EP3183426B1 - Controlled cooling of turbine shafts - Google Patents
Controlled cooling of turbine shafts Download PDFInfo
- Publication number
- EP3183426B1 EP3183426B1 EP15774620.7A EP15774620A EP3183426B1 EP 3183426 B1 EP3183426 B1 EP 3183426B1 EP 15774620 A EP15774620 A EP 15774620A EP 3183426 B1 EP3183426 B1 EP 3183426B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steam
- rotor
- cooling
- shield
- during operation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/081—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/081—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
- F01D5/082—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/201—Heat transfer, e.g. cooling by impingement of a fluid
Definitions
- the invention relates to a turbomachine, in particular a steam turbine, with an inflow region for supplying steam, a rotatably mounted rotor, a housing which is arranged around the rotor, wherein between the rotor and the housing, a flow channel is formed, wherein the flow channel with the Inlet region is fluidly connected to each other, with a shield which is designed such that during operation, a flowing into the inflow steam is deflected into the flow channel, wherein the shield has a coolant supply, which is designed such that in operation a cooling steam in a cooling region which is disposed between the shield and the rotor, is flowable.
- Turbomachines such as steam turbines are flowed through a flow medium, which usually has high temperatures and pressures.
- steam is used as a flow medium in a steam turbine as an embodiment of a turbomachine.
- the steam parameters in the live steam inflow region are so high that the steam turbine is subjected to a high thermal load at various points.
- the materials are thermally heavily loaded.
- a steam turbine essentially comprises a turbine shaft, which is rotatably mounted, and a housing arranged around the turbine shaft.
- the turbine shaft is thermally heavily loaded by the temperature of the incoming steam. The higher the temperature, the higher the thermal load.
- Turbine blades are arranged in so-called grooves on the rotor. During operation, the grooves experience a high mechanical load. However, the thermal load reduces the tolerable mechanical load due to rotation and additional load due to the blades attached to the rotor.
- thermodynamic point of view From a thermodynamic point of view, it makes sense to increase the input temperature of the steam, since the efficiency increases with higher inlet temperature. In order to expand the load capacity of the materials used in the steam turbine at high temperatures, the inflow regions of the shaft are cooled. If a suitable cooling method can be developed, one can do without the change to a higher quality, but more expensive material.
- a steam turbine plant comprises at least one steam generator and a first steam turbine formed as a high-pressure turbine part, as well as further partial turbines, which are designed as medium-pressure or low-pressure turbine parts.
- the steam After flowing through the live steam through the high-pressure turbine section, the steam is reheated to a high temperature in a reheater and fed into the medium-pressure turbine section.
- the steam that comes from the high-pressure turbine part is called a cold reheater steam and is comparatively cool compared to live steam. This cold reheater steam is used as a cooling medium.
- the document DE 34 06 071 A1 discloses a shield wherein the shield has only one cooling steam duct but no additional duct. At this point, the invention begins.
- the object of the invention is to provide an improved cooling for a steam turbine.
- a turbomachine in particular steam turbine, with an inflow region for supplying steam, a rotatably mounted rotor, a housing which is arranged around the rotor, wherein between the rotor and the housing, a flow channel is formed, wherein the flow channel with the inflow area is fluidly connected to each other, with a shield which is designed such that during operation, a flowing into the inflow steam is deflected into the flow channel, wherein the shield has a coolant supply, which is designed such that in operation a cooling steam in a Cooling region, which is arranged between the shield and the rotor, flows, wherein the shield additionally comprises a conduit which establishes a fluidic connection between the cooling region and the inflow region.
- the invention thus relates to turbomachines, in particular steam turbines, which comprise a shield, which is arranged in the inflow region and shields the shaft from the hot flow medium.
- a coolant supply is used, which leads a cooling steam to the rotor during operation.
- the invention has the following idea: So far, a comparatively strong cooling of the rotor in the cooling area, ie between the shield and the rotor surface it acts. It is cooled with a cold reheater steam, which, however, leads to a very strong cooling of the rotor in the inflow area. In the case of a failure of the coolant, the rotor heats up very strongly in this area, which leads to undesirable extreme thermal cycling.
- the shield in addition to the coolant supply, to form the shield with a line through which the live steam can flow into the space between the rotor and the shield.
- the flow rate of the coolant and the flow rate of live steam through the line is selected such that the temperature of the rotor heats up to a limit value in the inflow region. This limit value is chosen such that in the event of failure of the cooling medium, heating to the maximum temperature, ie to heating without coolant, is moderate.
- vapor is to be understood as meaning a flow medium which, in addition to water vapor, may be ammonia or a vapor-CO 2 mixture.
- the invention thus avoids that the shaft causes damage due to unsafe failure behavior during cooling with very cold reheater steam or complex process engineering implementation with temperature-controlled cooling steam.
- Such a new cooling arrangement is advantageous because it is passive. This means that no complex control technology and no control valves for temperature control of the cooling medium are required. Due to the low temperature differences in the component is a low thermal stress, a small additional local distortion by cooling and a more robust behavior with short-term failure of the cooling achieved.
- the turbomachine is designed to be double-flowed. This means that the shield covers an area that allows the incoming steam to flow into a first flood and a second flood.
- the coolant supply is designed such that, during operation, the cooling steam impinges tangentially on the rotor.
- the coolant supply is not achieved radially through the shield, but guided substantially in the circumferential direction, so that the cooling steam undergoes a twist in the region between the shield and the rotor.
- the line can be designed such that, during operation, a vapor from the inflow area tangentially impinges on the rotor.
- the FIG. 1 shows a steam power plant 1 in a schematic overview.
- the steam power plant 1 comprises a high-pressure turbine part 2, which has a live steam feed 3 and a high-pressure steam outlet 4.
- a live steam flows from a main steam line 5, wherein the live steam was generated in a steam generator 6.
- a live steam valve 7 is arranged, which regulates the flow of the live steam through the high pressure turbine part 2.
- a quick-acting valve is arranged (not shown), which closes the steam supply to the high-pressure turbine section 2 in the event of an error.
- the steam from the high pressure steam outlet 4 flows into a cold reheater line 8.
- the steam in the cold reheater line 8 is compared to the steam parameters of the Main steam in the main steam line 5 such that this cold reheater steam can be used as a coolant, which in the FIG. 1 is shown schematically by the coolant line 9.
- the cold reheater steam is heated in a reheater 10 and passed through a hot reheater line 11 to a medium pressure turbine section 12.
- the coolant line 9 can be led to the medium-pressure turbine part 12 in the inflow region (not shown).
- the rotor of the medium-pressure turbine part 12 is connected to transmit torque to the rotor of the high-pressure turbine part 2 and to the rotor 21 of a low-pressure turbine part 13.
- an electric generator 14 is torque transmitting connected to the rotor 21 of the low pressure turbine section 13.
- the steam flows from medium-pressure steam outlets 15 to the low-pressure turbine section 13
- FIG. 1 selected medium-pressure turbine section 12 includes a first 29 and a second 30 flood.
- the steam from the medium pressure steam outlets 15 is guided in an overflow line 16 to the low pressure turbine section 13.
- the steam flows into a condenser 17 and will condense there to water. Subsequently, the vapor converted into water in the condenser 17 flows via a line 18 to a pump 19 and from there the water is led to the steam generator 6.
- the high-pressure turbine part 2, the medium-pressure turbine part 12 and the low-pressure turbine part 13 is referred to as a steam turbine and represents an embodiment of a turbomachine.
- FIG. 2 is an illustration of the inventive arrangement to see.
- the FIG. 2 in particular shows an inflow region 20 of the medium-pressure turbine section 12.
- the medium-pressure turbine part 12 comprises a rotor 21 which is rotatably mounted about a rotation axis 22.
- the rotor 21 includes a plurality of blades 23 disposed in grooves (not shown) on the rotor surface 24. Between the blades 23 vanes 25 are arranged, which are held on a housing (not shown).
- a first vane row 26 is formed such that this vane row 26 holds a shield 27.
- the shield 27 is designed in such a way that, during operation, a steam flowing into the inflow region 20 can be diverted into a flow channel 28. Since the in FIG.
- medium-pressure turbine section 12 has a first flow 29 and a second flow 30, the flow channel 28 is divided into a first flow channel 31 and a second flow channel 32.
- the incoming steam 33 is thus diverted to a first steam 34 and a second steam 35.
- the first vapor 34 flows into the first flow channel 31.
- the second vapor 35 flows into the second flow channel 32.
- the medium-pressure turbine part 12 comprises a housing (not shown) which is arranged around the rotor 21, wherein the first flow channel 31 and the second flow channel 32 are formed between the rotor 21 and the housing, wherein the first flow channel 31 and the second flow channel 32 with the inflow region 20 are fluidically connected to each other.
- vapor is to be understood as meaning a flow medium which, in addition to water vapor, may be ammonia or a vapor-CO 2 mixture.
- the shield 27 has a coolant supply 36, which is designed such that, during operation, a cooling steam flows into a cooling region 37, which is arranged between the shield 27 and the rotor 21.
- cooling steam is a vapor used from the coolant line 9, which comes from the cold reheater line 8. It can be used in alternative embodiments, another cooling steam.
- the cooling steam from the coolant supply 36 thus flows to the rotor surface 24 and cools a thermally stressed area, which is represented by a parabolic gray zone 38.
- the temperature is shown in shades of gray. As in FIG. 2
- the gray tone in the parabolic gray zone 38 is a little darker than the gray tones of the rotor 21. This means that the temperature in the parabolic gray zone 38 is greater than the temperature of the rotor 21.
- a line 39 is now arranged according to the invention in the shield 27.
- This line 39 establishes a fluidic connection between the cooling region 37 and the inflow region 20.
- the line 39 may be designed as a bore or with multiple holes. These holes can be executed distributed on the circumference.
- the line 39 may be arranged symmetrically to the parabolic gray zone 38, which means that the line 39 is arranged in the direction of a central inflow direction 40. In FIG. 2 the line 39 is not shown in the same direction as the central inflow 40, but a small distance further to the right.
- FIG. 3 shows substantially the same arrangement as in FIG. 2 , On a repetition of the name and mode of action of the components is therefore omitted.
- the difference in the presentation of the FIG. 3 is that a failure of the coolant supply 36 is symbolized by a cross.
- the failure of the coolant supply 36 leads to a heating of the cooling region 37. This leads to a change in the temperature in the parabolic gray zone 38.
- the gray tones are even darker than the gray area in FIG. 2 , This means that the temperature is higher than the normal operation in FIG. 2 you can see.
- the temperature difference between the normal operation, as in FIG. 2 can be seen, and the Disturbance operation in FIG. 3 is shown, moderate. This means that the material of the rotor 21 undergoes a comparatively small temperature jump.
- FIG. 4 shows a side view of the arrangement according to the invention.
- the coolant supply 36 is formed in a first embodiment in the radial direction 41 towards the axis of rotation. This means that during operation the cooling steam strikes the rotor 21 radially.
- the line 39 according to FIG. 4 such that, during operation, a vapor from the inflow region strikes the rotor 21 radially.
- the FIG. 5 shows an alternative embodiment to the embodiment according to FIG. 4 ,
- the FIG. 5 shows that the coolant supply 36 is formed such that during operation of the cooling steam tangentially impinges on the rotor 21.
- the coolant supply 36 is carried out substantially in such a way that the shield receives a bore through which the steam can strike the rotor 21 tangentially. This leads to a twist of the vapor located in the cooling region 37.
- the conduit 39 is also formed in an alternative embodiment in such a way that in operation, a steam from the inflow 20 strikes tangentially to the rotor 21. This leads to a better mixing in the cooling area 37.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die Erfindung betrifft eine Strömungsmaschine, insbesondere eine Dampfturbine, mit einem Einströmbereich zum Zuführen von Dampf, einen drehbar gelagerten Rotor, ein Gehäuse, das um den Rotor angeordnet ist, wobei zwischen dem Rotor und dem Gehäuse ein Strömungskanal ausgebildet ist, wobei der Strömungskanal mit dem Einströmbereich strömungstechnisch miteinander verbunden ist, mit einer Abschirmung, die derart ausgebildet ist, dass im Betrieb ein in den Einströmbereich strömender Dampf in den Strömungskanal ablenkbar ist, wobei die Abschirmung eine Kühlmittelzuführung aufweist, die derart ausgebildet ist, dass im Betrieb ein Kühldampf in einen Kühlbereich, der zwischen der Abschirmung und dem Rotor angeordnet ist, strömbar ist.The invention relates to a turbomachine, in particular a steam turbine, with an inflow region for supplying steam, a rotatably mounted rotor, a housing which is arranged around the rotor, wherein between the rotor and the housing, a flow channel is formed, wherein the flow channel with the Inlet region is fluidly connected to each other, with a shield which is designed such that during operation, a flowing into the inflow steam is deflected into the flow channel, wherein the shield has a coolant supply, which is designed such that in operation a cooling steam in a cooling region which is disposed between the shield and the rotor, is flowable.
Strömungsmaschinen wie beispielsweise Dampfturbinen werden durch ein Strömungsmedium beströmt, das in der Regel hohe Temperaturen und Drücke aufweist. So wird in einer Dampfturbine als Ausführungsform einer Strömungsmaschine Dampf als Strömungsmedium verwendet. Die Dampfparameter im Frischdampfeinströmbereich sind derart hoch, dass die Dampfturbine an verschiedenen Stellen thermisch stark belastet ist. So sind beispielsweise im Einströmbereich der Dampfturbine die Materialien thermisch stark belastet. Eine Dampfturbine umfasst im Wesentlichen eine Turbinenwelle, die drehbar gelagert ist, sowie ein um die Turbinenwelle angeordnetes Gehäuse. Die Turbinenwelle wird durch die Temperatur des einströmenden Dampfes thermisch stark belastet. Es gilt: Je höher die Temperatur, umso höher ist die thermische Belastung. An den Rotor werden Turbinenschaufeln in sogenannten Nuten angeordnet. Im Betrieb erfahren die Nuten eine hohe mechanische Belastung. Die thermische Belastung senkt allerdings die ertragbare mechanische Belastung durch Rotation und Zusatzbelastung durch die am Rotor befestigten Schaufeln.Turbomachines such as steam turbines are flowed through a flow medium, which usually has high temperatures and pressures. Thus, steam is used as a flow medium in a steam turbine as an embodiment of a turbomachine. The steam parameters in the live steam inflow region are so high that the steam turbine is subjected to a high thermal load at various points. Thus, for example, in the inflow region of the steam turbine, the materials are thermally heavily loaded. A steam turbine essentially comprises a turbine shaft, which is rotatably mounted, and a housing arranged around the turbine shaft. The turbine shaft is thermally heavily loaded by the temperature of the incoming steam. The higher the temperature, the higher the thermal load. Turbine blades are arranged in so-called grooves on the rotor. During operation, the grooves experience a high mechanical load. However, the thermal load reduces the tolerable mechanical load due to rotation and additional load due to the blades attached to the rotor.
Aus thermodynamischer Sicht ergibt es Sinn, die Eingangstemperatur des Dampfes zu erhöhen, da der Wirkungsgrad mit höherer Eintrittstemperatur steigt. Um die Belastbarkeit der in der Dampfturbine verwendeten Materialien bei hohen Temperaturen auszuweiten, werden die Einströmbereiche der Welle gekühlt. Sofern eine geeignete Kühlmethode entwickelt werden kann, kann man auf den Wechsel auf ein höherwertigeres, aber teureres Material verzichten.From a thermodynamic point of view, it makes sense to increase the input temperature of the steam, since the efficiency increases with higher inlet temperature. In order to expand the load capacity of the materials used in the steam turbine at high temperatures, the inflow regions of the shaft are cooled. If a suitable cooling method can be developed, one can do without the change to a higher quality, but more expensive material.
Eine Dampfturbinenanlage umfasst zumindest einen Dampferzeuger und eine erste als Hochdruckteilturbine ausgebildete Dampfturbine sowie weitere Teilturbinen, die als Mitteldruck- bzw. Niederdruckteilturbinen ausgebildet sind. Nach der Durchströmung des Frischdampfes durch die Hochdruckteilturbine wird der Dampf in einem Zwischenüberhitzer wieder auf eine hohe Temperatur erhitzt und in die Mitteldruckteilturbine geführt. Der Dampf, der aus der Hochdruckteilturbine kommt, wird als kalter Zwischenüberhitzerdampf bezeichnet und ist vergleichsweise kühl im Vergleich zum Frischdampf. Dieser kalte Zwischenüberhitzerdampf wird als Kühlmedium verwendet.A steam turbine plant comprises at least one steam generator and a first steam turbine formed as a high-pressure turbine part, as well as further partial turbines, which are designed as medium-pressure or low-pressure turbine parts. After flowing through the live steam through the high-pressure turbine section, the steam is reheated to a high temperature in a reheater and fed into the medium-pressure turbine section. The steam that comes from the high-pressure turbine part is called a cold reheater steam and is comparatively cool compared to live steam. This cold reheater steam is used as a cooling medium.
Das bedeutet, dass der kalte Zwischenüberhitzerdampf in den Eintrittsbereich der Dampfturbine geführt wird und dort die Materialtemperatur absenkt. Allerdings ist es so, dass der kalte Zwischenüberhitzerdampf im Eintrittsbereich beispielsweise einer Mitteldruckteilturbine zu sehr großen Temperaturdifferenzen führt. Dies führt zu dem Nachteil, dass trotz der Kühlung lokal hohe Temperaturgradienten und dadurch hohe thermische Spannungen auftreten. Außerdem kann es zu lokalen Formveränderungen kommen, die durch thermischen Verzug durch ungleiche thermische Ausdehnung erzwungen wird, da stark gekühlte und ungekühlte Bereiche nebeneinander angeordnet sind. Des Weiteren kann bei einem Ausfall der Kühlung, d. h. dass der kalte Zwischenüberhitzerdampf nicht zur Verfügung steht und somit einen Fehlerfall bildet, thermische Schocks auftreten, die zu extrem starken thermischen Spannungen führen.This means that the cold reheater steam is led into the inlet area of the steam turbine where it lowers the material temperature. However, it is the case that the cold reheater steam in the inlet region, for example, of a medium-pressure turbine section leads to very large temperature differences. This leads to the disadvantage that, despite the cooling locally high temperature gradients and thus high thermal stresses occur. In addition, there may be local changes in shape, which is forced by thermal distortion by unequal thermal expansion, since highly cooled and uncooled areas are arranged side by side. Furthermore, in the case of failure of the cooling, ie that the cold reheater steam is not available and thus forms a fault, thermal shocks occur which lead to extremely high thermal stresses.
Im Fehlerfall, das bedeutet, bei einem Ausfall der Kühlung dehnt sich die zuvor gekühlte Welle signifikant aus. Diese thermische Ausdehnung ist konstruktiv zu berücksichtigen und erschwert die Kühlmittelführung und Abdichtung des gekühlten Bereiches.
Das Dokument
An dieser Stelle setzt die Erfindung an. Aufgabe der Erfindung ist es, eine verbesserte Kühlung für eine Dampfturbine anzugeben.
Gelöst wird diese Aufgabe durch eine Strömungsmaschine, insbesondere Dampfturbine, mit einem Einströmbereich zum Zuführen von Dampf, einem drehbar gelagerten Rotor, ein Gehäuse, das um den Rotor angeordnet ist, wobei zwischen dem Rotor und dem Gehäuse ein Strömungskanal ausgebildet ist, wobei der Strömungskanal mit dem Einströmbereich strömungstechnisch miteinander verbunden ist, mit einer Abschirmung, die derart ausgebildet ist, dass im Betrieb ein in den Einströmbereich strömender Dampf in den Strömungskanal ablenkbar ist, wobei die Abschirmung eine Kühlmittelzuführung aufweist, die derart ausgebildet ist, dass im Betrieb ein Kühldampf in einem Kühlbereich, der zwischen der Abschirmung und dem Rotor angeordnet ist, strömt, wobei die Abschirmung zusätzlich eine Leitung aufweist, die eine strömungstechnische Verbindung zwischen dem Kühlbereich und dem Einströmbereich herstellt.
Die Erfindung bezieht sich somit auf Strömungsmaschinen, insbesondere Dampfturbinen, die eine Abschirmung umfassen, die im Einströmbereich angeordnet ist und die Welle vor dem heißen Strömungsmedium abschirmt. Zur Kühlung wird eine Kühlmittelzuführung verwendet, die im Betrieb einen Kühldampf zum Rotor führt. Die Erfindung verfolgt folgenden Gedanken: Bisher wurde eine vergleichsweise starke Kühlung des Rotors im Kühlbereich, d. h. zwischen Abschirmung und Rotoroberfläche erwirkt. Gekühlt wird mit einem kalten Zwischenüberhitzerdampf, der allerdings zu einer sehr starken Abkühlung des Rotors im Einströmbereich führt. Im Falle eines Ausfalls des Kühlmittels erwärmt sich der Rotor in diesem Bereich sehr stark, was zu unerwünschten extremen thermischen Wechselbelastungen führt. Um dies zu vermeiden wird erfindungsgemäß vorgeschlagen, neben der Kühlmittelzuführung die Abschirmung mit einer Leitung auszubilden, durch die der Frischdampf in den Raum zwischen dem Rotor und der Abschirmung strömen kann. Die Durchflussrate des Kühlmittels und die Durchflussrate des Frischdampfes durch die Leitung wird dabei derart gewählt, dass sich die Temperatur des Rotors im Einströmbereich bis zu einem Grenzwert erwärmt. Dieser Grenzwert ist dabei derart gewählt, dass bei einem Ausfall des Kühlmediums eine Erwärmung auf die maximale Temperatur, d. h. auf die Erwärmung ohne Kühlmittel moderat ist.In the event of a fault, this means that if the cooling fails, the previously cooled shaft expands significantly. This thermal expansion must be considered constructively and complicates the coolant supply and sealing of the cooled area.
The
At this point, the invention begins. The object of the invention is to provide an improved cooling for a steam turbine.
This object is achieved by a turbomachine, in particular steam turbine, with an inflow region for supplying steam, a rotatably mounted rotor, a housing which is arranged around the rotor, wherein between the rotor and the housing, a flow channel is formed, wherein the flow channel with the inflow area is fluidly connected to each other, with a shield which is designed such that during operation, a flowing into the inflow steam is deflected into the flow channel, wherein the shield has a coolant supply, which is designed such that in operation a cooling steam in a Cooling region, which is arranged between the shield and the rotor, flows, wherein the shield additionally comprises a conduit which establishes a fluidic connection between the cooling region and the inflow region.
The invention thus relates to turbomachines, in particular steam turbines, which comprise a shield, which is arranged in the inflow region and shields the shaft from the hot flow medium. For cooling, a coolant supply is used, which leads a cooling steam to the rotor during operation. The invention has the following idea: So far, a comparatively strong cooling of the rotor in the cooling area, ie between the shield and the rotor surface it acts. It is cooled with a cold reheater steam, which, however, leads to a very strong cooling of the rotor in the inflow area. In the case of a failure of the coolant, the rotor heats up very strongly in this area, which leads to undesirable extreme thermal cycling. To avoid this, it is proposed according to the invention, in addition to the coolant supply, to form the shield with a line through which the live steam can flow into the space between the rotor and the shield. The flow rate of the coolant and the flow rate of live steam through the line is selected such that the temperature of the rotor heats up to a limit value in the inflow region. This limit value is chosen such that in the event of failure of the cooling medium, heating to the maximum temperature, ie to heating without coolant, is moderate.
Erfindungsgemäß wird somit vorgeschlagen, eine passive Mischkühlung zu realisieren, durch Bohrungen, die klein ausgeführt werden können, in der Abschirmung dem Kühldampf aus der Kühlmittelzuführung eine gewisse Menge Frischdampf zuzuführen. Dadurch kann durch geeignete Wahl der Leitungen eine geeignete Mischtemperatur eingestellt werden.According to the invention it is thus proposed to realize a passive mixing cooling, fed through holes that can be made small, in the shield the cooling steam from the coolant supply a certain amount of live steam. This allows a suitable mixing temperature can be adjusted by a suitable choice of the lines.
Unter dem Begriff Dampf ist ein Strömungsmedium zu verstehen, dass neben Wasserdampf Ammoniak oder ein Dampf-CO2-Gemisch sein kann.The term vapor is to be understood as meaning a flow medium which, in addition to water vapor, may be ammonia or a vapor-CO 2 mixture.
Mit der Erfindung wird somit vermieden, dass die Welle durch unsicheres Versagensverhalten bei Kühlung mit sehr kaltem Zwischenüberhitzerdampf bzw. aufwändiger leittechnischer Umsetzung bei temperaturgesteuertem Kühldampf einen Schaden hervorruft. Vorteilhaft ist solch eine neue Kühlanordnung, da sie passiv ist. Das bedeutet, dass keine aufwändige Leittechnik sowie keine Regelventile zur Temperaturkontrolle des Kühlmediums erforderlich sind. Durch die geringen Temperaturdifferenzen im Bauteil wird eine geringe thermische Spannung, ein geringer zusätzlicher lokaler Verzug durch Kühlung sowie ein robusteres Verhalten bei kurzzeitigem Ausfall der Kühlung erreicht.The invention thus avoids that the shaft causes damage due to unsafe failure behavior during cooling with very cold reheater steam or complex process engineering implementation with temperature-controlled cooling steam. Such a new cooling arrangement is advantageous because it is passive. This means that no complex control technology and no control valves for temperature control of the cooling medium are required. Due to the low temperature differences in the component is a low thermal stress, a small additional local distortion by cooling and a more robust behavior with short-term failure of the cooling achieved.
Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.Advantageous developments are specified in the subclaims.
In einer ersten vorteilhaften Weiterbildung ist die Strömungsmaschine zweiflutig ausgebildet. Das bedeutet, dass die Abschirmung einen Bereich abdeckt, der den einströmenden Dampf in eine erste Flut und eine zweite Flut strömen lässt.In a first advantageous development, the turbomachine is designed to be double-flowed. This means that the shield covers an area that allows the incoming steam to flow into a first flood and a second flood.
In einer vorteilhaften Weiterbildung ist die Kühlmittelzuführung derart ausgebildet, dass im Betrieb der Kühldampf tangential auf den Rotor trifft. Somit wird die Kühlmittelzuführung nicht radial durch die Abschirmung erreicht, sondern im Wesentlichen in Umfangsrichtung geführt, so dass der Kühldampf einen Drall in den Bereich zwischen der Abschirmung und dem Rotor erfährt.In an advantageous development, the coolant supply is designed such that, during operation, the cooling steam impinges tangentially on the rotor. Thus, the coolant supply is not achieved radially through the shield, but guided substantially in the circumferential direction, so that the cooling steam undergoes a twist in the region between the shield and the rotor.
Ebenso kann in vorteilhafter Weiterbildung die Leitung derart ausgebildet sein, dass im Betrieb ein Dampf aus dem Einströmbereich tangential auf den Rotor trifft. Hier wird ebenso vorgeschlagen, die Leitung nicht radial durch die Abschirmung auszubilden, sondern eine tangentiale Komponente zu berücksichtigen, die zu einem Drall des Dampfes aus dem Einströmbereich in den Raum zwischen Abschirmung und Rotor führt.Likewise, in an advantageous embodiment, the line can be designed such that, during operation, a vapor from the inflow area tangentially impinges on the rotor. Here it is also proposed not to form the conduit radially through the shield, but to take into account a tangential component, which leads to a swirl of the vapor from the inflow into the space between the shield and rotor.
Bei der tangentialen Anordnung der Kühlmittelzufuhr kann bei Ausfall der Kühlung eine Restkühlwirkung durch die drallbehaftete Einströmung des Frischdampfes erhalten werden.In the tangential arrangement of the coolant supply, a residual cooling effect can be obtained by the swirling inflow of live steam in case of failure of the cooling.
Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden.The above-described characteristics, features and advantages of this invention, as well as the manner in which they are achieved, will become clearer and more clearly understood in the context of the following description of the embodiments, which will be described in more detail in conjunction with the drawings.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen beschrieben. Dieses soll die Ausführungsbeispiele nicht maßgeblich darstellen, vielmehr ist die Zeichnung, wo zur Erläuterung dienlich, in schematisierter und/oder leicht verzerrter Form ausgeführt. Im Hinblick auf Ergänzungen der in der Zeichnung unmittelbar erkennbaren Lehren wird auf den einschlägigen Stand der Technik verwiesen.Embodiments of the invention will be described below with reference to the drawings. This is not intended to represent the embodiments significantly, but the drawing, where appropriate for explanation, executed in a schematized and / or slightly distorted form. With regard to additions to the teachings directly recognizable in the drawing reference is made to the relevant prior art.
Es zeigen
- Figur 1
- eine schematische Darstellung einer Dampfkraftanlage
- Figur 2
- eine schematische Darstellung der Erfindung in Betrieb
Figur 3- eine schematische Darstellung der Erfindung bei Ausfall der Kühlmittelzuführung
- Figur 4
- eine Seitenansicht der erfindungsgemäßen Anordnung
Figur 5- eine Seitenansicht der erfindungsgemäßen Anordnung in einer alternativen Ausführungsform.
- FIG. 1
- a schematic representation of a steam power plant
- FIG. 2
- a schematic representation of the invention in operation
- FIG. 3
- a schematic representation of the invention in case of failure of the coolant supply
- FIG. 4
- a side view of the arrangement according to the invention
- FIG. 5
- a side view of the inventive arrangement in an alternative embodiment.
Die
Die Hochdruckteilturbine 2, die Mitteldruckteilturbine 12 und die Niederdruckteilturbine 13 wird als Dampfturbine bezeichnet und stellt eine Ausführungsform einer Strömungsmaschine dar.The high-pressure turbine part 2, the medium-
In
Die Mitteldruckteilturbine 12 umfasst ein Gehäuse (nicht dargestellt), das um den Rotor 21 angeordnet ist, wobei zwischen dem Rotor 21 und dem Gehäuse der erste Strömungskanal 31 und der zweite Strömungskanal 32 ausgebildet sind, wobei der erste Strömungskanal 31 und der zweite Strömungskanal 32 mit dem Einströmbereich 20 strömungstechnisch miteinander verbunden sind.The medium-
Unter dem Begriff Dampf ist ein Strömungsmedium zu verstehen, dass neben Wasserdampf Ammoniak oder ein Dampf-CO2-Gemisch sein kann.The term vapor is to be understood as meaning a flow medium which, in addition to water vapor, may be ammonia or a vapor-CO 2 mixture.
Die Abschirmung 27 weist eine Kühlmittelzuführung 36 auf, die derart ausgebildet ist, dass im Betrieb ein Kühldampf in einen Kühlbereich 37, der zwischen der Abschirmung 27 und dem Rotor 21 angeordnet ist, strömt. Als Kühldampf wird ein Dampf aus der Kühlmittelleitung 9 verwendet, der aus der kalten Zwischenüberhitzerleitung 8 kommt. Es kann in alternativen Ausführungsformen ein anderer Kühldampf verwendet werden. Der Kühldampf aus der Kühlmittelzuführung 36 strömt somit auf die Rotoroberfläche 24 und kühlt einen thermisch beanspruchten Bereich, der durch eine parabelförmige Grauzone 38 dargestellt ist. Die Temperatur ist in Grautönen dargestellt. Wie in
Zusätzlich zur Kühlmittelzuführung 36 wird nun erfindungsgemäß eine Leitung 39 in der Abschirmung 27 angeordnet. Diese Leitung 39 stellt eine strömungstechnische Verbindung zwischen dem Kühlbereich 37 und dem Einströmbereich 20 her. Die Leitung 39 kann als Bohrung bzw. mit mehreren Bohrungen ausgeführt sein. Diese Bohrungen können auf dem Umfang verteilt ausgeführt sein. Die Leitung 39 kann symmetrisch zur parabelförmigen Grauzone 38 angeordnet sein, das bedeutet, dass die Leitung 39 in Richtung einer zentralen Einströmungsrichtung 40 angeordnet ist. In
Die
Die
Die
Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention has been further illustrated and described in detail by the preferred embodiment, the invention is not limited by the disclosed examples, and other variations can be derived therefrom by those skilled in the art without departing from the scope of the invention.
Claims (11)
- Turbomachine, especially steam turbine (2, 12, 13), having an inlet region (20) for feeding steam,
a rotatably mounted rotor (21),
a casing, which is arranged around the rotor (21), wherein a flow passage (28) is formed between the rotor (21) and the casing,
wherein the flow passage (28) and the inlet region (20) are fluidically interconnected,
having a shield (27) which is designed in such a way that during operation steam which flows into the inlet region (20) can be deflected into the flow passage (28),
wherein the shield (27) has a cooling medium feed (36) which is designed in such a way that during operation cooling steam flows into a cooling region (37) which is arranged between the shield (27) and the rotor (21), characterized in that
the shield (27) additionally has a line (39) which creates a fluidic connection between the cooling region (37) and the inlet region (20). - Turbomachine according to Claim 1,
wherein the turbomachine is of double-flow design. - Turbomachine according to Claim 2,
wherein during operation steam which flows into the inlet region (20) can be deflected by means of the shield (27) partly into a first flow (29) and partly into a second flow (30). - Turbomachine according to one of the preceding claims, wherein the shield (27) is arranged upstream of a first blade stage.
- Turbomachine according to one of the preceding claims, wherein the shield (27) is arranged around the rotor (21).
- Turbomachine according to one of the preceding claims, wherein the cooling medium feed (36) is designed in such a way that during operation the cooling steam impinges radially upon the rotor (21).
- Turbomachine according to one of Claims 1 to 5,
wherein the cooling medium feed (36) is designed in such a way that during operation the cooling steam impinges tangentially upon the rotor (21). - Turbomachine according to one of the preceding claims, wherein the line (39) is designed in such a way that during operation steam from the inlet region (20) impinges radially upon the rotor (21).
- Turbomachine according to one of Claims 1 to 7,
wherein the line (39) is designed in such a way that during operation steam from the inlet region (20) impinges tangentially upon the rotor (21). - Turbomachine according to one of the preceding claims, having a cooling medium line which is directly connected to the cooling medium feed (36),
wherein during operation the cooling steam can flow in the cooling medium line. - Steam power plant having a turbomachine according to one of the preceding claims,
wherein the cooling medium feed (36) is connected to a cool reheat line (8).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL15774620T PL3183426T3 (en) | 2014-10-15 | 2015-10-05 | Controlled cooling of turbine shafts |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14188998.0A EP3009597A1 (en) | 2014-10-15 | 2014-10-15 | Controlled cooling of turbine shafts |
PCT/EP2015/072911 WO2016058855A1 (en) | 2014-10-15 | 2015-10-05 | Controlled cooling of turbine shafts |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3183426A1 EP3183426A1 (en) | 2017-06-28 |
EP3183426B1 true EP3183426B1 (en) | 2018-06-27 |
Family
ID=51726412
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14188998.0A Withdrawn EP3009597A1 (en) | 2014-10-15 | 2014-10-15 | Controlled cooling of turbine shafts |
EP15774620.7A Not-in-force EP3183426B1 (en) | 2014-10-15 | 2015-10-05 | Controlled cooling of turbine shafts |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14188998.0A Withdrawn EP3009597A1 (en) | 2014-10-15 | 2014-10-15 | Controlled cooling of turbine shafts |
Country Status (7)
Country | Link |
---|---|
US (1) | US10392941B2 (en) |
EP (2) | EP3009597A1 (en) |
JP (1) | JP6511519B2 (en) |
KR (1) | KR101989713B1 (en) |
CN (1) | CN107002494B (en) |
PL (1) | PL3183426T3 (en) |
WO (1) | WO2016058855A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111550292A (en) * | 2020-04-24 | 2020-08-18 | 上海交通大学 | Optimization method of vortex cooling for medium pressure cylinder and its cooling structure |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5337210A (en) * | 1976-09-17 | 1978-04-06 | Hitachi Ltd | Cooling structure for steam turbine rotor |
JPS57188702A (en) * | 1981-05-15 | 1982-11-19 | Toshiba Corp | Steam turbine rotor cooling method |
DE3209506A1 (en) | 1982-03-16 | 1983-09-22 | Kraftwerk Union AG, 4330 Mülheim | AXIAL STEAM TURBINE IN PARTICULAR, IN PARTICULAR VERSION |
JPS59153901A (en) * | 1983-02-21 | 1984-09-01 | Fuji Electric Co Ltd | Cooling device for rotor in steam turbine |
JPS59155503A (en) * | 1983-02-24 | 1984-09-04 | Toshiba Corp | Rotor cooling device for axial flow turbine |
JPH04121401A (en) | 1990-09-12 | 1992-04-22 | Hitachi Ltd | Combined cycle power generating plant |
JP2594842Y2 (en) * | 1991-04-16 | 1999-05-10 | 三菱重工業株式会社 | Steam turbine rotor cooling system |
ATE230065T1 (en) * | 1996-06-21 | 2003-01-15 | Siemens Ag | TURBINE SHAFT AND METHOD FOR COOLING A TURBINE SHAFT |
-
2014
- 2014-10-15 EP EP14188998.0A patent/EP3009597A1/en not_active Withdrawn
-
2015
- 2015-10-05 KR KR1020177013044A patent/KR101989713B1/en not_active Expired - Fee Related
- 2015-10-05 PL PL15774620T patent/PL3183426T3/en unknown
- 2015-10-05 JP JP2017520407A patent/JP6511519B2/en not_active Expired - Fee Related
- 2015-10-05 US US15/517,312 patent/US10392941B2/en not_active Expired - Fee Related
- 2015-10-05 WO PCT/EP2015/072911 patent/WO2016058855A1/en active Application Filing
- 2015-10-05 CN CN201580056361.0A patent/CN107002494B/en not_active Expired - Fee Related
- 2015-10-05 EP EP15774620.7A patent/EP3183426B1/en not_active Not-in-force
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20170298738A1 (en) | 2017-10-19 |
EP3009597A1 (en) | 2016-04-20 |
EP3183426A1 (en) | 2017-06-28 |
JP2017535709A (en) | 2017-11-30 |
CN107002494B (en) | 2019-08-16 |
US10392941B2 (en) | 2019-08-27 |
JP6511519B2 (en) | 2019-05-15 |
WO2016058855A1 (en) | 2016-04-21 |
KR20170067886A (en) | 2017-06-16 |
PL3183426T3 (en) | 2018-11-30 |
CN107002494A (en) | 2017-08-01 |
KR101989713B1 (en) | 2019-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1774140B1 (en) | Steam turbine, and method for the operation of a steam turbine | |
EP2596213B1 (en) | Steam turbine with an internal cooling | |
EP2718545B1 (en) | Steamturbine comprising a dummy piston | |
WO2017029008A1 (en) | Rotor cooling for a steam turbine | |
EP2997236B1 (en) | Steam turbine | |
DE60224746T2 (en) | Steam piping structure of a gas turbine | |
EP3183426B1 (en) | Controlled cooling of turbine shafts | |
EP2565377A1 (en) | Double flow steam turbine | |
EP2310633B1 (en) | Reducing the thermal load of an external housing for a turbo-machine | |
EP2274504B1 (en) | Steam turbine with cooling device | |
EP2859192B1 (en) | Inlet segment for a flow machine | |
EP3128135A1 (en) | Turbine design in overload inlet area | |
EP2173973B1 (en) | Steam supply for a steam turbine | |
EP2119878A1 (en) | Steam turbine with partitioned inner casing | |
EP3375985A1 (en) | Internal housing structure with condensation chamber for a steam turbine | |
EP1728973A1 (en) | Method to block a clearance in a Turbomachine and Turbomachine to carry out the method | |
EP3591175A1 (en) | Exhaust outlet of a steam turbine | |
EP2487337A1 (en) | Steam turbine in three-shelled architecture | |
EP2840229A1 (en) | Flow guide within a steam turbine seal | |
EP3130767A1 (en) | Combined high and intermediate pressure steam turbine | |
EP2801758A1 (en) | Waste heat steam generator with heating surfaces that can be partly deactivated |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20170320 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180201 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1012535 Country of ref document: AT Kind code of ref document: T Effective date: 20180715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015004872 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180927 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180927 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180627 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180928 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181027 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20181218 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015004872 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20190328 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181005 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180627 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180627 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151005 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191005 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191005 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502015004872 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20201005 Year of fee payment: 6 Ref country code: FR Payment date: 20201016 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20201218 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1012535 Country of ref document: AT Kind code of ref document: T Effective date: 20201005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201005 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502015004872 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |