bahnüberlappung bÜ beeinflussen, wenn der Bahnabstand d konstant gehalten wird.The coating device has for this purpose a
Die Steuereinheit 29 steuert deshalb die Bahnüberlappung bÜ auf einen vorgegebenen konstanten Wert, indem die Steuereinheit 29 den Bahnabstand d entsprechend einstellt und damit die Robotersteuerung 27 entsprechend ansteuert.The
Falls beispielsweise die Sprühstrahlbreite aufgrund von Schwankungen der Applikationsparameter (z.B. Lackviskosität, Lacktemperatur, Zerstäuberdrehzahl, etc.) abnimmt, so wird der Bahnabstand d entsprechend verringert, damit die gewünschte Bahnüberlappung bÜ erhalten bleibt.If, for example, the spray jet width decreases due to fluctuations in the application parameters (eg paint viscosity, paint temperature, atomizer speed, etc.), the web distance d is correspondingly reduced so that the desired web overlap b Ü is maintained.
Falls dagegen die Sprühstrahlbreite aufgrund von Schwankungen der Applikationsparameter (z.B. Lackviskosität, Lacktemperatur, Zerstäuberdrehzahl, etc.) zunimmt, so wird der Bahnabstand d entsprechend vergrößert, um die gewünschte Bahnüberlappung bÜ zu erhalten.If, on the other hand, the spray jet width increases due to fluctuations in the application parameters (eg paint viscosity, paint temperature, atomizer speed, etc.), the web distance d is correspondingly increased in order to obtain the desired web overlap b Ü .
Darüber hinaus steuert die Steuereinheit 29 die Schichtdicke auf einen vorgegebenen Wert, indem die Lackiergeschwindigkeit v in Abhängigkeit von den Applikationsparametern η, γ, T, BC/CC, QLACK, n, U eingestellt wird. Die Lackiergeschwindigkeit v ist hierbei die Vorschubgeschwindigkeit des Rotationszerstäubers 1 entlang den Beschichtungsmittelbahnen 28. Auf diese Weise wird die Schichtdicke unabhängig von Schwankungen der Applikationsparameter η, y, T, BC/CC, QLACK, n, U auf einem konstanten Wert gehalten, was zu einer guten Beschichtungsqualität beiträgt.In addition, the
Der gewünschte Soll-Wert für die Sprühstrahlbreite hängt hierbei von der Art der Lackierung ab. Bei der Lackierung von Außenflächen ist in der Regel eine große Sprühstrahlbreite sinnvoll, damit großflächig lackiert werden kann. Bei der Innenlackierung und bei der Lackierung von kleinen Details ist dagegen eine keine Sprühstrahlbreite sinnvoll.The desired nominal value for the spray jet width depends on the type of coating. When painting exterior surfaces, a large spray jet width usually makes sense, so that it can be painted over a large area. In the interior painting and the painting of small details, however, no spray jet width makes sense.
Die Erfindung ist nicht auf die vorstehend beschriebenen bevorzugten Ausführungsbeispiele beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die von dem Erfindungsgedanken Gebrauch machen und deshalb in den durch die Ansprüche definierten Schutzbereich fallen.The invention is not limited to the preferred embodiments described above. Rather, a variety of variants and modifications are possible that make use of the inventive idea and therefore fall within the scope defined by the claims.
- 11
- Rotationszerstäuberrotary atomizers
- 22
- GlockentellerA bell plate
- 33
- Absprühkantespray edge
- 44
- Sprühstrahlspray
- 55
- FarbrohrFarbrohr
- 66
- Umlenkscheibedeflection plate
- 77
- DurchgangsbohrungThrough Hole
- 8, 98, 9
- Teilstrompartial flow
- 1010
- LenkluftringDirecting air ring
- 1111
- LenkluftstromDirecting air flow
- 1212
- LenkluftstromDirecting air flow
- 1313
- LenkluftdüsenSteering air nozzles
- 1414
- LenkluftdüsenSteering air nozzles
- 1515
- Spülmittelstromagent flow
- 1616
- Befestigungszapfenfastening pins
- 1717
- Durchmesserdiameter
- 1818
- LenkluftströmungDirecting air flow
- 1919
- LenkluftversorgungDirecting air supply
- 2020
- Steuereinheitcontrol unit
- 2121
- LenkluftversorgungDirecting air supply
- 2222
- Lackversorgungpaint supply
- 2323
- Steuereinheitcontrol unit
- 2424
- HochspannungsgeneratorHigh voltage generator
- 2525
- Turbinensteuerungturbine control
- 2626
- LackierroboterPainting robots
- 2727
- Robotersteuerungrobot control
- 2828
- BeschichtungsmittelbahnenCoating agent tracks
- 2929
- Steuereinheitcontrol unit
- bB b B
- Bahnbreiteweb width
- bÜ b Ü
- Bahnüberlappungweb lap
- BC/CCBC / CC
- Basislack/KlarlackBasecoat / clearcoat
- dd
- Bahnabstandstepover
- nn
- Drehzahl des RotationszerstäubersRotational speed of the rotary atomizer
- QLACK Q PAINT
- Lackstrompaint flow
- QLL1 Q LL1
- Erster LenkluftstromFirst steering air flow
- QLL2 Q LL2
- Zweiter LenkluftstromSecond directing air flow
- TT
- Lacktemperaturpaint temperature
- UU
- Aufladespannung der RotationszerstäubersCharging voltage of rotary atomizers
- vv
- Lackiergeschwindigkeitlacquering
- ηη
- Viskositätviscosity
- yy
- Oberflächenspannungsurface tension
Claims (15)
- An operating method for an atomiser (1) for the coating of components, particularly of vehicle body parts, with the following steps:a) Presetting of a desired spray jet width and/or a desired path overlapping (bÜ) between adjacent coating agent paths (28),b) Application of a spray jet (4) of a coating agent through the atomiser (1),c) Determination of at least one application parameter (η, γ, T, BC/CC, QLack, n, U) which reproduces a characteristic (η, γ, T, BC/CC) of the applied coating agent or an operating variable (QLack, n, U) of the atomiser (1),d) Discharge of a first guide air flow (11) for the formation of the spray jet (4), and/ore) Depositing of coating agent paths (28), lying parallel next to one another, onto components wherein the adjacent coating agent paths (28) have a certain path spacing (d) between their central axes,characterised by the following steps:f) Control of the actual spray jet width to the preset and desired spray jet width by adjusting the first guide air flow depending on the determined application parameter (η, γ, T, BC/CC, QLack, n, U), and/org) Control of the actual path overlapping to the preset and desired path overlapping (bÜ) by adjusting the path spacing (d) and/or by adjusting the painting speed depending on the application parameter (η, γ, T, BC/CC, QLack, n, U) .
- A coating method according to Claim 1, characterised by the following steps:a) Depositing of the coating agent paths (28) with a certain painting velocity (v), wherein the painting velocity (v) reproduces the forward feed velocity of the atomiser (1) in the path direction, andb) Influencing of the painting velocity (v) depending on the determined application parameter (η, γ, T, BC/CC, QLack, n, U) .
- The coating method according to Claim 2, characterised by the following steps:a) Presetting a desired layer thickness for the coating agent paths (28),b) Control of the actual layer thickness to the preset and desired layer thickness by adjusting the painting velocity (v) depending on the application parameter (η, γ, T, BC/CC, QLack, n, U) .
- The coating method according to any one of the preceding Claims, characterised by the following steps:a) Discharge of an additional second guide air flow (12) for the formation of the spray jet (4), andb) Influencing also of the second guide air flow (12) depending on the application parameter (η, γ, T, BC/CC, QLack, n, U) for the control of the spray jet width.
- The coating method according to Claim 4,
characterised in thata) the first guide air flow (11) is discharged into another direction than the second guide air flow (12), and/orb) the first guide air flow (11) superimposes with the second guide air flow (12) to a resulting guide air stream (18), andc) the first guide air flow (11) and the second guide air flow (12) are influenced depending on the application parameter (η, γ, T, BC/CC, QLack, n, U) in such a way that the direction of the resulting guide air stream (18) changes. - An operating method according to any one of the preceding Claims, characterised in that the application parameter (η, γ, T, BC/CC, QLack, n, U) is one of the following variables:a) Viscosity (η) of the applied coating agent,b) Surface tension (γ) of the applied coating agent,c) Rotation speed (n) of the atomiser (1),d) Electric voltage (U) of an electrostatic charging of the coating agent,e) Temperature (T) of the applied coating agent,f) Ambient temperature,g) Air humidity,h) Coating agent flow (QLack),i) Type (BC/CC) of the applied coating agent.
- The operating method according to any one of the preceding Claims, characterised in that the first guide air flow (11) and the second guide air flow (12)a) are supplied with guide air from a common air supply, orb) are each supplied from an own air supply (19, 21) in each case.
- The operating method according to any one of the preceding Claims, characterised in that the influencing of the first guide air flow (11) and/or the second guide air flow (12) and/or the path spacing (d) automatically takes place depending on the application parameter (η, γ, T, BC/CC, QLack, n, U) .
- A coating apparatus for the coating of components with a coating material, particularly for the painting of vehicle body parts, witha) an atomiser (1) for the application of a spray jet (4) of the coating agent onto the component to be coated,b) a control apparatus (20, 23, 29) for the activation of the atomiser (1),c) a first guide air nozzle arrangement (14) for the discharge of a first guide air flow (11) for the formation of the spray jet (4) and/ord) a painting robot (26) for the mobile conducting of the atomiser (1), wherein the atomiser (1) deposits coating agent paths (28) parallel to each other side-by-side with a certain path spacing (d) and a certain path overlapping (bÜ) between the adjacent coating agent paths (28) onto the components,characterised in thate) the control apparatus (20; 23) controls the actual spray jet width to a preset spray jet width by adjusting the first guide air flow depending on the application parameter (η, γ, T, BC/CC, QLack, n, U), and/orf) the control apparatus (29) controls the actual path overlapping (bÜ) to a preset path overlapping (bÜ) by adjusting the path spacing (d) depending on the application parameter (η, γ, T, BC/CC, QLack, n, U) .
- The coating apparatus according to Claim 9,
characterised in thata) a second guide air nozzle arrangement (13) is provided for discharging a second guide air flow (12) for the formation of a spray jet (4), wherein the control apparatus (20) also influences the second guide air flow (12) depending on the application parameter (η, γ, T, BC/CC, QLack, n, U) in order to control the spray jet width, and/orb) the first guide air nozzle arrangement (14), on the one hand, and the second guide air nozzle arrangement (13), on the other hand, discharge the guide air flows (11, 12) in different directions. - The coating apparatus according to Claim 10, characterised in thata) the first guide air flow (11) superimposes with the second guide air flow (12) to a resulting guide air stream (18), andb) the control apparatus (20) influences the first guide air flow (11) and the second guided air flow (12) depending on the application parameter (η, γ, T, BC/CC, QLack, n, U) in such a way that the direction of the resulting guide air stream (18) changes according to the application parameter (η, γ, T, BC/CC, QLack, n, U) .
- The coating apparatus according to any one of the claims 10 to 11, characterised bya) a common air supply for the supply of the two guide air flows, orb) in each case, own air supplies (19, 21) for supplying the two guide air flows (11, 12).
- The coating apparatus according to any one of the Claims 9 to 12, characterised in thata) the first guide air nozzle arrangement (14) and/or the second guide air nozzle arrangement (13) have, in each case, several concentrically arranged nozzle openings, and/orb) the two guide air nozzle arrangements (13, 14) have different diameters or essentially the same diameter.
- The coating apparatus according to Claim 13, characterised in that alternating nozzle openings of the first guide air nozzle arrangement (14) and the second guide air nozzle arrangement (13) are in a distributed arrangement over the periphery.
- The coating apparatus according to any one of the Claims 9 to 14, characterised in thata) the nozzle openings of the first guide air nozzle arrangement (14) have a twist in the peripheral direction, while the nozzle openings of the second guide air nozzle arrangement (13) have no twist in the peripheral direction, and/orb) the nozzle openings with a twist in the peripheral direction have a twist angle of between 30° and 75°.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006054786A DE102006054786A1 (en) | 2006-11-21 | 2006-11-21 | Operating method for a nebulizer and corresponding coating device |
PCT/EP2007/008165 WO2008061584A1 (en) | 2006-11-21 | 2007-09-19 | Operating method for a sprayer and corresponding coating device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2122427A1 EP2122427A1 (en) | 2009-11-25 |
EP2122427B1 true EP2122427B1 (en) | 2018-11-14 |
Family
ID=38828612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07818258.1A Active EP2122427B1 (en) | 2006-11-21 | 2007-09-19 | Operating method for a sprayer and corresponding coating device |
Country Status (11)
Country | Link |
---|---|
US (1) | US8097293B2 (en) |
EP (1) | EP2122427B1 (en) |
JP (1) | JP5571385B2 (en) |
CN (1) | CN101542405B (en) |
DE (1) | DE102006054786A1 (en) |
ES (1) | ES2710350T3 (en) |
HU (1) | HUE042739T2 (en) |
MX (1) | MX2009005191A (en) |
RU (1) | RU2443479C2 (en) |
TR (1) | TR201900660T4 (en) |
WO (1) | WO2008061584A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2917309B1 (en) * | 2007-06-13 | 2013-10-25 | Sames Technologies | ROTATING PROJECTOR OF COATING PRODUCT AND INSTALLATION COMPRISING SUCH A PROJECTOR. |
DE102008027997A1 (en) | 2008-06-12 | 2009-12-24 | Dürr Systems GmbH | Universalzerstäuber |
DE102009042955A1 (en) | 2009-09-24 | 2011-04-07 | Dürr Systems GmbH | Method for checking the function of a rotary atomizer and corresponding coating system |
DE102009051877A1 (en) | 2009-11-04 | 2011-05-05 | Dürr Systems GmbH | Coating process and coating system with dynamic adjustment of the atomizer speed and the high voltage |
DE102010019612A1 (en) | 2010-05-06 | 2011-11-10 | Dürr Systems GmbH | Coating device, in particular with an application device, and associated coating method that emits a droplets of coating agent droplet |
CN102527595A (en) * | 2011-12-30 | 2012-07-04 | 西南铝业(集团)有限责任公司 | Electrostatic DOS (dioctyl sebacate) oil spraying method |
JP5681779B1 (en) * | 2013-11-08 | 2015-03-11 | ランズバーグ・インダストリー株式会社 | Electrostatic coating machine |
CN103736637A (en) * | 2013-12-20 | 2014-04-23 | 惠州市天顺精密注塑有限公司 | Precise injection molding automatic coating process and coating control system |
RU2719034C2 (en) | 2014-12-31 | 2020-04-16 | Сосьете Де Продюи Нестле С.А. | Method for controlling the size of the sprayed drops in a sprayer nozzle for spray drying, a spray drying apparatus and a nozzle attachment thereto |
JP6181094B2 (en) | 2015-02-16 | 2017-08-16 | トヨタ自動車株式会社 | Rotary atomizing electrostatic coating machine and its shaping air ring |
JP6269603B2 (en) * | 2015-07-21 | 2018-01-31 | トヨタ自動車株式会社 | Electrostatic coating method |
DE102015213824A1 (en) | 2015-07-22 | 2017-01-26 | Volkswagen Aktiengesellschaft | Spray device for applying a colored medium to a component of a motor vehicle |
FR3053608B1 (en) | 2016-07-11 | 2021-04-23 | Exel Ind | SKIRT FOR ROTARY SPOTLIGHT FOR COATING PRODUCTS INCLUDING AT LEAST THREE SERIES OF SEPARATE AIR EJECTION NOZZLES |
CN106423604B (en) * | 2016-12-01 | 2022-05-17 | 荔博实业(上海)有限公司 | Rotary massage nozzle |
US12055421B2 (en) | 2019-09-10 | 2024-08-06 | Abb Schweiz Ag | Methods of determining clogging and clogging characteristics of coating medium apparatus, coating medium apparatus, calibration system and industrial robot |
IT201900021954A1 (en) * | 2019-11-22 | 2021-05-22 | Demaclenko It S R L | DISPENSER GROUP FOR ONE SNOW GENERATOR AND SNOW GENERATOR INCLUDING SAID DISPENSER GROUP |
CN110841853B (en) * | 2019-12-05 | 2021-07-06 | 聊城开发区隆阳机械制造有限责任公司 | Hardware paint spraying equipment with adjustable angle |
US12109581B2 (en) | 2021-05-28 | 2024-10-08 | Graco Minnesota Inc. | Rotory bell atomizer shaping air configuration and air cap apparatus |
CN113546828A (en) * | 2021-07-26 | 2021-10-26 | 东风柳州汽车有限公司 | Water-based paint vehicle body spraying process |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1225237A (en) * | 1982-04-19 | 1987-08-11 | Allan F. Falcoff | Computerized spray machine |
JPS61234970A (en) * | 1985-04-12 | 1986-10-20 | Trinity Ind Corp | Method for automatically coating automobile body |
SU1297925A1 (en) * | 1985-07-17 | 1987-03-23 | Проектный Институт Научно-Производственного Объединения "Лакокраспокрытие" | Apparatus for automatic applying of coats |
JP2600390B2 (en) * | 1989-09-13 | 1997-04-16 | トヨタ自動車株式会社 | Rotary atomizing coating equipment |
RU1794494C (en) | 1990-01-08 | 1993-02-15 | Научно-Производственное Объединение "Спецоборудование" | Unit for applying coatings |
JP2841786B2 (en) * | 1990-08-15 | 1998-12-24 | トヨタ自動車株式会社 | How to apply metallic paint |
DE4209279C3 (en) * | 1992-03-21 | 2000-09-14 | Cegelec Aeg Anlagen Und Automa | Method and device for automatically coating objects |
GB9211539D0 (en) * | 1992-06-01 | 1992-07-15 | Ducost Eng Ltd | Control of paint spraying machines and the like |
JP3254828B2 (en) * | 1993-07-12 | 2002-02-12 | トヨタ自動車株式会社 | Rotary atomization electrostatic coating method and apparatus |
JP2973075B2 (en) * | 1994-02-04 | 1999-11-08 | 本田技研工業株式会社 | Metallic coating method |
EP0695582B1 (en) | 1994-06-14 | 1999-10-27 | INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH | Method and device for coating electrostatically and/or pneumatically a conductive substrate with a liquid coating product |
JPH08323249A (en) * | 1995-06-02 | 1996-12-10 | Mazda Motor Corp | Coating device |
US5656089A (en) * | 1995-06-13 | 1997-08-12 | Behr Systems | Paint spray booth controller |
JP3365203B2 (en) * | 1996-04-17 | 2003-01-08 | トヨタ自動車株式会社 | Rotary atomizing coating equipment |
DE19637730C1 (en) * | 1996-09-16 | 1998-01-29 | Duerr Systems Gmbh | Process for the automatic coating of workpieces |
DE19738144C2 (en) * | 1997-09-01 | 1999-12-09 | Wagner International Ag Altsta | Method for controlling an electrostatic coating device and electrostatic coating system |
US6058280A (en) * | 1997-11-14 | 2000-05-02 | Xerox Corporation | Molded quick change photoreceptor support |
DE19938093B4 (en) * | 1999-08-12 | 2018-02-08 | Dürr Systems Ag | Method and rotary atomizer for serial coating of workpieces |
AU1471801A (en) * | 1999-11-15 | 2001-05-30 | Ppg Industries Ohio, Inc. | Method and apparatus for applying a polychromatic coating onto a substrate |
JP4589513B2 (en) * | 2000-10-05 | 2010-12-01 | 関西ペイント株式会社 | Coating method |
DE10202712A1 (en) * | 2002-01-24 | 2003-07-31 | Duerr Systems Gmbh | Method for controlling the spray jet width of an atomizer and atomizer for the serial coating of workpieces |
EP1354640A1 (en) * | 2002-04-19 | 2003-10-22 | Dürr Systems GmbH | Process and apparatus for hardening a coating |
US6991178B2 (en) * | 2003-01-24 | 2006-01-31 | Dürr Systems, Inc. | Concentric paint atomizer shaping air rings |
US7793869B2 (en) | 2003-08-18 | 2010-09-14 | Nordson Corporation | Particulate material applicator and pump |
JP4209310B2 (en) * | 2003-11-14 | 2009-01-14 | 関東自動車工業株式会社 | Rotating atomizing electrostatic coating method and rotating atomizing electrostatic coating equipment |
JP2006218426A (en) * | 2005-02-14 | 2006-08-24 | Kansai Paint Co Ltd | Coating method, coating control unit and coating equipment |
-
2006
- 2006-11-21 DE DE102006054786A patent/DE102006054786A1/en not_active Withdrawn
-
2007
- 2007-09-19 JP JP2009537493A patent/JP5571385B2/en active Active
- 2007-09-19 EP EP07818258.1A patent/EP2122427B1/en active Active
- 2007-09-19 HU HUE07818258A patent/HUE042739T2/en unknown
- 2007-09-19 CN CN2007800431513A patent/CN101542405B/en active Active
- 2007-09-19 RU RU2009123467/05A patent/RU2443479C2/en active
- 2007-09-19 TR TR2019/00660T patent/TR201900660T4/en unknown
- 2007-09-19 US US12/162,457 patent/US8097293B2/en active Active
- 2007-09-19 WO PCT/EP2007/008165 patent/WO2008061584A1/en active Application Filing
- 2007-09-19 ES ES07818258T patent/ES2710350T3/en active Active
- 2007-09-19 MX MX2009005191A patent/MX2009005191A/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US8097293B2 (en) | 2012-01-17 |
WO2008061584A1 (en) | 2008-05-29 |
US20090220703A1 (en) | 2009-09-03 |
MX2009005191A (en) | 2009-05-25 |
TR201900660T4 (en) | 2019-02-21 |
DE102006054786A1 (en) | 2008-05-29 |
JP2010510055A (en) | 2010-04-02 |
RU2443479C2 (en) | 2012-02-27 |
JP5571385B2 (en) | 2014-08-13 |
ES2710350T3 (en) | 2019-04-24 |
RU2009123467A (en) | 2010-12-27 |
CN101542405A (en) | 2009-09-23 |
CN101542405B (en) | 2011-12-21 |
EP2122427A1 (en) | 2009-11-25 |
HUE042739T2 (en) | 2019-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2122427B1 (en) | Operating method for a sprayer and corresponding coating device | |
EP2285495B1 (en) | Universal atomizer | |
EP2566627B1 (en) | Coating device with jets of coating medium which are broken down into drops | |
EP3566779B1 (en) | Atomiser and corresponding operating method | |
EP2099570B1 (en) | Guiding air ring comprising a ring cavity and corresponding bell plate | |
DE2852038A1 (en) | LIQUID SPRAY DEVICE, IN PARTICULAR LIQUID SPRAY GUN | |
DE19621072A1 (en) | Electrostatic spray device | |
EP2017010A2 (en) | Atomiser for a spray gun | |
DE102007012878B3 (en) | Sprayer e.g. electrostatic rotation sprayer, for spraying e.g. dye, has air nozzles formed inside central opening of sprayer cap for compressed air atomization, and channel supplying coating agent to sprayer head | |
DE102012010610A1 (en) | Method for operating a rotary atomizer, nozzle head and rotary atomizer with such | |
EP3034175B1 (en) | Rotary nozzle for an atomiser head | |
EP2460591B1 (en) | Nozzle head and rotary atomiser with same | |
EP2143500B1 (en) | Method and spraying apparatus for coating workpieces in series | |
WO2013041184A1 (en) | Coating method and coating device with a compensation for asymmetries of the spray jet | |
DE69026019T2 (en) | Electrostatic spraying device for the coating | |
DE1141925B (en) | Liquid atomizer for electrostatic application devices | |
DE2517716C3 (en) | Round or ring beam fise | |
EP0192099B1 (en) | Method for coating objects, and apparatus for carrying out this method | |
DE19938093A1 (en) | Rotary atomizer operating method for coating of e.g. motor vehicle bodies with two-stage atomization, using air sprayed against coating material in second stage for further atomization | |
EP1238710B1 (en) | Powder spraying device and powder coating process | |
DE102017116669A1 (en) | Bell plates and rotary atomizers | |
DE10324074B4 (en) | Bell plate for a rotary atomizer | |
DE69833252T2 (en) | ROTATING DEVICE FOR DISPENSING PARTICLE MATERIAL | |
WO2023057407A1 (en) | Bell cup, rotary atomizer having the bell cup, painting installation and corresponding painting method | |
CH641693A5 (en) | Atomising apparatus for powder for the coating of articles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080319 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DUERR SYSTEMS GMBH |
|
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: FISCHER, ANDREAS Inventor name: WOEHR, BENJAMIN Inventor name: NOLTE, HANS-JUERGEN Inventor name: HERRE, FRANK Inventor name: FREY, MARCUS Inventor name: MARQUARDT, PETER |
|
17Q | First examination report despatched |
Effective date: 20151118 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DUERR SYSTEMS AG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180628 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1065563 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007016494 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181114 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2710350 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190214 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190215 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190314 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 29989 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E042739 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007016494 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190919 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190919 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1065563 Country of ref document: AT Kind code of ref document: T Effective date: 20190919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240918 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240919 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240925 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240910 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20240920 Year of fee payment: 18 Ref country code: SK Payment date: 20240909 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240918 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240911 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20241025 Year of fee payment: 18 |