[go: up one dir, main page]

EP2067933A2 - Safety design for a steam turbine - Google Patents

Safety design for a steam turbine Download PDF

Info

Publication number
EP2067933A2
EP2067933A2 EP07017132A EP07017132A EP2067933A2 EP 2067933 A2 EP2067933 A2 EP 2067933A2 EP 07017132 A EP07017132 A EP 07017132A EP 07017132 A EP07017132 A EP 07017132A EP 2067933 A2 EP2067933 A2 EP 2067933A2
Authority
EP
European Patent Office
Prior art keywords
steam
cooling
line
steam turbine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07017132A
Other languages
German (de)
French (fr)
Other versions
EP2067933A3 (en
EP2067933B1 (en
Inventor
Norbert Pieper
Armin Dr. De Lazzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Priority to AT07017132T priority Critical patent/ATE533922T1/en
Priority to EP07017132A priority patent/EP2067933B1/en
Publication of EP2067933A2 publication Critical patent/EP2067933A2/en
Publication of EP2067933A3 publication Critical patent/EP2067933A3/en
Application granted granted Critical
Publication of EP2067933B1 publication Critical patent/EP2067933B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/006Auxiliaries or details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam

Definitions

  • the invention relates to a steam turbine plant, comprising a steam turbine with a flow medium flowable through a flow medium, a live steam supply for supplying live steam, arranged in the live steam supply live steam valve, a cooling steam line for supplying cooling steam to the steam turbine, wherein the steam turbine is connected to the cooling steam line the steam turbine is designed such that thermally loaded components can be wetted by the cooling steam and a cooling steam valve arranged in the cooling steam line. Furthermore, the invention relates to a method for cooling a steam turbine, wherein the steam turbine is flowed through an external cooling steam line with a cooling steam and a live steam feed with live steam.
  • Steam turbines are currently flowed with live steam, which has a live steam temperature of up to 600 ° C. Higher live steam temperatures require a well-functioning cooling device. Thermally loaded components of the steam turbine must be cooled by means of a cooling medium.
  • the cooling medium is fed to the steam turbine via an external cooling steam line.
  • the cooling steam is taken for example from the steam generator or branched off from the main steam line before the steam valves, cooled and then fed to the steam turbine at the points that are thermally stressed and therefore must be cooled.
  • the cooling medium is provided automatically via the compressor in the respective operating state of the system accordingly.
  • the mass flow of the cooling steam to the steam turbine does not correlate correspondingly quickly in the event of a sudden change in the load state of the steam turbine, ie that the mass flow of the cooling steam initially remains undesirably the same after the sudden change in load.
  • a fast load change would be, for example, a load shedding or a turbine short circuit.
  • the initially undesirably high mass flow of the cooling steam temporarily leads to a high pressure difference between the components to be cooled in the steam turbine and an inflow space of the steam turbine.
  • the separating component or the sealing elements between these spaces or the components to be cooled themselves are mechanically stressed here.
  • the pressure of the cooling medium automatically drops as well.
  • the thin-walled components to be cooled thereby experience no special mechanical stress.
  • temporary pressure differences of several 100 bar between the cooling medium and the failed component may occur in such a case in which rapid load changes occur.
  • Thin-walled cooling elements can not withstand these stresses and are damaged. Since a sudden load change can not be ruled out according to experience, safety precautions must be taken to avoid damage to the steam turbine components. It would be desirable to form such a steam turbine system with a safety system, which in case of failure of existing safety systems, such as its own quick-closing valve for the cooling medium yet provides suitable protection for mechanically manufactured cooling components.
  • the invention is based, whose task is to provide a steam turbine plant, which minimizes the risk of damage to the cooling components in a sudden load shedding.
  • a further object of the invention is to specify a method in which a component to be cooled or a backwashed component in a steam turbine is not damaged during load shedding.
  • a steam turbine system comprising a steam turbine with a flow medium flowable through a flow channel, a live steam supply for supplying live steam, a arranged in the live steam supply live steam valve, a cooling steam line for supplying cooling steam to the steam turbine, wherein the steam turbine with the cooling steam line is connected.
  • the steam turbine is designed in such a way that thermally loaded components can be flowed through with the cooling steam and a cooling steam valve arranged in the cooling steam line, wherein a transverse line fluidly connects the cooling steam line to the live steam supply, wherein a transverse line valve is arranged in the transverse line.
  • the object directed to the method is achieved by a method for cooling a steam turbine, wherein the steam turbine is flowed through an external cooling steam line with an external cooling steam and is flowed through a live steam supply with live steam, wherein a transverse line with a cross-line valve between the cooling steam line and the Main steam supply is arranged, wherein the cross-line valve opens when in the live steam supply occurs suddenly occurring pressure drop.
  • the invention is based on the aspect that quick-acting valves in the cooling steam line not fast enough to a sudden load change close and thereby too high a mass flow of the cooling medium is passed into the steam turbine, whereby an excessive pressure in the steam turbine, especially in the components to be cooled occurs.
  • An advantage of the invention is that now between the external cooling steam line and the live steam supply a transverse line is provided, which is closed in nominal operation with a cross-line valve, so that no cooling medium flows through the transverse line to the live steam supply. In the event of a sudden load change, the quick-closing valve in the live steam supply closes, as a result of which the pressure in the live steam supply suddenly drops.
  • the quick-closing valve in the cooling steam line delays in comparison with the quick-closing valve in the live steam supply, a state is present for a short time, which is undesirable, because for this short time until the quick-closing valve in the cooling steam line closes, the high mass flow in the cooling steam line too high a pressure in the components to be cooled in the steam turbine.
  • the cross-line valve opens for this case and thereby the cooling steam is passed from the cooling steam line via the transverse line to the live steam supply.
  • the live steam supply is dimensioned in relation to the cooling steam line in such a way that the mass flow of the cooling medium in the live steam feed leads to no damage to the steam turbine.
  • the cross-line valve is designed as a spring-loaded check valve.
  • the spring-loaded check valve is dimensioned such that during normal operation, the cross-line valve remains closed. In nominal operation, the pressure of the cooling medium is higher than the pressure of the live steam. In the event of a sudden load shedding, the pressure of the live steam in the live steam feed unit is abruptly reduced.
  • the spring-loaded check valve must in this case are dimensioned such that in this suddenly occurring pressure difference between the pressure in the cooling steam line and the live steam supply opens the valve.
  • the control of the cross-line valve is made passive, so to speak. This means that the cross-line valve does not have to be activated actively via a control unit.
  • the controlled variables are now the pressures in the cooling steam line and in the live steam feed.
  • any form of passive pressure relief valve that opens above a certain pressure differential can be used.
  • the transverse line is viewed in the flow direction of the live steam and, seen in the flow direction of the cooling steam, is arranged behind the live steam valve and the cooling steam valve.
  • the main steam valve and the cooling steam valve are usually designed as a valve combination of a quick-acting valve and a control valve.
  • the quick-closing valve has the task in case of failure to close the mass flow through the cooling steam line.
  • the transverse line is arranged inside the steam turbine.
  • the transverse line can advantageously be arranged in the inner housing. Outside the steam turbine arranged transverse lines offer the risk of damage due to accidents outside the steam turbine. The arrangement of the transverse line in the inner housing minimizes this risk.
  • a steam turbine 1 comprising an outer housing 2 and an inner housing 3 is shown.
  • a rotor 4 is rotatably mounted about a rotation axis 5.
  • the rotor 4 has a thrust balance piston 6 and a plurality of blades 7.
  • the inner housing 3 has a plurality of guide vanes 8.
  • a flow channel 9 is formed, which is equipped with the guide vanes 8 and the blades 7.
  • a live steam flows via the live steam feed 10, via a quick-closing valve 11 and a control valve 12 into an inlet region 13 into the steam turbine 1.
  • the live steam flows through the flow channel 9 along the guide vanes 8 and blades 7, expands to a lower pressure and cools through.
  • the thermal energy of the live steam is converted into rotational energy and transmitted via the blades 7 to the rotor.
  • a region subject to particular thermal stress is the area in the vicinity of the thrust balance piston 6.
  • a cooling steam is conveyed via an external cooling steam line 14 via a quick closing and a control valve 15, 16 the steam turbine is led to the otherwise thermally stressed areas.
  • the inner housing 3 in this case has a plurality of cooling holes 17.
  • the cooling medium flows in this case in a space between the inner housing 3 and the outer housing 2 to the cooling hole 17.
  • the outer housing 2 in this case has an outer housing cooling hole 19 through which the cooling steam enters the space 18.
  • the transverse line 21 In the flow direction of Seen cooling steam branches off at the point 20, the transverse line 21 from.
  • the transverse line 21 connects the point 20 with the point 22.
  • the point 22 represents a branch from the live steam supply 10 to the transverse line 21.
  • a transverse line valve 23 In the transverse line 21, a transverse line valve 23 is arranged.
  • the cross-line valve 23 is in this case designed as a spring-loaded check valve, which then opens when in the live steam supply 10, the pressure drops abruptly. As a result, the cooling medium is conducted via the cooling medium line 14 and via the point 20 into the inflow region 13. Thus, a too large differential pressure load between the cooling chamber 18 and inflow 13 is avoided via the cooling hole 17, whereby a mechanical overstressing of parts of the inner housing 3 (also includes sealing elements) is avoided.
  • FIG. 2 is an alternative embodiment to the steam turbine according to FIG. 1 shown.
  • the transverse line 21 is not designed as an external transverse line, but as an internal transverse line 24.
  • This internal transverse line 24 is disposed within the inner housing 3.
  • the internal cross-line 24 also has a cross-line valve 23, which is designed as a spring-loaded check valve.
  • the external transverse line 21 which avoids or reduces the risk of damaging influence on an external component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Dampfturbinenanlage sowie ein Verfahren zur Kühlung einer Dampfturbine (1). Es ist vorgesehen, dass die Dampfturbine (1) über eine externe Kühldampfleitung (14) gekühlt wird, wobei zwischen der Kühldampfleitung (14) und einer Frischdampfzuführung (10) eine Querleitung (21) mit einem Querleitungsventil (23) angeordnet wird, das bei einem plötzlichen Druckabfall öffnet, wodurch das unter hohem Druck stehende Kühlmedium in einen Einströmbereich (13) der Dampfturbine (1) abgezweigt wird, wodurch eine Schädigung von dünnwandigen Komponenten vermieden wird.

Figure imgaf001
The invention relates to a steam turbine plant and a method for cooling a steam turbine (1). It is provided that the steam turbine (1) via an external cooling steam line (14) is cooled, wherein between the cooling steam line (14) and a live steam supply (10) a transverse line (21) with a transverse line valve (23) is arranged, which at a sudden pressure drop opens, whereby the high-pressure cooling medium is diverted into an inflow region (13) of the steam turbine (1), whereby damage to thin-walled components is avoided.
Figure imgaf001

Description

Die Erfindung betrifft eine Dampfturbinenanlage, umfassend eine Dampfturbine mit einem mit einem Strömungsmedium beströmbaren Strömungskanal, eine Frischdampfzuführung zum Zuführen von Frischdampf, einem in der Frischdampfzuführung angeordneten Frischdampfventil, eine Kühldampfleitung zum Zuführen von Kühldampf zur Dampfturbine, wobei die Dampfturbine mit der Kühldampfleitung verbunden ist, wobei die Dampfturbine derart ausgebildet ist, das thermisch belastete Komponenten mit dem Kühldampf beströmbar sind und einem in der Kühldampfleitung angeordneten Kühldampfventil. Des Weiteren betrifft die Erfindung ein Verfahren zur Kühlung einer Dampfturbine, wobei die Dampfturbine über eine externe Kühldampfleitung mit einem Kühldampf und über eine Frischdampfzuführung mit Frischdampf beströmt wird.The invention relates to a steam turbine plant, comprising a steam turbine with a flow medium flowable through a flow medium, a live steam supply for supplying live steam, arranged in the live steam supply live steam valve, a cooling steam line for supplying cooling steam to the steam turbine, wherein the steam turbine is connected to the cooling steam line the steam turbine is designed such that thermally loaded components can be wetted by the cooling steam and a cooling steam valve arranged in the cooling steam line. Furthermore, the invention relates to a method for cooling a steam turbine, wherein the steam turbine is flowed through an external cooling steam line with a cooling steam and a live steam feed with live steam.

Dampfturbinen werden derzeit mit Frischdampf beströmt, der eine Frischdampftemperatur von bis zu 600°C aufweist. Höhere Frischdampftemperaturen erfordern eine gut funktionierende Kühleinrichtung. Thermisch belastete Komponenten der Dampfturbine müssen mittels eines Kühlmediums gekühlt werden. Das Kühlmedium wird der Dampfturbine über eine externe Kühldampfleitung zugeführt. Der Kühldampf wird beispielsweise aus dem Dampferzeuger entnommen oder aus der Frischdampfleitung vor den Frischdampfventilen abgezweigt, gekühlt und anschließend der Dampfturbine an den Stellen zugeführt, die thermisch belastet sind und daher gekühlt werden müssen. Bei Gasturbinen als Ausführungsform einer Strömungsmaschine wird das Kühlmedium über den Verdichter im jeweiligen Betriebszustand der Anlage entsprechend automatisch zur Verfügung gestellt. Bei Gasturbinen tritt der Effekt auf, dass bei einem geänderten Betrieb außerhalb des Nennbetriebs, beispielsweise bei einem Lastabwurf, verringerter Massenstrom an Kühldampf vorliegt. Solch ein Konzept, bei dem sich die Kühldampfmenge passiv an den Lastzustand der Anlage anpasst, ist für Dampfturbinenanlagen nicht ohne weiteres möglich. Bei einer externen Zuführung von Kühldampf zur Kühlung der Dampfturbine muss die Zuführung des Kühldampfs über mindestens ein Schnellschlussventil und mindestens ein Stellventil zugeführt werden. Der Frischdampf wird ebenfalls über ein Stell- und einem Schnellschlussventil der Dampfturbine zugeführt. In der Praxis kann es allerdings vorkommen, dass bei einem plötzlichen Eintritt einer Änderung des Lastzustandes der Dampfturbine der Massenstrom des Kühldampfs zur Dampfturbine hin nicht entsprechend schnell korreliert, d.h. dass nach der plötzlichen Laständerung der Massenstrom des Kühldampfes zunächst unerwünscht gleich groß bleibt. Eine schnelle Laständerung wäre beispielsweise ein Lastabwurf oder ein Turbinenschnellschluss. Der zunächst unerwünscht hohe Massenstrom des Kühldampfs führt allerdings temporär zu einer hohen Druckdifferenz zwischen der zu kühlenden Komponenten in der Dampfturbine und einem Einströmraum der Dampfturbine. Besonders das trennende Bauteil bzw. die Dichtelemente zwischen diesen Räumen oder die zu kühlenden Komponenten selbst werden hierbei mechanisch stark beansprucht.Steam turbines are currently flowed with live steam, which has a live steam temperature of up to 600 ° C. Higher live steam temperatures require a well-functioning cooling device. Thermally loaded components of the steam turbine must be cooled by means of a cooling medium. The cooling medium is fed to the steam turbine via an external cooling steam line. The cooling steam is taken for example from the steam generator or branched off from the main steam line before the steam valves, cooled and then fed to the steam turbine at the points that are thermally stressed and therefore must be cooled. In gas turbines as an embodiment of a turbomachine, the cooling medium is provided automatically via the compressor in the respective operating state of the system accordingly. In the case of gas turbines, the effect occurs that with a changed operation outside the rated operation, for example during a load shedding, there is a reduced mass flow of cooling steam. Such a concept, in which the amount of cooling steam passively adapts to the load condition of the plant, is not readily possible for steam turbine plants. For an external feeder cooling steam for cooling the steam turbine, the supply of cooling steam via at least one quick-acting valve and at least one control valve must be supplied. The live steam is also fed via an actuating and a quick-closing valve of the steam turbine. In practice, however, it may happen that the mass flow of the cooling steam to the steam turbine does not correlate correspondingly quickly in the event of a sudden change in the load state of the steam turbine, ie that the mass flow of the cooling steam initially remains undesirably the same after the sudden change in load. A fast load change would be, for example, a load shedding or a turbine short circuit. However, the initially undesirably high mass flow of the cooling steam temporarily leads to a high pressure difference between the components to be cooled in the steam turbine and an inflow space of the steam turbine. In particular, the separating component or the sealing elements between these spaces or the components to be cooled themselves are mechanically stressed here.

Fällt bei einer Gasturbine das Arbeitsmedium aus, so sinkt automatisch der Druck des Kühlmediums ebenfalls ab. Die dünnwandigen zu kühlenden Bauteile erfahren dadurch keine besondere mechanische Belastung. Bei der separaten Zufuhr des Kühlmediums, wie dies bei Dampfturbinen für hohe Frischdampftemperaturen der Fall sein wird, können in solch einem Fall, bei dem schnelle Laständerungen auftreten, temporäre Druckdifferenzen von mehreren 100 bar zwischen dem Kühlmedium und der ausgefallenen Komponente auftreten. Dünnwandige Kühlelemente können diesen Belastungen nicht standhalten und werden beschädigt. Da eine plötzliche Laständerung erfahrungsgemäß nicht auszuschließen ist, müssen Sicherheitsvorkehrungen getroffen werden, um eine Beschädigung der Dampfturbinenkomponenten zu vermeiden. Wünschenswert wäre es, solch eine Dampfturbinenanlage mit einem Sicherheitssystem auszubilden, das bei einem Versagen der vorhandenen Sicherheitssysteme, z.B. ein eigenes Schnellschlussventil für das Kühlmedium dennoch einen geeigneten Schutz bietet für mechanisch gefertigte Kühlkomponenten.If the working medium fails in a gas turbine, the pressure of the cooling medium automatically drops as well. The thin-walled components to be cooled thereby experience no special mechanical stress. In the separate supply of the cooling medium, as will be the case with steam steamers for high live steam temperatures, temporary pressure differences of several 100 bar between the cooling medium and the failed component may occur in such a case in which rapid load changes occur. Thin-walled cooling elements can not withstand these stresses and are damaged. Since a sudden load change can not be ruled out according to experience, safety precautions must be taken to avoid damage to the steam turbine components. It would be desirable to form such a steam turbine system with a safety system, which in case of failure of existing safety systems, such as its own quick-closing valve for the cooling medium yet provides suitable protection for mechanically manufactured cooling components.

An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, eine Dampfturbinenanlage anzugeben, die bei einem plötzlichen Lastabwurf die Gefahr einer Beschädigung der Kühlkomponenten minimiert. Eine weitere Aufgabe der Erfindung ist es, ein Verfahren anzugeben, bei dem eine zu kühlende bzw. eine hinterspülte Komponente in einer Dampfturbine bei einem Lastabwurf nicht beschädigt wird.At this point, the invention is based, whose task is to provide a steam turbine plant, which minimizes the risk of damage to the cooling components in a sudden load shedding. A further object of the invention is to specify a method in which a component to be cooled or a backwashed component in a steam turbine is not damaged during load shedding.

Die auf die Vorrichtung hin gerichtete Aufgabe wird gelöst durch eine Dampfturbinenanlage umfassend eine Dampfturbine mit einem mit einem Strömungsmedium beströmbaren Strömungskanal, eine Frischdampfzuführung zum Zuführen von Frischdampf, einem in der Frischdampfzuführung angeordneten Frischdampfventil, eine Kühldampfleitung zum Zuführen von Kühldampf zur Dampfturbine, wobei die Dampfturbine mit der Kühldampfleitung verbunden ist. Wobei die Dampfturbine derart ausgebildet, dass thermisch belastete Komponenten mit dem Kühldampf beströmbar sind, und einem in der Kühldampfleitung angeordneten Kühldampfventil, wobei eine Querleitung die Kühldampfleitung mit der Frischdampfzuführung strömungstechnisch miteinander verbindet, wobei in der Querleitung ein Querleitungsventil angeordnet ist.The object directed towards the device is achieved by a steam turbine system comprising a steam turbine with a flow medium flowable through a flow channel, a live steam supply for supplying live steam, a arranged in the live steam supply live steam valve, a cooling steam line for supplying cooling steam to the steam turbine, wherein the steam turbine with the cooling steam line is connected. The steam turbine is designed in such a way that thermally loaded components can be flowed through with the cooling steam and a cooling steam valve arranged in the cooling steam line, wherein a transverse line fluidly connects the cooling steam line to the live steam supply, wherein a transverse line valve is arranged in the transverse line.

Die auf das Verfahren hin gerichtete Aufgabe wird gelöst durch ein Verfahren zur Kühlung einer Dampfturbine, wobei die Dampfturbine über eine externe Kühldampfleitung mit einem externen Kühldampf beströmt wird und über eine Frischdampfzuführung mit Frischdampf beströmt wird, wobei eine Querleitung mit einem Querleitungsventil zwischen der Kühldampfleitung und der Frischdampfzuführung angeordnet wird, wobei das Querleitungsventil öffnet, wenn in der Frischdampfzuführung ein plötzlich eintretender Druckabfall auftritt.The object directed to the method is achieved by a method for cooling a steam turbine, wherein the steam turbine is flowed through an external cooling steam line with an external cooling steam and is flowed through a live steam supply with live steam, wherein a transverse line with a cross-line valve between the cooling steam line and the Main steam supply is arranged, wherein the cross-line valve opens when in the live steam supply occurs suddenly occurring pressure drop.

Die Erfindung geht von dem Aspekt aus, dass Schnellschlussventile in der Kühldampfleitung nicht schnell genug auf eine plötzliche Laständerung hin schließen und dadurch ein zu hoher Massenstrom des Kühlmediums in die Dampfturbine geleitet wird, wodurch ein zu hoher Druck in der Dampfturbine, insbesondere bei den zu kühlenden Komponenten auftritt. Ein Vorteil der Erfindung ist es, dass nunmehr zwischen der externen Kühldampfleitung und der Frischdampfzuführung eine Querleitung vorgesehen ist, die im Nennbetrieb mit einem Querleitungsventil geschlossen ist, so dass kein Kühlmedium über die Querleitung zur Frischdampfzuführung strömt. Bei einer plötzlichen Laständerung schließt das Schnellschlussventil in der Frischdampfzuführung, wodurch der Druck in der Frischdampfzuführung plötzlich abfällt. Wenn in der Kühldampfleitung das Schnellschlussventil im Vergleich zum Schnellschlussventil in der Frischdampfzuführung verzögert schließt, liegt für eine kurze Zeit ein Zustand vor, der unerwünscht ist, denn für diese kurze Zeit bis das Schnellschlussventil in der Kühldampfleitung schließt, führt der hohe Massenstrom in der Kühldampfleitung zu einem zu hohen Druck in den zu kühlenden Komponenten in der Dampfturbine. Das Querleitungsventil öffnet für diesen Fall und dadurch wird der Kühldampf von der Kühldampfleitung über die Querleitung zur Frischdampfzuführung geleitet. Die Frischdampfzuführung ist gegenüber der Kühldampfleitung derart dimensioniert, dass der Massenstrom des Kühlmediums in der Frischdampfzuführung zu keiner Beschädigung der Dampfturbine führt. Durch dieses Sicherheitskonzept, das passiv ausgeführt werden kann, ist eine zuverlässige Möglichkeit nunmehr vorgestellt, wie eine Dampfturbine zuverlässig mit einem externen Kühlmedium gekühlt werden kann.The invention is based on the aspect that quick-acting valves in the cooling steam line not fast enough to a sudden load change close and thereby too high a mass flow of the cooling medium is passed into the steam turbine, whereby an excessive pressure in the steam turbine, especially in the components to be cooled occurs. An advantage of the invention is that now between the external cooling steam line and the live steam supply a transverse line is provided, which is closed in nominal operation with a cross-line valve, so that no cooling medium flows through the transverse line to the live steam supply. In the event of a sudden load change, the quick-closing valve in the live steam supply closes, as a result of which the pressure in the live steam supply suddenly drops. If the quick-closing valve in the cooling steam line delays in comparison with the quick-closing valve in the live steam supply, a state is present for a short time, which is undesirable, because for this short time until the quick-closing valve in the cooling steam line closes, the high mass flow in the cooling steam line too high a pressure in the components to be cooled in the steam turbine. The cross-line valve opens for this case and thereby the cooling steam is passed from the cooling steam line via the transverse line to the live steam supply. The live steam supply is dimensioned in relation to the cooling steam line in such a way that the mass flow of the cooling medium in the live steam feed leads to no damage to the steam turbine. With this safety concept, which can be carried out passively, a reliable option is now presented, how a steam turbine can be reliably cooled with an external cooling medium.

Vorteilhafterweise wird das Querleitungsventil als ein federbelastetes Rückschlagventil ausgebildet. Das federbelastete Rückschlagventil wird dabei derart dimensioniert, dass im Nennbetrieb das Querleitungsventil geschlossen bleibt. Im Nennbetrieb ist der Druck des Kühlmediums höher als der Druck des Frischdampfes. Bei einem plötzlichen Lastabwurf wird der Druck des Frischdampfes in der Frischdampfzuführung schlagartig geringer. Das federbelastete Rückschlagventil muss hierbei derart dimensioniert werden, dass bei diesen plötzlich auftretenden Druckunterschied zwischen dem Druck in der Kühldampfleitung und der Frischdampfzuführung das Ventil öffnet. Somit ist die Steuerung des Querleitungsventils sozusagen passiv ausgeführt. Das bedeutet, das Querleitungsventil muss nicht aktiv über eine Steuerungseinheit aktiviert werden. Als Regelgrößen dienen nunmehr die Drücke in der Kühldampfleitung und in der Frischdampfzuführung.Advantageously, the cross-line valve is designed as a spring-loaded check valve. The spring-loaded check valve is dimensioned such that during normal operation, the cross-line valve remains closed. In nominal operation, the pressure of the cooling medium is higher than the pressure of the live steam. In the event of a sudden load shedding, the pressure of the live steam in the live steam feed unit is abruptly reduced. The spring-loaded check valve must in this case are dimensioned such that in this suddenly occurring pressure difference between the pressure in the cooling steam line and the live steam supply opens the valve. Thus, the control of the cross-line valve is made passive, so to speak. This means that the cross-line valve does not have to be activated actively via a control unit. The controlled variables are now the pressures in the cooling steam line and in the live steam feed.

Statt eines federbelasteten Rückschlagventils kann jede Form eines passiven Überdruckventils, das oberhalb einer bestimmten Druckdifferenz öffnet, verwendet werden.Instead of a spring-loaded check valve, any form of passive pressure relief valve that opens above a certain pressure differential can be used.

Vorteilhafterweise wird die Querleitung in Strömungsrichtung des Frischdampfes gesehen und in Strömungsrichtung des Kühldampfes gesehen hinter dem Frischdampfventil und dem Kühldampfventil angeordnet. Das Frischdampfventil und das Kühldampfventil werden üblicherweise als eine Ventilkombination aus einem Schnellschlussventil und einem Stellventil ausgeführt. Das Schnellschlussventil hat die Aufgabe bei einer Störung den Massenstrom durch die Kühldampfleitung zu schließen.Advantageously, the transverse line is viewed in the flow direction of the live steam and, seen in the flow direction of the cooling steam, is arranged behind the live steam valve and the cooling steam valve. The main steam valve and the cooling steam valve are usually designed as a valve combination of a quick-acting valve and a control valve. The quick-closing valve has the task in case of failure to close the mass flow through the cooling steam line.

In einer vorteilhaften Weiterbildung ist die Querleitung innerhalb der Dampfturbine angeordnet. Dadurch lässt sich eine Dampfturbinenanlage herstellen, die ohne eine Querleitung aus beispielsweise Rohren besteht. Die Querleitung kann vorteilhafterweise im Innengehäuse angeordnet sein. Außerhalb der Dampfturbine angeordnete Querleitungen bieten die Gefahr einer Beschädigung durch Unfälle außerhalb der Dampfturbine. Durch die Anordnung der Querleitung im Innengehäuse ist diese Gefahr minimiert. Die Vorteile der auf das Verfahren hin gerichteten Lösung entsprechen den Vorteilen der zur Dampfturbinenanlage besprochenen Lösung.In an advantageous development, the transverse line is arranged inside the steam turbine. As a result, it is possible to produce a steam turbine plant that consists of, for example, pipes without a transverse line. The transverse line can advantageously be arranged in the inner housing. Outside the steam turbine arranged transverse lines offer the risk of damage due to accidents outside the steam turbine. The arrangement of the transverse line in the inner housing minimizes this risk. The advantages of the solution directed towards the process correspond to the advantages of the solution discussed for the steam turbine plant.

Im Folgenden wird ein Ausführungsbeispiel anhand von Figuren näher erläutert. Dabei haben Komponenten mit gleicher Funktionsweise gleiche Bezugszeichen.In the following, an embodiment will be explained in more detail with reference to figures. In this case, components with the same functionality have the same reference numerals.

Es zeigen:

FIG 1
eine Dampfturbinenanlage mit einer externen Querlei- tung,
FIG 2
eine Dampfturbinenanlage mit einer internen Querlei- tung.
Show it:
FIG. 1
a steam turbine plant with an external transverse line,
FIG. 2
a steam turbine plant with an internal transverse line.

In der FIG 1 ist eine Dampfturbine 1 umfassend ein Außengehäuse 2 und ein Innengehäuse 3 dargestellt. Innerhalb des Innengehäuses 3 ist ein Rotor 4 um eine Rotationsachse 5 drehbar gelagert. Der Rotor 4 weist einen Schubausgleichskolben 6 und mehrere Laufschaufeln 7 auf. Das Innengehäuse 3 weist mehrere Leitschaufeln 8 auf. Zwischen dem Rotor 4 und dem Innengehäuse 3 ist ein Strömungskanal 9 ausgebildet, der mit den Leitschaufeln 8 und den Laufschaufeln 7 bestückt ist. Im Betrieb strömt ein Frischdampf über die Frischdampfzuführung 10, über ein Schnellschlussventil 11 und einem Stellventil 12 in einen Einströmbereich 13 in die Dampfturbine 1. Der Frischdampf strömt durch den Strömungskanal 9 an den Leitschaufeln 8 und Laufschaufeln 7 entlang, expandiert auf einen niedrigeren Druck und kühlt dadurch ab. Die thermische Energie des Frischdampfes wird dabei in Rotationsenergie umgewandelt und über die Laufschaufeln 7 auf den Rotor übertragen. Ein thermisch besonders belasteter Bereich ist der Bereich in der Nähe des Schubausgleichskolbens 6. Zur Kühlung dieses Bereichs und des Raumes zwischen Innengehäuse 3 und Außengehäuse 2 ist vorgesehen, dass ein Kühldampf über eine externe Kühldampfleitung 14 über ein Schnellschluss- und ein Stellventil 15, 16 in die Dampfturbine zu den ansonsten thermisch belasteten Bereichen geführt wird. Das Innengehäuse 3 weist hierbei mehrere Kühlbohrungen 17 auf. Das Kühlmedium strömt hierbei in einem Raum zwischen dem Innengehäuse 3 und dem Außengehäuse 2 zur Kühlbohrung 17. Das Außengehäuse 2 weist hierbei eine Außengehäusekühlbohrung 19 auf, durch den der Kühldampf in den Raum 18 gelangt. In Strömungsrichtung des Kühldampfes gesehen zweigt an der Stelle 20 die Querleitung 21 ab. Die Querleitung 21 verbindet die Stelle 20 mit der Stelle 22. Die Stelle 22 stellt eine Abzweigung dar von der Frischdampfzuführung 10 zur Querleitung 21. In der Querleitung 21 ist ein Querleitungsventil 23 angeordnet.In the FIG. 1 a steam turbine 1 comprising an outer housing 2 and an inner housing 3 is shown. Within the inner housing 3, a rotor 4 is rotatably mounted about a rotation axis 5. The rotor 4 has a thrust balance piston 6 and a plurality of blades 7. The inner housing 3 has a plurality of guide vanes 8. Between the rotor 4 and the inner housing 3, a flow channel 9 is formed, which is equipped with the guide vanes 8 and the blades 7. In operation, a live steam flows via the live steam feed 10, via a quick-closing valve 11 and a control valve 12 into an inlet region 13 into the steam turbine 1. The live steam flows through the flow channel 9 along the guide vanes 8 and blades 7, expands to a lower pressure and cools through. The thermal energy of the live steam is converted into rotational energy and transmitted via the blades 7 to the rotor. A region subject to particular thermal stress is the area in the vicinity of the thrust balance piston 6. For cooling this area and the space between the inner housing 3 and the outer housing 2, it is provided that a cooling steam is conveyed via an external cooling steam line 14 via a quick closing and a control valve 15, 16 the steam turbine is led to the otherwise thermally stressed areas. The inner housing 3 in this case has a plurality of cooling holes 17. The cooling medium flows in this case in a space between the inner housing 3 and the outer housing 2 to the cooling hole 17. The outer housing 2 in this case has an outer housing cooling hole 19 through which the cooling steam enters the space 18. In the flow direction of Seen cooling steam branches off at the point 20, the transverse line 21 from. The transverse line 21 connects the point 20 with the point 22. The point 22 represents a branch from the live steam supply 10 to the transverse line 21. In the transverse line 21, a transverse line valve 23 is arranged.

Das Querleitungsventil 23 ist hierbei als ein federbelastetes Rückschlagventil ausgebildet, das dann öffnet, wenn in der Frischdampfzuführung 10 der Druck schlagartig abfällt. Dadurch wird das Kühlmedium über die Kühlmediumleitung 14 und über die Stelle 20 in den Einströmbereich 13 geführt. Somit wird über die Kühlbohrung 17 eine zu große Differenzdruckbelastung zwischen Kühlraum 18 und Einströmbereich 13 vermieden, wodurch eine mechanische Überbeanspruchung von Teilen des Innengehäuses 3 (beinhaltet auch Dichtelemente) vermieden wird.The cross-line valve 23 is in this case designed as a spring-loaded check valve, which then opens when in the live steam supply 10, the pressure drops abruptly. As a result, the cooling medium is conducted via the cooling medium line 14 and via the point 20 into the inflow region 13. Thus, a too large differential pressure load between the cooling chamber 18 and inflow 13 is avoided via the cooling hole 17, whereby a mechanical overstressing of parts of the inner housing 3 (also includes sealing elements) is avoided.

In der FIG 2 ist eine alternative Ausführungsform zu der Dampfturbine gemäß FIG 1 dargestellt. Der Unterschied zu der Ausführungsform gemäß FIG 1 besteht darin, dass die Querleitung 21 nicht als eine externe Querleitung ausgeführt ist, sondern als eine interne Querleitung 24. Diese interne Querleitung 24 ist innerhalb des Innengehäuses 3 angeordnet. Die interne Querleitung 24 weist ebenfalls ein Querleitungsventil 23 auf, das als ein federbelastetes Rückschlagventil ausgebildet ist. Somit entfällt in der FIG 2 die externe Querleitung 21, wodurch ein Gefahrenpotenzial durch schädigenden Einfluss auf eine externe Komponente vermieden bzw. vermindert ist.In the FIG. 2 is an alternative embodiment to the steam turbine according to FIG. 1 shown. The difference from the embodiment according to FIG. 1 is that the transverse line 21 is not designed as an external transverse line, but as an internal transverse line 24. This internal transverse line 24 is disposed within the inner housing 3. The internal cross-line 24 also has a cross-line valve 23, which is designed as a spring-loaded check valve. Thus omitted in the FIG. 2 the external transverse line 21, which avoids or reduces the risk of damaging influence on an external component.

Claims (9)

Dampfturbinenanlage,
umfassend eine Dampfturbine (1) mit einem mit einem Strömungsmedium beströmbaren Strömungskanal (9),
eine Frischdampfzuführung (10) zum Zuführen von Frischdampf,
einem in der Frischdampfzuführung (10) angeordneten Frischdampfventil (11, 12),
eine Kühldampfleitung (14) zum Zuführen von Kühldampf zur Dampfturbine (1),
wobei die Dampfturbine (1) mit der Kühldampfleitung (14) verbunden ist,
wobei die Dampfturbine (1) derart ausgebildet ist, dass thermisch belastete Komponenten mit dem Kühldampf beströmbar sind, und
einem in der Kühldampfleitung (14) angeordnetes Kühldampfventil (15, 16),
dadurch gekennzeichnet, dass
eine Querleitung (21) die Kühldampfleitung (14) mit der Frischdampfzuführung (10) strömungstechnisch miteinander verbindet,
wobei in der Querleitung (21) ein Querleitungsventil (23) angeordnet ist.
Steam turbine plant,
comprising a steam turbine (1) with a flow channel (9) which can be flowed through with a flow medium,
a live steam supply (10) for supplying live steam,
a live steam valve (11, 12) arranged in the live steam supply (10),
a cooling steam line (14) for supplying cooling steam to the steam turbine (1),
the steam turbine (1) being connected to the cooling steam line (14),
wherein the steam turbine (1) is designed such that thermally loaded components are wetted with the cooling steam, and
a cooling steam valve (15, 16) arranged in the cooling steam line (14),
characterized in that
a transverse line (21) fluidly connects the cooling steam line (14) to the live steam feed (10),
wherein in the transverse line (21) a transverse line valve (23) is arranged.
Dampfturbinenanlage nach Anspruch 1,
wobei das Querleitungsventil (23) als ein federbelastetes Rückschlagventil ausgebildet ist.
Steam turbine plant according to claim 1,
wherein the cross-line valve (23) is designed as a spring-loaded check valve.
Dampfturbinenanlage nach Anspruch 1 oder 2,
wobei die Querleitung (21) in Strömungsrichtung des Kühldampfes gesehen hinter dem Frischdampfventil (11, 12) und dem Kühldampfventil (15, 16) angeordnet ist.
Steam turbine plant according to claim 1 or 2,
wherein the transverse line (21) seen in the flow direction of the cooling steam behind the live steam valve (11, 12) and the cooling steam valve (15, 16) is arranged.
Dampfturbinenanlage nach einem der vorhergehenden Ansprüche,
wobei das Querleitungsventil (23) derart ausgebildet ist, dass
ein Druckabfall in der Frischdampfzuführung (10) zum Öffnen führt.
Steam turbine plant according to one of the preceding claims,
wherein the cross-line valve (23) is designed such that
a pressure drop in the live steam supply (10) leads to opening.
Dampfturbinenanlage nach einem der vorhergehenden Ansprüche,
wobei die Querleitung (21) innerhalb der Dampfturbine (1) angeordnet ist.
Steam turbine plant according to one of the preceding claims,
wherein the transverse line (21) is disposed within the steam turbine (1).
Dampfturbinenanlage nach Anspruch 5,
wobei die Dampfturbine (1) ein Außengehäuse (2) und ein Innengehäuse (3) aufweist und die Querleitung (21) im Innengehäuse (3) angeordnet ist.
Steam turbine plant according to claim 5,
wherein the steam turbine (1) has an outer casing (2) and an inner casing (3), and the transverse pipe (21) is disposed in the inner casing (3).
Verfahren zur Kühlung einer Dampfturbine (1),
wobei die Dampfturbine (1) über eine externe Kühldampfleitung (14) mit einem externen Kühldampf beströmt wird und über eine Frischdampfzuführung (10) mit Frischdampf beströmt wird,
dadurch gekennzeichnet, dass
eine Querleitung (21) mit einem Querleitungsventil (23) zwischen der Kühldampfleitung (14) und der Frischdampfzuführung (10) angeordnet wird,
wobei das Querleitungsventil (23) öffnet, wenn in der Frischdampfzuführung (10) ein plötzlich einsetzender Druckabfall auftritt.
Method for cooling a steam turbine (1),
wherein the steam turbine (1) via an external cooling steam line (14) is flowed with an external cooling steam and is flowed through a live steam supply (10) with live steam,
characterized in that
a transverse line (21) with a transverse line valve (23) between the cooling steam line (14) and the live steam supply (10) is arranged,
wherein the cross-line valve (23) opens when a sudden onset of pressure drop occurs in the live steam supply (10).
Verfahren nach Anspruch 7,
wobei der Kühldampf mit einem Druck oberhalb dem Druck des Frischdampfes betrieben wird.
Method according to claim 7,
wherein the cooling steam is operated at a pressure above the pressure of the live steam.
Verfahren nach Anspruch 7 oder 8,
wobei das Querleitungsventil (23) als ein federbelastetes Rückschlagventil ausgebildet wird.
Method according to claim 7 or 8,
wherein the cross-line valve (23) is formed as a spring-loaded check valve.
EP07017132A 2007-08-31 2007-08-31 Safety design for a steam turbine Not-in-force EP2067933B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT07017132T ATE533922T1 (en) 2007-08-31 2007-08-31 SAFETY CONCEPT FOR A STEAM TURBINE
EP07017132A EP2067933B1 (en) 2007-08-31 2007-08-31 Safety design for a steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07017132A EP2067933B1 (en) 2007-08-31 2007-08-31 Safety design for a steam turbine

Publications (3)

Publication Number Publication Date
EP2067933A2 true EP2067933A2 (en) 2009-06-10
EP2067933A3 EP2067933A3 (en) 2011-01-05
EP2067933B1 EP2067933B1 (en) 2011-11-16

Family

ID=40577782

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07017132A Not-in-force EP2067933B1 (en) 2007-08-31 2007-08-31 Safety design for a steam turbine

Country Status (2)

Country Link
EP (1) EP2067933B1 (en)
AT (1) ATE533922T1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2412937A1 (en) 2010-07-30 2012-02-01 Siemens Aktiengesellschaft Steam turbine and method for cooling same
EP2565401A1 (en) * 2011-09-05 2013-03-06 Siemens Aktiengesellschaft Method for temperature balance in a steam turbine
EP2518277A4 (en) * 2009-12-21 2017-04-19 Mitsubishi Hitachi Power Systems, Ltd. Cooling method and device in single-flow turbine
CN109826675A (en) * 2019-03-21 2019-05-31 上海电气电站设备有限公司 Steam turbine cooling system and method
CN114508393A (en) * 2021-12-27 2022-05-17 东方电气集团东方汽轮机有限公司 Cylinder with zero axial thrust during load shedding, and primary and secondary reheating steam turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106194284B (en) * 2016-07-22 2017-07-28 东方电气集团东方汽轮机有限公司 A kind of method of the parameter adjustment of steam turbine jacket steam and operation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1034193B (en) * 1957-10-26 1958-07-17 Escher Wyss Gmbh Process for keeping highly stressed parts of steam or gas turbines cool
JPS58140408A (en) * 1982-02-17 1983-08-20 Hitachi Ltd Cooler for steam turbine
EP1674669A1 (en) * 2004-12-21 2006-06-28 Siemens Aktiengesellschaft Method of cooling a steam turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2518277A4 (en) * 2009-12-21 2017-04-19 Mitsubishi Hitachi Power Systems, Ltd. Cooling method and device in single-flow turbine
JP2013531182A (en) * 2010-07-30 2013-08-01 シーメンス アクティエンゲゼルシャフト Steam turbine and method for cooling the steam turbine
WO2012013531A1 (en) 2010-07-30 2012-02-02 Siemens Aktiengesellschaft Steam turbine and process for cooling such a steam turbine
EP2412937A1 (en) 2010-07-30 2012-02-01 Siemens Aktiengesellschaft Steam turbine and method for cooling same
CN103052768A (en) * 2010-07-30 2013-04-17 西门子公司 Steam turbine and process for cooling such steam turbine
CN103764956A (en) * 2011-09-05 2014-04-30 西门子公司 Method for a temperature compensation in a steam turbine
WO2013034377A1 (en) * 2011-09-05 2013-03-14 Siemens Aktiengesellschaft Method for a temperature compensation in a steam turbine
JP2015148232A (en) * 2011-09-05 2015-08-20 シーメンス アクティエンゲゼルシャフト Method for temperature compensation of steam turbine
CN103764956B (en) * 2011-09-05 2015-11-25 西门子公司 For carrying out the method for temperature correction in steam turbine
US9416684B2 (en) 2011-09-05 2016-08-16 Siemens Aktiengesellschaft Method for a temperature compensation in a steam turbine
EP2565401A1 (en) * 2011-09-05 2013-03-06 Siemens Aktiengesellschaft Method for temperature balance in a steam turbine
CN109826675A (en) * 2019-03-21 2019-05-31 上海电气电站设备有限公司 Steam turbine cooling system and method
CN114508393A (en) * 2021-12-27 2022-05-17 东方电气集团东方汽轮机有限公司 Cylinder with zero axial thrust during load shedding, and primary and secondary reheating steam turbine
CN114508393B (en) * 2021-12-27 2023-07-18 东方电气集团东方汽轮机有限公司 Cylinder with zero axial thrust during load shedding, primary and secondary reheat steam turbine

Also Published As

Publication number Publication date
EP2067933A3 (en) 2011-01-05
ATE533922T1 (en) 2011-12-15
EP2067933B1 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
DE69832740T2 (en) Gas turbine plant
EP1774140B1 (en) Steam turbine, and method for the operation of a steam turbine
EP2067933B1 (en) Safety design for a steam turbine
DE102008029941B4 (en) Steam power plant and method for controlling the power of a steam power plant
DE10236294A1 (en) Gas supply control device for compressed air energy storage plant, has bypass line used instead of main line in emergency operating mode
CH703587A2 (en) Pressure actuated plug.
EP2596213B1 (en) Steam turbine with an internal cooling
EP1957759B1 (en) Method for starting a steam turbine plant
EP0696336A1 (en) ARRANGEMENT FOR SEALING THE CROSSING OF A SHAFT IN A HOUSING AND METHOD OF OPERATING SAME
EP1998014A2 (en) Method for operating a multi-stage steam turbine
EP3155226B1 (en) Steam turbine and method for operating a steam turbine
EP1455066B1 (en) Cooling of a turbine and method therefore
WO2016206974A1 (en) Method for cooling a turbomachine
EP2598724B1 (en) Steam turbine and process for cooling such a steam turbine
EP3129623B1 (en) Gas turbine plant with device for purging and/or blocking at least one burner of a gas turbine plant and method for purging and/or blocking at least one burner of such a gas turbine plant
DE2550059C2 (en) Safety system for a steam turbine plant
EP2724006B1 (en) Air turbine and corresponding methods
EP2031190B1 (en) Steam turbine with regulated coolant feed
EP3183426B1 (en) Controlled cooling of turbine shafts
EP3109420A1 (en) Method for cooling a fluid flow engine
EP3628922A1 (en) Method for conditioning a low-pressure part turbine
WO2014016272A1 (en) Low-pressure turbine
DE102016114253A1 (en) Axial turbine of a turbocharger and turbocharger
DE102006010863A1 (en) Turbo machine has cooling air for rotor also impinging on guide vane support upstream of rotor for improved efficiency
WO2016000994A1 (en) Method and device for purging and/or sealing at least one burner of a gas turbine installation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 13/00 20060101ALI20101130BHEP

Ipc: F01D 25/12 20060101AFI20090504BHEP

17P Request for examination filed

Effective date: 20110207

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 13/00 20060101ALI20110503BHEP

Ipc: F01D 25/12 20060101AFI20110503BHEP

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007008668

Country of ref document: DE

Effective date: 20120301

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120217

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120316

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007008668

Country of ref document: DE

Effective date: 20120817

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 533922

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160811

Year of fee payment: 10

Ref country code: IT

Payment date: 20160830

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160823

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20161109

Year of fee payment: 10

Ref country code: DE

Payment date: 20161020

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007008668

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831