EP2010636B1 - Additif et composition lubrifiantes pour moteur à faible taux de soufre, de cendre et de phosphore contenant un composé soufré non corrosif et des borates organiques - Google Patents
Additif et composition lubrifiantes pour moteur à faible taux de soufre, de cendre et de phosphore contenant un composé soufré non corrosif et des borates organiques Download PDFInfo
- Publication number
- EP2010636B1 EP2010636B1 EP07775190.7A EP07775190A EP2010636B1 EP 2010636 B1 EP2010636 B1 EP 2010636B1 EP 07775190 A EP07775190 A EP 07775190A EP 2010636 B1 EP2010636 B1 EP 2010636B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- additive
- composition
- less
- weight percent
- borated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/12—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
- C10M2203/1025—Aliphatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
- C10M2205/0285—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/17—Fisher Tropsch reaction products
- C10M2205/173—Fisher Tropsch reaction products used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/026—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/086—Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/043—Mannich bases
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/024—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/083—Dibenzyl sulfide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
- C10M2219/106—Thiadiazoles
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/06—Organic compounds derived from inorganic acids or metal salts
- C10M2227/061—Esters derived from boron
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/06—Organic compounds derived from inorganic acids or metal salts
- C10M2227/061—Esters derived from boron
- C10M2227/062—Cyclic esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/12—Groups 6 or 16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/10—Inhibition of oxidation, e.g. anti-oxidants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/12—Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
- C10N2030/42—Phosphor free or low phosphor content compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
- C10N2030/43—Sulfur free or low sulfur content compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
- C10N2030/44—Boron free or low content boron compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
- C10N2030/45—Ash-less or low ash content
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2060/00—Chemical after-treatment of the constituents of the lubricating composition
- C10N2060/14—Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron
Definitions
- This invention relates to lubricating oil compositions suitable for use in internal combustion engines. More particularly, this invention relates to a low ash, sulfur, and phosphorous lubricating oil composition.
- Contemporary lubricants such as engine oils use mixtures of additive components to include numerous performances benefits.
- additives components include, anti-wear and extreme pressure components, fuel economy improving components, friction reducers, dispersants, detergents, corrosion inhibitors and viscosity index improving additive. These additives provide energy conservation, engine cleanliness and durability and high performance levels to the lubricating oil under a wide range of engine operability conditions including temperature, pressure and lubricant service life.
- ZnDTP zinc (dialkyl) dithiophosphate
- ZnDDP zinc (dialkyl) dithiophosphate
- Sulfur is known to be poisonous to deNox catalysts and zinc phosphates cause plugging of the exhaust particulate filters.
- SAP sulfur, ash and phosphorous components in oil are commonly referred to as "SAP" or "SAPS" in the art.
- ZnDTP The major problem with ZnDTP is the poisoning effects to after-treatment devices that may aggravate emission problems.
- ZnDTP has strong interactions with dispersants, detergents, other anti-wear components and MoDTC causing antagonistic effects on friction, sludge and deposit, if inappropriate concentrations are utilized.
- Replacing ZnDTP additives is not a simple endeavor because the wear protection demand for today's engine is extremely high and place extremely rigorous chemical limits on any reductions in ZnDTP treat levels.
- Engine lubricating oils are often used in high temperature applications, where extreme temperatures can significantly reduce the useful life of the lubricant. Under high temperatures, the lubricant can become oxidized prematurely unless a strong antioxidant system can also be employed in the oil to prevent this degradation process. Good piston, ring, cam and lifter wear protection are also an important characteristic of today's engine oil. Additionally, many engine oils are often required to perform well in the presence of water, therefore, protecting against rust formation. Traditionally, ZnDTPs are used to provide adequate protection as described above. Engine designers are now requiring even greater anti-wear protection and more demanding test protocols are being put in place to insure that lubricants can meet these more stringent specifications.
- WO 03/070863 relates to low phosphorus lubricating oil composition comprising ashless sulfurized olefin and composition containing a molybdenum and sulfur.
- a lubricating oil composition comprising a lubricating oil basestock, a boron-containing additive present in the amount in the range of from 0.01 weight percent of the composition to less than 8.0 weight percent, a non-corrosive ashless sulfur additive chosen from asless dithiocarbamates present in the amount in the range of from at least 0.1 weight percent of the composition and to less than 4.0 weight percent-, a dispersant-detergent-inhibitor system of less than 15 percent weight percent of the composition, a zinc dithiophosphate additive present in the amount in the range of from at least 0.2 weight percent of the composition and to less than 2.0 weight percent of the composition wherein weight percent is active ingredient weight of the composition.
- the formulated oil composition having at least 100 and less than 630 ppm phosphorus, at least 1,000 ppm and less than 3,000 ppm sulfur, and at least 105 ppm and less than 710 ppm zinc, at least 80 ppm and less than 450 ppm boron.
- an additive composition for lubricating oils comprises an organic boron containing additive present in the amount in the range of from at least 0.4 weight percent to less than 32 weight percent of the additive, a detergent-dispersant system of less than 60 percent weight percent of the additive, a zinc dithiophosphate additive present in the amount in the range of at from least 0.8 weight percent to less than 8.0 weight percent of the additive, a non-corrosive ashless sulfur additive present in the amount in the range of from at 0.4 to less than 16.0 weight percent of the additive.
- a method of obtain a favorable lubricating properties comprises obtaining a composition comprising a lubricating oil basestock, an organic boron containing additive of at least 0.01 and less than 8 weight percent of the composition, a dispersant-detergent-inhibitor system of less than 15 percent weight percent of the composition, zinc dithiophosphate additive of at least 0.2 weight percent of the composition and less than 2.0 weight percent of the composition, a non corrosive ashless sulfur additive of at 0.1 and less than 4.0 weight percent of the composition.
- the formulated oil composition having at least 100 and less than 630 PPM phosphorus, at least 1,000 PPM and less than 3,000 PPM sulfur, and at least 105 PPM and less than 710 PPM zinc, at least 80 PPM and less than 45.0 PPM boron.
- This invention relates to engine lubricants formulated with unique functional fluids and/or additives to achieve performance improvements.
- One embodiment is a low SAP engine lubricant composition comprising combinations of organic borates, non-corrosive sulfur compounds, optional high levels of ashless antioxidants, and low levels of ZnDTP to achieve high level of performance equal to or better than using high level of ZnDTP alone.
- component synergy is built upon a variety of functionalities to achieve well balanced performance features. In a preferred embodiment, these performance features favorably exceed engine oils formulated with high levels of zinc dithiophosphates and metallic detergents.
- the lubricating oils maintain low frictional properties of film under various operating conditions.
- This embodiment favorably maintains sufficiently high film thickness at high operating temperatures to provide a minimum lubricant film to protect against wear at a variety of temperatures.
- the lubricating oil maintains cleanliness over the entire range of operating conditions while reducing wear to a minimum.
- the lubricating oil provides favorable oxidation and corrosion control, under the most severe operating conditions.
- non-corrosive, organic sulfur compounds when blended with high levels of organic borates, and low level of zinc dithiophosphates provide substantial property benefits.
- high levels of ashless antioxidants are added to the compounds to achieve even more favorable property benefits.
- These benefits include but are not limited to reductions in wear, corrosion, and increases in oil induction temperature or time (OIT) during oxidative conditions that result in potentially significant improvements in engine oil service life and durability with excellent overall performance benefits.
- these benefits can be achieved without deleterious effects such as instability, undesirable high viscosity, deposits and the like, when the additives are added to lubricating oils.
- This new engine oil technology is based on an advanced anti-wear, anti-friction and antioxidant system, in combination of some typical, contemporary dispersants, ashless antioxidants, detergents, defoamants and other additives including contemporary DI additive packages. These additives enhance anti-wear, anti-oxidation and anti-corrosion performance.
- additives that favorably enhances lubricant performance including anti-friction, anti-oxidation and anti-wear performance while successfully meeting the stringent wear, oxidation and cleanliness performance requirements in modem engines.
- suitable additives include but are not limited to contemporary zinc dithiophosphates in low levels, borated or non-borated dispersants, phenolic and aminic ashless anti-oxidants, high and low levels of metal detergents, molybdenum or organic friction modifiers, defoamants, seal swell additives, pour point depressants including contemporary DDI additive packages, and any combination thereof.
- the preferred organic borates are borated hydroxyl esters, such as borated glycerol mono-oleate (GMO), borated glycerol di-oleate (GDO), borated glycerol tri-oleate (GTO), borated glycerol mono-cocoate (GMC), borated mono-talloate (GMT), borated glycerol mono-sorbitate (GMS), borated polyol esters with pendant hydroxyl groups, such as borated pentaerythritol di-C8 ester, and any combination thereof.
- Short chain tri-hydroxyl orthoborates may be used but are not desirable due to their relatively poor thermal/oxidative stability properties when compared to borated hydroxyl esters.
- Borated dispersants and borated detergents can be used as a source of boron. However, in order to achieve best overall performance, specific organic borates, such as borated hydroxyl esters are more preferable.
- the non-corrosive sulfur compounds are chosen from the group consisting of ashless dithiocarbamates.
- ashless dithiocarbamates are Vanlube 7723TM and Vanlube 981.
- a prerequisite to the selection of sulfur additives is that they all need to meet copper corrosion requirements according to ASTM (D130) and low temperature storage compatibility tests.
- the anti-corrosion performance can be judged by the copper corrosion test ASTDM D130 under normal conditions.
- ASTDM test D130-6 normal conditions are at 121 °C (250 degrees Fahrenheit) at 3 hours.
- ASTDM test D130-8 normal conditions are set at 99°C (210 degrees Fahrenheit) for 6 hours with percent water, as well as a more severe condition at 121°C (250 degrees Fahrenheit) for 24 hours.
- non-corrosive sulfur shall be defined as any sulfur that provides a performance classification of 2B or better under the ASTM D-130 Copper Corrosion Test.
- Dibenzyl disulfide was deficient in a severe copper corrosion test at degrees Fahrenheit for 24 hours and 2,2'-dipyridyl disulfide has poor low temperature compatibility in engine oils. Therefore, both additives are deemed less favorable, despite of their strong EP performance. Sulfur additives containing a small portion of polysulfides (tri-sulfide/tetra-sulfide and higher order of polysulfides) are still acceptable providing that they could meet the copper corrosion requirements.
- the preferred ashless antioxidants are hindered phenols and arylamines. Typical examples are butylated/octylated/styrenated/nonylated/ dodecylated diphenylamines, 4,4'-methylene bis-(2,6-di-tert-butylphenol), 2,6-di-tert-butyl-p-cresol, octylated phenyl-alpha-naphthylamine, alkyl ester of 3,5-di-tert-butyl-4-hydroxy-phenyl propionic acid, and many others. Sulfur-containing antioxidants, such as sulfur linked hindered phenols and thiol esters can also be used.
- Suitable dispersants include borated and non-borated succinimides, succinic acid-esters and amides, alkylphenol-polyamine coupled Mannich adducts, other related components and any combination thereof. In some embodiments, it can often be advantageous to use mixtures of such above described dispersants and other related dispersants.
- Examples include additives that are borated, those that are primarily of higher molecular weight, those that consist of primarily mono-succinimide, bis-succinimide, or mixtures of above, those made with different amines, those that are end-capped, dispersants wherein the back-bone is derived from polymerization of branched olefins such as polyisobutylene or from polymers such as other polyolefins other than polyisobutylene, such as ethylene, propylene, butene, similar dispersants and any combination thereof.
- the averaged molecular weight of the hydrocarbon backbone of most dispersants, including polyisobutylene is in the range from 1000 to 6000, preferably from 1500 to 3000 and most preferably around 2200.
- Suitable detergents include but are not limited to calcium phenates, calcium sulfonates, calcium salicylates, magnesium phenates, magnesium sulfonates, magnesium salicylates, metal carbonates, related components including borated detergents, and any combination thereof.
- the detergents can be neutral, mildly overbased, or highly overbased.
- the amount of detergents usually contributes a total base number (TBN) in a range from 1 to 9 for the formulated lubricant composition.
- Metal detergents have been chosen from alkali or alkaline earth calcium or magnesium phenates, sulfonates, salicylates, carbonates and similar components.
- Antioxidants have been chosen from hindered phenols, arylamines, dihydroquinolines, phosphates, thiol/thiolester/disulfide/trisulfide, low sulfur peroxide decomposers and other related components. These additives are rich in sulfur, phosphorus and/or ash content as they form strong chemical films to the metal surfaces and thus need to be used in limited amount in reduced sulfur, ash and phosphorous lubricating oils.
- Inhibitors and antirust additives may be used as needed. Seal swell control components and defoamants may be used with the mixtures of this invention. Various friction modifiers may also be utilized. Examples include but are not limited to amines, alcohols, esters, diols, triols, polyols, fatty amides, various molybdenum phosphorodithioates (MoDTP), molybdenum dithiocarbamates (MoDTC), sulfur/phosphorus free organic molybdenum components, molybdenum trinuclear components, and any combination thereof.
- MoDTP molybdenum phosphorodithioates
- MoDTC molybdenum dithiocarbamates
- sulfur/phosphorus free organic molybdenum components molybdenum trinuclear components, and any combination thereof.
- this new synergistic combination has significantly improved these critical performance parameters while maintaining excellent compatibility to exhaust after-treatment devices.
- This embodiment comprises a novel anti-wear, friction reduction and antioxidant system consisting of organic borates, non-corrosive sulfur additives, high level of ashless antioxidants and low levels of zinc dithiophosphates. More specifically, this formulated engine oil embodiment comprises about 100 to 630 ppm phosphorus, and about 0.1 to 0.3 wt% sulfur and from about 80 to 450 ppm boron, and about 0.5 to 3.0 wt% ashless antioxidants such as total amounts of hindered phenols and arylamines.
- base stocks including group I, II, III, IV, and V, and gas-to-liquids ("GTL") as well as a variety of mixtures thereof.
- GTL gas-to-liquids
- premium engine oils prefer to use group II and higher (“Group II+”) base oils to ensure that they can achieve desirable overall performance levels as well as maximizing the full potential of the unique synergies among additives. Additional significant synergies were identified among alkylated aromatics and Group II+ high performance base stocks including Group II, III, IV, V, VI or GTL base stocks.
- Groups I, II, III, IV and V are broad categories of base oil stocks developed and defined by the American Petroleum Institute (API Publication 1509; www.API.org) to create guidelines for lubricant base oils.
- Group I base stocks generally have a viscosity index of between about 80 to 120 and contain greater than about 0.03% sulfur and/or less than about 90% saturates.
- Group II base stocks generally have a viscosity index of between about 80 to 120, and contain less than or equal to about 0.03% sulfur and greater than or equal to about 90% saturates.
- Group III stock generally has a viscosity index greater than about 120 and contains less than or equal to about 0.03 % sulfur and greater than about 90% saturates.
- Group IV includes polyalphaolefins (PAO).
- Group V base stocks include base stocks not included in Groups I-IV. Table 1 summarizes properties of each of these five groups. Table 1: Base Stock Properties Saturates Sulfur Viscosity Index Group I ⁇ 90% and/or > 0.03% and ⁇ 80 and ⁇ 120 Group II ⁇ 90% and ⁇ 0.03% and ⁇ 80 and ⁇ 120 Group III ⁇ 90% and ⁇ 0.03% and ⁇ 120 Group IV Polyalphaolefins (PAO) Group V All other base oil stocks not included in Groups I, II, III, or IV
- Base stocks having a high paraffinic/naphthenic and saturation nature of greater than 90 weight percent can often be used advantageously in certain embodiments.
- Such base stocks include Group II and/or Group III hydroprocessed or hydrocracked base stocks, or their synthetic counterparts such as polyalphaolefin oils, GTL or similar base oils or mixtures of similar base oils.
- At least about 20 percent of the total composition should consist of such Group II or Group III base stocks or GTL, with at least about 30 percent being preferable, and more than about 80 percent on being most preferable.
- Gas to liquid base stocks can also be preferentially used with the components of this invention as a portion or all of the base stocks used to formulate the finished lubricant.
- GTL materials are materials that are derived via one or more synthesis, combination, transformation, rearrangement, and/or degradation/deconstructive processes from gaseous carbon-containing compounds, hydrogen-containing compounds, and/or elements as feedstocks such as hydrogen, carbon dioxide, carbon monoxide, water, methane, ethane, ethylene, acetylene, propane, propylene, propyne, butane, butylenes, and butynes.
- GTL base stocks and base oils are GTL materials of lubricating viscosity that are generally derived from hydrocarbons, for example waxy synthesized hydrocarbons, that are themselves derived from simpler gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feedstocks.
- GTL base stock(s) include oils boiling in the lube oil boiling range separated/fractionated from GTL materials such as by, for example, distillation or thermal diffusion, and subsequently subjected to well-known catalytic or solvent dewaxing processes to produce lube oils of reduced/low pour point; wax isomerates, comprising, for example, hydroisomerized or isodewaxed synthesized hydrocarbons; hydroisomerized or isodewaxed Fischer-Tropsch ("F-T") material (i.e., hydrocarbons, waxy hydrocarbons, waxes and possible analogous oxygenates); preferably hydroisomerized or isodewaxed F-T hydrocarbons or hydroisomerized or isodewaxed F-T waxes, hydroisomerized or isodewaxed synthesized waxes, or mixtures thereof.
- F-T Fischer-Tropsch
- GTL base stock(s) derived from GTL materials especially, hydroisomerized/isodewaxed F-T material derived base stock(s), and other hydroisomerized/isodewaxed wax derived base stock(s) are characterized typically as having kinematic viscosities at 100°C of from about 2 mm 2 /s to about 50 mm 2 /s, preferably from about 3 mm 2 /s to about 50 mm 2 /s, more preferably from about 3.5 mm 2 /s to about 30 mm 2 /s, as exemplified by a GTL base stock derived by the isodewaxing of F-T wax, which has a kinematic viscosity of about 4 mm 2 /s at 100°C and a viscosity index of about 130 or greater.
- GTL base oil/base stock and/or wax isomerate base oil/base stock as used herein and in the claims is to be understood as embracing individual fractions of GTL base stock/base oil or wax isomerate base stock/base oil as recovered in the production process, mixtures of two or more GTL base stocks/base oil fractions and/or wax isomerate base stocks/base oil fractions, as well as mixtures of one or two or more low viscosity GTL base stock(s)/base oil fraction(s) and/or wax isomerate base stock(s)/base oil fraction(s) with one, two or more high viscosity GTL base stock(s)/base oil fraction(s) and/or wax isomerate base stock(s)/base oil fraction(s) to produce a dumbbell blend wherein the blend exhibits a viscosity within the aforesaid recited range.
- Kinematic viscosity refers to a measurement made by ASTM method D445.
- GTL base stocks and base oils derived from GTL materials especially hydroisomerized/isodewaxed F-T material derived base stock(s), and other hydroisomerized/isodewaxed wax-derived base stock(s), such as wax hydroisomerates/isodewaxates, which can be used as base stock components of this invention are further characterized typically as having pour points of about -5°C or lower, preferably about -10°C or lower, more preferably about -15°C or lower, still more preferably about -20°C or lower, and under some conditions may have advantageous pour points of about -25°C or lower, with useful pour points of about -30°C to about -40°C or lower. If necessary, a separate dewaxing step may be practiced to achieve the desired pour point.
- References herein to pour point refer to measurement made by ASTM D97 and similar automated versions.
- the GTL base stock(s) derived from GTL materials, especially hydroisomerized/isodewaxed F-T material derived base stock(s), and other hydroisomerized/isodewaxed wax-derived base stock(s) which are base stock components which can be used in this invention are also characterized typically as having viscosity indices of 80 or greater, preferably 100 or greater, and more preferably 120 or greater. Additionally, in certain particular instances, viscosity index of these base stocks may be preferably 130 or greater, more preferably 135 or greater, and even more preferably 140 or greater.
- GTL base stock(s) that derive from GTL materials preferably F-T materials especially F-T wax generally have a viscosity index of 130 or greater. References herein to viscosity index refer to ASTM method D2270.
- GTL base stock(s) are typically highly paraffinic of greater than 90 percent saturates), and may contain mixtures of monocycloparaffins and multicycloparaffins in combination with non-cyclic isoparaffins.
- the ratio of the naphthenic (i.e., cycloparaffin) content in such combinations varies with the catalyst and temperature used.
- GTL base stocks and base oils typically have very low sulfur and nitrogen content, generally containing less than about 10 ppm, and more typically less than about 5 ppm of each of these elements.
- the sulfur and nitrogen content of GTL base stock and base oil obtained by the hydroisomerization/isodewaxing of F-T material, especially F-T wax is essentially nil.
- the GTL base stock(s) comprises paraffinic materials that consist predominantly of non-cyclic isoparaffins and only minor amounts of cycloparaffins.
- These GTL base stock(s) typically comprise paraffinic materials that consist of greater than 60 wt% non-cyclic isoparaffins, preferably greater than 80 wt% non-cyclic isoparaffins, more preferably greater than 85 wt% non-cyclic isoparaffins, and most preferably greater than 90 wt% non-cyclic isoparaffins.
- compositions of GTL base stock(s), hydroisomerized or isodewaxed F-T material derived base stock(s), and wax-derived hydroisomerized/isodewaxed base stock(s), such as wax isomerates/isodewaxates are recited in U.S. Pat. Nos. 6,080,301 ; 6,090,989 , and 6,165,949 for example.
- the principle advantage of one embodiment of this invention is the unique synergistic combination of organic borates, non-corrosive sulfur additives in the presence of low level zinc dithiophosphates and high level of ashless antioxidants that provides favorable oxidation, corrosion stability, and more importantly, anti-wear performance. These favorable performance levels can be achieved while reducing the levels of sulfur, phosphorus and zinc in the engine oil formulations compared to the typical engine oil used today.
- the general formulation of the low SAP engine oil is summarized in Table 2. In this table and throughout the application weight percent is intended to be active ingredient weight percent of the entire composition unless otherwise stated.
- Table 2 Component Type Wt% Elements in Formulated Oils (ppm) + Other Restrictions Organic-containing boron additive 0.1 - 8.0% 80 to 450 PPM boron Zinc dithiophosphate additive 0.2 - 2.0% 100 to 530 PPM phosophorous and 105 to 710 PPM zinc Dispersant-detergent-inhibitor system ⁇ 15.0%
- Table 3 illustrates low temperature stabilities for different ashless antiwear additives for low phosphorous lubricant oils with a phosphorous level of 0.05 weight percent of the composition.
- Table 3 illustrates various embodiments for two reference base oils formulations. Both base Reference oils A and B are formulated with the premium Group III base oils.
- comparative oils 1, 2, 3 and 4 are variations of reference oil A.
- the formulation for reference oil A is disclosed in Table 4.
- Table 4 Descriptions Low ash engine oil Blend Code 4866XNP005-D Batch Number 1 Additive Sytem 1 Antioxidants 2 Additive System 2 Detergents/dispersants 9.25 Additive System 3 Viscosity modifiers 14 Additive System 4 Other performance additives 0.3 Base oil System Group III Balance BASELINE D 130 8 Corrosion of Cu by Petroleum 2C D 130 9 250F / 24hrs Corrosion of Cu by Petroleum 1A D 445 5 KV at 100C, CST Kinematic Viscosity @100 C 9.868 D5293 6 AppVis CCS -30, CP App.
- comparative oil 5 is a variations of reference oil B.
- the formulation for reference oil B is disclosed in Table 5.
- Table 3 also illustrates copper corrosion test from the ASTM D-130 method.
- Table 6 illustrates the various classifications from the ASTDM Copper Corrosion test. As shown in table 6, Classifications 1A, 1B, 2A, and 2B are the non-corrosive preferred classifications with classifications 2C, 2D, 2,E, 3A, 3B, 4A, 4B, and 4C being the non preferred classifications. Table 6: ASTM D-130 Copper Corrosion Tests Classification Designation Description Corrosion Comment Freshly polished strip - - Non-corrosive, preferred 1A Slightly tarnish Light orange, almost the same as freshly pol.
- Non-corrosive, preferred 1B Slightly tarnish Dark orange Non-corrosive, preferred 2A Moderate tarnish Claret red Non-corrosive, preferred 2B Moderate tarnish Lavender Non-corrosive, preferred 2C Moderate tarnish Multicolored with lavender blue or silver Not preferred 2D Moderate tarnish Silvery Not preferred 2E Moderate tarnish Brassy or gold Not preferred 3A Dark tarnish Magenta overcast on brassy strip Not preferred 3B Dark tarnish Multicolored with red and green, but no gray Not preferred 4A Corrosion Transparent black, dark gray or brown with green Not preferred 4B Corrosion Green barely showing Not preferred 4C Corrosion Graphite or lusterless black glassy or jet black Not preferred
- any ratings in classification categories 2C-2E, 3 and 4 are not preferred as they can cause darkening and discoloration of the copper coupons that strongly indicate corrosive or near corrosive behavior.
- a very stringent preferred range is established for defining non-corrosive sulfur additives. Accordingly, dibenzyl disulfide and Aldrithiol-2 are not preferred due to their corrosive sulfur species and thus not recommended for low SAP engine oils.
- Reference oil B is a ZnDTP free blend developed so different amounts of ZnDTP as well as other non-corrosive organic sulfur additives can be added to show comparative performance results.
- the base formulation is formulated with Group III base oils with a minimum of 120 viscosity index, a typical pour point of -15°C, a typical Noack of 15 and a typical sulfur of 10 ppm with a miximum sulfur content less than 30 ppm.
- the base engine oil formulated is also formulated with GTL oils with a minimum of 135 viscosity index, a typical pour point of -17°C and a typical sulfur of less than 1 ppm.
- Table 7 illustrates that very good oxidation/corrosion control can be achieved with combinations of non-corrosive sulfur additives, borated dispersants, high level of ashless antioxidants and low level of zinc dithiophosphates in a low Phosphorus engine oil.
- Columns one and two represent reference oils C and D and Columns 3, 4 and 5 represent respectively comparative oils 6, 7, and 8 which are variation of reference oil D.
- Reference oil C is a low SAP group III base oil with 0.1 weight percent phosphorous.
- reference oil D and example comparative oils 6, 7, and 8 are Group III low SAP base oils with 0.05 weight percent phosphorous. Slight variations in the formulations are also documented in Table 7.
- the non-corrosive sulfur additives in comparative example embodiment oil 6 is an ashless dithiocarbamates ("DTC") called VanlubeTM981.
- VanlubeTM981 is an experimental additive avsailable from R.T. Vanderbilt Chemical Company.
- Comparative oils 7 and 8 are specific sulfurized ester/olefins with low sulfur content with or without DTC as in comparative oils 7 and 8 and are respectively labeled RC-2411 and RC-2515. RC-2411 and RC-2515 are commercially available from Rhein Chemie Chemical Company] The good corrosion control is evidenced by 1A to 2B copper corrosion ratings under various conditions.
- the anti-oxidation performance of oils 6, 7, and 8 are slightly better than reference oil D.
- example comparison oils 6, 7, and 8 formulated with 0.05% phosphorus plus non-corrosive sulfur additives provide favorable performance when compared to a typical engine oil, with full load of ZDDP as in the 1 weight percent reference oil C. This demonstrates the strong synergistic effect exists of the various embodiments of example oils 6, 7, and 8. All the additive components of examples 6, 7, and 8 are fully compatible with engine oils as evidenced by their clear and bright appearance in storage over a period of several months. Table 7 demonstrates satisfactory stability for oils containing non-corrosive sulfur additives. Lastly, the pin-on-. V block shown as Falex wear test results correlate well with 4-Ball wear/EP results indicating better wear control with comparative oils 6 and 7 versus Reference oil D.
- Comparative oil 9 is a low SAP Group III base with a final composition of 0.025 weight percent phosphorous.
- Table 9 illustrates the evaluation of non-corrosive sulfur additives in low SAP commercial vehicle lubricants ("CVL"). Table 9 is formulated with a low SAP base oil with no phosphorous. Table 9 Entry 1 2 3 4 Commercial Engine Oil Reference Oil G Comparative oil 10 Ashless DTC Comparative oil 11 Borated GMO Comparative oil 12 DTC + B-GMO ZnDTP Secondary ZDDP 0.30% 0.30% 0.30% 0.30% Ashless Antiwear 0.3% VL 981 0.3% VL 981 Ashless Friction Modifier 0.5% B-GMO 0.5% B-GMO Borated Dispersants and 9.71% 9.71% 9.71% 9.71% Antioxidants Low ash/S/P (0.03% P) (0.03% P) (0.03% P) (0.03% P) (0.03% P) (0.03% P) Solubility Appearance C&B C&B C&B C&B 4 Ball Wear WSD (mm) 0.61 0.52 0.48 0.47 40Kg/1200rpm/60min./93 °C (200°F)
- the composition of the base formulation of Table 9 is listed in Table 10 As shown in Table 10 and column 3 of Table 9, this base oil has no phosphorous.
- the base oil system consists of about 50% Group III and roughly about 20% Group I base oils. All oils containing ZDDP and other sulfur/boron additives in Table 9 and 11 are formulated from the base formulation.
- another base formulation is formulated with GTL base oils.
- the base oil system consists of more than 50% GTL and less than 20% Group I base oils.
- a 0.3 weight percent of a non-corrosive sulfur additive in this example an ashless dithiocarbamate, is included in the engine oil formulated with 0.03 weight percent phosphorus as shown by reference oil G.
- the 4-Ball wear performance resulted in 2 to 15 percent improvement in wear reduction or wear scar diameter ("WSD") and 8 to 51 percent improvement in calculated wear volume or K-factor.
- Comparative oils 11 and 12 illustrate the synergists effect of combining borated GMO with borated dispersants.
- Table 11 illustrates the 4-Ball EP and Hot Tube performance of the combination of 0.3 percent ZDDP and 0.3 percent of a non-corrosive sulfur additive for comparative oil 13 versus the 0.6 percent ZDDP reference oil H.
- the total AW/EP additive treat rate is the same 0.6 percent and the EP performance is about the same, but the Hot Tube of Entry 4 is much better indicating a cleaner environment.
- the 4-Ball EP performance of comparative oil 13 is stronger than reference oil I with reduced ZDDP at 0.3% and the base oil in column 3 with 0% ZDDP.
- a new low SAP engine oil system has been discosvered based on very unique combinations of non-corrosive sulfur additives, low level of ZDDP, borated components, with preferably high level of ashless anti-oxidants.
- This formulation exhibits outstanding and unexpected performance to modern engines.
- One embodiment of this discovery provides an effective way to reduce the amount of ZDDP for contemporary engine oils while maintaining excellent wear, oxidation and corrosion protection.
- This unique component synergism concept is believed to be applicable to similar formulations containing low sulfur base oils of less than 300 ppm, borated additives with borated hydroxyesters such as borated GMO, and alternate organic borates such as borated dispersants, non-corrosive sulfur additives, and preferably with ashless antioxidants.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Claims (13)
- Composition ayant au moins 100 ppm et moins de 630 ppm de phosphore, au moins 105 ppm et moins de 710 ppm de zinc, au moins 1000 ppm et moins de 3000 ppm de soufre, au moins 80 ppm et moins de 450 ppm de bore, comprenant :a. une huile lubrifiante de base ;b. de 0,01 à moins de 8,0 pour cent en poids de la composition d'un additif organique contenant du bore ;c. de 0,1 à moins de 4,0 pour cent en poids de la composition d'un additif soufré sans cendres non corrosif choisi parmi les dithiocarbamates sans cendres ;d. de 0,2 pour cent en poids à moins de 2,0 pour cent en poids de la composition d'un additif au dithiophosphate de zinc ; ete. moins de 15 pour cent en poids de la composition d'un système dispersant-détergent-inhibiteur.
- Composition selon la revendication 1, dans laquelle l'huile de base est choisie dans le groupe constitué par les huiles de base du groupe II, les huiles de base du groupe III, les huiles de base du groupe IV et les huiles de base du groupe V, les huiles de base de transformation de gaz en liquides, et toutes les combinaisons de celles-ci.
- Composition selon la revendication 1, dans laquelle le système dispersant comprend des additifs choisis dans le groupe constitué par les succinimides borés et non borés, les esters et amides d'acide succinique, les adduits de Mannich couplés à une alkylphénolpolyamine, et toutes les combinaisons de ceux-ci.
- Composition selon la revendication 1, comprenant en outre un système détergent métallique fournissant un indice de basicité total (TBN) inférieur à 9.
- Composition selon la revendication 4, ayant un TBN inférieur à 7.
- Composition selon la revendication 4, ayant un TBN inférieur à 5.
- Composition selon la revendication 1, comprenant en outre un additif modificateur de viscosité.
- Composition selon la revendication 1, dans laquelle le borate organique est un ester hydroxylé boré choisi dans le groupe constitué par le monooléate de glycérol boré, le dioléate de glycérol boré, le trioléate de glycérol boré, le monococoate de glycérol boré, le monotalloate boré, le monosorbitate de glycérol boré, les esters de polyols borés et toutes les combinaisons de ceux-ci.
- Système additif lubrifiant pour une composition lubrifiante, comprenant :a. de 0,4 pour cent en poids à moins de 32 pour cent en poids de l'additif d'un additif organique contenant du bore ;b. de 0,8 pour cent en poids à moins de 8,0 pour cent en poids de l'additif d'un additif au dithiophosphate de zinc ;c. d'au moins 0,4 à moins de 16,0 pour cent en poids de l'additif d'un additif soufré sans cendres non corrosif choisi dans le groupe constitué par les dithiocarbamates sans cendres ; etd. moins de 60 pour cent en poids de l'additif d'un système dispersant-détergent.
- Additif lubrifiant selon la revendication 9, comprenant en outre un additif organique au molybdène.
- Additif lubrifiant selon la revendication 9, dans lequel l'additif au dithiophosphate de zinc comprend un dithiophosphate de zinc dérivé d'un alcool alkylique primaire, ou dérivé d'un alcool alkylique secondaire, ou une combinaison de ceux-ci.
- Utilisation de la composition selon la revendication 1 dans un moteur pour obtenir une anti-usure mesurée selon les tests d'usure à 4 billes et une oxydation mesurée par calorimétrie différentielle à balayage sous pression favorables.
- Utilisation de la composition selon la revendication 1 dans un moteur à combustion interne.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US79177506P | 2006-04-13 | 2006-04-13 | |
US11/731,880 US20080171677A1 (en) | 2006-04-13 | 2007-03-30 | Low SAP engine lubricant additive and composition containing non-corrosive sulfur and organic borates |
PCT/US2007/008946 WO2007120712A2 (fr) | 2006-04-13 | 2007-04-10 | Additif et composition lubrifiants pour moteur à faible taux de soufre, de cendre et de phosphore contenant du soufre non corrosif et des borates organiques |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2010636A2 EP2010636A2 (fr) | 2009-01-07 |
EP2010636B1 true EP2010636B1 (fr) | 2015-07-08 |
Family
ID=38610149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07775190.7A Revoked EP2010636B1 (fr) | 2006-04-13 | 2007-04-10 | Additif et composition lubrifiantes pour moteur à faible taux de soufre, de cendre et de phosphore contenant un composé soufré non corrosif et des borates organiques |
Country Status (5)
Country | Link |
---|---|
US (1) | US20080171677A1 (fr) |
EP (1) | EP2010636B1 (fr) |
JP (1) | JP5555487B2 (fr) |
CA (1) | CA2648220A1 (fr) |
WO (1) | WO2007120712A2 (fr) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101240215B (zh) * | 2008-02-29 | 2011-06-08 | 中国人民解放军总装备部军械技术研究所 | 一种适用于火炮上各种橡胶密封件的耐油密封防护组成物 |
ATE551415T1 (de) * | 2008-09-05 | 2012-04-15 | Infineum Int Ltd | Schmierölzusammensetzung |
US20100152072A1 (en) | 2008-12-17 | 2010-06-17 | Chevron Oronite Company Llc | Lubricating oil compositions |
US20100152073A1 (en) † | 2008-12-17 | 2010-06-17 | Chevron Oronite Company Llc | Lubricating oil compositions |
US20100152074A1 (en) | 2008-12-17 | 2010-06-17 | Chevron Oronite Company Llc | Lubricating oil compositions |
US9181511B2 (en) | 2009-04-01 | 2015-11-10 | Infineum International Limited | Lubricating oil composition |
US20100256026A1 (en) * | 2009-04-03 | 2010-10-07 | Margaret May-Som Wu | Lubricant composition containing Ethylene-Alpha Olefin Copolymer viscosity modifier |
JP5912971B2 (ja) * | 2012-07-30 | 2016-04-27 | 昭和シェル石油株式会社 | 内燃機関用潤滑油組成物 |
US9487729B2 (en) * | 2012-10-24 | 2016-11-08 | Exxonmobil Chemical Patents Inc. | Functionalized polymers and oligomers as corrosion inhibitors and antiwear additives |
CN107406788A (zh) * | 2014-12-17 | 2017-11-28 | 路博润公司 | 用于铅和铜腐蚀抑制的润滑组合物 |
US10336963B2 (en) | 2015-02-26 | 2019-07-02 | The Lubrizol Corporation | Aromatic tetrahedral borate compounds for lubricating compositions |
US11136522B2 (en) * | 2015-08-20 | 2021-10-05 | The Lubrizol Corporation | Azole derivatives as lubricating additives |
US10457817B2 (en) | 2016-05-02 | 2019-10-29 | Ecolab Usa Inc. | 2-mercaptobenzimidazole derivatives as corrosion inhibitors |
US20190127655A1 (en) | 2017-10-30 | 2019-05-02 | Exxonmobil Research And Engineering Company | Lubricating oil compositions having improved cleanliness and wear performance |
CN113698975B (zh) * | 2021-09-06 | 2022-10-14 | 山东恒利导热油工程技术研究所 | 一种液压油耐高温沉淀拮抗剂的制备工艺 |
US11851628B2 (en) * | 2021-12-21 | 2023-12-26 | Afton Chemical Corporation | Lubricating oil composition having resistance to engine deposits |
US11788027B2 (en) * | 2022-02-18 | 2023-10-17 | Afton Chemical Corporation | Engine oil formulation with improved sequence VIII performance |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3876550A (en) | 1974-04-15 | 1975-04-08 | Lubrizol Corp | Lubricant compositions |
US4648985A (en) | 1984-11-15 | 1987-03-10 | The Whitmore Manufacturing Company | Extreme pressure additives for lubricants |
US5629272A (en) | 1991-08-09 | 1997-05-13 | Oronite Japan Limited | Low phosphorous engine oil compositions and additive compositions |
EP0814148A2 (fr) | 1992-12-21 | 1997-12-29 | Oronite Japan Limited | Compositions d'huile moteur à faible teneur en phosphore, et compositions d'additifs |
JP2001031984A (ja) | 1999-07-22 | 2001-02-06 | Idemitsu Kosan Co Ltd | エンジン油組成物 |
EP1104800A2 (fr) | 1999-12-02 | 2001-06-06 | Oronite Japan Limited | Composition d'huile lubrificante pour moteurs à gaz |
US20020098990A1 (en) | 1991-08-09 | 2002-07-25 | Morikuni Nakazato | Low phosphorous engine oil composition and additive compositions |
KR20030005588A (ko) | 2001-07-09 | 2003-01-23 | 현대자동차주식회사 | 저배기가스 배출형 엔진오일 조성물 |
EP1306370A1 (fr) | 2001-10-26 | 2003-05-02 | Ethyl Corporation | Dithiocarbamates contenants des substituents alkylthio et hydroxy |
US20030216266A1 (en) | 2002-05-07 | 2003-11-20 | Satoshi Hirano | Lubricating oil composition |
US20040102336A1 (en) | 2002-11-21 | 2004-05-27 | Chevron Oronite Company Llc | Oil compositions for improved fuel economy |
JP2004149762A (ja) | 2002-09-06 | 2004-05-27 | Cosmo Sekiyu Lubricants Kk | エンジン油組成物 |
US20040242433A1 (en) | 2002-10-31 | 2004-12-02 | Chevron Oronite Company Llc | Low-phosphorus lubricating oil composition for extended drain intervals |
US20050222447A1 (en) | 2004-03-31 | 2005-10-06 | Crompton Corporation | Dithiocarbamate derivatives useful as lubricant and fuel additives |
JP2006016453A (ja) | 2004-06-30 | 2006-01-19 | Nippon Oil Corp | 内燃機関用潤滑油組成物 |
US20060025313A1 (en) | 2004-07-29 | 2006-02-02 | Chevron Oronite Company Llc | Lubricating oil composition for internal combustion engines |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5320765A (en) * | 1987-10-02 | 1994-06-14 | Exxon Chemical Patents Inc. | Low ash lubricant compositions for internal combustion engines |
IT1229656B (it) * | 1989-04-21 | 1991-09-06 | Mini Ricerca Scient Tecnolog | Composizioni lubrificanti contenenti ditiofosfati non metallici. |
US5076945A (en) * | 1990-09-14 | 1991-12-31 | Exxon Research And Engineering Company | Lubricating oil containing ashless non-phosphorus additive |
JP3554757B2 (ja) * | 1992-12-21 | 2004-08-18 | シェブロンテキサコジャパン株式会社 | エンジン油組成物 |
JP3920363B2 (ja) * | 1994-01-14 | 2007-05-30 | エチル・ペトロリアム・アデイテイブズ・リミテツド | 潤滑油のための分散剤 |
JP3556348B2 (ja) * | 1994-09-01 | 2004-08-18 | 東燃ゼネラル石油株式会社 | 潤滑油組成物 |
US5490946A (en) * | 1994-10-25 | 1996-02-13 | Exxon Research And Engineering Company | Ashless benzotriazole-thiadiazol compounds as anti-oxidant, anti-wear and friction modifiers in lubricants and the lubricants containing such compounds |
US5962380A (en) * | 1995-06-06 | 1999-10-05 | Chevron Chemical Company Llc | Fluorocarbon elastomer compatibility improving agent having wear inhibition effect |
EP0855437A4 (fr) * | 1995-08-30 | 1999-06-23 | Tonen Corp | Composition d'huile lubrifiante |
US5693598A (en) * | 1995-09-19 | 1997-12-02 | The Lubrizol Corporation | Low-viscosity lubricating oil and functional fluid compositions |
FR2762848B1 (fr) * | 1997-05-05 | 2000-02-04 | Chevron Res & Tech | Utilisation de composes borates pour ameliorer la compatibilite d'huiles lubrifiantes avec des elastomeres fluorocarbones |
GB2327944B (en) * | 1997-08-06 | 2001-10-10 | Ciba Sc Holding Ag | Hetercyclic thioethers as additives for lubricants |
EP1442105B1 (fr) * | 2001-11-05 | 2005-04-06 | The Lubrizol Corporation | Composition lubrifiante ayant une amelioration de l'economie de combustible |
US6730638B2 (en) * | 2002-01-31 | 2004-05-04 | Exxonmobil Research And Engineering Company | Low ash, low phosphorus and low sulfur engine oils for internal combustion engines |
US6777378B2 (en) * | 2002-02-15 | 2004-08-17 | The Lubrizol Corporation | Molybdenum, sulfur and boron containing lubricating oil composition |
US7625847B2 (en) * | 2002-08-05 | 2009-12-01 | Nippon Oil Corporation | Lubricating oil compositions |
MXPA05002664A (es) * | 2002-10-04 | 2005-09-08 | Vanderbilt Co R T | Composiciones de organoborato sinergicas y composiciones de lubricacion que contienen las mismas. |
US20050070450A1 (en) * | 2003-09-30 | 2005-03-31 | Roby Stephen H. | Engine oil compositions |
-
2007
- 2007-03-30 US US11/731,880 patent/US20080171677A1/en not_active Abandoned
- 2007-04-10 CA CA002648220A patent/CA2648220A1/fr not_active Abandoned
- 2007-04-10 WO PCT/US2007/008946 patent/WO2007120712A2/fr active Application Filing
- 2007-04-10 EP EP07775190.7A patent/EP2010636B1/fr not_active Revoked
- 2007-04-10 JP JP2009505459A patent/JP5555487B2/ja not_active Expired - Fee Related
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3876550A (en) | 1974-04-15 | 1975-04-08 | Lubrizol Corp | Lubricant compositions |
US4648985A (en) | 1984-11-15 | 1987-03-10 | The Whitmore Manufacturing Company | Extreme pressure additives for lubricants |
US5629272A (en) | 1991-08-09 | 1997-05-13 | Oronite Japan Limited | Low phosphorous engine oil compositions and additive compositions |
US20020098990A1 (en) | 1991-08-09 | 2002-07-25 | Morikuni Nakazato | Low phosphorous engine oil composition and additive compositions |
EP0814148A2 (fr) | 1992-12-21 | 1997-12-29 | Oronite Japan Limited | Compositions d'huile moteur à faible teneur en phosphore, et compositions d'additifs |
JP2001031984A (ja) | 1999-07-22 | 2001-02-06 | Idemitsu Kosan Co Ltd | エンジン油組成物 |
EP1104800A2 (fr) | 1999-12-02 | 2001-06-06 | Oronite Japan Limited | Composition d'huile lubrificante pour moteurs à gaz |
KR20030005588A (ko) | 2001-07-09 | 2003-01-23 | 현대자동차주식회사 | 저배기가스 배출형 엔진오일 조성물 |
EP1306370A1 (fr) | 2001-10-26 | 2003-05-02 | Ethyl Corporation | Dithiocarbamates contenants des substituents alkylthio et hydroxy |
US20030216266A1 (en) | 2002-05-07 | 2003-11-20 | Satoshi Hirano | Lubricating oil composition |
JP2004149762A (ja) | 2002-09-06 | 2004-05-27 | Cosmo Sekiyu Lubricants Kk | エンジン油組成物 |
US20040242433A1 (en) | 2002-10-31 | 2004-12-02 | Chevron Oronite Company Llc | Low-phosphorus lubricating oil composition for extended drain intervals |
US20040102336A1 (en) | 2002-11-21 | 2004-05-27 | Chevron Oronite Company Llc | Oil compositions for improved fuel economy |
US20050222447A1 (en) | 2004-03-31 | 2005-10-06 | Crompton Corporation | Dithiocarbamate derivatives useful as lubricant and fuel additives |
JP2006016453A (ja) | 2004-06-30 | 2006-01-19 | Nippon Oil Corp | 内燃機関用潤滑油組成物 |
US20060025313A1 (en) | 2004-07-29 | 2006-02-02 | Chevron Oronite Company Llc | Lubricating oil composition for internal combustion engines |
Non-Patent Citations (19)
Title |
---|
"Advent of Modern Hydroprocessing - The Evolution of Base Oil Technology", MACHINERY LUBRICATION, May 2003 (2003-05-01) |
"Special Report: Additive challenges in meeting new automotive engine specifications", TRIBOLOGY ET LUBRICATION TECHNOLOGY, September 2006 (2006-09-01) |
"Symposium on Recent Advances in Chemistry of Lubricant Additives", 218TH NATIONAL MEETING, AMERICAN CHEMICAL SOCIETY, 22 August 1999 (1999-08-22), New Orleans, LA, XP055272507 |
BEYOND ZDDP, LUBRICATION SCIENCE, vol. 20, 2008, pages 77 - 78 |
CHOUDHARY ET AL.: "lubrication potential of boron compounds an overview", LUBRICATION SCIENCE, February 2002 (2002-02-01), pages 14 - 2, XP007915059 |
ENGLISH LANGUAGE ABSTRACT OF D3 |
ENGLISH LANGUAGE ABSTRACT OF D5 |
ENGLISH LANGUAGE MACHINE TRANSLATION OF D3 |
ENGLISH LANGUAGE MACHINE TRANSLATION OF D5 |
ENGLISH LANGUAGE TRANSLATION OF D10 |
ENGLISH LANGUAGE TRANSLATION OF D2 |
ENGLISH TRANSLATION OF D16 |
HUANG ET AL., TRIBOLOGICAL INTERNATIONAL, vol. 35, 2002, pages 787 - 791 |
HUANG ET AL., TRIBOLOGICAL INTERNATIONAL, vol. 37, 2004, pages 71 - 76 |
MORTIER ET AL., EXTRACT FROM CHEMISTRY AND TECHNOLOGY OF LUBRICANTS TEXTBOOK, 1997, pages 332 - 343 |
MORTIER ET AL., EXTRACT FROM CHEMISTRY AND TECHNOLOGY OF LUBRICANTS TEXTBOOK, 1997, pages 86 |
STEPINA ET AL., EXTRACT FROM LUBRICANTS AND SPECIAL FLUIDS TEXTBOOK, 1992, pages 383 - 391 |
XU ET AL., WEAR, vol. 241, 2000, pages 41 - 46 |
YAO ET AL., LUBRICATING OIL, vol. 21, no. 2, April 2006 (2006-04-01) |
Also Published As
Publication number | Publication date |
---|---|
JP5555487B2 (ja) | 2014-07-23 |
WO2007120712A2 (fr) | 2007-10-25 |
CA2648220A1 (fr) | 2007-10-25 |
US20080171677A1 (en) | 2008-07-17 |
WO2007120712A3 (fr) | 2008-02-21 |
JP2009533528A (ja) | 2009-09-17 |
EP2010636A2 (fr) | 2009-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2010636B1 (fr) | Additif et composition lubrifiantes pour moteur à faible taux de soufre, de cendre et de phosphore contenant un composé soufré non corrosif et des borates organiques | |
US20070244016A1 (en) | Low sap engine lubricant containing silane and zinc dithiophosphate lubricant additive and composition | |
EP1478719B1 (fr) | Huiles pour moteurs a combustion interne a faibles teneurs en cendres, en phosphore et en soufre | |
CN106414687B (zh) | 内燃机用润滑油组合物 | |
CN102618355B (zh) | 用于润滑机动车发动机的润滑油组合物 | |
WO2018067908A1 (fr) | Huiles lubrifiantes à faible conductivité pour véhicules électriques et hybrides | |
EP2636725B1 (fr) | Composition d'huile lubrifiante pour la lubrification d'un moteur automobile | |
EP1994125B1 (fr) | Composition de lubrifiant à faibles teneurs en soufre, cendres et phosphore | |
JP5840334B2 (ja) | 内燃機関を潤滑する方法 | |
EP1785477A1 (fr) | Composition d'huile lubrifiant à faible teneur en soufre et en phosphore | |
JP7094339B2 (ja) | 電気伝導率を低減させた相乗的潤滑油 | |
JP5771103B2 (ja) | 潤滑油組成物 | |
JP5179831B2 (ja) | 内燃機関用潤滑油組成物 | |
JP5666236B2 (ja) | 潤滑組成物 | |
JP5694028B2 (ja) | 潤滑油組成物 | |
WO2022201845A1 (fr) | Composition lubrifiante pour moteur à combustion interne | |
EP3268454B1 (fr) | Compositions lubrifiantes comprenant un agent anti-usure/modificateur de la friction | |
JP2011201962A (ja) | 省燃費型エンジン油組成物 | |
AU2005254733B2 (en) | Lubricating oil composition | |
EP2318494B1 (fr) | Lubrifiant de piston de moteur diesel marin | |
WO2013098354A1 (fr) | Huile pour moteur destinée à des véhicules motorisés | |
JP7603538B2 (ja) | 内燃機関用潤滑油組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20081107 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17Q | First examination report despatched |
Effective date: 20090511 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150217 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 735426 Country of ref document: AT Kind code of ref document: T Effective date: 20150715 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602007042059 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 735426 Country of ref document: AT Kind code of ref document: T Effective date: 20150708 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150708 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151009 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151108 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151109 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602007042059 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: AFTON CHEMICAL CORPORATION Effective date: 20160408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160329 Year of fee payment: 10 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160414 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160410 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20161230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160502 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R064 Ref document number: 602007042059 Country of ref document: DE Ref country code: DE Ref legal event code: R103 Ref document number: 602007042059 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160410 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
R26 | Opposition filed (corrected) |
Opponent name: AFTON CHEMICAL CORPORATION Effective date: 20160408 |
|
27W | Patent revoked |
Effective date: 20170316 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20170316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150708 |