[go: up one dir, main page]

EP2122282B1 - Method for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation - Google Patents

Method for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation Download PDF

Info

Publication number
EP2122282B1
EP2122282B1 EP07871946.5A EP07871946A EP2122282B1 EP 2122282 B1 EP2122282 B1 EP 2122282B1 EP 07871946 A EP07871946 A EP 07871946A EP 2122282 B1 EP2122282 B1 EP 2122282B1
Authority
EP
European Patent Office
Prior art keywords
column
cycle
carbon monoxide
methane
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07871946.5A
Other languages
German (de)
French (fr)
Other versions
EP2122282A2 (en
Inventor
Arthur Darde
Natacha Haik-Beraud
Antoine Hernandez
Guillaume Teixeira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0655775A external-priority patent/FR2910603B1/en
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to PL07871946T priority Critical patent/PL2122282T3/en
Publication of EP2122282A2 publication Critical patent/EP2122282A2/en
Application granted granted Critical
Publication of EP2122282B1 publication Critical patent/EP2122282B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/08Internal refrigeration by flash gas recovery loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/24Quasi-closed internal or closed external carbon monoxide refrigeration cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/92Carbon monoxide

Definitions

  • the present invention relates to a method and an installation for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation.
  • Figure 6 of Berninger's article presents a method and an installation according to the preambles of claims 1 and 14 respectively.
  • Other documents describing methane scrubbing processes include: EP-A-0928937 , US4478621 , Tieftemperaturtechnik, page 418.
  • Carbon monoxide from cold boxes H 2 / CO carries with it a large fraction of the nitrogen present in the feed gas. This phenomenon is related to the difficulty of separating the two components CO and N 2 , their bubble points being very close. Nevertheless, depending on the use made of the CO downstream of the cold box, it is sometimes necessary to reduce its nitrogen content before exporting it.
  • denitrogenation column whose function is to produce carbon monoxide tank at the required purity.
  • a nitrogen purge containing a fraction of CO is recovered.
  • the denitrogenation column is located either upstream or downstream of the CO / CH 4 separation column.
  • the first advantage of the invention is that the lowest CO vaporization pressure is about 2.6 bar abs, and the highest pressure around 35 bar abs. This most often makes it possible to compress the CO cycle by a centrifugal compressor with five stages (six maximum).
  • the HP cycle pressure corresponds fairly well with the CO pressures often required (especially for the production of acetic acid).
  • the sending of carbon monoxide medium pressure from the turbine to the denitrogen tank saves a lot on the investment of the heat exchanger 9.
  • a flow containing carbon monoxide, hydrogen, methane and nitrogen 45 cools in exchanger 9 by heat exchange with a flow of carbon monoxide 1 and is sent to a methane scrubber column.
  • a flow of synthesis gas is sent to a methane washing column C1 fed at the top by a flow of liquid methane 4.
  • the tank liquid (not shown) is sent to the exhaust column C2 in a known manner and a fluid hydrogen-free is sent from the exhaust column C2 to the CO / CH 4 C3 separation column.
  • a flow rate enriched with carbon monoxide is withdrawn at the top of column C3 is sent to denitrogenation column C4 to remove nitrogen.
  • a flow of pure carbon monoxide 1 at a low pressure is sent to a compressor stage V1.
  • Part 3 of carbon monoxide compressed at between 3.5 and 5 bar, for example 4.3 bar in V1 cools in exchanger 9 and is sent to the bottom of the denitrogenation column C4 in gaseous form.
  • the rest of the carbon monoxide is compressed again in a compressor V2 to a pressure between 25 and 45 bar, preferably between 32 and 35 bar to form the flow 5.
  • This flow is divided into a portion 7 which constitutes a production and another flow that is sent to the exchanger 9.
  • a fraction 13 passes entirely through the exchanger before being divided into three.
  • a first flow 19 serves to reboil the exhaust column C2
  • a second flow 23 serves to reboil the CO / methane C3 column and the two cooled flow rates 19, 23 are sent with the third flow 21 to a heat exchanger 17 where they liquefy .
  • the flow 23 is divided in two, a portion 25 being expanded in a valve 27 and then vaporized in the exchanger 17 and sent in gaseous form in the tank of the denitrogenation column C4.
  • the remainder 26 of the flow 23 is expanded to a pressure of 2.6 bar and sent to a separator pot 35 after expansion in a valve.
  • the flow rates 21, 19 are also expanded in valves and sent to the same separator pot 35.
  • the gas 43 formed in the separator pot 35 is returned to the compressor V1 after reheating in the exchanger 9.
  • the liquid of the separator pot 35 is divided into four. Part 1 is sent to a separator pot 33 where it forms a gaseous fraction 41 and a liquid fraction 31.
  • the liquid fraction 31 vaporizes in the exchanger 17.
  • the gaseous fraction 41 is heated in the exchanger 17 against the flow rates 19 , 21, 23 before being returned to the compressor V1.
  • Part 2 serves to sub-cool the methane wash column C1 before being mixed at the flow rate 41.
  • Part 3 serves to condense the head of the column CO / methane C3 where it vaporizes and is then returned to the compressor V1.
  • the fourth portion 37 is mixed with the bottom liquid 29 of the denitrogenation column and serves to cool the head thereof.
  • the formed flow 39 is returned to the compressor V1.
  • a flow 11 cools partially in the exchanger 9, is expanded in a turbine T, cools in the exchanger 17 as flow 15 and is sent to the bottom of the denitrogenation column C4.
  • a separating pot C1 a depletion column C2, a CO / CH 4 C3 separation column and a CO C4 denitrogenation column are recognized.
  • a separating pot C1 a depletion column C2, a CO / CH 4 C3 separation column and a CO C4 denitrogenation column are recognized.
  • synthesis gas inlet and the carbon monoxide cycle are shown.
  • a flow rate 45 containing carbon monoxide, hydrogen, methane and nitrogen is cooled in exchanger 9 by heat exchange with a flow of carbon monoxide 1 and then in exchanger 17 and is sent to the separator pot.
  • the tank liquid of the pot C1 is sent to the top of the depletion column C2.
  • the overhead gas of the C1 column enriched in hydrogen leaves the installation.
  • the bottom liquid of the exhaustion column C2 is cooled in the exchanger 17 and sent to a CO / methane C3 separation column.
  • This tank liquid cools in the exchanger 17, is divided in two, a part 57 is sent to the CO / methane separation column and the remainder 55 is expanded, heated in the exchanger 17 to an intermediate temperature and then sent to the CO / methane C3 separation column.
  • a flow of impure carbon monoxide 1 at a low pressure is sent to a compressor stage V1.
  • Medium pressure carbon monoxide is divided in half.
  • the medium pressure flow 3 cools in the exchanger 9 and mixed with carbon monoxide from the turbine T and is sent to the bottom of the denitrogenation column C4.
  • a portion 11 at an intermediate temperature is expanded in a turbine T and sent to the denitrogenation column.
  • a fraction 13 completely crosses the exchanger before being divided into three.
  • a first flow 19 serves to reboil the exhaust column C2
  • a second flow 23 serves to reboil the CO / methane C3 column and the two cooled flow rates 19, 23 are sent with the third flow 21 to a heat exchanger 17 where they liquefy .
  • the flow 23 is divided in two, a portion 25 being expanded in a valve 27 and then vaporized in the exchanger 17 and sent in gaseous form to the denitrogenation column C4.
  • the remainder 26 of the flow 23 is expanded to a pressure of 2.6 bar and sent to a separator pot 35 after expansion in a valve.
  • the flow rates 21, 19 are also expanded in valves and sent to the same separator pot 35.
  • the gas 43 formed in the separator pot 35 is returned to the compressor V1 after reheating in the exchanger 9.
  • the liquid of the separator pot 35 is divided into three.
  • a part 1 is sent to a separator pot 33 where it forms a gaseous fraction 41 and a liquid fraction 31.
  • the liquid fraction 31 vaporizes in the exchanger 17.
  • the gaseous fraction 41 is heated in the exchanger 17 against the flow rates 19 , 21, 23 before being returned to the compressor V1.
  • Part 2 serves to cool the head of the column CO / CH 4 C3.
  • the formed flow 39 is returned to the compressor V1.
  • the third part 37 serves to cool the head of the denitrogenation column C4.
  • the formed flow 39 is returned to the compressor V1.
  • the liquid of the separator pot 35 can also ensure the cooling of the methane intended for the washing column C1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

La présente invention est relative à un procédé et une installation de séparation d'un mélange de monoxyde de carbone, de méthane, d'hydrogène et d'azote par distillation cryogénique.The present invention relates to a method and an installation for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation.

Il est connu de séparer un tel mélange pour produire du monoxyde de carbone et de l'hydrogène par un procédé de lavage au méthane tel que décrit dans Linde Reports on Science and Technology, « Progress in H2/CO Low - Temperature Separation » de Berninger, 44/1988 et dans « A New Generation of Cryogenic H2/CO Separation Processes Successfully in Operation at Two Different Antwerp Sites » de Belloni, International Symposium on Gas Separation Technology, 1989.It is known to separate such a mixture to produce carbon monoxide and hydrogen by a methane scrubbing process as described in Linde Reports on Science and Technology, "Progress in H 2 / CO Low-Temperature Separation" of Berninger, 44/1988 and in Belloni's "A New Generation of Cryogenic H 2 / CO Separation Processes Successfully in Operation at Two Different Antwerp Sites", International Symposium on Gas Separation Technology, 1989.

La Figure 6 de l'article de Berninger présente un procédé et une installation selon les préambules des revendications 1 et 14 respectivement. D'autres documents décrivant des procédés de lavage au méthane comprennent : EP-A-0928937 , US4478621 , Tieftemperaturtechnik, page 418.Figure 6 of Berninger's article presents a method and an installation according to the preambles of claims 1 and 14 respectively. Other documents describing methane scrubbing processes include: EP-A-0928937 , US4478621 , Tieftemperaturtechnik, page 418.

Le monoxyde de carbone issu des boîtes froides H2/CO entraîne avec lui une fraction importante de l'azote présent dans le gaz de charge. Ce phénomène est lié à la difficulté de séparer les deux composants CO et N2, leurs points de bulle étant très proches. Néanmoins, selon l'utilisation qui est faite du CO en aval de la boîte froide, il s'avère parfois nécessaire de diminuer sa teneur en azote avant de l'exporter.Carbon monoxide from cold boxes H 2 / CO carries with it a large fraction of the nitrogen present in the feed gas. This phenomenon is related to the difficulty of separating the two components CO and N 2 , their bubble points being very close. Nevertheless, depending on the use made of the CO downstream of the cold box, it is sometimes necessary to reduce its nitrogen content before exporting it.

Pour ce faire, on a classiquement recours à l'implantation dans la boîte froide d'une colonne dite de déazotation, dont la fonction est de produire en cuve du monoxyde de carbone à la pureté requise. En tête de colonne, on récupère une purge azote contenant une fraction de CO. La colonne de déazotation est implantée soit en amont, soit en aval de la colonne de séparation CO/CH4.To do this, it is conventionally resorted to the implantation in the cold box of a so-called denitrogenation column, whose function is to produce carbon monoxide tank at the required purity. At the top of the column, a nitrogen purge containing a fraction of CO is recovered. The denitrogenation column is located either upstream or downstream of the CO / CH 4 separation column.

Un des procédés existants décrit dans US-A-4478621 comprend une colonne de déazotation équipée d'un condenseur en tête. Le fluide frigorigène du condenseur de tête de la colonne de déazotation est du CO liquide dont la pression est proche de la pression atmosphérique. A ce niveau de pression, la température de vaporisation du CO est trop basse pour refroidir le gaz de charge à l'entrée de la colonne de lavage au méthane : le méthane risquerait de geler. Pour refroidir le gaz de charge, le procédé prévoit ainsi une vaporisation de CO à un niveau de pression supérieur.

  1. 1) La présente invention consiste à utiliser une pression unique de vaporisation du CO, pour satisfaire les besoins suivants : apport frigorigène au(x) condenseur(s) (de la colonne de déazotation et/ou de la colonne de séparation CO/CH4) et/ou refroidissement du gaz de charge jusqu'à l'entrée de la colonne de lavage au méthane et/ou sous-refroidissement de la colonne de lavage au méthane. Compte tenu de la contrainte sur la température de gel du méthane, cette pression est d'environ 2.6 bar abs.
  2. 2) L'invention consiste par ailleurs à utiliser une pression de cycle CO unique pour assurer les besoins des rebouilleurs de la colonne de flash et de la colonne CO/CH4. Cette pression peut se situer entre 25 et 45 bar, de préférence entre 32 et 45 bars. Le placement de ces rebouilleurs sur le circuit de CO peut se faire soit en parallèle, soit en série. Cette configuration permet de simplifier la conception du compresseur de cycle et de la ligne d'échange.
  3. 3) L'invention consiste enfin à fournir les besoins en rebouillage de la colonne de déazotation par injection directe de CO pur gazeux en cuve, lui-même issu du mélange de deux (ou trois) courants :
    1. a) Le premier courant est issu de la vaporisation de CO liquide dans la ligne d'échange, aux température et pression adéquates pour alimenter la colonne de déazotation, c'est-à-dire à moyenne pression (3.5 à 5 bar abs).
    2. b) Le second courant est directement issu du compresseur de cycle (il est refroidi dans la ligne d'échange).
    3. c) Le troisième courant (optionnel) est issu de l'échappement de la turbine cryogénique au CO (il est éventuellement refroidi dans la ligne d'échange).
One of the existing processes described in US Patent 4478621 comprises a denitrogenation column equipped with a condenser at the head. The refrigerant of the head condenser of the denitrogenation column is liquid CO whose pressure is close to atmospheric pressure. At this pressure level, the vaporization temperature of the CO is too low to cool the feed gas at the inlet of the methane wash column: the methane could freeze. In order to cool the feed gas, the process thus provides CO vaporization at a higher pressure level.
  1. 1) The present invention consists in using a single CO vaporization pressure, to satisfy the following needs: refrigerant supply to the condenser (s) (from the denitrogenation column and / or the CO / CH 4 separation column) and / or cooling of the feed gas to the inlet of the methane wash column and / or subcooling of the methane wash column. Given the stress on the methane freezing temperature, this pressure is about 2.6 bar abs.
  2. 2) The invention furthermore consists in using a single CO cycle pressure to satisfy the requirements of the reboilers of the flash column and of the CO / CH 4 column. This pressure can be between 25 and 45 bar, preferably between 32 and 45 bar. The placement of these reboilers on the CO circuit can be done either in parallel or in series. This configuration simplifies the design of the cycle compressor and the exchange line.
  3. 3) The invention finally provides the reboiling requirements of the denitrogenation column by direct injection of pure gaseous CO into the tank, itself derived from the mixture of two (or three) streams:
    1. a) The first stream comes from the vaporization of liquid CO in the exchange line, at the appropriate temperature and pressure to feed the denitrogenation column, that is to say at medium pressure (3.5 to 5 bar abs).
    2. b) The second stream is directly from the cycle compressor (it is cooled in the exchange line).
    3. c) The third (optional) current comes from the exhaust of the cryogenic CO turbine (it is possibly cooled in the exchange line).

Le premier avantage de l'invention est que la pression de vaporisation la plus basse du CO est d'environ 2.6 bar abs, et la pression la plus haute autour de 35bar abs. Ceci permet le plus souvent d'assurer la compression du cycle CO par un compresseur centrifuge à cinq étages (six maximum). De plus, la pression HP du cycle correspond assez bien avec les pressions de CO produit souvent requises (notamment pour la production d'acide acétique).
De plus, l'envoi de monoxyde de carbone moyenne pression de la turbine vers la cuve de déazotation permet de gagner beaucoup sur l'investissement de l'échangeur chaud 9.
The first advantage of the invention is that the lowest CO vaporization pressure is about 2.6 bar abs, and the highest pressure around 35 bar abs. This most often makes it possible to compress the CO cycle by a centrifugal compressor with five stages (six maximum). In addition, the HP cycle pressure corresponds fairly well with the CO pressures often required (especially for the production of acetic acid).
In addition, the sending of carbon monoxide medium pressure from the turbine to the denitrogen tank saves a lot on the investment of the heat exchanger 9.

Toutes les pressions mentionnées dans ce document sont des pressions absolues.All pressures mentioned in this document are absolute pressures.

Selon un objet de l'invention, il est prévu un procédé selon la revendication 1.According to one object of the invention, there is provided a method according to claim 1.

Un compresseur de monoxyde de carbone a peut-être une pression d'entrée d'au moins 1,5 bar, éventuellement d'au moins 2 bars et reçoit du monoxyde de carbone provenant directement d'au moins une des étapes suivantes sans avoir été comprimé:

  • ∘ la condensation en tête de la colonne de séparation CO/CH4
  • ∘ le refroidissement du mélange destiné à la colonne de lavage au méthane
  • ∘ le refroidissement du méthane destiné à la colonne de lavage au méthane
  • ∘ le sous-refroidissement de la colonne de lavage au méthane
  • ∘ la condensation en tête de colonne de déazotation
A carbon monoxide compressor may have an inlet pressure of at least 1.5 bar, possibly at least 2 bar, and receives carbon monoxide directly from at least one of the following steps without having been compressed:
  • Condensation at the top of the CO / CH 4 separation column
  • ∘ the cooling of the mixture intended for the methane washing column
  • ∘ methane cooling for the methane scrubber
  • ∘ the subcooling of the methane wash column
  • Condensation at the top of the denitrogenation column

Parmi d'autres caractéristiques facultatives :

  • du monoxyde de carbone du cycle est comprimé par un compresseur de cycle à une pression élevée, puis détendu dans une turbine et envoyé sous forme gazeuse en cuve de la colonne de déazotation.
  • le monoxyde de carbone de cycle est comprimé dans un premier compresseur de cycle à une moyenne pression et ensuite en partie par le compresseur de cycle à une pression élevée et une partie du monoxyde de carbone à la moyenne pression est envoyée sous forme gazeuse à la colonne de déazotation.
  • un débit de cycle CO à entre 25 et 45 bars, de préférence à entre 32 et 35 bars, chauffe la cuve de la colonne d'épuisement et/ou la cuve de la colonne de séparation.
  • un débit de cycle CO à entre 25 et 45 bars, de préférence à entre 32 et 35 bars, est détendu à la pression de la colonne de déazotation.
  • un débit de cycle CO à entre 3,5 et 5 bars est envoyé en cuve de la colonne de déazotation.
  • le débit de cycle CO se liquéfie puis se vaporise dans une ligne d'échange et est envoyé en cuve de la colonne de déazotation.
  • le mélange à séparer dans la colonne de lavage au méthane se refroidit par échange de chaleur avec un débit de monoxyde de carbone de cycle à au moins 2 bars, voire entre 2 et 3 bars.
  • des débits enrichis en monoxyde de carbone à substantiellement la même pression, de préférence entre 2 et 4 bars, voire entre 2 et 3 bars assurent au moins deux des fonctions suivantes : apport de frigories au condenseur de tête de la colonne de déazotation, sous-refroidissement de la colonne de déazotation et refroidissement de la colonne de lavage.
Among other optional features:
  • carbon monoxide from the cycle is compressed by a cycle compressor at a high pressure, then expanded in a turbine and sent in gaseous form in the tank of the denitrogenation column.
  • the ring carbon monoxide is compressed in a first cycle compressor at a medium pressure and then partly by the cycle compressor at a high pressure and a part of the carbon monoxide at the medium pressure is sent in gaseous form to the column denitrogenation.
  • a cycle rate CO at between 25 and 45 bar, preferably between 32 and 35 bar, heats the tank of the exhaustion column and / or the tank of the separation column.
  • a cycle rate CO at between 25 and 45 bar, preferably at between 32 and 35 bar, is expanded at the pressure of the denitrogenation column.
  • a cycle flow CO at between 3.5 and 5 bar is sent to the bottom of the denitrogenation column.
  • the CO cycle flow liquefies and then vaporizes in a heat exchange line and is sent to the bottom of the denitrogenation column.
  • the mixture to be separated in the methane washing column is cooled by heat exchange with a flow rate of ring carbon monoxide at at least 2 bar, or even between 2 and 3 bar.
  • flow rates enriched in carbon monoxide at substantially the same pressure, preferably between 2 and 4 bar, or even between 2 and 3 bar provide at least two of the following functions: supply of frigories to the top condenser of the denitrogenation column, under cooling of the denitrogenation column and cooling of the washing column.

Selon un autre objet de l'invention, il est prévu une installation selon la revendication 14.According to another object of the invention, there is provided an installation according to claim 14.

L'installation peut également comprendre :

  • un compresseur de cycle et une turbine dans laquelle le monoxyde de carbone du cycle est comprimé à une pression élevée par le compresseur de cycle, puis détendu dans la turbine et envoyé sous forme gazeuse en cuve de la colonne de séparation CO/CH4.
  • un compresseur de cycle et une turbine dans laquelle du monoxyde de carbone du cycle est comprimé par le compresseur de cycle à une pression élevée, puis détendu dans la turbine et envoyé sous forme gazeuse en cuve de la colonne de déazotation.
The installation may also include:
  • a cycle compressor and a turbine in which the carbon monoxide of the cycle is compressed at a high pressure by the cycle compressor, then expanded in the turbine and sent in gaseous form in the tank of the CO / CH 4 separation column.
  • a cycle compressor and a turbine in which carbon monoxide of the cycle is compressed by the cycle compressor at a high pressure, then expanded in the turbine and sent in gaseous form in the tank of the denitrogenation column.

L'installation peut comprendre :

  • une conduite pour envoyer un débit de cycle CO à la pression la plus élevée du cycle au rebouilleur de cuve de la colonne d'épuisement et/ou la cuve de la colonne de séparation.
  • une turbine de détente du débit de cycle CO à la pression la plus élevée du cycle dont la sortie est reliée à la colonne de déazotation.
  • une ligne d'échange et des moyens pour envoyer le débit de cycle CO à la ligne d'échange en amont de la colonne de déazotation.
  • une turbine de détente du débit de cycle CO à la pression la plus élevée du cycle dont la sortie est reliée à la colonne de déazotation.
  • une ligne d'échange et des moyens pour envoyer le débit de cycle CO à la ligne d'échange en amont de la colonne de déazotation.
The installation may include:
  • a line for sending a CO cycle rate to the highest pressure of the bottom reboiler cycle of the depletion column and / or the bottom of the separation column.
  • an expansion turbine of the CO cycle flow rate at the highest pressure of the cycle whose output is connected to the denitrogenation column.
  • an exchange line and means for sending the CO cycle rate to the exchange line upstream of the denitrogenation column.
  • an expansion turbine of the CO cycle flow rate at the highest pressure of the cycle whose output is connected to the denitrogenation column.
  • an exchange line and means for sending the CO cycle rate to the exchange line upstream of the denitrogenation column.

L'invention sera décrite en plus de détail en se référant aux figures qui montrent des procédés de séparation selon l'invention.The invention will be described in more detail with reference to the figures which show separation methods according to the invention.

Pour simplifier la Figure 1, seuls l'arrivée du gaz à traiter et le cycle de monoxyde de carbone sont montrés.To simplify the Figure 1 , only the arrival of the gas to be treated and the carbon monoxide cycle are shown.

Un débit contenant du monoxyde de carbone, de l'hydrogène, du méthane et de l'azote 45 se refroidit dans l'échangeur 9 par échange de chaleur avec un débit de monoxyde de carbone 1 et est envoyé à une colonne de lavage au méthane C1 alimenté en tête par un débit de méthane liquide à très basse température.A flow containing carbon monoxide, hydrogen, methane and nitrogen 45 cools in exchanger 9 by heat exchange with a flow of carbon monoxide 1 and is sent to a methane scrubber column. C1 fed at the top by a flow of liquid methane at very low temperature.

Toutefois, il sera compris (bien qu'il ne soit pas illustré) que le liquide de cuve de la colonne C1 est envoyé en tête de la colonne d'épuisement C2. Le gaz de tête de la colonne C1 enrichi en hydrogène sort de l'installation. Le liquide de cuve de la colonne d'épuisement C2 est envoyé à une colonne de séparation CO/méthane C3. Le liquide de cuve de la colonne C3 est renvoyé en tête de la colonne C1. Le gaz de tête de la colonne C3 est envoyé à un point intermédiaire de la colonne de déazotation C4 où il se sépare en un liquide riche en monoxyde de carbone en cuve et un gaz riche en azote en tête. Le schéma des colonnes correspond donc à celui de la Figure 6 de Linde Reports on Science and Technology, « Progress in H2/CO Low -Temperature Separation » de Berninger, 44/1988. Or, le cycle de production de frigories est très différent de celui de l'antériorité. Le schéma de Berninger présente deux inconvénients par rapport à celui de l'invention :

  1. 1) L'un des fluides alimentant la cuve de la colonne de déazotation provient de la vaporisation de CO dans les refroidisseurs de la colonne de lavage. Cela signifie :
    1. a) soit que cette vaporisation de CO est faite à moyenne pression (donc la température de la colonne de lavage n'est pas optimale, d'où une perte d'efficacité du lavage) ;
    2. b) soit que cette vaporisation de CO est faite à basse pression, dans ce cas le lavage est optimisé, mais il faut alors du CO à très basse pression pour le condenseur de la colonne de déazotation (donc un étage supplémentaire pour le compresseur).
  2. 2) Le schéma de Berninger ne fait pas apparaître de vaporisation de CO à moyenne pression dans la ligne d'échange. Or cette vaporisation est l'un des principaux intérêts du schéma selon l'invention, puisqu'il permet d'optimiser le diagramme d'échange et donc la consommation énergétique globale du procédé.
However, it will be understood (although it is not illustrated) that the bottom liquid of the column C1 is sent to the top of the depletion column C2. The overhead gas of the C1 column enriched in hydrogen leaves the installation. The bottoms liquid from the exhaust column C2 is sent to a CO / C3 methane separation column. The bottom liquid of column C3 is returned to the top of column C1. The overhead gas from the column C3 is sent to an intermediate point of the denitrogenation column C4 where it separates into a carbon monoxide rich liquid in the tank and a nitrogen-rich gas at the top. The column diagram thus corresponds to that of Figure 6 of Linde Reports on Science and Technology, Berninger's "Progress in H 2 / CO Low-Temperature Separation", 44/1988. However, the cycle of production of frigories is very different from that of anteriority. The Berninger scheme has two disadvantages compared to that of the invention:
  1. 1) One of the fluids supplying the tank of the denitrogenation column comes from the vaporization of CO in the coolers of the washing column. That means :
    1. a) that this vaporization of CO is done at medium pressure (therefore the temperature of the washing column is not optimal, resulting in a loss of washing efficiency);
    2. b) that this vaporization of CO is done at low pressure, in this case the washing is optimized, but it is then necessary to CO at very low pressure for the condenser of the denitrogenation column (thus an additional stage for the compressor).
  2. 2) Berninger's scheme does not show vaporisation of CO at medium pressure in the exchange line. However this vaporization is one of the main interests of the scheme according to the invention, since it optimizes the exchange diagram and therefore the overall energy consumption of the process.

Un débit de gaz de synthèse est envoyé à une colonne de lavage au méthane C1 alimentée en tête par un débit de méthane liquide 4. Le liquide de cuve (non illustré) est envoyé à la colonne d'épuisement C2 de manière connue et un fluide dépourvu en hydrogène est envoyé de la colonne d'épuisement C2 à la colonne de séparation CO/CH4 C3. Un débit enrichi en monoxyde de carbone est soutiré en tête de la colonne C3 est envoyé à la colonne de déazotation C4 pour en éliminer l'azote.A flow of synthesis gas is sent to a methane washing column C1 fed at the top by a flow of liquid methane 4. The tank liquid (not shown) is sent to the exhaust column C2 in a known manner and a fluid hydrogen-free is sent from the exhaust column C2 to the CO / CH 4 C3 separation column. A flow rate enriched with carbon monoxide is withdrawn at the top of column C3 is sent to denitrogenation column C4 to remove nitrogen.

Un débit de monoxyde de carbone pur 1 à une pression basse est envoyé à un étage de compresseur V1. Une partie 3 du monoxyde de carbone comprimé à entre 3,5 et 5 bars, par exemple 4,3 bars dans V1 se refroidit dans l'échangeur 9 et est envoyée en cuve de la colonne de déazotation C4 sous forme gazeuse. Le reste du monoxyde de carbone est comprimé de nouveau dans un compresseur V2 jusqu'à une pression entre 25 et 45 bar, de préférence entre 32 et 35 bar pour former le débit 5. Ce débit est divisé en une partie 7 qui constitue une production et un autre débit qui est envoyé à l'échangeur 9. Une fraction 13 traverse entièrement l'échangeur avant d'être divisée en trois. Un premier débit 19 sert à rebouillir la colonne d'épuisement C2, un deuxième débit 23 sert à rebouillir la colonne CO/méthane C3 et les deux débits refroidis 19, 23 sont envoyés avec le troisième débit 21 à un échangeur 17 où ils se liquéfient. Le débit 23 est divisé en deux, une partie 25 étant détendue dans une vanne 27 puis vaporisé dans l'échangeur 17 et envoyé sous forme gazeuse en cuve de la colonne de déazotation C4. Le reste 26 du débit 23 est détendu à une pression de 2,6 bars et envoyé à un pot séparateur 35 après détente dans une vanne. Les débits 21, 19 sont également détendus dans des vannes et envoyés à ce même pot séparateur 35.A flow of pure carbon monoxide 1 at a low pressure is sent to a compressor stage V1. Part 3 of carbon monoxide compressed at between 3.5 and 5 bar, for example 4.3 bar in V1, cools in exchanger 9 and is sent to the bottom of the denitrogenation column C4 in gaseous form. The rest of the carbon monoxide is compressed again in a compressor V2 to a pressure between 25 and 45 bar, preferably between 32 and 35 bar to form the flow 5. This flow is divided into a portion 7 which constitutes a production and another flow that is sent to the exchanger 9. A fraction 13 passes entirely through the exchanger before being divided into three. A first flow 19 serves to reboil the exhaust column C2, a second flow 23 serves to reboil the CO / methane C3 column and the two cooled flow rates 19, 23 are sent with the third flow 21 to a heat exchanger 17 where they liquefy . The flow 23 is divided in two, a portion 25 being expanded in a valve 27 and then vaporized in the exchanger 17 and sent in gaseous form in the tank of the denitrogenation column C4. The remainder 26 of the flow 23 is expanded to a pressure of 2.6 bar and sent to a separator pot 35 after expansion in a valve. The flow rates 21, 19 are also expanded in valves and sent to the same separator pot 35.

Il sera aisément compris qu'une partie d'un des débits 19, 21 pourrait être vaporisé et envoyé en cuve de la colonne de déazotation C4 en plus du débit 25 ou à la place de ce débit 25.It will be easily understood that part of one of the flow rates 19, 21 could be vaporized and sent to the bottom of the denitrogenation column C4 in addition to the flow 25 or in place of this flow 25.

Le gaz 43 formé dans le pot séparateur 35 est renvoyé au compresseur V1 après réchauffage dans l'échangeur 9.The gas 43 formed in the separator pot 35 is returned to the compressor V1 after reheating in the exchanger 9.

Le liquide du pot séparateur 35 est divisé en quatre. Une partie 1 est envoyée à un pot séparateur 33 où elle forme une fraction gazeuse 41 et une fraction liquide 31. La fraction liquide 31 se vaporiser dans l'échangeur 17. La fraction gazeuse 41 se réchauffe dans l'échangeur 17 contre les débits 19, 21, 23 avant d'être renvoyée au compresseur V1.The liquid of the separator pot 35 is divided into four. Part 1 is sent to a separator pot 33 where it forms a gaseous fraction 41 and a liquid fraction 31. The liquid fraction 31 vaporizes in the exchanger 17. The gaseous fraction 41 is heated in the exchanger 17 against the flow rates 19 , 21, 23 before being returned to the compressor V1.

Une partie 2 sert à sous-refroidir la colonne de lavage au méthane C1 avant d'être mélangée au débit 41.Part 2 serves to sub-cool the methane wash column C1 before being mixed at the flow rate 41.

Une partie 3 sert à condenser la tête de la colonne CO/méthane C3 où elle se vaporise et est ensuite renvoyée au compresseur V1.Part 3 serves to condense the head of the column CO / methane C3 where it vaporizes and is then returned to the compressor V1.

La quatrième partie 37 est mélangée avec le liquide de cuve 29 de la colonne de déazotation et sert à refroidir la tête de celle-ci. Le débit formé 39 est renvoyé au compresseur V1.The fourth portion 37 is mixed with the bottom liquid 29 of the denitrogenation column and serves to cool the head thereof. The formed flow 39 is returned to the compressor V1.

Ces quatre parties 1, 2, 3, 37 sont sensiblement à la même pression.These four parts 1, 2, 3, 37 are substantially at the same pressure.

Enfin un débit 11 se refroidit partiellement dans l'échangeur 9, est détendu dans une turbine T, se refroidit dans l'échangeur 17 en tant que débit 15 et est envoyé en cuve de la colonne de déazotation C4.Finally a flow 11 cools partially in the exchanger 9, is expanded in a turbine T, cools in the exchanger 17 as flow 15 and is sent to the bottom of the denitrogenation column C4.

Dans la Figure 2, on reconnaît un pot séparateur C1, une colonne d'épuisement C2, une colonne de séparation CO/CH4 C3 et une colonne de déazotation de CO C4. Pour simplifier la Figure 2, seuls l'arrivée de gaz de synthèse et le cycle de monoxyde de carbone sont montrés.In the Figure 2 a separating pot C1, a depletion column C2, a CO / CH 4 C3 separation column and a CO C4 denitrogenation column are recognized. To simplify the Figure 2 , only the synthesis gas inlet and the carbon monoxide cycle are shown.

Un débit 45 contenant du monoxyde de carbone, de l'hydrogène, du méthane et de l'azote se refroidit dans l'échangeur 9 par échange de chaleur avec un débit de monoxyde de carbone 1 et ensuite dans l'échangeur 17 et est envoyé au pot séparateur.A flow rate 45 containing carbon monoxide, hydrogen, methane and nitrogen is cooled in exchanger 9 by heat exchange with a flow of carbon monoxide 1 and then in exchanger 17 and is sent to the separator pot.

Le liquide de cuve du pot C1 est envoyé en tête de la colonne d'épuisement C2. Le gaz de tête de la colonne C1 enrichi en hydrogène sort de l'installation. Le liquide de cuve de la colonne d'épuisement C2 est refroidi dans l'échangeur 17 et envoyé à une colonne de séparation CO/méthane C3. Ce liquide de cuve se refroidit dans l'échangeur 17, est divisé en deux, une partie 57 est envoyée à la colonne de séparation CO/méthane et le reste 55 est détendu, réchauffé dans l'échangeur 17 jusqu'à une température intermédiaire puis envoyé à la colonne de séparation CO/méthane C3.The tank liquid of the pot C1 is sent to the top of the depletion column C2. The overhead gas of the C1 column enriched in hydrogen leaves the installation. The bottom liquid of the exhaustion column C2 is cooled in the exchanger 17 and sent to a CO / methane C3 separation column. This tank liquid cools in the exchanger 17, is divided in two, a part 57 is sent to the CO / methane separation column and the remainder 55 is expanded, heated in the exchanger 17 to an intermediate temperature and then sent to the CO / methane C3 separation column.

Un débit de monoxyde de carbone impur 1 à une pression basse est envoyé à un étage de compresseur V1. Le monoxyde de carbone à moyenne pression est divisé en deux. Le débit 3 à moyenne pression se refroidit dans l'échangeur 9 et mélangé avec du monoxyde de carbone provenant de la turbine T et est envoyé en cuve de la colonne de déazotation C4.A flow of impure carbon monoxide 1 at a low pressure is sent to a compressor stage V1. Medium pressure carbon monoxide is divided in half. The medium pressure flow 3 cools in the exchanger 9 and mixed with carbon monoxide from the turbine T and is sent to the bottom of the denitrogenation column C4.

Le reste du monoxyde de carbone est comprimé à une pression plus élevée dans le compresseur V2 pour former le débit 5. Une partie 7 de ce débit sert de produit. Le reste se refroidit dans l'échangeur 9. Une partie 11 à une température intermédiaire est détendue dans une turbine T et envoyé à la colonne de déazotation. Une fraction 13 traverse entièrement l'échangeur avant d'être divisée en trois. Un premier débit 19 sert à rebouillir la colonne d'épuisement C2, un deuxième débit 23 sert à rebouillir la colonne CO/méthane C3 et les deux débits refroidis 19, 23 sont envoyés avec le troisième débit 21 à un échangeur 17 où ils se liquéfient. Le débit 23 est divisé en deux, une partie 25 étant détendue dans une vanne 27 puis vaporisé dans l'échangeur 17 et envoyé sous forme gazeuse à la colonne de déazotation C4. Le reste 26 du débit 23 est détendu à une pression de 2,6 bars et envoyé à un pot séparateur 35 après détente dans une vanne. Les débits 21, 19 sont également détendus dans des vannes et envoyés à ce même pot séparateur 35.The rest of the carbon monoxide is compressed at a higher pressure in the compressor V2 to form the flow 5. Part 7 of this flow serves as product. The remainder cools in the exchanger 9. A portion 11 at an intermediate temperature is expanded in a turbine T and sent to the denitrogenation column. A fraction 13 completely crosses the exchanger before being divided into three. A first flow 19 serves to reboil the exhaust column C2, a second flow 23 serves to reboil the CO / methane C3 column and the two cooled flow rates 19, 23 are sent with the third flow 21 to a heat exchanger 17 where they liquefy . The flow 23 is divided in two, a portion 25 being expanded in a valve 27 and then vaporized in the exchanger 17 and sent in gaseous form to the denitrogenation column C4. The remainder 26 of the flow 23 is expanded to a pressure of 2.6 bar and sent to a separator pot 35 after expansion in a valve. The flow rates 21, 19 are also expanded in valves and sent to the same separator pot 35.

Le gaz 43 formé dans le pot séparateur 35 est renvoyé au compresseur V1 après réchauffage dans l'échangeur 9.The gas 43 formed in the separator pot 35 is returned to the compressor V1 after reheating in the exchanger 9.

Le liquide du pot séparateur 35 est divisé en trois. Une partie 1 est envoyée à un pot séparateur 33 où il forme une fraction gazeuse 41 et une fraction liquide 31. La fraction liquide 31 se vaporiser dans l'échangeur 17. La fraction gazeuse 41 se réchauffe dans l'échangeur 17 contre les débits 19, 21, 23 avant d'être renvoyée au compresseur V1.The liquid of the separator pot 35 is divided into three. A part 1 is sent to a separator pot 33 where it forms a gaseous fraction 41 and a liquid fraction 31. The liquid fraction 31 vaporizes in the exchanger 17. The gaseous fraction 41 is heated in the exchanger 17 against the flow rates 19 , 21, 23 before being returned to the compressor V1.

Une partie 2 sert à refroidir la tête de la colonne CO/CH4 C3. Le débit formé 39 est renvoyé au compresseur V1.Part 2 serves to cool the head of the column CO / CH 4 C3. The formed flow 39 is returned to the compressor V1.

La troisième partie 37 sert à refroidir la tête de la colonne de déazotation C4. Le débit formé 39 est renvoyé au compresseur V1.The third part 37 serves to cool the head of the denitrogenation column C4. The formed flow 39 is returned to the compressor V1.

Ces trois parties 1, 2, 37 sont sensiblement à la même pression.These three parts 1, 2, 37 are substantially at the same pressure.

Pour la figure avec colonne de lavage au méthane, le liquide du pot séparateur 35 peut également assurer le refroidissement du méthane destiné à la colonne de lavage C1.For the figure with a methane washing column, the liquid of the separator pot 35 can also ensure the cooling of the methane intended for the washing column C1.

Claims (22)

  1. Method for separating a mixture comprising at least carbon monoxide, hydrogen, nitrogen and methane wherein the mixture is separated by a first separating means (C1) possibly formed by a methane scrubbing column, at least one liquid fraction of the chamber of the separating means is sent to a product stripper (C2), at least part of the liquid fraction is sent from the product stripper to a CO/CH4 separating column (C3) in order to produce a methane-enriched liquid flow and a gaseous flow enriched with carbon monoxide and the gaseous flow enriched with carbon monoxide is sent to a denitrogenation column (C4), and from the denitrogenation column a liquid flow rich in carbon monoxide (29) is produced and a gaseous flow rich in nitrogen, the method being kept cold at least partially by a carbon monoxide cycle, said cycle at least partially ensuring the condensation at the top of the denitrogenation column
    and at least one of the following steps:
    - the condensation at the top of the CO/CH4 separating column,
    - the reboiling in the chamber of the product stripper, the reboiling in the chamber of the CO/CH4 separating column, the cooling of the mixture intended for the first separating means,
    - where applicable, the cooling of the methane intended for the methane scrubbing column and
    - where applicable the sub-cooling of the methane scrubbing column
    characterised in that the cycle carbon monoxide is compressed in a first cycle compressor (V1) at a medium pressure and then a first part (3) of the cycle carbon monoxide is sent to the chamber of the denitrogenation column (C4) and a second part of the carbon monoxide is compressed at a high pressure.
  2. Method according to claim 1 wherein the carbon monoxide of the cycle is compressed at a high pressure by a cycle compressor (V1, V2), then expanded in a turbine (T) and sent in gaseous form to the chamber of the denitrogenation column (C4).
  3. Method according to claim 2 wherein the cycle carbon monoxide is compressed in a first cycle compressor (V1) at a medium pressure and then in part by the cycle compressor (V2) at a high pressure and a part (3) of the carbon monoxide at the medium pressure is sent in gaseous form to the denitrogenation column (C4).
  4. Method according to one of the preceding claims wherein a CO cycle flow at between 25 and 45 bars, preferable at between 32 and 35 bars, heats the chamber of the product stripper (C2) and/or the chamber of the CO/CH4 separating column (C3).
  5. Method according to one of the preceding claims wherein a CO cycle flow at between 25 and 45 bars, preferable at between 32 and 35 bars, is expanded (T) at the pressure of the denitrogenation column (C4).
  6. Method according to one of the preceding claims wherein a CO cycle flow (25) at between 3.5 and 5 bars is sent to the chamber of the denitrogenation column.
  7. Method according to one of the preceding claims wherein a CO cycle flow (25) is liquefied then is vaporised in an exchange line and is sent to the chamber of the denitrogenation column.
  8. Method according to one of the preceding claims wherein the first separating means is a methane scrubbing column (C1).
  9. Method according to claim 8 wherein the mixture (45) to be separated in the methane scrubbing column (C1) is cooled by heat exchange with a cycle carbon monoxide flow at at least 2 bars, more preferably between 2 and 3 bars.
  10. Method according to claim 8 or 9 wherein the CO cycle flow ensures the cooling of the methane intended for the methane scrubbing column and/or the sub-cooling of the methane scrubbing column (C1).
  11. Method according to one of claims 1 to 7 wherein the first separating means is a phase separator (C1).
  12. Method according to one of the preceding claims wherein flows (2, 39) enriched with carbon monoxide at substantially the same pressure, preferably between 2 and 4 bars, even 2 and 3 bars, ensuring at least two of the following functions: supply of frigories to a condenser at the top of the denitrogenation column (C4), sub-cooling of the denitrogenation column (C4) and cooling of the scrubbing column (C1), supply of frigories to a condenser at the top of the CO/CH4 separating column (C3).
  13. Method according to one of the preceding claims wherein a carbon monoxide compressor has an inlet pressure of at least 1.5 bar, possibly of at least 2 bars and receives carbon monoxide coming from at least one of the following steps:
    ∘ the condensation at the top of the CO/CH4 separating column (C3)
    ∘ the cooling of the mixture intended for the methane scrubbing column (C1)
    ∘ the cooling of the methane intended for the methane scrubbing column
    ∘ the sub-cooling of the methane scrubbing column
    ∘ the condensation at the top of the denitrogenation column (C4).
  14. Installation for separating a mixture comprising at least carbon monoxide, hydrogen, nitrogen and methane comprising a first separating means (C1) being possibly a methane scrubbing column, a product stripper (C2), a CO/CH4 separating column (C3), and a denitrogenation column (C4), a line for sending the mixture in the first separating means, a line for sending at least one liquid fraction from the first separating means to the product stripper, a line for sending at least one part of the liquid fraction from the product stripper to the CO/CH4 separating column in order to produce a liquid flow enriched with methane and a gaseous flow enriched with carbon monoxide, and a line for withdrawing the gaseous flow enriched with carbon monoxide from the CO/CH4 separating column, a line for sending the gaseous flow enriched with carbon monoxide to the denitrogenation column in order to produce a liquid flow rich in carbon monoxide and a gaseous flow rich in nitrogen, with the installation being kept cold at least partially by a carbon monoxide cycle (V1, V2, T), said cycle ensuring at least partially the condensation in the condenser at the top of the denitrogenation column and one of the following functions:
    - the cooling of a condenser at the top of the CO/CH4 separating column, the heating of a reboiler of the chamber of the product stripper,
    - the heating of a reboiler of the chamber of the CO/CH4 separating column,
    - the cooling of the mixture intended for the first separating means, where applicable, the cooling of the methane intended for the methane scrubbing column and
    - where applicable the sub-cooling of the methane scrubbing column characterised in that it comprises a first cycle compressor (V1) for compressing the cycle carbon monoxide at a medium pressure and a line in order to send a first part of the cycle carbon monoxide to the chamber of the denitrogenation column (C4) and a second compressor (V2) for compressing a second part of the carbon monoxide at a high pressure.
  15. Installation according to claim 14 comprising a cycle compressor (V1, V2), and a turbine (T) wherein the carbon monoxide of the cycle is compressed at a high pressure by the cycle compressor then expanded in the turbine and sent in gaseous form to the chamber of the CO/CH4 separating column (C3).
  16. Installation according to claim 14 or 15 comprising a cycle compressor (V1, V2) and a turbine (T) wherein carbon monoxide of the cycle is compressed by the cycle compressor at a high pressure, then expanded in the turbine and sent in gaseous form to the chamber of the denitrogenation column.
  17. Installation according to one of claims 14 to 16 comprising a line for sending a CO cycle flow at the highest pressure of the cycle to the reboiler of the chamber of the product stripper (C2) and/or to the reboiler of the chamber of the CO/CH4 separating column (C3).
  18. Installation according to one of claims 14 to 17 comprising a turbine (T) for expanding the CO cycle flow at the highest pressure of the cycle of which the outlet is connected to the denitrogenation column (C4).
  19. Installation according to one of claims 14 to 18 comprising an exchange line (17) and means for sending the CO cycle flow to the exchange line upstream of the denitrogenation column (C4).
  20. Installation according to one of claims 14 to 19 wherein the first separating means is a methane scrubbing column and comprising means for sending a methane-enriched liquid from the CO/CH4 separating column (C3) to the scrubbing column (C1).
  21. Installation according to claim 20 wherein the carbon monoxide cycle is connected to a cooling exchanger of the methane intended for the methane scrubbing column (C1).
  22. Installation according to one of claims 14 to 19 wherein the first separating means is a phase separator (C1).
EP07871946.5A 2006-12-21 2007-12-14 Method for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation Active EP2122282B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07871946T PL2122282T3 (en) 2006-12-21 2007-12-14 Method for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0655775A FR2910603B1 (en) 2006-12-21 2006-12-21 PROCESS FOR SEPARATING A MIXTURE OF CARBON MONOXIDE, METHANE, HYDROGEN AND, POSSIBLY, NITROGEN BY CRYOGENETIC DISTILLATION
FR0755103A FR2916264A1 (en) 2006-12-21 2007-05-16 Mixture separating method, involves separating mixture using carbon monoxide cycle, where cycle assures cooling of methane at washing column, over-cooling of washing column and/or condensation at top of denitrification column
PCT/FR2007/052530 WO2008087318A2 (en) 2006-12-21 2007-12-14 Method for separating a mixture of carbon monoxide, methane, hydrogen, and optionally nitrogen by cryogenic distillation

Publications (2)

Publication Number Publication Date
EP2122282A2 EP2122282A2 (en) 2009-11-25
EP2122282B1 true EP2122282B1 (en) 2018-06-27

Family

ID=39636422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07871946.5A Active EP2122282B1 (en) 2006-12-21 2007-12-14 Method for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation

Country Status (7)

Country Link
US (1) US8959952B2 (en)
EP (1) EP2122282B1 (en)
CN (1) CN101680713B (en)
ES (1) ES2683145T3 (en)
FR (1) FR2916264A1 (en)
PL (1) PL2122282T3 (en)
WO (1) WO2008087318A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3769022B1 (en) * 2018-03-21 2024-11-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for separating a synthesis gas by cryogenic distillation

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930332A1 (en) * 2008-04-18 2009-10-23 Air Liquide METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF A MIXTURE OF HYDROGEN AND CARBON MONOXIDE
CN102963944B (en) * 2011-08-30 2014-09-03 中国石油化工股份有限公司 Stripping tower for CO conversion condensate
FR2991442B1 (en) * 2012-05-31 2018-12-07 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude APPARATUS AND METHOD FOR CRYOGENIC SEPARATION OF A MIXTURE OF CARBON MONOXIDE AND METHANE AND HYDROGEN AND / OR NITROGEN
FR2992307B1 (en) * 2012-06-25 2014-08-08 Air Liquide PROCESS AND INSTALLATION FOR THE COMBINED PRODUCTION OF AMMONIA SYNTHESIS GAS AND CARBON DIOXIDE
FR3011069B1 (en) * 2013-09-24 2015-09-11 Air Liquide METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF A MIXTURE CONTAINING AT LEAST CARBON MONOXIDE, HYDROGEN AND NITROGEN
FR3011320A1 (en) * 2013-10-02 2015-04-03 Air Liquide METHOD AND APPARATUS FOR SEPARATION BY CRYOGENIC DISTILLATION OF A MIXTURE COMPRISING HYDROGEN, CARBON MONOXIDE AND METHANE
FR3052159B1 (en) * 2016-06-06 2018-05-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PROCESS AND PLANT FOR THE COMBINED PRODUCTION OF A MIXTURE OF HYDROGEN AND NITROGEN AND CARBON MONOXIDE BY CRYOGENIC DISTILLATION AND WASH
US11137204B2 (en) * 2016-08-25 2021-10-05 Praxair Technology, Inc. Process and apparatus for producing carbon monoxide
FR3058996B1 (en) * 2016-11-18 2022-01-07 Air Liquide METHOD AND PLANT FOR CRYOGENIC SEPARATION OF A GAS MIXTURE BY METHANE WASHING
CN107543369B (en) * 2017-08-15 2020-06-16 成都深冷液化设备股份有限公司 Cryogenic separation of CO and H2Double-circulation methane washing system and method
FR3079288B1 (en) * 2018-03-21 2020-05-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR SEPARATING SYNTHESIS GAS BY CRYOGENIC DISTILLATION
FR3084739B1 (en) * 2018-07-31 2020-07-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude HEAT EXCHANGER WITH IMPROVED PATHWAY CONFIGURATION, METHODS OF EXCHANGING HEAT
CN108826831B (en) * 2018-08-24 2023-09-29 杭州中泰深冷技术股份有限公司 Device and process for cryogenic separation of carbon monoxide gas by nitrogen circulation refrigeration
CN110398133B (en) * 2019-07-14 2023-05-23 杭氧集团股份有限公司 Cryogenic separation device for producing high-purity CO and compressed natural gas by separating synthesis gas
FR3099563B1 (en) * 2019-08-01 2021-07-30 Air Liquide Heat exchanger with passage configuration and improved heat exchange structures
FR3100057A1 (en) * 2019-08-20 2021-02-26 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude PROCESS AND APPARATUS FOR THE PRODUCTION OF CARBON MONOXIDE BY PARTIAL CONDENSATION
CN113862051B (en) * 2021-09-27 2024-02-13 北京石油化工工程有限公司 Double refrigeration cycle methane washing synthetic gas cryogenic separation device and separation method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1351598A (en) * 1970-03-26 1974-05-01 Air Prod & Chem Separation of gas mixtures
US4102659A (en) * 1976-06-04 1978-07-25 Union Carbide Corporation Separation of H2, CO, and CH4 synthesis gas with methane wash
DE2912761A1 (en) * 1979-03-30 1980-10-09 Linde Ag METHOD FOR DISASSEMBLING A GAS MIXTURE
DE3215829A1 (en) * 1982-04-28 1983-11-03 Linde Ag, 6200 Wiesbaden METHOD FOR PRODUCING CARBON MONOXIDE
FR2718428B1 (en) * 1994-04-11 1997-10-10 Air Liquide Process and installation for the production of carbon monoxide.
DE4433114A1 (en) * 1994-09-16 1996-03-21 Linde Ag Process for obtaining a pure carbon monoxide fraction
GB9800692D0 (en) 1998-01-13 1998-03-11 Air Prod & Chem Separation of carbon monoxide from nitrogen-contaminated gaseous mixtures also containing hydrogen and methane
GB9800693D0 (en) * 1998-01-13 1998-03-11 Air Prod & Chem Separation of carbon monoxide from nitrogen-contaminated gaseous mixtures
FR2775275B1 (en) * 1998-02-20 2000-05-19 Air Liquide PROCESS AND PLANT FOR THE COMBINED PRODUCTION OF A MIXTURE OF AMMONIA SYNTHESIS AND CARBON MONOXIDE
GB0218815D0 (en) * 2002-08-13 2002-09-18 Air Prod & Chem Process and apparatus for the production of hydrocarbon compounds from methane
CA2616746A1 (en) * 2005-07-28 2007-02-15 Ineos Usa Llc Recovery of carbon monoxide and hydrogen from hydrocarbon streams

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3769022B1 (en) * 2018-03-21 2024-11-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for separating a synthesis gas by cryogenic distillation

Also Published As

Publication number Publication date
FR2916264A1 (en) 2008-11-21
US20100043489A1 (en) 2010-02-25
PL2122282T3 (en) 2018-12-31
US8959952B2 (en) 2015-02-24
WO2008087318A3 (en) 2009-11-26
CN101680713A (en) 2010-03-24
EP2122282A2 (en) 2009-11-25
ES2683145T3 (en) 2018-09-25
WO2008087318A2 (en) 2008-07-24
CN101680713B (en) 2013-08-14

Similar Documents

Publication Publication Date Title
EP2122282B1 (en) Method for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation
EP0677483B1 (en) Process and apparatus for the separation of a gaseous mixture
CA3034863C (en) Process and apparatus for producing carbon monoxide
EP0968959B1 (en) Process for the production of carbon monoxide
EP0547946A1 (en) Process and apparatus for the production of impure oxygen
EP2140216B1 (en) Method and device for separating a mixture containing at least hydrogen, nitrogen and carbon monoxide by cryogenic distillation
US20090293539A1 (en) Method And Apparatus For Producing Carbon Monoxide By Cryogenic Distillation
EP2932177B1 (en) Method and device for separating a mixture containing carbon dioxide by means of distillation
US9625209B2 (en) Method for cryogenically separating a mixture of nitrogen and carbon monoxide
US20040255618A1 (en) Method and installation for helium production
EP3350119B1 (en) Method and apparatus for producing a mixture of carbon monoxide and hydrogen
FR3150578A3 (en) Process and apparatus for air separation by cryogenic distillation
EP3599438A1 (en) Method and device for cryogenic separation of a mixture of carbon monoxide, hydrogen and methane for the production of ch4
FR2837564A1 (en) Distillation of air to produce oxygen, nitrogen and pure argon, extracts oxygen of specified purity and subjects argon to catalytic de-oxygenation
FR2910603A1 (en) Carbon monoxide, hydrogen, methane and nitrogen mixture separating method, involves separating mixture at cold temperature by overhead condensation of carbon monoxide/methane separating column and boiling of discharge and separating columns
EP1132700A1 (en) Process and apparatus for air separation by cryogenic distillation
EP4285061B1 (en) Method and apparatus for separating a flow rich in carbon dioxide by distillation to produce liquid carbon dioxide
EP4368929B1 (en) Method and apparatus for distillation of carbon dioxide
FR2795496A1 (en) APPARATUS AND METHOD FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
EP3913310A1 (en) Method and device for air separation by cryogenic distilling
FR3011320A1 (en) METHOD AND APPARATUS FOR SEPARATION BY CRYOGENIC DISTILLATION OF A MIXTURE COMPRISING HYDROGEN, CARBON MONOXIDE AND METHANE
FR3135134A1 (en) Method for increasing the capacity of an existing cryogenic distillation air separation apparatus and air separation apparatus
FR3118144A3 (en) METHOD AND APPARATUS FOR THE CRYOGENIC SEPARATION OF A MIXTURE OF HYDROGEN, METHANE, NITROGEN AND CARBON MONOXIDE
FR3133665A1 (en) Process and apparatus for separating a mixture of carbon monoxide, methane and hydrogen
FR2825453A1 (en) Process for further purifying a nitrogen-rich feed involves adding a single column to a cryogenic distillation air separator producing a gas which is ninety percent or more nitrogen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

R17D Deferred search report published (corrected)

Effective date: 20091126

17P Request for examination filed

Effective date: 20100526

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110927

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180403

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1012699

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007055242

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2683145

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180925

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180927

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180928

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1012699

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181027

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181204

Year of fee payment: 8

Ref country code: FR

Payment date: 20181220

Year of fee payment: 12

Ref country code: IT

Payment date: 20181219

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007055242

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190123

Year of fee payment: 12

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

26N No opposition filed

Effective date: 20190328

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181214

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071214

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191214

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191215

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241210

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20241219

Year of fee payment: 18

Ref country code: NL

Payment date: 20241219

Year of fee payment: 18

Ref country code: PL

Payment date: 20241209

Year of fee payment: 18