EP2007263A1 - Flüssigkeits-/gastrennvorrichtung, besonders für einen staubsauger - Google Patents
Flüssigkeits-/gastrennvorrichtung, besonders für einen staubsaugerInfo
- Publication number
- EP2007263A1 EP2007263A1 EP07731863A EP07731863A EP2007263A1 EP 2007263 A1 EP2007263 A1 EP 2007263A1 EP 07731863 A EP07731863 A EP 07731863A EP 07731863 A EP07731863 A EP 07731863A EP 2007263 A1 EP2007263 A1 EP 2007263A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liquid
- gas
- separator
- gas separator
- rotation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/10—Filters; Dust separators; Dust removal; Automatic exchange of filters
- A47L9/18—Liquid filters
- A47L9/186—Construction of outlets
- A47L9/187—Construction of outlets with filtering means, e.g. separators
- A47L9/188—Construction of outlets with filtering means, e.g. separators movable, revolving or rotary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D45/00—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
- B01D45/12—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
- B01D45/14—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by rotating vanes, discs, drums or brushes
Definitions
- the invention relates to a liquid-gas separator, especially for vacuum cleaner, comprising on the one hand an upstream pipe and a downstream pipe connected through a communication orifice, and on the other hand, rotatably mounted inside 1 in one or the other conduit, a filtration means, permeable to gas, and designed capable of conveying the captured liquid to its periphery by centrifugation.
- the invention also relates to an electrical appliance comprising such a liquid-gas separator.
- the invention relates to the separation of liquid, in particular water, contained in a mixed flow of gas, in particular air, and particles in suspension, in particular of liquid. It particularly concerns the field of household appliances, in particular vacuum cleaners.
- Water filtration aspirators comprise a suction device which drives a flow of air, loaded with debris and particles of liquid, especially water, through a tank containing water. Filtration of the impurities is carried out in this water by bubbling, then the air is discharged to the outside after passing through a water-air separator system, and after passing through a suction module.
- Water filtration vacuum cleaners have significant advantages over traditional vacuum cleaners which include filter elements, such as filter bags, cyclonic systems, or specific filters, which have the disadvantage of having to be changed or cleaned. regularly, interposed in the circulation circuit of gas, in particular of air:
- a water filtration vacuum can operate without a complementary filter;
- a vacuum cleaner with water filtration has a constant suction power unlike traditional vacuum cleaners in which the filter media clogs as and when use, including the filling of the bag containing the waste;
- a water filter vacuum cleaner has no bag, the consumable expenditure is zero, and the maintenance of the device is limited;
- a vacuum cleaner with water filtration allows the suction of liquids, especially water, unlike a traditional vacuum cleaner
- a vacuum cleaner with water filtration allows the use of additives in the water of sparging, such as disinfectant, deodorant or essential oils, which brings additional functionalities compared to traditional vacuum cleaners and in particular the possibility of eliminating mites;
- a water filtration vacuum cleaner also moistens the air, which can sometimes be sought.
- WO 0154798 discloses a water filtration aspirator which utilizes water and air separation devices derived from conventional filters, such as porous filters in the form of plastic membranes or polymer foams, resistant to water. 'water.
- filters such as porous filters in the form of plastic membranes or polymer foams, resistant to water. 'water.
- Such separation devices are unsatisfactory because, as for traditional paper filters, clogging of the pores with water or fine unfiltered dust always occurs in the more or less long term. Due to this clogging the user notices a power loss of the vacuum cleaner and must stop work to clean or replace the filter.
- the prior art has attempted to solve these problems, the passage of water beyond the filter, and clogging of the filter, by an increase in the internal volume of the device, which affects its maneuverability, or by a strong reduction in airflow, which affects its suction efficiency.
- An identical problem can be found on shampooers equipped with comparable devices.
- GB 2 360 471 discloses a self-cleaning filter for a vacuum cleaner, which comprises a helical brush rotating within a cylindrical screen filter with which it is in permanent contact, so as to generate an electrostatic charge and to convey the dust to a collection area.
- a self-cleaning filter for a vacuum cleaner which comprises a helical brush rotating within a cylindrical screen filter with which it is in permanent contact, so as to generate an electrostatic charge and to convey the dust to a collection area.
- Such a system is obviously designed for air containing dry dust only, and may not be suitable for a wet vacuum.
- GB 2 382 042 discloses a water-air separator, which comprises a chamber in which a rotating brush rotates, through which the flow of impurity-laden air is forced in the direction of the axis of rotation of the brush.
- the latter blocks the flow of air and fixes the elements suspended in the air by capillarity, in particular water, which is guided along the bristles under the effect of the centrifugal force, and ejected towards the peripheral wall of the chamber, which is at a distance from the brush, then to collection and discharge areas.
- this solution has drawbacks related to the significant pressure drop of the air flow in baffles and changes of direction, which requires over-loading the suction device, and therefore leads to a rise in noise level.
- the invention aims to solve these major problems by providing a liquid-gas separator, including water-air, improved efficiency, adaptable especially on a vacuum filter water and on portable devices.
- the present invention relates to a liquid-gas separator, especially for vacuum cleaner, comprising on the one hand an upstream pipe and a downstream pipe connected through a communication orifice, and secondly, rotatably mounted on the inside one or the other conduit, a filtering means, permeable to gas, and designed capable of conveying to the periphery by centrifugation the captured liquid, characterized in that said filtering means constitutes means for closing said orifice Communication.
- said communication orifice has a section which is smaller than the passage section of said upstream pipe, so as to define at least one support flange, in cooperation with which said filtering means constitutes shutter means.
- said filtering means is kept radially away from the walls of said upstream pipe.
- said support flange is that of a turbine movable in rotation in said orifice about said axis of rotation.
- said support flange comprises a seal, or is designed capable of cooperating with a seal mounted integral with said filter means.
- the invention also relates to an electrical appliance, comprising means for generating an air flow, and comprising, between an upstream pipe and a downstream pipe, at least one such liquid-gas separator.
- FIG. 1 is a schematic partial view in section of a liquid-gas separator, including water-air, according to a first embodiment of the invention
- FIG. 2 is a diagrammatic partial view in section of a variant of the first embodiment of the invention.
- FIG. 3 is a schematic, partial and sectional representation of a liquid-gas separator according to a second embodiment of the invention.
- FIG. 4 is a schematic, partial and sectional representation of a variant of the second embodiment of FIG.
- FIG. 5 is a schematic representation, partial, and in section, of another variant of the second embodiment of the invention.
- FIG. 6 is a diagrammatic representation, partial and in section, of a variant of FIG. 5;
- FIG. 7 is a schematic representation, partial and in section, of a detail of sealing means of a separator according to the invention.
- FIG. 8 is a schematic representation, partial and in section, of another detail of sealing means of a separator according to the invention.
- FIG. 9 is a schematic representation, partial and in section, of another detail of sealing means of a separator according to the invention.
- FIG. 10 is a schematic representation, partial and in section, of another detail sealing means of a separator according to the invention;
- FIG. 11 is a schematic partial representation, in perspective, of a brush variant of a separator according to the invention.
- FIG. 12 is a schematic representation, partial, of a detail of an alternative embodiment of the invention.
- the invention relates to the separation of fluids contained in gases, in particular in the field of household appliances, including vacuum cleaners, water filtration, and the like.
- a liquid-gas separator 1 comprises an upstream pipe 3, which channels a flow of gas laden with impurities and / or liquid, and a downstream pipe 4, intended for the evacuation of the gas freed of any liquid and any impurity.
- upstream 3 and downstream 4 pipes are connected through a communication orifice 9.
- the invention in all its embodiments and its variants, is applicable to any gas and any liquid.
- the gas is air
- the liquid is water: it is then a water-air separator.
- a flow of gas F is generated from the upstream pipe 3 to the downstream pipe 4 under the effect of suction or pressurization means.
- the separator 1 is conventionally placed between a reservoir containing water for bubbling the flow of gas, in particular air, upstream in, and a duct gas suction, in particular air, connected to the suction motor.
- the separator 1 comprises channeling means 2 of the gas flow F between the upstream pipe 3 and the downstream pipe 4, and is therefore traversed by this gas flow.
- the separation between the liquid, in particular the water, and the flow of gas, in particular air, is carried out during the meeting between the flow of gas and at least one filtering means 5, rotatably mounted inside.
- This means 5 is designed capable of being rotated about an axis of rotation 6.
- the filtering means 5 is constituted by a brush.
- the filtration means 5 is permeable to gas, and is designed capable of conveying the captured liquid to its periphery by centrifugation.
- the liquid is captured by a damming effect obtained by the rotation of the filtration means 5 around its axis of rotation 6, in combination with the capillarity along this filtering means 5, which makes it possible to radially guide drops of liquid towards the periphery of this filtering means 5.
- This filtering means 5 hinders the particles present in the flow of gas, in particular air, in particular drops of liquid, especially water. These particles tend to be fixed by capillarity on the elements that make up the filtration means 5, which, especially in the case where this filtering means 5 is a brush, may be bristles, fins, or the like.
- such a brush 5 is provided with bristles designed capable of moving radially away from the axis of rotation 6, during its rotation, drops of liquid, in particular water, and / or impurities contained in the flow of gas, in particular of air, F from the upstream pipe 3.
- the bristles, bonded and / or welded, or sets of bristles constituting the brush or brushes may be more or less dense, of all natural, synthetic, animal, various shapes and profiles, including small blades, fixed by any known flexible means or rigid, and distributed in different configurations on a disk or a tube without departing from the scope of the invention.
- the sets of bristles can be provided on several levels so as to form, if necessary, a complex mesh, traversable by the gas, in particular the air, but impassable for the liquid, in particular the water.
- the filtration means 5 may in particular be composed of a succession of brushes if necessary, in particular coaxial and staggered.
- the sets of bristles are homogeneously distributed over the periphery of the support disc to form a brush 5.
- bristles are advantageously gathered in more or less compact sets fixed on the disc by any known means . Hair sets can be made a few hairs up to several tens depending on the nature of the hairs, their size and type of brush to build.
- the bristles or sets of bristles are arranged substantially in the plane of the disc so as to form a flat brush, however it may be envisaged to orient the sets of bristles towards the flow of bristles. gas, especially air, entering F upstream, and thus form a filtering means, including a brush, generally concave. It may also be designed to orient the sets of bristles in reverse and form a generally convex shape relative to the flow F. This tilting principle of the sets of bristles is also adaptable on a tubular brush. Naturally, gaps may exist between bundles of bristles. A high speed of rotation of the filtering means 5, in particular a brush, makes it possible to prevent the direct passage of the flow of liquid through the filtering means, in particular a brush, through these intervals.
- the filtration means 5 is a tubular brush 24 whose bristles 34 are mounted radially on a tubular body having perforations 25, and whose first end 26 on the side of the Upstream pipe 3 is closed, and the other end 27 of the downstream pipe 4 side is recessed so as to allow the flow of gas, especially air, into the communication port 9.
- sets of brush bristles 24 must be enough remote from the wall 7 of the channeling means 2, to allow the smooth flow of the separated elements under the effect of the rotation of the brush 24, along the wall 7.
- the filtration means 5, in particular a brush, can be rotated about the axis of rotation 6 by drive means 13 driving a shaft 31, or by a member such as a turbine driven by the flow F through the separator 1.
- the separator 1 comprises means for adjusting the rotational speed of the filtration means 5 as a function of the pressure difference between the upstream and downstream pipes 3 and 4, and / or the flow rate of the flow of gas in the separator 1.
- the filtration means 5 is kept radially away from the walls of the upstream pipe 3, in particular pipe means 2, so as to allow the droplets of liquid or water to be projected onto the wall 7 of the latter under the effect of the rotation of the filtration means 5, their collection at a substantially annular peripheral zone 22, around the periphery of the filtration means 5, which zone is large enough to prevent the formation of a vortex, and allow free flow drops of liquid or water along this wall 7, without local accumulation that would be detrimental to the proper functioning of the separator 1.
- the object of the invention is to combine the separation efficiency of the liquid with a minimum alteration of the gas flow in terms of pressure losses, and the separator 1 comprises means for sealing between the rotating filtration means 5 and the conduit in which flows the liquid-gas flow. Maintaining the gas flow can also be obtained, in the case of the use of a brush to form the filtering means 5, by a decrease in the number of bundles of bristles constituting it, in combination with an increase in the speed rotation of the latter.
- the channeling means 2 are closed by a partition 8, which comprises the communication port 9 between the upstream pipes 3 and downstream 4.
- This orifice 9 is preferably unique so as to avoid any parasitic gas flow.
- the communication orifice 9 has a section which is smaller than the passage section of the upstream pipe 3, so as to define at least one support flange 10, in cooperation with which the filtration means 5 constitutes closure means.
- the bearing flange 10 is preferably perpendicular to the axis of rotation 6 of the filtration means 5.
- the latter 5 comprises a downstream face 5A which is, in a preferred embodiment, substantially flat at its level. contact surface with the support flange 10 and perpendicular to the axis of rotation 6. This arrangement ensures that the entire flow of gas dried during passage through the filtration means 5 continues its flow downstream , through the orifice 9.
- the filtration means 5 is in the form of a flat disk, perpendicular to its axis of rotation 6.
- the filtration means 5 extends radially, with respect to the axis of rotation 6, beyond its contact points 11 with the support flange 10, which avoids any edge effect or turbulence, and especially any re-infiltration of liquid, especially water in downstream of the filtration means 5. It is indeed necessary to prevent the downstream penetration of the liquid that is present near the orifice 9 of the partition 8.
- a filtration means 5, in particular a brush, whose diameter would be equivalent to that of this orifice 9 would be more permeable to the passage of a liquid flow by capillarity.
- the communication orifice 9 is designed capable of folding the flow F downstream of the filtration means 5 in the vicinity of the axis of rotation 6.
- the communication orifice 9 takes the form of a convergent suction cone 23 towards the downstream pipe 4. It will be noted that it is useful, at the level of the filtration means 5, to dispose of an enlargement of the passage, so as to allow a better passage of the flow F through the filtration means 5.
- the separator 1 comprises a support flange 10 which is rotatable about the axis of rotation 6.
- this bearing flange 10 can be synchronized in rotation with the means of rotation. filtration 5, for example by mounting them on the same drive shaft.
- the synchronization is particularly useful if the separator 1 is integrated with a water filtration vacuum cleaner, to prevent any heating if inadvertently the user forgets to fill the water.
- the support flange 10 is the end of a turbine 12 which is rotatable in the orifice 9 about the axis of rotation 6.
- This turbine 12 can be equipped with its own motor means 13, or be driven directly by the flow F in the separator 1, or be mounted on a shaft driven by another turbine 32 driven by this flow of gas, especially air.
- the turbine 12 drives the filter means 5, with which it is assembled.
- the end of a turbine 12, fixed to the filtration means 5, and forming a support flange 10 is advantageously crenellated or corrugated, in this case to adapt to the constitution of the filtration means 5, when it is constituted by a brush conventionally formed of radially mounted tufts of bristles and staggered.
- the presence of the turbine 12 may, again, make it possible to compensate for the pressure drops due to the passage of the flow of gas, in particular air, F through the filtration means 5.
- drive means constituted, as the case may be, by motorization means 13 or by the gas flow F itself, can cause, together or separately, the means of filtration 5 alone, or a turbine 12, or the filtration means 5 and a turbine 12, or another turbine 32 which itself drives the filtration means 5, or a turbine 12, or the filtration means and a turbine 12.
- the body of the separator 1 is molded, and the upstream pipe 3, the downstream pipe 4, the pipe means 2 and the partition 8 constitute a monoblock member which defines the orifice 9.
- the turbine 12 is rotatable in a chamber 15 downstream of the filtration means 5, chamber 15 which is preferably part of the same monoblock member mold.
- a face 16 of the chamber 15, substantially perpendicular to the axis of the turbine 12 is remote from a face 12A of said turbine 12 which is the most downstream in the flow F.
- the thickness E of the turbine 12 is less than the width L of this chamber 15.
- the latter preferably comprises channels 17 for deflecting the gas towards a peripheral end 18 of the chamber 15, connected to said downstream pipe 4.
- the face 16 which incorporates the channels 17 may directly constitute a wall of the chamber 15, or belong to an intermediate piece placed in front of the latter.
- the support flange 10 comprises a seal 20, or is designed capable of cooperating with a seal 20 mounted integral with said filtering means. 5.
- this seal 20 has closed grooves 21, which are designed to trap, during the rotation of the filtering means 5, liquid volumes, in particular water, substantially toric, which constitute a liquid seal which reduces friction and ensures lubrication. This limits the contact surface.
- the seal 20 may advantageously have a star shape, so that the contact between the filtration means 5 and the seal 20 does not always occur at the same point, so as to avoid a localized heating of the seal 20.
- the filtering means 5 is constituted by a brush
- this seal 20 is in contact with the upper row of the sets of bristles of the brush 5 when several rows of bristles or several superposed flat brushes are present.
- the surface of the seal 20 is in the same plane as that constituted by the upper face of the sets of bristles of the brush 5, so as to form a friction surface and a liquid seal, especially water, whatever the orientation of the sets of hairs.
- the presence of the peripheral zone 22 in which the liquid, especially water, and debris accumulate before flowing along the wall 7 of the channeling means 2 is favorable to the formation of the liquid seal, in particular of water, in the area of contact between the seal 20 and the sets of bristles of the brush.
- the seal 20 is constituted by a solid or annular disk 40 mounted coaxially with the filtration means 5, free in rotation or driven by the latter.
- the tightness of such a disc 40 is only required at the level of the support flange 10.
- an annular disc 40 it preferably comprises, to overcome the possible discontinuity of the means of filtration 5, spokes for attachment to a shaft 31 passing through the axis of rotation 6, said axis 31 being preferably the one driving the filter means 5, and the turbine 12 in the first embodiment.
- annular disc 40 may advantageously be provided, over its entire surface between the filtering means 5 and the orifice 9, with a membrane, in particular constituted by a very fine sieve, the calibration of which is designed to stop dry dust. : this embodiment allows, in the case where the separator 1 is incorporated in a water filtration vacuum cleaner, to prevent the disadvantages associated with the omission of water supply by the operator.
- a disc 40 assembled to the filtering means 5 constituted by a brush the end of this disc in contact with the brush is preferably crenellated or corrugated, so as to adapt to the constitution of the brush, when it is conventionally formed of tufts of bristles mounted radially and staggered.
- the separator 1 comprises sealing means 14, implanted at the orifice 9, to prevent the penetration of liquid, especially water, in the latter.
- the sealing means 14 may comprise a ring 19 connected to the orifice 9 and the support flange 10: reported or not on the partition 8, or be constituted by such a ring 19.
- the ring 19 extends the partition 8 at the support flange 10 which then comprises the turbine 12, as visible in Figures 2 and 10.
- the sealing means 14 may also comprise an intermediate disc 40 interposed between the support flange 10 and the filtering means 5, as can be seen in FIGS. 1 and 7.
- the sealing means 14 can be multiple, as can be seen in FIG. visible in FIGS. 8 and 9.
- the particular case of FIG. 8 corresponds to a particularly advantageous configuration, since it comprises few parts and is therefore of a low cost, and it makes it possible, for the same external space, to a turbine 12 of g rand diameter, allowing the enlargement of the orifice 9 and the improvement of the efficiency of the filtration means 5.
- the support flange 10 comprises first sealing means 28, which are designed to cooperate with complementary first sealing means 29 that comprises the filtering means 5, or an intermediate disc 40 mounted in support on the latter.
- the first sealing means 28 are preferably constituted by one or more grooves which are designed capable of cooperating with one or more tabs which constitute said first complementary sealing means 29, or vice versa.
- each may include such grooves or tongues.
- the support flange 10 is annular. This configuration allows, if the face 10 is centered on the axis of rotation 6, the best penetration of the flow of gas, in particular air, into the orifice 9, and therefore the minimal pressure drop.
- the molded design of the channeling means 2 which constitute the body of the separator 1 has an economic advantage due to the simplification of the assembly, and a gain in weight and volume.
- the interior volume as well as the interior elements, such as for example the turbines or the faces and walls of the various channels and chambers can be covered with a coating or a soundproofing surface treatment.
- liquid-gas separation mechanism described in the invention is based on the constraint imposed on the flow of gas, in particular air, to pass through the filtration means, flat or cylindrical, provided with sets of bristles in the case of a brush, rotating at high speed.
- the rotation speed of the filtration means 5 is typically more than 3000 rpm and preferably more than 4000 rpm.
- the efficiency of the liquid-gas separation in the separator 1 is essentially a function of the width of the support rim 10, the speed of rotation of the filtration means 5 with respect to the speed of the gas flow F, and the internal configuration of the filtration means 5.
- a complementary separation device 35 comprises a screen or filter movable in rotation about the axis 6, and is mounted upstream of the filtering means 5. Preferably, it is designed to be rotated around the spindle. 6.
- the filtration means 5 as visible in FIG. 2, or with the channeling means 2 as visible in FIG. 1, or as visible in FIG. 5 with the partition 8 or the ring 19.
- This chamber 36 thus constituted, upstream of the filtration means 5 in the first case, or around him in other cases, is thus dustproof but not liquid.
- the complementary device 36 in its cooperation with the channeling means 2, or the partition 8, or the ring 19, is provided with sealing means 37, such as tongue-groove or the like.
- This device 35 is preferably of frustoconical general shape.
- the device 35 can still be installed upstream of the separator 1. It can, again, be motorized, for example by an extension of the axis 31 supporting the filtering means 5, comprising a quick coupling, for example by bayonet, on this device 35 for its rotational drive. The device 35 can then be very easily dismantled for possible cleaning or exchange.
- this complementary separation device is a tubular brush 24 whose bristles are mounted radially on a tube having perforations 25, a first end 26 of the side of the upstream pipe 3 is closed, and the other end 27 of the side of the downstream pipe 4 is recessed so as to allow flow flow F to the filtration medium 5.
- a separation of the dust can be effectively ensured by the interposition of a filtering membrane on a disc 40 adjacent to the filtration means 5.
- the shaft 31 of the filtration means 5, or 24 as the case may be is that of a turbine 32 installed downstream of the orifice 9, at the outlet of the separator 1 and moved by the flow F.
- the separator 1 is advantageously designed capable of being connected in a sealed manner to a sparging tank of the upstream gas flow F by connection means designed for channeling towards the reservoir the liquid, in particular water, collected against the walls. 7 channeling means 2 upstream of the filter means 5 under the effect of the rotation of the latter.
- the liquid-gas separator according to the invention has many advantages. It does not get clogged, unlike separators formed with porous filters impermeable to water. Its pressure drop is constant over time, which means that the suction power of an appliance that incorporates such a separator 1 remains constant over time. Indeed, it allows the maintenance of a flow rate of gas, especially air, constant because the separator according to the invention is self-cleaning and can not clog or foul. As a result, the user has no unpleasant maintenance to perform.
- the liquid-gas separation efficiency is very good, which reduces the amount of dust released into the environment and also prevents excessive humidification of the surrounding atmosphere. This separator makes it possible to design a simplified gas circuit, and its morphology makes it possible to improve the compactness and the reduction of the cost of the apparatus in which it is mounted.
- the separator 1 according to the invention has the advantage of allowing the constitution of a removable filter body adaptable between the body and the tubes of a conventional vacuum cleaner dust, while allowing the removal of the paper bag, the aspiration of liquids or the maintenance of a constant air flow.
- the use of the principle of water filtration coupled with the use of a separator 1 according to the invention can advantageously adapt to different types of household appliances such as shampooer, extractor ejector, vacuum cleaner broom, aspiro-steam, and Similar.
- the invention relates to any household electrical appliance, comprising means for generating an air flow F, and comprising, between an upstream pipe 3 and a downstream pipe 4, at least one such separator 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Separating Particles In Gases By Inertia (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0602951A FR2899086B1 (fr) | 2006-04-04 | 2006-04-04 | Separateur eau air utilisable sur un aspirateur eau et poussiere |
FR0610563A FR2909275B1 (fr) | 2006-12-01 | 2006-12-01 | Appareil d'aspiration et de nettoyage eau et/ou poussieres |
PCT/FR2007/051060 WO2007116177A1 (fr) | 2006-04-04 | 2007-04-03 | Separateur liquide-gaz, notamment pour aspirateur |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2007263A1 true EP2007263A1 (de) | 2008-12-31 |
Family
ID=38426535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07731863A Withdrawn EP2007263A1 (de) | 2006-04-04 | 2007-04-03 | Flüssigkeits-/gastrennvorrichtung, besonders für einen staubsauger |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100043364A1 (de) |
EP (1) | EP2007263A1 (de) |
WO (1) | WO2007116177A1 (de) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8075668B2 (en) | 2005-03-29 | 2011-12-13 | Dresser-Rand Company | Drainage system for compressor separators |
CA2664121C (en) | 2006-09-19 | 2014-05-27 | William C. Maier | Rotary separator drum seal |
BRPI0718513B1 (pt) | 2006-09-21 | 2018-10-23 | Dresser Rand Co | conjunto de manuseio de fluido para uma máquina para fluidos |
BRPI0717087B1 (pt) | 2006-09-25 | 2018-10-16 | Dresser Rand Co | sistema de carretel conector para conectar um primeiro componente e um segundo componente de um sistema de compressão industrial |
MX2009003175A (es) | 2006-09-25 | 2009-04-03 | Dresser Rand Co | Cubierta de acceso para bobina conectora presurizada. |
BRPI0717088B1 (pt) | 2006-09-25 | 2019-10-29 | Dresser Rand Co | sistema de proteção de acoplamento |
EP2066453A4 (de) | 2006-09-25 | 2012-04-04 | Dresser Rand Co | Flüssigkeitsdetektor für flüssigkeitstrenngeräte |
US8733726B2 (en) | 2006-09-25 | 2014-05-27 | Dresser-Rand Company | Compressor mounting system |
EP2066422B1 (de) | 2006-09-26 | 2012-06-27 | Dresser-Rand Company | Verbesserte statische flüssigkeitstrennungsvorrichtung |
WO2009111616A2 (en) | 2008-03-05 | 2009-09-11 | Dresser-Rand Company | Compressor assembly including separator and ejector pump |
US7922218B2 (en) | 2008-06-25 | 2011-04-12 | Dresser-Rand Company | Shear ring casing coupler device |
US8079805B2 (en) | 2008-06-25 | 2011-12-20 | Dresser-Rand Company | Rotary separator and shaft coupler for compressors |
US8062400B2 (en) | 2008-06-25 | 2011-11-22 | Dresser-Rand Company | Dual body drum for rotary separators |
US8210804B2 (en) | 2009-03-20 | 2012-07-03 | Dresser-Rand Company | Slidable cover for casing access port |
US8087901B2 (en) | 2009-03-20 | 2012-01-03 | Dresser-Rand Company | Fluid channeling device for back-to-back compressors |
US8061972B2 (en) | 2009-03-24 | 2011-11-22 | Dresser-Rand Company | High pressure casing access cover |
BR112012005866B1 (pt) | 2009-09-15 | 2021-01-19 | Dresser-Rand Company | aparelho para a separação de um fluido e método para a separação de um componente de peso específico mais alto de um componente de peso específico mais baixo de um fluido |
WO2011100158A2 (en) | 2010-02-10 | 2011-08-18 | Dresser-Rand Company | Separator fluid collector and method |
WO2012009159A2 (en) | 2010-07-15 | 2012-01-19 | Dresser-Rand Company | Radial vane pack for rotary separators |
WO2012009158A2 (en) | 2010-07-15 | 2012-01-19 | Dresser-Rand Company | Enhanced in-line rotary separator |
US8657935B2 (en) | 2010-07-20 | 2014-02-25 | Dresser-Rand Company | Combination of expansion and cooling to enhance separation |
WO2012012143A2 (en) | 2010-07-21 | 2012-01-26 | Dresser-Rand Company | Multiple modular in-line rotary separator bundle |
US8596292B2 (en) | 2010-09-09 | 2013-12-03 | Dresser-Rand Company | Flush-enabled controlled flow drain |
US8994237B2 (en) | 2010-12-30 | 2015-03-31 | Dresser-Rand Company | Method for on-line detection of liquid and potential for the occurrence of resistance to ground faults in active magnetic bearing systems |
US9024493B2 (en) | 2010-12-30 | 2015-05-05 | Dresser-Rand Company | Method for on-line detection of resistance-to-ground faults in active magnetic bearing systems |
WO2012138545A2 (en) | 2011-04-08 | 2012-10-11 | Dresser-Rand Company | Circulating dielectric oil cooling system for canned bearings and canned electronics |
US9062597B2 (en) | 2011-05-10 | 2015-06-23 | Innerpoint Energy Corporation | Centrifugal particle separator and method of operating the same |
EP2715167B1 (de) | 2011-05-27 | 2017-08-30 | Dresser-Rand Company | Segmentiertes auslauflager für magnetlagersysteme |
US8851756B2 (en) | 2011-06-29 | 2014-10-07 | Dresser-Rand Company | Whirl inhibiting coast-down bearing for magnetic bearing systems |
JP5667651B2 (ja) * | 2013-02-28 | 2015-02-12 | 川崎重工業株式会社 | ミストセパレータ |
WO2014182295A1 (en) * | 2013-05-08 | 2014-11-13 | Innerpoint Energy Corporation | A centrifugal particle separator and method of operating the same |
CN104645760B (zh) * | 2013-11-25 | 2018-08-07 | 洪昆喨 | 电浆气液固分离净化器 |
CN104146653B (zh) * | 2014-08-06 | 2016-06-08 | 中山市金舜家庭用品有限公司 | 一种窗刮 |
US9545590B2 (en) | 2015-01-16 | 2017-01-17 | Innerpoint Energy Corporation | Rotating centrifugal particle separator and gasifier having the same |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU32828A1 (de) * | 1953-04-24 | |||
DE1144999B (de) * | 1953-04-24 | 1963-03-07 | Hovalwerk Ag Ospelt | Vorrichtung zur Staubabscheidung in Gasleitungen mittels Schleuderbuerste |
US3645070A (en) * | 1970-07-07 | 1972-02-29 | Lewis P Roe | Gas washer apparatus |
EP0004145B1 (de) * | 1978-02-28 | 1984-07-11 | Fred Mellor | Fluidum/Teilchen Scheidevorrichtung |
US4268281A (en) * | 1979-03-23 | 1981-05-19 | Kobe, Inc. | Method of removing particulate contaminants from a gas stream |
US5688377A (en) * | 1992-08-13 | 1997-11-18 | Mccutchen; Wilmot H. | Rotary radial cyclonic fluid mixture separator |
JP2000511824A (ja) * | 1997-04-01 | 2000-09-12 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 遠心ユニットを有するサイクロン室を設けた分離装置及びこの分離装置を設けた電気掃除機 |
SE515302C2 (sv) * | 1999-11-15 | 2001-07-09 | Alfa Laval Ab | Ett sätt och en apparat för rening av gas |
US6485854B1 (en) * | 2000-10-19 | 2002-11-26 | General Motors Corporation | Gas-liquid separator for fuel cell system |
US6547862B2 (en) * | 2001-07-02 | 2003-04-15 | Hamilton Sundstrand | Rotary phase separator with integral accumulator and outlet valve |
SE520952C2 (sv) * | 2002-01-25 | 2003-09-16 | Alfa Laval Corp Ab | En apparat för samtidig rening av en vätska och en gas |
US6716269B1 (en) * | 2002-03-05 | 2004-04-06 | Energent Corporation | Centrifuge and cascade for the separation of gases |
US6672387B2 (en) * | 2002-06-03 | 2004-01-06 | Conocophillips Company | Oil and gas production with downhole separation and reinjection of gas |
SE0201982D0 (sv) * | 2002-06-24 | 2002-06-24 | Alfa Laval Corp Ab | Sätt att rena vevhusgas samt en gasreningsseparator |
US7597732B2 (en) * | 2002-12-26 | 2009-10-06 | Kabushiki Kaisha Yokota Seisakusho | Gas-liquid separator |
US7235177B2 (en) * | 2003-04-23 | 2007-06-26 | Fleetguard, Inc. | Integral air/oil coalescer for a centrifuge |
SE525981C2 (sv) * | 2003-10-07 | 2005-06-07 | 3Nine Ab | Anordning vid en centrifugalseparator |
US7594941B2 (en) * | 2006-08-23 | 2009-09-29 | University Of New Brunswick | Rotary gas cyclone separator |
-
2007
- 2007-04-03 WO PCT/FR2007/051060 patent/WO2007116177A1/fr active Application Filing
- 2007-04-03 US US11/813,687 patent/US20100043364A1/en not_active Abandoned
- 2007-04-03 EP EP07731863A patent/EP2007263A1/de not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2007116177A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2007116177A1 (fr) | 2007-10-18 |
WO2007116177B1 (fr) | 2008-01-03 |
US20100043364A1 (en) | 2010-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2007263A1 (de) | Flüssigkeits-/gastrennvorrichtung, besonders für einen staubsauger | |
EP1959809B1 (de) | Vorrichtung zur reinigung eines staubsaugerfilters | |
EP2032013B1 (de) | Vorrichtung zum mischen von flüssigkeit und gas | |
EP2208453B1 (de) | Vorrichtung zur Drallabscheidung mit Beschleunigungsrampe | |
EP0996355B1 (de) | Staubsauger mit trennung von abfällen durch tangentialstrom | |
EP1385411B1 (de) | Vorrichtung zum verdichten von abfall in einem staubsauger | |
FR2859372A1 (fr) | Dispositif de separation de poussiere a cyclones et aspirateur comportant un tel dispositif | |
FR2865918A1 (fr) | Dispositif de collecte de poussiere a cyclones pour un aspirateur | |
FR2851448A1 (fr) | Dispositif de collecte de poussieres du type a cyclone pour aspirateur | |
FR2967595A1 (fr) | Dispositif de collecte de poussiere pour machine a decouper le beton | |
FR2859370A1 (fr) | Dispositif de separation a cyclones et aspirateur contenant un tel dispositif | |
FR2859371A1 (fr) | Dispositif de separation a cyclones et aspirateur comportant un tel dispositif | |
EP2323528A2 (de) | Wasserfiltrationsstaubsauger | |
EP3673126B1 (de) | Schwimmbeckenreiniger mit einer durch zentrifugalspinnen und filtration arbeitenden ablagerungstrennvorrichtung | |
EP3060731B1 (de) | Poolreiniger mit abnehmbarer filtrationsvorrichtung | |
EP0741219A1 (de) | Automatisches Reinigungsgerät insbesondere für den Boden und die Wände eines Schwimmbeckens | |
EP1944077A1 (de) | Vorrichtung zur Verhinderung der Bildung von Ablagerungen an den Einlässen zu den Tubular- oder Kapillarmembranen eines Filtermoduls mit tangentialer Anströmung | |
FR2899086A1 (fr) | Separateur eau air utilisable sur un aspirateur eau et poussiere | |
FR2948004A1 (fr) | Dispositif de separation des dechets pour aspirateur | |
CN117500574A (zh) | 自清洁过滤装置 | |
FR2924322A1 (fr) | Aspirateur a filtration a eau | |
EP1956959B1 (de) | Staubsammelbehälter für staubsauger | |
EP0853459A1 (de) | Staubsauger und dichter schwitzbeutel | |
WO2011042661A1 (fr) | Dispositif de filtration des poussieres | |
EP1048259B1 (de) | Vorrichtung zum Absaugen von Partikeln |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20081031 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17Q | First examination report despatched |
Effective date: 20110110 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110721 |