EP1990400A2 - Lubricating oil composition for marine applications - Google Patents
Lubricating oil composition for marine applications Download PDFInfo
- Publication number
- EP1990400A2 EP1990400A2 EP08150713A EP08150713A EP1990400A2 EP 1990400 A2 EP1990400 A2 EP 1990400A2 EP 08150713 A EP08150713 A EP 08150713A EP 08150713 A EP08150713 A EP 08150713A EP 1990400 A2 EP1990400 A2 EP 1990400A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- lubricant
- marine
- phosphorus
- ppm
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 97
- 239000010687 lubricating oil Substances 0.000 title abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 94
- 239000000654 additive Substances 0.000 claims abstract description 49
- 230000000996 additive effect Effects 0.000 claims abstract description 39
- 238000012360 testing method Methods 0.000 claims description 112
- 239000000314 lubricant Substances 0.000 claims description 100
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 93
- 229910052698 phosphorus Inorganic materials 0.000 claims description 93
- 239000011574 phosphorus Substances 0.000 claims description 93
- 229910052751 metal Inorganic materials 0.000 claims description 68
- 239000002184 metal Substances 0.000 claims description 68
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 63
- 239000003599 detergent Substances 0.000 claims description 52
- 239000002199 base oil Substances 0.000 claims description 51
- 239000003513 alkali Substances 0.000 claims description 43
- 239000004094 surface-active agent Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 40
- 239000000839 emulsion Substances 0.000 claims description 37
- 238000000926 separation method Methods 0.000 claims description 37
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 34
- 150000001875 compounds Chemical class 0.000 claims description 29
- 229910052739 hydrogen Inorganic materials 0.000 claims description 29
- 239000001257 hydrogen Substances 0.000 claims description 28
- 239000003795 chemical substances by application Substances 0.000 claims description 27
- 239000003607 modifier Substances 0.000 claims description 23
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 20
- 125000000217 alkyl group Chemical group 0.000 claims description 20
- 239000012208 gear oil Substances 0.000 claims description 18
- 229930195733 hydrocarbon Natural products 0.000 claims description 18
- 150000002430 hydrocarbons Chemical class 0.000 claims description 18
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 16
- 229910052725 zinc Inorganic materials 0.000 claims description 16
- 239000011701 zinc Substances 0.000 claims description 16
- 239000004215 Carbon black (E152) Substances 0.000 claims description 15
- 125000002947 alkylene group Chemical group 0.000 claims description 11
- 229920005862 polyol Polymers 0.000 claims description 11
- 150000003077 polyols Chemical class 0.000 claims description 10
- 150000002894 organic compounds Chemical class 0.000 claims description 9
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 8
- 229920001400 block copolymer Polymers 0.000 claims description 8
- 229920000578 graft copolymer Polymers 0.000 claims description 8
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 claims description 8
- 229920001515 polyalkylene glycol Polymers 0.000 claims description 8
- 229920000570 polyether Polymers 0.000 claims description 8
- 239000003963 antioxidant agent Substances 0.000 claims description 7
- 230000003078 antioxidant effect Effects 0.000 claims description 7
- 230000000994 depressogenic effect Effects 0.000 claims description 7
- 239000002270 dispersing agent Substances 0.000 claims description 7
- ZMRQTIAUOLVKOX-UHFFFAOYSA-L calcium;diphenoxide Chemical compound [Ca+2].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 ZMRQTIAUOLVKOX-UHFFFAOYSA-L 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000004945 emulsification Methods 0.000 abstract description 30
- 239000003879 lubricant additive Substances 0.000 abstract description 2
- 239000012530 fluid Substances 0.000 description 92
- 239000003921 oil Substances 0.000 description 41
- 235000019198 oils Nutrition 0.000 description 41
- -1 that is Chemical group 0.000 description 37
- 125000001183 hydrocarbyl group Chemical group 0.000 description 27
- 230000001050 lubricating effect Effects 0.000 description 24
- 229910052783 alkali metal Inorganic materials 0.000 description 23
- 239000005078 molybdenum compound Substances 0.000 description 19
- 125000004432 carbon atom Chemical group C* 0.000 description 18
- 235000002639 sodium chloride Nutrition 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 14
- 150000002752 molybdenum compounds Chemical class 0.000 description 14
- 150000003839 salts Chemical class 0.000 description 14
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 13
- 229910052750 molybdenum Inorganic materials 0.000 description 13
- 239000011733 molybdenum Substances 0.000 description 13
- 229920013639 polyalphaolefin Polymers 0.000 description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 11
- 239000003995 emulsifying agent Substances 0.000 description 11
- 229910052717 sulfur Inorganic materials 0.000 description 11
- 239000011593 sulfur Substances 0.000 description 11
- 150000002148 esters Chemical class 0.000 description 9
- 230000035939 shock Effects 0.000 description 9
- 150000001412 amines Chemical class 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 229910052791 calcium Inorganic materials 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 6
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 235000021317 phosphate Nutrition 0.000 description 6
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 125000003342 alkenyl group Chemical group 0.000 description 5
- 239000002518 antifoaming agent Substances 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical compound OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000005077 polysulfide Substances 0.000 description 5
- 229920001021 polysulfide Polymers 0.000 description 5
- 150000008117 polysulfides Polymers 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 4
- 150000008064 anhydrides Chemical group 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 4
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 3
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- KHYKFSXXGRUKRE-UHFFFAOYSA-J molybdenum(4+) tetracarbamodithioate Chemical class C(N)([S-])=S.[Mo+4].C(N)([S-])=S.C(N)([S-])=S.C(N)([S-])=S KHYKFSXXGRUKRE-UHFFFAOYSA-J 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 229920000768 polyamine Polymers 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- CIRMGZKUSBCWRL-LHLOQNFPSA-N (e)-10-[2-(7-carboxyheptyl)-5,6-dihexylcyclohex-3-en-1-yl]dec-9-enoic acid Chemical compound CCCCCCC1C=CC(CCCCCCCC(O)=O)C(\C=C\CCCCCCCC(O)=O)C1CCCCCC CIRMGZKUSBCWRL-LHLOQNFPSA-N 0.000 description 2
- BIGYLAKFCGVRAN-UHFFFAOYSA-N 1,3,4-thiadiazolidine-2,5-dithione Chemical compound S=C1NNC(=S)S1 BIGYLAKFCGVRAN-UHFFFAOYSA-N 0.000 description 2
- SXNMVUFHMKOPKC-UHFFFAOYSA-N 1-dimethoxyphosphorylhexadec-1-ene Chemical compound CCCCCCCCCCCCCCC=CP(=O)(OC)OC SXNMVUFHMKOPKC-UHFFFAOYSA-N 0.000 description 2
- KCGQAMHRYDCPDN-UHFFFAOYSA-N 1-dimethoxyphosphorylhexadecane Chemical compound CCCCCCCCCCCCCCCCP(=O)(OC)OC KCGQAMHRYDCPDN-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical class CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical group CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 2
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 2
- LJKDOMVGKKPJBH-UHFFFAOYSA-N 2-ethylhexyl dihydrogen phosphate Chemical group CCCCC(CC)COP(O)(O)=O LJKDOMVGKKPJBH-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000010688 mineral lubricating oil Substances 0.000 description 2
- 150000002751 molybdenum Chemical class 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920006389 polyphenyl polymer Polymers 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011684 sodium molybdate Substances 0.000 description 2
- 235000015393 sodium molybdate Nutrition 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 235000011044 succinic acid Nutrition 0.000 description 2
- 229940014800 succinic anhydride Drugs 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical group O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- 239000012991 xanthate Substances 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- RDAGYWUMBWNXIC-UHFFFAOYSA-N 1,2-bis(2-ethylhexyl)benzene Chemical class CCCCC(CC)CC1=CC=CC=C1CC(CC)CCCC RDAGYWUMBWNXIC-UHFFFAOYSA-N 0.000 description 1
- YEYQUBZGSWAPGE-UHFFFAOYSA-N 1,2-di(nonyl)benzene Chemical class CCCCCCCCCC1=CC=CC=C1CCCCCCCCC YEYQUBZGSWAPGE-UHFFFAOYSA-N 0.000 description 1
- QWUWMCYKGHVNAV-UHFFFAOYSA-N 1,2-dihydrostilbene Chemical group C=1C=CC=CC=1CCC1=CC=CC=C1 QWUWMCYKGHVNAV-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- RLPSARLYTKXVSE-UHFFFAOYSA-N 1-(1,3-thiazol-5-yl)ethanamine Chemical compound CC(N)C1=CN=CS1 RLPSARLYTKXVSE-UHFFFAOYSA-N 0.000 description 1
- RMSGQZDGSZOJMU-UHFFFAOYSA-N 1-butyl-2-phenylbenzene Chemical group CCCCC1=CC=CC=C1C1=CC=CC=C1 RMSGQZDGSZOJMU-UHFFFAOYSA-N 0.000 description 1
- JMGCVIKTUKCYEA-UHFFFAOYSA-N 1-dimethoxyphosphoryldodec-1-ene Chemical compound CCCCCCCCCCC=CP(=O)(OC)OC JMGCVIKTUKCYEA-UHFFFAOYSA-N 0.000 description 1
- RPFRYQDHUIHAFC-UHFFFAOYSA-N 1-dimethoxyphosphoryldodecane Chemical compound CCCCCCCCCCCCP(=O)(OC)OC RPFRYQDHUIHAFC-UHFFFAOYSA-N 0.000 description 1
- AKYUYYYCWIGKDI-UHFFFAOYSA-N 1-dimethoxyphosphorylhexacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCP(=O)(OC)OC AKYUYYYCWIGKDI-UHFFFAOYSA-N 0.000 description 1
- GEFCRVXGSRZXCQ-UHFFFAOYSA-N 1-dimethoxyphosphoryloctadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=CP(=O)(OC)OC GEFCRVXGSRZXCQ-UHFFFAOYSA-N 0.000 description 1
- FPYLHOQPWCQAIJ-UHFFFAOYSA-N 1-dimethoxyphosphoryloctadecane Chemical compound CCCCCCCCCCCCCCCCCCP(=O)(OC)OC FPYLHOQPWCQAIJ-UHFFFAOYSA-N 0.000 description 1
- RZKTXOYHECJGKP-UHFFFAOYSA-N 1-dimethoxyphosphoryltetracont-1-ene Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC=CP(=O)(OC)OC RZKTXOYHECJGKP-UHFFFAOYSA-N 0.000 description 1
- DRSJNUODKXYPTN-UHFFFAOYSA-N 1-dimethoxyphosphoryltriacont-1-ene Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCC=CP(=O)(OC)OC DRSJNUODKXYPTN-UHFFFAOYSA-N 0.000 description 1
- SBPOXRJRVKTDMN-UHFFFAOYSA-N 1-dimethoxyphosphoryltriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCP(=O)(OC)OC SBPOXRJRVKTDMN-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 1
- LIAWCKFOFPPVGF-UHFFFAOYSA-N 2-ethyladamantane Chemical compound C1C(C2)CC3CC1C(CC)C2C3 LIAWCKFOFPPVGF-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- FWAVAVCRVWBJRP-UHFFFAOYSA-N 3-(2-methylprop-1-enyl)oxolane-2,5-dione Chemical class CC(C)=CC1CC(=O)OC1=O FWAVAVCRVWBJRP-UHFFFAOYSA-N 0.000 description 1
- NUCFNMOPTGEHQA-UHFFFAOYSA-N 3-bromo-2h-pyrazolo[4,3-c]pyridine Chemical compound C1=NC=C2C(Br)=NNC2=C1 NUCFNMOPTGEHQA-UHFFFAOYSA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- 229910011255 B2O3 Inorganic materials 0.000 description 1
- PMGHIGLOERPWGC-UHFFFAOYSA-N Bis-(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(O)OCCCl PMGHIGLOERPWGC-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005069 Extreme pressure additive Substances 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- MQHWFIOJQSCFNM-UHFFFAOYSA-L Magnesium salicylate Chemical class [Mg+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O MQHWFIOJQSCFNM-UHFFFAOYSA-L 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- 229910015427 Mo2O3 Inorganic materials 0.000 description 1
- 229910015686 MoOCl4 Inorganic materials 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- GLOYGJPNNKTDIG-UHFFFAOYSA-N SC=1N=NSC=1S Chemical class SC=1N=NSC=1S GLOYGJPNNKTDIG-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- GTVWRXDRKAHEAD-UHFFFAOYSA-N Tris(2-ethylhexyl) phosphate Chemical compound CCCCC(CC)COP(=O)(OCC(CC)CCCC)OCC(CC)CCCC GTVWRXDRKAHEAD-UHFFFAOYSA-N 0.000 description 1
- XYRMLECORMNZEY-UHFFFAOYSA-B [Mo+4].[Mo+4].[Mo+4].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S Chemical class [Mo+4].[Mo+4].[Mo+4].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S XYRMLECORMNZEY-UHFFFAOYSA-B 0.000 description 1
- XWKKZTDYIZDRQS-UHFFFAOYSA-J [Mo+4].[S-][PH2]=S.[S-][PH2]=S.[S-][PH2]=S.[S-][PH2]=S Chemical class [Mo+4].[S-][PH2]=S.[S-][PH2]=S.[S-][PH2]=S.[S-][PH2]=S XWKKZTDYIZDRQS-UHFFFAOYSA-J 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- 150000003819 basic metal compounds Chemical class 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- WLLCYXDFVBWGBU-UHFFFAOYSA-N bis(8-methylnonyl) nonanedioate Chemical compound CC(C)CCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC(C)C WLLCYXDFVBWGBU-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- UOKRBSXOBUKDGE-UHFFFAOYSA-N butylphosphonic acid Chemical compound CCCCP(O)(O)=O UOKRBSXOBUKDGE-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- UZEFVQBWJSFOFE-UHFFFAOYSA-N dibutyl hydrogen phosphite Chemical compound CCCCOP(O)OCCCC UZEFVQBWJSFOFE-UHFFFAOYSA-N 0.000 description 1
- PEEFBAYDEKJSPE-UHFFFAOYSA-N dicyclohexylcarbamodithioic acid Chemical compound C1CCCCC1N(C(=S)S)C1CCCCC1 PEEFBAYDEKJSPE-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical class C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical class CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000010696 ester oil Substances 0.000 description 1
- 150000002168 ethanoic acid esters Chemical class 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- ZOOODBUHSVUZEM-UHFFFAOYSA-N ethoxymethanedithioic acid Chemical compound CCOC(S)=S ZOOODBUHSVUZEM-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004836 hexamethylene group Chemical class [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- PCLSXWTUNCCKEY-UHFFFAOYSA-N hexoxy(hexylsulfanyl)phosphinous acid Chemical compound CCCCCCOP(O)SCCCCCC PCLSXWTUNCCKEY-UHFFFAOYSA-N 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- VDTIMXCBOXBHER-UHFFFAOYSA-N hydroxy-bis(sulfanyl)-sulfanylidene-$l^{5}-phosphane Chemical compound OP(S)(S)=S VDTIMXCBOXBHER-UHFFFAOYSA-N 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 150000002466 imines Chemical group 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 125000005645 linoleyl group Chemical group 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- SFPKXFFNQYDGAH-UHFFFAOYSA-N oxomolybdenum;tetrahydrochloride Chemical compound Cl.Cl.Cl.Cl.[Mo]=O SFPKXFFNQYDGAH-UHFFFAOYSA-N 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- NVTPMUHPCAUGCB-UHFFFAOYSA-N pentyl dihydrogen phosphate Chemical compound CCCCCOP(O)(O)=O NVTPMUHPCAUGCB-UHFFFAOYSA-N 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- XRBCRPZXSCBRTK-UHFFFAOYSA-N phosphonous acid Chemical class OPO XRBCRPZXSCBRTK-UHFFFAOYSA-N 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 150000003017 phosphorus Chemical class 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 235000007686 potassium Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- RULBIMANUJRGND-UHFFFAOYSA-N sulfanylidene-tris(tridecylsulfanyl)-$l^{5}-phosphane Chemical compound CCCCCCCCCCCCCSP(=S)(SCCCCCCCCCCCCC)SCCCCCCCCCCCCC RULBIMANUJRGND-UHFFFAOYSA-N 0.000 description 1
- PTISTKLWEJDJID-UHFFFAOYSA-N sulfanylidenemolybdenum Chemical class [Mo]=S PTISTKLWEJDJID-UHFFFAOYSA-N 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- JZALLXAUNPOCEU-UHFFFAOYSA-N tetradecylbenzene Chemical class CCCCCCCCCCCCCCC1=CC=CC=C1 JZALLXAUNPOCEU-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical class [H]S* 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- XTTGYFREQJCEML-UHFFFAOYSA-N tributyl phosphite Chemical compound CCCCOP(OCCCC)OCCCC XTTGYFREQJCEML-UHFFFAOYSA-N 0.000 description 1
- IELLVVGAXDLVSW-UHFFFAOYSA-N tricyclohexyl phosphate Chemical compound C1CCCCC1OP(OC1CCCCC1)(=O)OC1CCCCC1 IELLVVGAXDLVSW-UHFFFAOYSA-N 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- URRFGQHFJDWCFM-UHFFFAOYSA-N tris(2-butoxyethyl) phosphite Chemical compound CCCCOCCOP(OCCOCCCC)OCCOCCCC URRFGQHFJDWCFM-UHFFFAOYSA-N 0.000 description 1
- ITRFOBBKTCNNFN-UHFFFAOYSA-N tris(sulfanyl)-sulfanylidene-$l^{5}-phosphane Chemical compound SP(S)(S)=S ITRFOBBKTCNNFN-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M167/00—Lubricating compositions characterised by the additive being a mixture of a macromolecular compound, a non-macromolecular compound and a compound of unknown or incompletely defined constitution, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M137/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
- C10M137/12—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having a phosphorus-to-carbon bond
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/028—Overbased salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/102—Polyesters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/24—Emulsion properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/26—Waterproofing or water resistance
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
Definitions
- the present disclosure relates to lubricating oil compositions suitable for drivetrains used in marine applications. More particularly, the present invention relates to lubricating oil compositions which improve water tolerance in marine applications.
- Outboard motors are self-contained units that include an engine, a drivetrain, and a propeller, and are designed to be mounted at the rear of a water craft.
- Gear oils are commonly used to lubricate the drivetrains of marine engines, for example the gears of a two-cycle or four-cycle outboard marine engine, or the gears of an outdrive of the inboard/outboard marine drivetrain.
- Marine gear oils tend to lose certain performance characteristics and benefits over time in marine environments. Marine gear oils are particularly susceptible to performance deterioration due to the introduction of water into the marine drivetrain.
- lubricating oils suitable for use in marine gear applications, such as gears of outboard motors.
- lubricating oils described herein may be suitable for use in the gears of two-cycle or four-cycle outboard engines, or the gears of the outdrive of an inboard/outboard marine drivetrain.
- embodiments of the present disclosure may provide lubricating oils suitable for marine applications and having improvements in the following characteristics: antioxidancy, antiwear performance, rust inhibition, shear stability, water tolerance, air entrainment, extreme pressure, and foam reducing properties.
- a marine lubricant may comprise a major amount of a base oil, at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least on surfactant.
- the marine lubricant may further comprise a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm). based on the total weight of the lubricant, ranging from about 0.025 to about 1.5 (ppm/ppm).
- the marine lubricant may achieve a score of about 5 mL or less water separation in a water emulsion test.
- the at least one metal detergent may comprise an overbased calcium phenate.
- the at least one phosphorus-based wear preventative may comprise at least one zinc dihydrocarbyl dithiophosphate compound.
- the at least one surfactant agent may comprise a block or graft co-polymer of the general formula (A-COO) m B, where m in an integer of at least 2 and, A is a polymeric component having a molecular weight of at least 500 and is the residue of an oil-soluble complex mono-carboxylic acid of the general structural formula: in which R is hydrogen or a monovalent hydrocarbon or substituted hydrocarbon group, R 1 is hydrogen or a monovalent C 1 to C 24 hydrocarbon group, R 2 is a divalent C 1 to C 24 hydrocarbon group, n is zero or 1 and p is zero or an integer of up to 200; and B is a polymeric component having a molecular weight of at least 500 and, in the case where m is 2, is the divalent residue of a water-soluble polyalkylene glycol of the general formula: in which R 3 is hydrogen or a C 1 to C 3 alkyl group, q is an integer from 10 to 500, or, in the case where m is
- the marine lubricant may contain from about 200 to about 2000 ppm phosphorus from the zinc dihydrocarbyl dithiophosphate compound.
- the marine lubricant may contain from about 200 to 600 ppm phosphorus from the zinc dihydrocarbyl dithiophosphate compound.
- the marine lubricant may contain from about 10 ppm to about 800 ppm metal from the metal-containing detergent.
- the marine lubricant may further comprise at least one component selected from the group consisting of: an extreme pressure agent, an antiwear agent, a friction modifier, a dispersant, a defoamant, an antioxidant, a viscosity index improver, and a pour point depressant.
- a gear component of a marine engine may be lubricated with a marine lubricant as described herein.
- an additive composition suitable for use in a lubricant used in a marine environment may comprise: a) at least one metal-containing detergent; b) at least one phosphorus-based wear preventative; and c) at least one surfactant agent.
- the additive composition may further comprise a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm), based on total mass of the lubricant, ranging from about 0.025 to about 1.5 (ppm/ppm).
- the lubricant may achieve a score of about 5 mL or less water separation in a water emulsion test.
- the at least one metal detergent may comprise an overbased calcium phenate.
- the at least one phosphorus-based wear preventative may comprise at least one zinc dihydrocarbyl dithiophosphate compound.
- the at least one surfactant agent may comprise a block or graft co-polymer of the general formula (A-COO) m B, where m in an integer of at least 2 and, A is a polymeric component having a molecular weight of at least 500 and is the residue of an oil-soluble complex mono-carboxylic acid of the general structural formula: in which R is hydrogen or a monovalent hydrocarbon or substituted hydrocarbon group, R 1 is hydrogen or a monovalent C 1 to C 24 hydrocarbon group, R 2 is a divalent C 1 to C 24 hydrocarbon group, n is zero or 1 and p is zero or an integer of up to 200; and B is a polymeric component having a molecular weight of at least 500 and, in the case where m is 2, is the divalent residue of a water-soluble polyalkylene glycol of the general formula: in which R 3 is hydrogen or a C 1 to C 3 alkyl group, q is an integer from 10 to 500, or, in the case where m is
- the additive composition may further comprise at least one component selected from the group consisting of: an extreme pressure agent, an antiwear agent, a friction modifier, a dispersant, a defoamant, an antioxidant, a viscosity index improver, and a pour point depressant.
- a method for making a lubricant suitable for use in marine applications may comprise: adding to a major amount of a base oil, a minor amount of an additive composition,
- the additive composition may comprise at least one metal-containing detergent, and at least one phosphorus-based wear preventative, and at least one surfactant agent.
- the method for making a lubricant suitable for use in marine applications may further comprise adding to the major amount of a base oil, a minor amount of an additive composition wherein a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm), based on total mass of the lubricant, ranging from about 0.025 to about 1.5 (ppm/ppm).
- ppm alkali and/or alkaline earth metal content
- ppm phosphorus content
- the method for making a lubricant suitable for use in marine applications may further comprise adding to the major amount of a base oil, a minor amount of an additive composition wherein the lubricant achieves a score of about 5 mL or less water separation in a water emulsion test.
- the method for making a lubricant suitable for use in marine applications may further comprise adding to the major amount of a base oil, a minor amount of an additive composition, wherein said at least one surfactant agent comprises a block or graft co-polymer of the general formula (A-COO) m B, where m in an integer of at least 2 and, A is a polymeric component having a molecular weight of at least 500 and is the residue of an oil-soluble complex mono-carboxylic acid of the general structural formula: in which R is hydrogen or a monovalent hydrocarbon or substituted hydrocarbon group, R 1 is hydrogen or a monovalent C 1 to C 24 hydrocarbon group, R 2 is a divalent C 1 to C 24 hydrocarbon group, n is zero or 1 and p is zero or an integer of up to 200; and B is a polymeric component having a molecular weight of at least 500 and, in the case where m is 2, is the divalent residue of a water-soluble polyalkylene glycol of the general
- a method of lubricating a marine engine gear component may comprise adding to the marine gear component a marine lubricant comprising a major amount of a base oil, at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent, and then operating the engine.
- the method of lubricating a marine engine gear component may comprise adding to the marine gear component a marine lubricant further comprising a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm), based on total mass of the lubricant, ranging from about 0.025 to about 1.5.
- a marine lubricant further comprising a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm), based on total mass of the lubricant, ranging from about 0.025 to about 1.5.
- the method of lubricating a marine engine gear component may comprise adding to the marine gear component a marine lubricant wherein the lubricant achieves a score of about 5 mL or less water separation in a water emulsion test.
- a method for improving the water tolerance of a gear oil suitable for use in a marine application may comprise combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent.
- the method for improving the water tolerance of a gear oil suitable for use in a marine application may comprise combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent, wherein the ratio of alkali and/or alkaline earth metal to phosphorus (in ppm), based on the total weight of the lubricant, ranges from about 0.025 to about 1.5.
- the method for improving the water tolerance of a gear oil suitable for use in a marine application may comprise combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent, wherein the lubricant may achieve a score of about 5 mL or less water separation in a water emulsion test.
- a method for improving the extreme pressure properties of a gear oil suitable for use in a marine application may comprise combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent.
- the method for improving the extreme pressure properties of a gear oil suitable for use in a marine application may comprise combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent, wherein the ratio of alkali and/or alkaline earth metal to phosphorus (in ppm), based on the total weight of the lubricant, ranges from about 0.025 to about 1.5.
- the method for improving the extreme pressure properties of a gear oil suitable for use in a marine application may comprise combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent, wherein the lubricant may achieve a score of greater than about 350 kgf in an extreme pressure weld point test.
- the method for improving the extreme pressure properties of a gear oil suitable for use in a marine application may comprise combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent, wherein the lubricant may achieve a score of greater than about 375 kgf in an extreme pressure weld point test.
- a marine lubricant may comprise: a) a major amount of a base oil; b) an extreme pressure weld point improving effective amount of a phosphorus-based wear preventative; and c) wherein said marine lubricant achieves a four-ball extreme pressure weld point score of about 350 kgf or greater and a score of about 5 mL or less water separation in a water emulsion test.
- the marine lubricant may further comprise a metal-containing detergent.
- the marine lubricant may further comprise at least one surfactant agent.
- a marine lubricant may comprise a) a major amount of a base oil; b) a phosphorus-based wear preventative; and c) wherein said marine lubricant achieves a four-ball extreme pressure weld point score of about 350 kgf or greater, a passing L-42 score, and a score of about 5 mL or less water separation in a water emulsion test.
- oil composition As used herein, the terms "oil composition,” “lubrication composition,” “lubricating oil composition,” “lubricating oil,” “lubricant composition.” “lubricating composition.” “fully formulated lubricant composition,” and “lubricant” are considered synonymous, fully interchangeable terminology referring to the finished lubrication product comprising a major amount of a base oil plus a minor amount of an additive composition.
- additive package As used herein, the terms "additive package,' "additive concentrate,” and “additive composition” are considered synonymous, fully interchangeable terminology referring the portion of the lubricating composition excluding the major amount of base oil stock mixture.
- marine is intended to encompass any body of water including saltwater and/or fresh water environments.
- hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character.
- hydrocarbyl groups include:
- percent by weight means the percentage the recited component represents to the weight of the entire composition.
- oil-soluble or “dispersible” used herein do not necessarily indicate that the compounds or additives are soluble, dissolvable, miscible, or capable of being suspended in the oil in all proportions. These do mean, however, that they are, for instance, soluble or stably dispersible in oil to an extent sufficient to exert their intended effect in the environment in which the oil is employed. Moreover, the additional incorporation of other additives may also permit incorporation of higher levels of a particular additive, if desired.
- Marine lubricating oils of the present disclosure may be formulated by the addition of one or more additives, as described in detail below, to an appropriate base oil formulation.
- the additives may be combined with a base oil in the form of an additive package (or concentrate) or, alternatively, may be combined individually with a base oil.
- the fully formulated marine lubricant may exhibit improved performance properties, based on the additives added and their respective proportions.
- an additive composition may comprise at least one metal detergent and at least one phosphorus-based wear preventative.
- the additive composition may optionally include one or more of any of an emulsifier, a surfactant agent, an extreme pressure agent, an antiwear compound, a friction modifier, a dispersant, an anti-foam agent (also referred to as a "defoamant”), an antioxidant, a viscosity index improver, and a pour point depressant.
- Base oils suitable for use in formulating marine lubricant fluid compositions may be selected from any of the synthetic or natural oils or mixtures thereof.
- Natural oils may include animal oils and vegetable oils (e.g., castor oil, lard oil) as well as mineral lubricating oils such as liquid petroleum oils and solvent treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types. Oils derived from coal or shale may also be suitable.
- the base oil typically may have a viscosity of about 2 to about 15 cSt or, as a further example, about 2 to about 10 cSt at 100° C. Further, an oil derived from a gas-to-liquid process is also suitable.
- Suitable synthetic base oils may include alkyl esters of dicarboxylic acids, polyglycols and alcohols, poly-alpha-olefins, including polybutenes, alkyl benzenes, organic esters of phosphoric acids, and polysilicone oils.
- Synthetic oils include hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene isobutylene copolymers, etc.); po!y(1-hexenes), poly.(1-octenes), poly(1-decenes), etc.
- alkylbenzenes e.g., dodecylbenzenes, tetradecylbenzenes, di-nonylbenzenes, di-(2-ethylhexyl)benzenes, etc.
- polyphenyls e.g., biphenyls, terphenyl, alkylated polyphenyls, etc.
- Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc. constitute another class of known synthetic oils that may be used.
- Such oils are exemplified by the oils prepared through polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methyl-polyisopropylene glycol ether having an average molecular weight of about 1000, diphenyl ether of polyethylene glycol having a molecular weight of about 500-1000, diethyl ether of polypropylene glycol having a molecular weight of about 1000-1500, etc.) or mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C 3 -C 8 fatty acid esters, or the C 13 oxo-acid diester of tetraethylene glycol.
- esters of dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids, alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acids, alkenyl malonic acids, etc.
- alcohols e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol, etc.
- these esters include dibutyl adipate, di(2-ethylhexyl)sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecy
- Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylol propane, pentaerythritol, dipentaerythritol, tripentaerythritol, etc.
- the base oil used which may be used to make the transmission fluid compositions as described herein may be selected from any of the base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines.
- Such base oil groups are as follows: Base Oil Group 1 Sulfur (wt%) Saturates (wt%) Viscosity Index Group I >0.03 And/or ⁇ 90 80 to 120 Group II ⁇ 0.03 And ⁇ 90 80 to 120 Group III ⁇ 0.03 And ⁇ 90 ⁇ 120 Group IV all polyalphaolefins (PAOs) Group V all others not included in Groups I-IV 1 Groups I-III are mineral oil base stocks.
- the base oil may be a poly-alpha-olefin (PAO).
- PAO poly-alpha-olefin
- the poly-alpha-olefins are derived from monomers having from about 4 to about 30, or from about 4 to about 20, or from about 6 to about 16 carbon atoms.
- PAOs include those derived from octene, decene, mixtures thereof, and the like.
- PAOs may have a viscosity of from about 2 to about 15, or from about 3 to about 12, or from about 4 to about 8 cSt at 100° C.
- PAOs examples include 4 cSt at 100° C poly-alpha-olefins, 6 cSt at 100° C poly-alpha-olefins, and mixtures thereof. Mixtures of mineral oil with the foregoing poly-alpha-olefins may be used.
- the base oil may be an oil derived from Fischer-Tropsch synthesized hydrocarbons.
- Fischer-Tropsch synthesized hydrocarbons are made from synthesis gas containing H 2 and CO using a Fischer-Tropsch catalyst.
- Such hydrocarbons typically require further processing in order to be useful as the base oil.
- the hydrocarbons may be hydroisomerized using processes disclosed in U.S. Pat. Nos. 6,103.099 or 6,180,575 ; hydrocracked and hydroisomerized using processes disclosed in U.S. Pat. Nos. 4,943,672 or 6,096,940 ; dewaxed using processes disclosed in U.S. Pat. No. 5,882,505 ; or hydroisomerized and dewaxed using processes disclosed in U.S. Pat. Nos. 6,013,171 ; 6,080,301 ; or 6,165,949 .
- Unrefined, refined, and rerefined oils either natural or synthetic (as well as mixtures of two or more of any of these) of the type disclosed hereinabove can be used in the base oils.
- Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
- a shale oil obtained directly from retorting operations a petroleum oil obtained directly from primary distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil.
- Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties.
- Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques directed to removal of spent additives, contaminants, and oil breakdown products.
- the base oil may be combined with an additive composition as disclosed in embodiments herein to provide a marine lubricant fluid.
- the base oil may be present in the marine lubricant fluid in an amount from about 50 wt% to about 95 wt %.
- Embodiments of the present disclosure may also comprise at least one metal detergent.
- Detergents generally comprise a polar head with a long hydrophobic tail where the polar head comprises a metal salt of an acidic organic compound.
- the salts may contain a substantially stoichiometric amount of the metal, in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as measured by ASTM D2896) of from about 0 to less than about 150.
- TBN total base number
- Large amounts of a metal base may be included by reacting an excess of a metal compound such as an oxide or hydroxide with an acidic gas such as carbon dioxide.
- the resulting overbased detergent comprises micelles of neutralized detergent surrounding a core of inorganic metal base (e.g., hydrated carbonates).
- Such overbased detergents may have a TBN of about 150 or greater, such as from about 150 to about 450 or more.
- Detergents that may be suitable for use in the present embodiments include oil-soluble neutral or overbased sulfonates, phenates, sulfurized phenates, and salicylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium. More than one metal may be present, for example, both calcium and magnesium. Mixtures of calcium and/or magnesium with sodium may also be suitable.
- Suitable metal detergents may be neutral or overbased calcium or magnesium sulfonates having a TBN of from 20 to 450 TBN, neutral or overbased calcium or magnesium phenates or sulfurized phenates having a TBN of from 50 to 450, and neutral or overbased calcium or magnesium salicylates having a TBN of from 130 to 350. Mixtures of such salts may also be used.
- the metal-containing detergent may be present in a lubricating composition in an amount of from about 0.01 wt % to about 3 wt %. As a further example, the metal-containing detergent may be present in an amount of from about 0.02 wt % to about 1 wt %. The metal-containing detergent may be present in a lubricating composition in an amount sufficient to provide from about 10 to about 800 ppm alkali and/or alkaline earth metal. As a further example, the metal-containing detergent may be present in a lubricating composition in an amount sufficient to provide from about 12 to about 755 ppm alkali and/or alkaline earth metal.
- the phosphorus-based wear preventative may comprise a metal dihydrocarbyl dithiophosphate compound, such as but not limited to a zinc dihydrocarbyl dithiophosphate compound.
- Suitable metal dihydrocarbyl dithiophosphates may comprise dihydrocarbyl dithiophosphate metal salts wherein the metal may be an alkali or alkaline earth metal, or aluminum, lead, tin, molybdenum, manganese, nickel, copper, or zinc.
- Dihydrocarbyl dithiophosphate metal salts may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohol or a phenol with P 2 S 5 and then neutralizing the formed DDPA with a metal compound.
- DDPA dihydrocarbyl dithiophosphoric acid
- a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols.
- multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character.
- any basic or neutral metal compound could be used but the oxides, hydroxides and carbonates are most generally employed. Commercial additives frequently contain an excess of metal due to the use of an excess of the basic metal compound in the neutralization reaction.
- ZDDP zinc dihydrocarbyl dithiophosphates
- R and R' may be the same or different hydrocarbyl radicals containing from 1 to 18, for example 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl, and cycloaliphatic radicals.
- R and R' groups may be alkyl groups of 2 to 8 carbon atoms.
- the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl.
- the total number of carbon atoms (i.e., R and R') in the dithiophosphoric acid will generally be about 5 or greater.
- the zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates.
- Suitable components that may be utilized as the phosphorus-based wear preventative include any suitable organophosphorus compound, such as but not limited to, phosphates, thiophosphates, di-thiophosphates, phosphites, and salts thereof and phosphonates. Suitable examples are tricresyl phosphate (TCP), di-alkyl phosphite (e.g., dibutyl hydrogen phosphite), and amyl acid phosphate.
- TCP tricresyl phosphate
- di-alkyl phosphite e.g., dibutyl hydrogen phosphite
- amyl acid phosphate e.g., amyl acid phosphate.
- a phosphorylated succinimide such as a completed reaction product from a reaction between a hydrocarbyl substituted succinic acylating agent and a polyamine combined with a phosphorus source, such as inorganic or organic phosphorus acid or ester. Further, it may comprise compounds wherein the product may have amide, amidine, and/or salt linkages in addition to the imide linkage of the type that results from the reaction of a primary amino group and an anhydride moiety.
- Another suitable component is a 2-ethyl hexyl acid phosphate (2-EHAP).
- the phosphorus-based wear preventative may be present in a lubricating composition in an amount sufficient to provide from about 200 to about 2000 ppm phosphorus. As a further example, the phosphorus-based wear preventative may be present in a lubricating composition in an amount sufficient to provide from about 200 to about 600 ppm phosphorus.
- the phosphorus-based wear preventative may be present in a lubricating composition in an amount sufficient to provide a ratio of alkali and/or alkaline earth metal content (ppm) based on the total amount of alkali and/or alkaline earth metal in the lubricating composition to phosphorus content (ppm) based on the total amount of phosphorus in the lubricating composition of from about 0.025 to about 1.5 (ppm/ppm).
- Lubricating compositions and/or additive packages as described herein may comprise one or more emulsifying agents. Any suitable emulsifying agent may be used.
- An example of a series of suitable emulsifying agents is sold under the trade designation HYPERMER ® and is available from Uniqema or its affiliated company Croda. These emulsifiers are described in U.S. Pat. Nos. 4,504,276 ; 4,509,950 ; and 4,776,966 , herein incorporated by reference.
- Emulsifying agents are also known in the art by the term "surfactants", which terms are fully synonymous and interchangeable.
- the emulsifying agents sold under the trade designation HYPERMER ® are described as a block or graft co-polymer of the general formula (A-COO) m B, where m is an integer of at least 2 and, A is a polymeric component having a molecular weight of at least about 500 and is the residue of an oil-soluble complex mono-carboxylic acid of the general structural formula: in which R is hydrogen or a monovalent hydrocarbon or substituted hydrocarbon group, R 1 is hydrogen or a monovalent C 1 to C 24 hydrocarbon group, R 2 is a divalent C 1 to C 24 hydrocarbon group, n is zero or 1 and p is zero or an integer of up to about 200; and (b) B is a polymeric component having a molecular weight of at least about 500 and, in the case where m is 2, is the divalent residue of a water-soluble polyalkylene glycol of the general formula: In which R 3 is hydrogen or a C 1 to C 3 alkyl group, q is an integer from
- Additional HYPERMER emulsifiers include the reaction product of a polyalk(en)yl succinic anhydride with a polar compound containing In the molecule at least one hydroxyl or amino group.
- the preferred polyalk(en)yl succinic anhydride are poly (isobutenyl) succinic anhydrides having a molecular weight in the range of about 400 to about 5000.
- the preferred polar compound with which the anhydride is reacted may be a polyol such as ethylene glycol, propylene glycol, glycerol, trimethylol propane, pentaerythritol or sorbital; or with a polyamine, for example ethylene diamine, trimethylene diamine, hexamethylene diamine, dimethylaminopropylamine or diethylaminopropylamine or with a hydroxyamine for example monoethanolamine, diethanolamine, dipropanolamine, tris(hydroxymathyl)aminomethane or dimethylaminoethanol.
- a polyol such as ethylene glycol, propylene glycol, glycerol, trimethylol propane, pentaerythritol or sorbital
- a polyamine for example ethylene diamine, trimethylene diamine, hexamethylene diamine, dimethylaminopropylamine or diethylaminopropylamine or with a hydroxyamine for example
- Suitable emulsifiers may comprise molecules having repeating hydrophilic and hydrophobic units. They tend to occupy a stable position at the interface, producing emulsions of high stability and controllable droplet size. When positioned at the interface, the extensive interactions of the polymer ensure a superior colloidal stability against coagulation or coalescence.
- the hydrophilic portion of the molecule acts as an anchor group in the water phase and the hydrophobic polymeric chain portion penetrates into the oil providing a static stabilization barrier preventing strong interaction between droplets.
- the chemical structure of the polymeric chain required is determined by compatibility with the non-aqueous medium to be used.
- polymeric chain must have a molecular weight designed to the give optimum-size steric stabilization barrier.
- polymeric structures are suitable as sterically stabilizing surfactants. These include the following five basic structures: PEG alkyds with a fatty acid hydrophobe and polyethylene glycol hydrophile; long chain alkylene hydrophobe and polyethylene glycol hydrophile; polyhydroxy fatty acid hydrophobe and polyethylene glycol hydrophile; polymethacrylate hydrophobe and alkoxy polyethylene glycol hydrophile; and long-chain alkylene hydrophobe and anionic/nonionic (various) hydrophile.
- suitable surfactants include one of or combinations of one or more of: Hypermer ® B210, A70, B206, and B246.
- Hypermer B210 may be suitable for use with a mineral oil base oil and as a further example, a blend of B210 and another emulsifier may be suitable for use with synthetic base oils.
- a suitable surfactant may be one having an HLB (hydrophilic/lipophilic balance) of between about 3 to about 6.
- one or more extreme pressure agents may be included in the compositions.
- Extreme pressure agents may include a sulfur-containing compound.
- Suitable sulfur-containing extreme pressure additives include, but are not limited to, dihydrocarbyl polysulfides, sulfurized olefins, sulfurized fatty acid esters of both natural and synthetic origins, trithiones, sulfurized thienyl derivatives, sulfurized terpenes, sulfurized oligomers of C 2 -C 8 monoolefins, and sulfurized Dieis-Alder adducts such as those disclosed in reissue U.S. Pat. No. 27,331 , the disclosure of which is incorporated herein by reference.
- sulfurized polyisobutene sulfurized isobutylene, sulfurized triisobutene, dicyclohexyl polysulfide, diphenyl and dibenzyl polysulfide, di-tert-butyl polysulfide and dinonyl polysulfide, among others.
- Phosphorus-containing extreme pressure agents may also be used.
- metal salts of phosphorus acids and metat-free phosphorus compounds.
- the metal salts are the oil-soluble salts of a metal such as copper, cadmium, calcium, magnesium, and most notably, zinc.
- a suitable acidic compound of phosphorus such as a thiophosphoric acid, a dithiophosphoric acid, a trithiophosphoric acid, a tetrathiophosphoric acid or a complex acidic product formed by phosphosulfurizing a hydrocarbon such as one or more olefins or terpenes with a reactant such as phosphorus pentasulfide and hydrolyzing the resultant product.
- a suitable acidic compound of phosphorus such as a thiophosphoric acid, a dithiophosphoric acid, a trithiophosphoric acid, a tetrathiophosphoric acid or a complex acidic product formed by phosphosulfurizing a hydrocarbon such as one or more olefins or terpenes with a reactant such as phosphorus pentasulfide and hydrolyzing the resultant product.
- the oil-soluble metal-free phosphorus-containing extreme pressure agents are for the most part partially or fully esterified acids of phosphorus.
- Such compounds include for example phosphates, phosphites, phosphonates, phosphonites, and their various sulfur analogs.
- Examples include monohydrocarbyl phosphates, monohydrocarbyl phosphates, monohydrocarbyl mono-, di-, tri-, and tetrathiophosphites, monohydrocarbyl mono-, di-, tri-, and tetrathiophosphates, dihydrocarbyl phosphates, dihydrocarbyl phosphates, dihydrocarbyl mono-, di-, tri-, and tetrathiophosphites, dihydrocarbyl mono- di-, tri-, and tetrathiophosphates, trihydrocarbylphosphites, trihydrocarbylphosphates, trihydrocarbyl mono-, di-, tri-, and tetrathiophosphites, trihydrocarbyl mono-, di-, tri-, and tetrathiophosphates, trihydrocarbylphosphites, trihydrocarbylphosphates, trihydrocarbyl mono-
- a few specific examples of such compounds are tricresyl phosphate, tributyl phosphite, triphenyl phosphite, tri-(2-ethylhexyl) phosphate, dihexyl thiophosphite, diisooctyl butylphosphonate, tricyclohexyl phosphate, cresyl diphenyl phosphate, tris(2butoxyethyl) phosphite, diisapropyl dithiophosphate, tris(tridecyl)tetrathio-phosphate, bis(2-chloroethyl) phosphate, and like compounds.
- the sulfur-containing extreme pressure agent is at least one dimercaptothiadiazole or an oil-soluble derivative thereof.
- Such materials provide extreme pressure and/or antiwear properties to lubricating compositions described herein.
- Dimercaptothiadiazoles which may be used in the lubricating compositions include, but are not limited to, 2,5-dimercapto-1,3,4-thiadiazoles (DMTD) of the following formula: wherein R 1 and R 2 are selected from hydrogen and straight and branched chain alkyl groups having from 1 to 30 carbon atoms, and a and b are independently selected from integers ranging from 1 to 3.
- DMTD may be prepared by reacting one mole of hydrazine, or a hydrazine salt, with two moles of carbon disulfide in an alkaline medium, followed by acidification.
- Lubricating fluid compositions described herein may include DMTD or derivatives of DMTD as set forth in the foregoing formula.
- DMTD or derivatives of DMTD as set forth in the foregoing formula.
- U.S. Pat. Nos. 2,719.125 ; 2,719,126 ; and 3,087,937 describe the preparation of various 2,5-bis(hydrocarbon dithio)-1,3,4-thiadiazoles.
- the total amount of sulfur- and/or phosphorus-containing extreme pressure agent in the lubricating compositions described herein may range from about 0.01 to about 12.0 weight percent of the total lubricating composition, provided the active sulfur content of the lubricating composition may be greater than about 5,000 ppm.
- the active sulfur content of the lubricating composition may range from about 5,000 ppm to about 25,000 ppm, and as a further example, the active sulfur content of the lubricating composition may range from about 15,000 to about 25,000 ppm.
- a foam inhibitor may form another component suitable for use in the compositions.
- Foam inhibitors may be selected from silicones, polyacrylates, surfactants, and the like.
- One suitable acrylic defoamer material is PC-2544 available from Cytec Surface Specialties.
- the amount of antifoam agent in the marine gear oil fluid formulations described herein may range from about 0.01 wt% to about 0.5 wt% based on the total weight of the formulation.
- antifoam agent may be present in an amount from about 0.01 wt% to about 0.1 wt%.
- Suitable friction modifiers may comprise, but are not limited to, imidazolines, amides, amines, succinimides, alkoxylated amines, alkoxylated ether amines, amine oxides, amidoamines, nitriles, betaines, quaternary amines, imines, amine salts, amino guanadine, alkanolamides, phosphonates, metal-containing compounds, and the like.
- the friction modifier may contain one or more phosphonates having the formula: wherein R 1 is an alkyl or alkenyl group containing about 12 to about 30 carbon atoms and wherein R 2 and R 3 are each independently hydrogen, an alkyl, or an alkenyl group.
- suitable alkyl groups may include methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, isobutyl, or any combination thereof.
- R 1 is an alkyl or alkenyl group containing about 16 to about 20 carbon atoms.
- Examples of these phosphonates are dimethyl hexadecylphosphonate, dimethyl hexadecenylphosphonate, dimethyl octadecylphosphonate, dimethyl octadecenylphosphonate, dimethyl eicosylphosphonate, and the like.
- Suitable alkylphosphonate monoesters and processes for manufacturing the same are described in US 2004-0230068 and in US 4,108,889 , herein incorporated by reference.
- Suitable friction modifiers may contain hydrocarbyl groups that are selected from straight chain, branched chain, or aromatic hydrocarbyl groups or admixtures thereof, and may be saturated or unsaturated.
- the hydrocarbyl groups may be composed of carbon and hydrogen or hetero atoms such as sulfur or oxygen.
- the hydrocarbyl groups may range from about 12 to about 25 carbon atoms and may be saturated or unsaturated.
- Suitable friction modifiers includes amides of polyamines.
- Such compounds can have hydrocarbyl groups that are linear, either saturated or unsaturated, or a mixture thereof and may contain from about 12 to about 25 carbon atoms.
- suitable friction modifiers include alkoxylated amines and alkaxylated ether amines. Such compounds may have hydrocarbyl groups that are linear, either saturated, unsaturated, or a mixture thereof. They may contain from about 12 to about 25 carbon atoms. Examples include ethoxylated amines and ethoxylated ether amines.
- the amines and amides may be used as such or in the form of an adduct or reaction product with a boron compound such as a boric oxide, boron halide, metaborate, boric acid or a mono-, di- or tri-alkyl borate.
- a boron compound such as a boric oxide, boron halide, metaborate, boric acid or a mono-, di- or tri-alkyl borate.
- Suitable friction modifiers may comprise an organic, ashless (metal-free), nitrogen-free organic friction modifier.
- Such friction modifiers may include esters formed by reacting carboxylic acids and anhydrides with alkanols.
- Other useful friction modifiers generally include a polar terminal group (e.g. carboxyl or hydroxyl) covalently bonded to an oleophilic hydrocarbon chain. Esters of carboxylic acids and anhydrides with alkanols are described in U.S. 4,702,850 .
- Another example of an organic ashless nitrogen-free friction modifier is glycerol monooleate (GMO).
- GMO glycerol monooleate
- Other suitable friction modifiers are described in US 6,723,685 , herein incorporated by reference.
- Suitable friction modifiers may comprise one or more molybdenum compounds.
- the molybdenum compound may comprise an organo-molybdenum compound.
- the molybdenum compound may comprise, but is not limited to, one or more of a molybdenum dialkyldithiocarbamate, a molybdenum dialkyldithiophosphate, a molybdenum dialkyldithiophosphinate, a molybdenum xanthate, a molybdenum thioxanthate, and mixtures thereof.
- the molybdenum compound may be mono-, di-, tri- or tetra-nuclear.
- the molybdenum compound may be an organo-molybdenum compound.
- the molybdenum compound may be selected from the group consisting of molybdenum dithiocarbamates (MoDTC), molybdenum dithiophosphates, molybdenum dithiophosphinates, molybdenum xanthates, molybdenum thioxanthates, molybdenum sulfides, a trinuclear organo-molybdenum compound and mixtures thereof.
- MoDTC molybdenum dithiocarbamates
- MoDTC molybdenum dithiophosphates
- molybdenum dithiophosphinates molybdenum xanthates
- molybdenum thioxanthates molybdenum sulfides
- the molybdenum compound may be an acidic molybdenum compound. Included are molybdic acid, ammonium molybdate, sodium molybdate, potassium molybdate, and other alkaline metal molybdates and other molybdenum salts, e.g., hydrogen sodium molybdate, MoOCl 4 , Mo0 2 Br 2 , Mo 2 O 3 Cl 8 , molybdenum trioxide or similar acidic molybdenum compounds.
- the compositions can be provided with molybdenum by molybdenum/sulfur complexes of basic nitrogen compounds as described, for example, in U.S. Pat. Nos.
- molybdenum compounds useful in the present compositions are organo-molybdenum compounds of the formulae: Mo(ROCS 2 ) 4 and Mo(RSCS 2 ) 4 , wherein R is an organo group selected from the group consisting of alkyl, aryl, aralkyl, and alkoxyalkyl, generally of from 1 to 30 carbon atoms, and preferably 2 to 12 carbon atoms and most preferably alkyl of 2 to 12 carbon atoms.
- R is an organo group selected from the group consisting of alkyl, aryl, aralkyl, and alkoxyalkyl, generally of from 1 to 30 carbon atoms, and preferably 2 to 12 carbon atoms and most preferably alkyl of 2 to 12 carbon atoms.
- R is an organo group selected from the group consisting of alkyl, aryl, aralkyl, and alkoxyalkyl, generally of from 1 to 30 carbon atoms, and preferably 2 to 12 carbon atoms and most
- Suitable molybdenum dithiocarbamates may be represented by the formula: where R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom, a C 1 to C 20 alkyl group, a C 6 to C 20 cycloalkyl, aryl, alkylaryl, or aralkyl group, or a C 3 to C 20 hydrocarbyl group containing an ester, ether, alcohol, or carboxyl group; and X 1 , X 2 , Y 1 , and Y 2 each independently represent a sulfur or oxygen atom.
- R 1 , R 2 , R 3 , and R 4 examples include 2-ethylhexyl, nonylphenyl, methyl, ethyl, n-propyl, iso-propyl, n-butyl, t-butyl, n-hexyl, n-octyl, nonyl, decyl, dodecyl, tridecyl, lauryl, oleyl, linoleyl, cyclohexyl and phenylmethyl, R 1 to R 4 may each have C 6 to C 18 alkyl groups.
- X 1 and X 2 may be the same, and Y 1 and Y 2 may be the same.
- X 1 and X 2 may both comprise sulfur atoms, and Y 1 and Y 2 may both comprise oxygen atoms.
- molybdenum dithiocarbamates include C 6 - C 18 dialkyl or diaryldithiocarbamates, or alkyl-aryldithiocarbamates such as dibutyl-, diamyl-di-(2-ethylhexyl)-, dilauryl-, dioleyl-, and dicyclohexyl-dithiocarbamate.
- organo-molybdenum compounds are trinuclear molybdenum compounds, such as those of the formula Mo 3 S k L n Q z and mixtures thereof, wherein L represents independently selected ligands having organo groups with a sufficient number of carbon atoms to render the compound soluble or dispersible in the oil, n is from 1 to 4, k varies from 4 through 7, Q is selected from the group of neutral electron donating compounds such as water, amines, alcohols, phosphines, and ethers, and z ranges from 0 to 5 and includes non-stoichiometric values.
- L represents independently selected ligands having organo groups with a sufficient number of carbon atoms to render the compound soluble or dispersible in the oil
- n is from 1 to 4
- k varies from 4 through 7
- Q is selected from the group of neutral electron donating compounds such as water, amines, alcohols, phosphines, and ethers
- z ranges from
- At least 21 total carbon atoms may be present among all the ligands' organo groups, such as at least 25, at least 30, or at least 35 carbon atoms. Additional suitable molybdenum compounds are described in US 6,723,685 , herein incorporated by reference.
- the molybdenum compound may be present in a fully formulated marine lubricant in an amount to provide about 10 ppm to 200 ppm molybdenum. As a further example, the molybdenum compound may be present in an amount to provide about 75 to 125 ppm molybdenum.
- Additives used in formulating the compositions described herein may be blended into the base oil individually or in various sub-combinations. However, it may be suitable to blend all of the components concurrently using an additive concentrate (i.e., additives plus a diluent, such as a hydrocarbon solvent).
- an additive concentrate i.e., additives plus a diluent, such as a hydrocarbon solvent.
- the use of an additive concentrate may take advantage of the mutual compatibility afforded by the combination of ingredients when in the form of an additive concentrate. Also, the use of a concentrate may reduce blending time and may lessen the possibility of blending errors.
- the present disclosure provides novel lubricating oil blends specifically formulated for use in the gears of two-cycle or four-cycle outboard engines or the gears of an outdrive of an inboard/outboard marine drivetrain.
- Embodiments of the present disclosure may provide lubricating oils suitable for marine applications and having improvements in the following characteristics: antioxidancy, antiwear performance, rust inhibition, shear stability, water tolerance, air entrainment, and foam reducing properties.
- Lubricants according to the present disclosure may be suitable for use as marine gear oils. Further, the present lubricants may be suitable for lubricating various gear components of a marine engine, including, but not limited to, rotating driveshafts, universal joints or equivalent, a bevel gear set with both forward and reverse gears and driving pinion, a bevel gearset with only one pair of gears, a dog clutch used to select forward or reverse gear, and bearings that support radial and thrust loads from these components.
- a test for emulsification was performed to evaluate satisfactory emulsification properties.
- a quantity of a test fluid and a quantity of one of distilled water, seawater, or synthetic seawater is combined and mechanically mixed in a graduated cylinder and held at a constant temperature, such as a temperature within the range of from about 30 °C to about 90 °C, for 24 hours ⁇ 10 minutes.
- the graduated cylinder is then observed and measurements recorded of the volume of sample fluid, water, and emulsion layers present. If no water layer is present after about 24 hours, the sample fluid receives a score of 0 (zero), indicating complete emulsion after about 24 hours. If three mL of water has visibly separated then the sample fluid would receive a score of three (3) indicating that the fluid had failed to emulsify three mL of water.
- test fluid sample and water emulsion was evaluated for the quantity of test fluid, water, and emulsion present.
- the maximum emulsion present was 80 mL.
- the maximum water present was 20 mL.
- a test fluid that provided no emulsibility would be observed to have 60 mL test fluid separation, 20 mL water separation, and zero mL emulsion separation.
- a test fluid that maintained the emulsion would have 80 mL emulsion, zero mL test fluid separation, and zero mL water separation.
- a satisfactory score on the Emulsion Test has less than about 5 mL of water separation.
- a satisfactory score on the Emulsion Test has less than about 1 mL of water separation.
- a satisfactory score on the Emulsion Test has about 0 mL of water separation.
- test fluids and commercial fluids were subjected to a Four-Ball extreme pressure weld point test which was performed according to ASTM 2783, except the load intervals were diminished to 10 kgf to obtain more accurate values of the fluid performance.
- This test measures the ability of the lubricant to prevent the welding of a steel ball to three other steel balls under extremely high pressures. It is a simple test, commonly available in the lubrication industry. Higher extreme pressure weld points are desirable. For example, values below 200 kgf would indicate insufficient EP protection.
- Test Fluid Sample A and Comparative Examples H, t, and K were tested for anti-scoring properties under high speed and shock conditions using a DANA model 44 hypoid rear axle by the L-42 Axle Shock Test method described in ASTM publication STP 512A (available at the ASTM International Test Monitoring website: http://www.astmimc.cmu.edu/).
- Test results, in Table I are based on the scored area of the pinion and ring gears and a pass/fail grade is provided based on comparison to a reference oil formulation. The pass/fail criteria requires that there be less quantity of scoring on the ring and pinion gears than on the associated pass reference oil test.
- inventive test fluids were prepared and tested in the Emulsion test and the Four-Ball EP Weld Point Test. Further, five comparative test fluids, which are commercially available gear oils, were also tested in the Emulsion test and the Four-Ball EP Weld Point Test.
- Each inventive test fluid comprised the following base fluid: a surfactant, a sulfur-containing extreme pressure agent, a phosphorus-containing antiwear compound, a ZDDP antiwear compound, a molybdenum-containing friction modifier, an oil-soluble phosphonate friction modifier, at least one dispersant, at least one anti-foam agent, an antioxidant, at least one viscosity index improver, at least one pour point depressant, and a major amount of at least one base oil.
- base fluid a surfactant, a sulfur-containing extreme pressure agent, a phosphorus-containing antiwear compound, a ZDDP antiwear compound, a molybdenum-containing friction modifier, an oil-soluble phosphonate friction modifier, at least one
- the surfactant used comprised a HYPERMER ® B210 surfactant available from Uniqema or its affiliated company Croda.
- the additive composition of the base fluid for the following examples was held constant for each test fluid, except that levels of metal-containing detergent were varied for each inventive test fluid. The fluids tested and results are described below.
- Test fluid sample A is an inventive test fluid that comprised about 0.022 wt% metal-containing detergent, about 28 total ppm alkali and/or alkali earth metal, and about 494 ppm phosphorus.
- the fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0.06 ppm/ppm.
- the fluid had a passing emulsification test result because it had 0 mL water separation and 80 mL emulsification.
- the fluid had a Four-Ball EP weld point at about 390 kgf and passed the L-42 shock test.
- Test fluid sample B is an inventive test fluid that comprised about 0.044 wt% metal-containing detergent, about 54 total ppm alkali and/or alkali earth metal, and about 495 ppm phosphorus.
- the fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0.11 ppm/ppm.
- the fluid had a passing emulsification test result because it had 0 mL water separation and 80 mL emulsification.
- the fluid had a Four-Ball EP weld point at about 390 kgf.
- Test fluid sample C is an inventive test fluid that comprised about 0.088 wt% metal-containing detergent, about 87 total ppm alkali and/or alkali earth metal, and about 495 ppm phosphorus.
- the fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0.18 ppm/ppm.
- the fluid had a passing emulsification test result because it had 0 mL water separation and 80 mL emulsification.
- the fluid had a Four-Ball EP weld point at about 380 kgf.
- Test fluid sample D is an inventive test fluid that comprised about 0.176 wt% metal-containing detergent, about 167 total ppm alkali and/or alkali earth metal, and about 499 ppm phosphorus.
- the fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0.33 ppm/ppm.
- the fluid had a passing emulsification test result because it had 0 mL water separation and 80 mL emulsification.
- the fluid had a Four-Ball EP weld point at about 380 kgf.
- Test fluid sample E is an inventive test fluid that comprised about 0.352 wt% metal-containing detergent, about 313 total ppm alkali and/or alkali earth metal, and about 502 ppm phosphorus.
- the fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0.62 ppm/ppm.
- the fluid had a passing emulsification test result because it had 0 mL water separation and 80 mL emulsification.
- the fluid had a Four-Ball EP weld point at about 400 kgf.
- Test fluid sample F is an inventive test fluid that comprised about 0.704 wt% metal-containing detergent, about 631 total ppm alkali and/or alkali earth metal, and about 499 ppm phosphorus.
- the fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 1.26 ppm/ppm.
- the fluid had a passing emulsification test result because it had 0 mL water separation and 80 mL emulsification.
- the fluid had a Four-Ball EP weld point at about 400 kgf.
- Test fluid comparative sample G is a commercially available 80W90 grade fluid that comprised about 5 total ppm alkali and/or alkali earth metal and about 364 ppm phosphorus.
- the fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0.01 ppm/ppm.
- the fluid had a failing emulsification test result because it had 20 mL water separation and 0 mL emulsification.
- the fluid had a Four-Ball EP weld point at about 230 kgf.
- Test fluid comparative sample H is a commercially available 85 grade fluid that comprised about 2612 total ppm alkali and/or alkali earth metal and about 332 ppm phosphorus.
- the fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 7.87 ppm/ppm.
- the fluid had a failing emulsification test result because it had 20 mL water separation and 0 mL emulsification.
- the fluid had a Four-Ball EP weld point at about 315 kgf and failed the L-42 shock test.
- Test fluid comparative sample I is a commercially available 75W90 synthetic fluid that comprised about 1 total ppm alkali and/or alkali earth metal and about 939 ppm phosphorus.
- the fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0 ppm/ppm.
- the fluid had a failing emulsification test result because it had 20 mL water separation and 0 mL emulsification.
- the fluid had a Four-Ball EP weld point at about 290 kgf and passed the L-42 shock test.
- Test fluid comparative sample J is a commercially available 80W90 grade fluid that comprised about 2 total ppm alkali and/or alkali earth metal and about 940 ppm phosphorus.
- the fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0 ppm/ppm.
- the fluid had a passing emulsification test result because it had about 0 mL water separation and 80 mL emulsification.
- the fluid had a Four-Ball EP weld point at about 290 kgf.
- Test fluid comparative sample K is a commercially available 80W90 grade fluid that comprised about 25 total ppm alkali and/or alkali earth metal and about 859 ppm phosphorus.
- the fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0.03 ppm/ppm.
- the fluid had a passing emulsification test result because it had about 0 mL water separation and about 80 mL emulsification.
- the fluid had a Four-Ball EP weld point at about 315 kgf and failed the L-42 shock test.
- test fluid samples A-F which have an alkali and/or alkali earth metal to phosphorus ratio ranging from about 0.06 to about 1.26 all passed the emulsification test. Further, not only did these samples provide passing emulsion test results, they are capable of achieving superior weld point test results compared to the comparative test fluids.
- the test fluid samples A-F provide weld point test results greater than about 3513 kgf. Further, surprisingly, the test fluid samples A-F provide weld point test results greater than about 375 kgf. None of the comparative samples were able to provide such superior extreme pressure weld points.
- inventive test fluid Sample A was able to simultaneously pass an L-42 shock test and the water emulsification test.
- each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
Description
- The present disclosure relates to lubricating oil compositions suitable for drivetrains used in marine applications. More particularly, the present invention relates to lubricating oil compositions which improve water tolerance in marine applications.
- Outboard motors are self-contained units that include an engine, a drivetrain, and a propeller, and are designed to be mounted at the rear of a water craft. Gear oils are commonly used to lubricate the drivetrains of marine engines, for example the gears of a two-cycle or four-cycle outboard marine engine, or the gears of an outdrive of the inboard/outboard marine drivetrain. Marine gear oils tend to lose certain performance characteristics and benefits over time in marine environments. Marine gear oils are particularly susceptible to performance deterioration due to the introduction of water into the marine drivetrain. Normally water separates from oil, and in an engine or drivetrain, should this occur, the water will induce corrosion and lead to the hydrolysis of certain lubricant additives leading to acidic byproducts that attack the engine or drivetrain further. The present invention has addressed this problem by creating a wear resistant marine lubricant that is also capable of emulsifying water.
- The present disclosure provides novel lubricating oils suitable for use in marine gear applications, such as gears of outboard motors. As an example, lubricating oils described herein may be suitable for use in the gears of two-cycle or four-cycle outboard engines, or the gears of the outdrive of an inboard/outboard marine drivetrain. Further, embodiments of the present disclosure may provide lubricating oils suitable for marine applications and having improvements in the following characteristics: antioxidancy, antiwear performance, rust inhibition, shear stability, water tolerance, air entrainment, extreme pressure, and foam reducing properties.
- In an embodiment, a marine lubricant may comprise a major amount of a base oil, at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least on surfactant.
- In some embodiments, the marine lubricant may further comprise a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm). based on the total weight of the lubricant, ranging from about 0.025 to about 1.5 (ppm/ppm).
- In some embodiments, the marine lubricant may achieve a score of about 5 mL or less water separation in a water emulsion test.
- In some embodiments, the at least one metal detergent may comprise an overbased calcium phenate.
- In some embodiments, the at least one phosphorus-based wear preventative may comprise at least one zinc dihydrocarbyl dithiophosphate compound.
- In some embodiments, the at least one surfactant agent may comprise a block or graft co-polymer of the general formula (A-COO)mB, where m in an integer of at least 2 and, A is a polymeric component having a molecular weight of at least 500 and is the residue of an oil-soluble complex mono-carboxylic acid of the general structural formula:
- In some embodiments, the marine lubricant may contain from about 200 to about 2000 ppm phosphorus from the zinc dihydrocarbyl dithiophosphate compound.
- In some embodiments, the marine lubricant may contain from about 200 to 600 ppm phosphorus from the zinc dihydrocarbyl dithiophosphate compound.
- In some embodiments, the marine lubricant may contain from about 10 ppm to about 800 ppm metal from the metal-containing detergent.
- In some embodiments, the marine lubricant may further comprise at least one component selected from the group consisting of: an extreme pressure agent, an antiwear agent, a friction modifier, a dispersant, a defoamant, an antioxidant, a viscosity index improver, and a pour point depressant.
- In an embodiment, a gear component of a marine engine may be lubricated with a marine lubricant as described herein.
- In another embodiment, an additive composition suitable for use in a lubricant used in a marine environment may comprise: a) at least one metal-containing detergent; b) at least one phosphorus-based wear preventative; and c) at least one surfactant agent.
- In some embodiments, the additive composition may further comprise a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm), based on total mass of the lubricant, ranging from about 0.025 to about 1.5 (ppm/ppm).
- In some embodiments, the lubricant may achieve a score of about 5 mL or less water separation in a water emulsion test.
- In some embodiments, the at least one metal detergent may comprise an overbased calcium phenate.
- In some embodiments, the at least one phosphorus-based wear preventative may comprise at least one zinc dihydrocarbyl dithiophosphate compound.
- In some embodiments, the at least one surfactant agent may comprise a block or graft co-polymer of the general formula (A-COO)mB, where m in an integer of at least 2 and, A is a polymeric component having a molecular weight of at least 500 and is the residue of an oil-soluble complex mono-carboxylic acid of the general structural formula:
- In some embodiments, the additive composition may further comprise at least one component selected from the group consisting of: an extreme pressure agent, an antiwear agent, a friction modifier, a dispersant, a defoamant, an antioxidant, a viscosity index improver, and a pour point depressant.
- In another embodiment, a method for making a lubricant suitable for use in marine applications may comprise: adding to a major amount of a base oil, a minor amount of an additive composition, The additive composition may comprise at least one metal-containing detergent, and at least one phosphorus-based wear preventative, and at least one surfactant agent.
- In some embodiments, the method for making a lubricant suitable for use in marine applications may further comprise adding to the major amount of a base oil, a minor amount of an additive composition wherein a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm), based on total mass of the lubricant, ranging from about 0.025 to about 1.5 (ppm/ppm).
- In some embodiments, the method for making a lubricant suitable for use in marine applications may further comprise adding to the major amount of a base oil, a minor amount of an additive composition wherein the lubricant achieves a score of about 5 mL or less water separation in a water emulsion test.
- In some embodiments, the method for making a lubricant suitable for use in marine applications may further comprise adding to the major amount of a base oil, a minor amount of an additive composition, wherein said at least one surfactant agent comprises a block or graft co-polymer of the general formula (A-COO)mB, where m in an integer of at least 2 and, A is a polymeric component having a molecular weight of at least 500 and is the residue of an oil-soluble complex mono-carboxylic acid of the general structural formula:
- In another embodiment, a method of lubricating a marine engine gear component may comprise adding to the marine gear component a marine lubricant comprising a major amount of a base oil, at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent, and then operating the engine.
- In some embodiments, the method of lubricating a marine engine gear component may comprise adding to the marine gear component a marine lubricant further comprising a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm), based on total mass of the lubricant, ranging from about 0.025 to about 1.5.
- In some embodiments, the method of lubricating a marine engine gear component may comprise adding to the marine gear component a marine lubricant wherein the lubricant achieves a score of about 5 mL or less water separation in a water emulsion test.
- In another embodiment, a method for improving the water tolerance of a gear oil suitable for use in a marine application may comprise combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent.
- In some embodiments, the method for improving the water tolerance of a gear oil suitable for use in a marine application may comprise combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent, wherein the ratio of alkali and/or alkaline earth metal to phosphorus (in ppm), based on the total weight of the lubricant, ranges from about 0.025 to about 1.5.
- In some embodiments, the method for improving the water tolerance of a gear oil suitable for use in a marine application may comprise combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent, wherein the lubricant may achieve a score of about 5 mL or less water separation in a water emulsion test.
- In another embodiment, a method for improving the extreme pressure properties of a gear oil suitable for use in a marine application may comprise combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent.
- In some embodiments, the method for improving the extreme pressure properties of a gear oil suitable for use in a marine application may comprise combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent, wherein the ratio of alkali and/or alkaline earth metal to phosphorus (in ppm), based on the total weight of the lubricant, ranges from about 0.025 to about 1.5.
- In some embodiments, the method for improving the extreme pressure properties of a gear oil suitable for use in a marine application may comprise combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent, wherein the lubricant may achieve a score of greater than about 350 kgf in an extreme pressure weld point test.
- In some embodiments, the method for improving the extreme pressure properties of a gear oil suitable for use in a marine application may comprise combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent, wherein the lubricant may achieve a score of greater than about 375 kgf in an extreme pressure weld point test.
- In another embodiment, a marine lubricant may comprise: a) a major amount of a base oil; b) an extreme pressure weld point improving effective amount of a phosphorus-based wear preventative; and c) wherein said marine lubricant achieves a four-ball extreme pressure weld point score of about 350 kgf or greater and a score of about 5 mL or less water separation in a water emulsion test.
- In some embodiments, the marine lubricant may further comprise a metal-containing detergent.
- In some embodiments, the marine lubricant may further comprise at least one surfactant agent.
- In another embodiment, a marine lubricant may comprise a) a major amount of a base oil; b) a phosphorus-based wear preventative; and c) wherein said marine lubricant achieves a four-ball extreme pressure weld point score of about 350 kgf or greater, a passing L-42 score, and a score of about 5 mL or less water separation in a water emulsion test.
- The following definitions of terms are provided in order to clarify the meanings of certain terms as used herein.
- As used herein, the terms "oil composition," "lubrication composition," "lubricating oil composition," "lubricating oil," "lubricant composition." "lubricating composition." "fully formulated lubricant composition," and "lubricant" are considered synonymous, fully interchangeable terminology referring to the finished lubrication product comprising a major amount of a base oil plus a minor amount of an additive composition.
- As used herein, the terms "additive package,' "additive concentrate," and "additive composition" are considered synonymous, fully interchangeable terminology referring the portion of the lubricating composition excluding the major amount of base oil stock mixture.
- As used herein, the term "marine" is intended to encompass any body of water including saltwater and/or fresh water environments.
- As used herein, the term "hydrocarbyl substituent" or "hydrocarbyl group" is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character. Examples of hydrocarbyl groups include:
- (1) hydrocarbon substituents, that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form an alicyclic radical);
- (2) substituted hydrocarbon substituents, that is, substituents containing non-hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy);
- (3) hetero substituents, that is, substituents which, while having a predominantly hydrocarbon character, in the context of this invention, contain other than carbon in a ring or chain otherwise composed of carbon atoms. Heteroatoms include sulfur, oxygen, nitrogen, and encompass substituents such as pyridyl, furyl, thienyl, and imidazolyl. In general, no more than two, for example, no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituents in the hydrocarbyl group.
- As used herein, the term "percent by weight", unless expressly stated otherwise, means the percentage the recited component represents to the weight of the entire composition.
- The terms "oil-soluble" or "dispersible" used herein do not necessarily indicate that the compounds or additives are soluble, dissolvable, miscible, or capable of being suspended in the oil in all proportions. These do mean, however, that they are, for instance, soluble or stably dispersible in oil to an extent sufficient to exert their intended effect in the environment in which the oil is employed. Moreover, the additional incorporation of other additives may also permit incorporation of higher levels of a particular additive, if desired.
- Marine lubricating oils of the present disclosure may be formulated by the addition of one or more additives, as described in detail below, to an appropriate base oil formulation. The additives may be combined with a base oil in the form of an additive package (or concentrate) or, alternatively, may be combined individually with a base oil. The fully formulated marine lubricant may exhibit improved performance properties, based on the additives added and their respective proportions.
- Additional objects and advantages of the disclosure will be set forth in part in the description which follows, and/or can be learned by practice of the disclosure. The objects and advantages of the disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the disclosure, as claimed.
- The present disclosure will now be described in the more limited aspects of embodiments thereof, including various examples of the formuiation and use of the present disclosure. It will be understood that these embodiments are presented solely for the purpose of illustrating the invention and shall not be considered as a limitation upon the scope thereof.
- The environment and hardware configuration of a marine engine creates an undesirable condition where water may enter and become entrapped within the engine. Normally water separates from oil, and in the engine should this occur the water may induce corrosion of ferrous materials, as well as potential hydrolysis of additives leading to acidic byproducts that could attack the materials. So, to provide exceptional utility in this application it may be desirable for a marine lubricant oil to emulsify water. Lubricant compositions and/or additive compositions prepared according to embodiments disclosed herein may provide such benefits.
- in one embodiment of the present disclosure, an additive composition may comprise at least one metal detergent and at least one phosphorus-based wear preventative. The additive composition may optionally include one or more of any of an emulsifier, a surfactant agent, an extreme pressure agent, an antiwear compound, a friction modifier, a dispersant, an anti-foam agent (also referred to as a "defoamant"), an antioxidant, a viscosity index improver, and a pour point depressant.
- Base oils suitable for use in formulating marine lubricant fluid compositions may be selected from any of the synthetic or natural oils or mixtures thereof. Natural oils may include animal oils and vegetable oils (e.g., castor oil, lard oil) as well as mineral lubricating oils such as liquid petroleum oils and solvent treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types. Oils derived from coal or shale may also be suitable. The base oil typically may have a viscosity of about 2 to about 15 cSt or, as a further example, about 2 to about 10 cSt at 100° C. Further, an oil derived from a gas-to-liquid process is also suitable.
- Suitable synthetic base oils may include alkyl esters of dicarboxylic acids, polyglycols and alcohols, poly-alpha-olefins, including polybutenes, alkyl benzenes, organic esters of phosphoric acids, and polysilicone oils. Synthetic oils include hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene isobutylene copolymers, etc.); po!y(1-hexenes), poly.(1-octenes), poly(1-decenes), etc. and mixtures thereof; alkylbenzenes (e.g., dodecylbenzenes, tetradecylbenzenes, di-nonylbenzenes, di-(2-ethylhexyl)benzenes, etc.); polyphenyls (e.g., biphenyls, terphenyl, alkylated polyphenyls, etc.); alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogs and homologs thereof and the like.
- Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc., constitute another class of known synthetic oils that may be used. Such oils are exemplified by the oils prepared through polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methyl-polyisopropylene glycol ether having an average molecular weight of about 1000, diphenyl ether of polyethylene glycol having a molecular weight of about 500-1000, diethyl ether of polypropylene glycol having a molecular weight of about 1000-1500, etc.) or mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C3-C8 fatty acid esters, or the C13 oxo-acid diester of tetraethylene glycol.
- Another class of synthetic oils that may be used includes the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids, alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acids, alkenyl malonic acids, etc.) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol, etc.) Specific examples of these esters include dibutyl adipate, di(2-ethylhexyl)sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid and the like.
- Esters useful as synthetic oils also include those made from C5 to C12 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylol propane, pentaerythritol, dipentaerythritol, tripentaerythritol, etc.
- Hence, the base oil used which may be used to make the transmission fluid compositions as described herein may be selected from any of the base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines. Such base oil groups are as follows:
Base Oil Group1 Sulfur (wt%) Saturates (wt%) Viscosity Index Group I >0.03 And/or <90 80 to 120 Group II ≤0.03 And ≥90 80 to 120 Group III ≤0.03 And ≥90 ≥ 120 Group IV all polyalphaolefins (PAOs) Group V all others not included in Groups I-IV 1Groups I-III are mineral oil base stocks. - As set forth above, the base oil may be a poly-alpha-olefin (PAO). Typically, the poly-alpha-olefins are derived from monomers having from about 4 to about 30, or from about 4 to about 20, or from about 6 to about 16 carbon atoms. Examples of useful PAOs include those derived from octene, decene, mixtures thereof, and the like. PAOs may have a viscosity of from about 2 to about 15, or from about 3 to about 12, or from about 4 to about 8 cSt at 100° C. Examples of PAOs include 4 cSt at 100° C poly-alpha-olefins, 6 cSt at 100° C poly-alpha-olefins, and mixtures thereof. Mixtures of mineral oil with the foregoing poly-alpha-olefins may be used.
- The base oil may be an oil derived from Fischer-Tropsch synthesized hydrocarbons. Fischer-Tropsch synthesized hydrocarbons are made from synthesis gas containing H2 and CO using a Fischer-Tropsch catalyst. Such hydrocarbons typically require further processing in order to be useful as the base oil. For example, the hydrocarbons may be hydroisomerized using processes disclosed in
U.S. Pat. Nos. 6,103.099 or6,180,575 ; hydrocracked and hydroisomerized using processes disclosed inU.S. Pat. Nos. 4,943,672 or6,096,940 ; dewaxed using processes disclosed inU.S. Pat. No. 5,882,505 ; or hydroisomerized and dewaxed using processes disclosed inU.S. Pat. Nos. 6,013,171 ;6,080,301 ; or6,165,949 . - Unrefined, refined, and rerefined oils, either natural or synthetic (as well as mixtures of two or more of any of these) of the type disclosed hereinabove can be used in the base oils. Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment. For example, a shale oil obtained directly from retorting operations, a petroleum oil obtained directly from primary distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil. Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques are known to those skilled in the art such as solvent extraction, secondary distillation, acid or base extraction, filtration, percolation, etc. Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques directed to removal of spent additives, contaminants, and oil breakdown products.
- The base oil may be combined with an additive composition as disclosed in embodiments herein to provide a marine lubricant fluid. The base oil may be present in the marine lubricant fluid in an amount from about 50 wt% to about 95 wt %.
- Embodiments of the present disclosure may also comprise at least one metal detergent. Detergents generally comprise a polar head with a long hydrophobic tail where the polar head comprises a metal salt of an acidic organic compound. The salts may contain a substantially stoichiometric amount of the metal, in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as measured by ASTM D2896) of from about 0 to less than about 150. Large amounts of a metal base may be included by reacting an excess of a metal compound such as an oxide or hydroxide with an acidic gas such as carbon dioxide. The resulting overbased detergent comprises micelles of neutralized detergent surrounding a core of inorganic metal base (e.g., hydrated carbonates). Such overbased detergents may have a TBN of about 150 or greater, such as from about 150 to about 450 or more.
- Detergents that may be suitable for use in the present embodiments include oil-soluble neutral or overbased sulfonates, phenates, sulfurized phenates, and salicylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium. More than one metal may be present, for example, both calcium and magnesium. Mixtures of calcium and/or magnesium with sodium may also be suitable. Suitable metal detergents may be neutral or overbased calcium or magnesium sulfonates having a TBN of from 20 to 450 TBN, neutral or overbased calcium or magnesium phenates or sulfurized phenates having a TBN of from 50 to 450, and neutral or overbased calcium or magnesium salicylates having a TBN of from 130 to 350. Mixtures of such salts may also be used.
- The metal-containing detergent may be present in a lubricating composition in an amount of from about 0.01 wt % to about 3 wt %. As a further example, the metal-containing detergent may be present in an amount of from about 0.02 wt % to about 1 wt %. The metal-containing detergent may be present in a lubricating composition in an amount sufficient to provide from about 10 to about 800 ppm alkali and/or alkaline earth metal. As a further example, the metal-containing detergent may be present in a lubricating composition in an amount sufficient to provide from about 12 to about 755 ppm alkali and/or alkaline earth metal.
- The phosphorus-based wear preventative may comprise a metal dihydrocarbyl dithiophosphate compound, such as but not limited to a zinc dihydrocarbyl dithiophosphate compound. Suitable metal dihydrocarbyl dithiophosphates may comprise dihydrocarbyl dithiophosphate metal salts wherein the metal may be an alkali or alkaline earth metal, or aluminum, lead, tin, molybdenum, manganese, nickel, copper, or zinc.
- Dihydrocarbyl dithiophosphate metal salts may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohol or a phenol with P2S5 and then neutralizing the formed DDPA with a metal compound. For example, a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols. Alternatively, multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character. To make the metal salt, any basic or neutral metal compound could be used but the oxides, hydroxides and carbonates are most generally employed. Commercial additives frequently contain an excess of metal due to the use of an excess of the basic metal compound in the neutralization reaction.
-
- wherein R and R' may be the same or different hydrocarbyl radicals containing from 1 to 18, for example 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl, and cycloaliphatic radicals. R and R' groups may be alkyl groups of 2 to 8 carbon atoms. Thus, the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl. In order to obtain oil solubility, the total number of carbon atoms (i.e., R and R') in the dithiophosphoric acid will generally be about 5 or greater. The zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates.
- Other suitable components that may be utilized as the phosphorus-based wear preventative include any suitable organophosphorus compound, such as but not limited to, phosphates, thiophosphates, di-thiophosphates, phosphites, and salts thereof and phosphonates. Suitable examples are tricresyl phosphate (TCP), di-alkyl phosphite (e.g., dibutyl hydrogen phosphite), and amyl acid phosphate.
- Another suitable component is a phosphorylated succinimide such as a completed reaction product from a reaction between a hydrocarbyl substituted succinic acylating agent and a polyamine combined with a phosphorus source, such as inorganic or organic phosphorus acid or ester. Further, it may comprise compounds wherein the product may have amide, amidine, and/or salt linkages in addition to the imide linkage of the type that results from the reaction of a primary amino group and an anhydride moiety.
- Another suitable component is a 2-ethyl hexyl acid phosphate (2-EHAP).
- The phosphorus-based wear preventative may be present in a lubricating composition in an amount sufficient to provide from about 200 to about 2000 ppm phosphorus. As a further example, the phosphorus-based wear preventative may be present in a lubricating composition in an amount sufficient to provide from about 200 to about 600 ppm phosphorus.
- The phosphorus-based wear preventative may be present in a lubricating composition in an amount sufficient to provide a ratio of alkali and/or alkaline earth metal content (ppm) based on the total amount of alkali and/or alkaline earth metal in the lubricating composition to phosphorus content (ppm) based on the total amount of phosphorus in the lubricating composition of from about 0.025 to about 1.5 (ppm/ppm).
- Lubricating compositions and/or additive packages as described herein may comprise one or more emulsifying agents. Any suitable emulsifying agent may be used. An example of a series of suitable emulsifying agents is sold under the trade designation HYPERMER® and is available from Uniqema or its affiliated company Croda. These emulsifiers are described in
U.S. Pat. Nos. 4,504,276 ;4,509,950 ; and4,776,966 , herein incorporated by reference. Emulsifying agents are also known in the art by the term "surfactants", which terms are fully synonymous and interchangeable. - The emulsifying agents sold under the trade designation HYPERMER® are described as a block or graft co-polymer of the general formula (A-COO) m B, where m is an integer of at least 2 and, A is a polymeric component having a molecular weight of at least about 500 and is the residue of an oil-soluble complex mono-carboxylic acid of the general structural formula:
- Additional HYPERMER emulsifiers include the reaction product of a polyalk(en)yl succinic anhydride with a polar compound containing In the molecule at least one hydroxyl or amino group. The preferred polyalk(en)yl succinic anhydride are poly (isobutenyl) succinic anhydrides having a molecular weight in the range of about 400 to about 5000. The preferred polar compound with which the anhydride is reacted may be a polyol such as ethylene glycol, propylene glycol, glycerol, trimethylol propane, pentaerythritol or sorbital; or with a polyamine, for example ethylene diamine, trimethylene diamine, hexamethylene diamine, dimethylaminopropylamine or diethylaminopropylamine or with a hydroxyamine for example monoethanolamine, diethanolamine, dipropanolamine, tris(hydroxymathyl)aminomethane or dimethylaminoethanol.
- Suitable emulsifiers may comprise molecules having repeating hydrophilic and hydrophobic units. They tend to occupy a stable position at the interface, producing emulsions of high stability and controllable droplet size. When positioned at the interface, the extensive interactions of the polymer ensure a superior colloidal stability against coagulation or coalescence. In the systems, the hydrophilic portion of the molecule acts as an anchor group in the water phase and the hydrophobic polymeric chain portion penetrates into the oil providing a static stabilization barrier preventing strong interaction between droplets. For efficient static stabilization, the chemical structure of the polymeric chain required is determined by compatibility with the non-aqueous medium to be used. In addition the polymeric chain must have a molecular weight designed to the give optimum-size steric stabilization barrier. In principle, an almost infinite number of polymeric structures are suitable as sterically stabilizing surfactants. These include the following five basic structures: PEG alkyds with a fatty acid hydrophobe and polyethylene glycol hydrophile; long chain alkylene hydrophobe and polyethylene glycol hydrophile; polyhydroxy fatty acid hydrophobe and polyethylene glycol hydrophile; polymethacrylate hydrophobe and alkoxy polyethylene glycol hydrophile; and long-chain alkylene hydrophobe and anionic/nonionic (various) hydrophile. Examples of suitable surfactants include one of or combinations of one or more of: Hypermer® B210, A70, B206, and B246. For example, Hypermer B210 may be suitable for use with a mineral oil base oil and as a further example, a blend of B210 and another emulsifier may be suitable for use with synthetic base oils. As a further example, a suitable surfactant may be one having an HLB (hydrophilic/lipophilic balance) of between about 3 to about 6.
- In some embodiments of the present disclosure, one or more extreme pressure agents may be included in the compositions. Extreme pressure agents may include a sulfur-containing compound. Suitable sulfur-containing extreme pressure additives include, but are not limited to, dihydrocarbyl polysulfides, sulfurized olefins, sulfurized fatty acid esters of both natural and synthetic origins, trithiones, sulfurized thienyl derivatives, sulfurized terpenes, sulfurized oligomers of C2-C8 monoolefins, and sulfurized Dieis-Alder adducts such as those disclosed in reissue
U.S. Pat. No. 27,331 , the disclosure of which is incorporated herein by reference. Specific examples include sulfurized polyisobutene, sulfurized isobutylene, sulfurized triisobutene, dicyclohexyl polysulfide, diphenyl and dibenzyl polysulfide, di-tert-butyl polysulfide and dinonyl polysulfide, among others. - Phosphorus-containing extreme pressure agents may also be used. Generally speaking there are two principal categories of phasphorus-containing extreme pressure agents: metal salts of phosphorus acids and metat-free phosphorus compounds. The metal salts are the oil-soluble salts of a metal such as copper, cadmium, calcium, magnesium, and most notably, zinc. and of a suitable acidic compound of phosphorus, such as a thiophosphoric acid, a dithiophosphoric acid, a trithiophosphoric acid, a tetrathiophosphoric acid or a complex acidic product formed by phosphosulfurizing a hydrocarbon such as one or more olefins or terpenes with a reactant such as phosphorus pentasulfide and hydrolyzing the resultant product. Methods of forming such metal salts are well known to those skilled in the art and are extensively described in the patent literature.
- The oil-soluble metal-free phosphorus-containing extreme pressure agents are for the most part partially or fully esterified acids of phosphorus. Such compounds include for example phosphates, phosphites, phosphonates, phosphonites, and their various sulfur analogs. Examples include monohydrocarbyl phosphates, monohydrocarbyl phosphates, monohydrocarbyl mono-, di-, tri-, and tetrathiophosphites, monohydrocarbyl mono-, di-, tri-, and tetrathiophosphates, dihydrocarbyl phosphates, dihydrocarbyl phosphates, dihydrocarbyl mono-, di-, tri-, and tetrathiophosphites, dihydrocarbyl mono- di-, tri-, and tetrathiophosphates, trihydrocarbylphosphites, trihydrocarbylphosphates, trihydrocarbyl mono-, di-, tri-, and tetrathiophosphites, trihydrocarbyl mono-, di-, tri-, and tetrathiophosphates, the various hydrocarbyl phosphonates and thiophosphonates, the various hydrocarbyl phosphonites and thiophosphonites, and analogous oil-soluble derivatives of polyphosphoric and polythiophosphoric acids, and many others. A few specific examples of such compounds are tricresyl phosphate, tributyl phosphite, triphenyl phosphite, tri-(2-ethylhexyl) phosphate, dihexyl thiophosphite, diisooctyl butylphosphonate, tricyclohexyl phosphate, cresyl diphenyl phosphate, tris(2butoxyethyl) phosphite, diisapropyl dithiophosphate, tris(tridecyl)tetrathio-phosphate, bis(2-chloroethyl) phosphate, and like compounds.
- In one embodiment, the sulfur-containing extreme pressure agent is at least one dimercaptothiadiazole or an oil-soluble derivative thereof. Such materials provide extreme pressure and/or antiwear properties to lubricating compositions described herein.
- Dimercaptothiadiazoles which may be used in the lubricating compositions include, but are not limited to, 2,5-dimercapto-1,3,4-thiadiazoles (DMTD) of the following formula:
- Lubricating fluid compositions described herein may include DMTD or derivatives of DMTD as set forth in the foregoing formula. For example,
U.S. Pat. Nos. 2,719.125 ;2,719,126 ; and3,087,937 describe the preparation of various 2,5-bis(hydrocarbon dithio)-1,3,4-thiadiazoles. - The total amount of sulfur- and/or phosphorus-containing extreme pressure agent in the lubricating compositions described herein may range from about 0.01 to about 12.0 weight percent of the total lubricating composition, provided the active sulfur content of the lubricating composition may be greater than about 5,000 ppm. In another example, the active sulfur content of the lubricating composition may range from about 5,000 ppm to about 25,000 ppm, and as a further example, the active sulfur content of the lubricating composition may range from about 15,000 to about 25,000 ppm.
- In some embodiments, a foam inhibitor may form another component suitable for use in the compositions. Foam inhibitors may be selected from silicones, polyacrylates, surfactants, and the like. One suitable acrylic defoamer material is PC-2544 available from Cytec Surface Specialties. The amount of antifoam agent in the marine gear oil fluid formulations described herein may range from about 0.01 wt% to about 0.5 wt% based on the total weight of the formulation. As a further example, antifoam agent may be present in an amount from about 0.01 wt% to about 0.1 wt%.
- Some embodiments of the present disclosure may include one or more friction modifiers. Suitable friction modifiers may comprise, but are not limited to, imidazolines, amides, amines, succinimides, alkoxylated amines, alkoxylated ether amines, amine oxides, amidoamines, nitriles, betaines, quaternary amines, imines, amine salts, amino guanadine, alkanolamides, phosphonates, metal-containing compounds, and the like.
- The friction modifier may contain one or more phosphonates having the formula:
US 2004-0230068 and inUS 4,108,889 , herein incorporated by reference. - Suitable friction modifiers may contain hydrocarbyl groups that are selected from straight chain, branched chain, or aromatic hydrocarbyl groups or admixtures thereof, and may be saturated or unsaturated. The hydrocarbyl groups may be composed of carbon and hydrogen or hetero atoms such as sulfur or oxygen. The hydrocarbyl groups may range from about 12 to about 25 carbon atoms and may be saturated or unsaturated.
- Another example of suitable friction modifiers includes amides of polyamines. Such compounds can have hydrocarbyl groups that are linear, either saturated or unsaturated, or a mixture thereof and may contain from about 12 to about 25 carbon atoms.
- Further examples of suitable friction modifiers include alkoxylated amines and alkaxylated ether amines. Such compounds may have hydrocarbyl groups that are linear, either saturated, unsaturated, or a mixture thereof. They may contain from about 12 to about 25 carbon atoms. Examples include ethoxylated amines and ethoxylated ether amines.
- The amines and amides may be used as such or in the form of an adduct or reaction product with a boron compound such as a boric oxide, boron halide, metaborate, boric acid or a mono-, di- or tri-alkyl borate. Other suitable friction modifiers are described in
US 6,300,291 , herein incorporated by reference. - Suitable friction modifiers may comprise an organic, ashless (metal-free), nitrogen-free organic friction modifier. Such friction modifiers may include esters formed by reacting carboxylic acids and anhydrides with alkanols. Other useful friction modifiers generally include a polar terminal group (e.g. carboxyl or hydroxyl) covalently bonded to an oleophilic hydrocarbon chain. Esters of carboxylic acids and anhydrides with alkanols are described in
U.S. 4,702,850 . Another example of an organic ashless nitrogen-free friction modifier is glycerol monooleate (GMO). Other suitable friction modifiers are described inUS 6,723,685 , herein incorporated by reference. - Suitable friction modifiers may comprise one or more molybdenum compounds. The molybdenum compound may comprise an organo-molybdenum compound. For example, the molybdenum compound may comprise, but is not limited to, one or more of a molybdenum dialkyldithiocarbamate, a molybdenum dialkyldithiophosphate, a molybdenum dialkyldithiophosphinate, a molybdenum xanthate, a molybdenum thioxanthate, and mixtures thereof.
- The molybdenum compound may be mono-, di-, tri- or tetra-nuclear. The molybdenum compound may be an organo-molybdenum compound. The molybdenum compound may be selected from the group consisting of molybdenum dithiocarbamates (MoDTC), molybdenum dithiophosphates, molybdenum dithiophosphinates, molybdenum xanthates, molybdenum thioxanthates, molybdenum sulfides, a trinuclear organo-molybdenum compound and mixtures thereof.
- Additionally, the molybdenum compound may be an acidic molybdenum compound. Included are molybdic acid, ammonium molybdate, sodium molybdate, potassium molybdate, and other alkaline metal molybdates and other molybdenum salts, e.g., hydrogen sodium molybdate, MoOCl4, Mo02Br2, Mo2O3Cl8, molybdenum trioxide or similar acidic molybdenum compounds. Alternatively, the compositions can be provided with molybdenum by molybdenum/sulfur complexes of basic nitrogen compounds as described, for example, in
U.S. Pat. Nos. 4,263,152 ;4,285,822 ;4,283,295 :4,272,387 ;4,265,773 ;4,261,843 ;4,259,195 and4,259,194 ; andWO 94/06897 - Among the molybdenum compounds useful in the present compositions are organo-molybdenum compounds of the formulae: Mo(ROCS2)4 and Mo(RSCS2)4, wherein R is an organo group selected from the group consisting of alkyl, aryl, aralkyl, and alkoxyalkyl, generally of from 1 to 30 carbon atoms, and preferably 2 to 12 carbon atoms and most preferably alkyl of 2 to 12 carbon atoms. An example is the dialkyldithiocarbamates of molybdenum.
- Suitable molybdenum dithiocarbamates may be represented by the formula:
- Examples of suitable groups for each of R1, R2, R3, and R4 include 2-ethylhexyl, nonylphenyl, methyl, ethyl, n-propyl, iso-propyl, n-butyl, t-butyl, n-hexyl, n-octyl, nonyl, decyl, dodecyl, tridecyl, lauryl, oleyl, linoleyl, cyclohexyl and phenylmethyl, R1 to R4 may each have C6 to C18 alkyl groups. X1 and X2 may be the same, and Y1 and Y2 may be the same. X1 and X2 may both comprise sulfur atoms, and Y1 and Y2 may both comprise oxygen atoms.
- Further examples of molybdenum dithiocarbamates include C6 - C18 dialkyl or diaryldithiocarbamates, or alkyl-aryldithiocarbamates such as dibutyl-, diamyl-di-(2-ethylhexyl)-, dilauryl-, dioleyl-, and dicyclohexyl-dithiocarbamate.
- Another class of suitable organo-molybdenum compounds are trinuclear molybdenum compounds, such as those of the formula Mo3SkLnQz and mixtures thereof, wherein L represents independently selected ligands having organo groups with a sufficient number of carbon atoms to render the compound soluble or dispersible in the oil, n is from 1 to 4, k varies from 4 through 7, Q is selected from the group of neutral electron donating compounds such as water, amines, alcohols, phosphines, and ethers, and z ranges from 0 to 5 and includes non-stoichiometric values. At least 21 total carbon atoms may be present among all the ligands' organo groups, such as at least 25, at least 30, or at least 35 carbon atoms. Additional suitable molybdenum compounds are described in
US 6,723,685 , herein incorporated by reference. - The molybdenum compound may be present in a fully formulated marine lubricant in an amount to provide about 10 ppm to 200 ppm molybdenum. As a further example, the molybdenum compound may be present in an amount to provide about 75 to 125 ppm molybdenum.
- Additives used in formulating the compositions described herein may be blended into the base oil individually or in various sub-combinations. However, it may be suitable to blend all of the components concurrently using an additive concentrate (i.e., additives plus a diluent, such as a hydrocarbon solvent). The use of an additive concentrate may take advantage of the mutual compatibility afforded by the combination of ingredients when in the form of an additive concentrate. Also, the use of a concentrate may reduce blending time and may lessen the possibility of blending errors.
- The present disclosure provides novel lubricating oil blends specifically formulated for use in the gears of two-cycle or four-cycle outboard engines or the gears of an outdrive of an inboard/outboard marine drivetrain. Embodiments of the present disclosure may provide lubricating oils suitable for marine applications and having improvements in the following characteristics: antioxidancy, antiwear performance, rust inhibition, shear stability, water tolerance, air entrainment, and foam reducing properties.
- Lubricants according to the present disclosure may be suitable for use as marine gear oils. Further, the present lubricants may be suitable for lubricating various gear components of a marine engine, including, but not limited to, rotating driveshafts, universal joints or equivalent, a bevel gear set with both forward and reverse gears and driving pinion, a bevel gearset with only one pair of gears, a dog clutch used to select forward or reverse gear, and bearings that support radial and thrust loads from these components.
- Data from field samples of used marine gear oils, as well as manufacturer's requirements, indicating that water was introduced into the used marine gear oils created the need for a special emulsion test. The ASTM D1401 demulsion test, showing the separation of water from oil, provides a framework for the emulsion test, in which the thorough mixing of water with oil is evaluated.
- A test for emulsification, modified from the ASTM D 1401 demulsion test, was performed to evaluate satisfactory emulsification properties. In general, during the emulsification test, a quantity of a test fluid and a quantity of one of distilled water, seawater, or synthetic seawater is combined and mechanically mixed in a graduated cylinder and held at a constant temperature, such as a temperature within the range of from about 30 °C to about 90 °C, for 24 hours ± 10 minutes. The graduated cylinder is then observed and measurements recorded of the volume of sample fluid, water, and emulsion layers present. If no water layer is present after about 24 hours, the sample fluid receives a score of 0 (zero), indicating complete emulsion after about 24 hours. If three mL of water has visibly separated then the sample fluid would receive a score of three (3) indicating that the fluid had failed to emulsify three mL of water.
- In a specific embodiment of the Emulsion Test, 20 mL of synthetic sea water was introduced into a graduated cylinder, followed by 60 mL of a test fluid sample. Synthetic sea salt was prepared according to ASTM D-1141-52, Formula A, Table 1, Section 4. The ASTM D1401 test apparatus was then used to thoroughly stir and mix the two dissimilar liquids into an emulsion while heating the contents of the graduated cylinder to a desired temperature of about 82 °C. After five minutes of stirring with the flat-bladed paddle, the paddle was removed and the graduated cylinder and its contents were placed in the heated oil bath and held at a temperature of about 82 °C for about 24 hours. At the end of about 24 hours, the test fluid sample and water emulsion was evaluated for the quantity of test fluid, water, and emulsion present. The maximum emulsion present was 80 mL. The maximum water present was 20 mL. A test fluid that provided no emulsibility would be observed to have 60 mL test fluid separation, 20 mL water separation, and zero mL emulsion separation. A test fluid that maintained the emulsion would have 80 mL emulsion, zero mL test fluid separation, and zero mL water separation. A satisfactory score on the Emulsion Test has less than about 5 mL of water separation. As another example, a satisfactory score on the Emulsion Test has less than about 1 mL of water separation. As another example, a satisfactory score on the Emulsion Test has about 0 mL of water separation.
- The test fluids and commercial fluids were subjected to a Four-Ball extreme pressure weld point test which was performed according to ASTM 2783, except the load intervals were diminished to 10 kgf to obtain more accurate values of the fluid performance. This test measures the ability of the lubricant to prevent the welding of a steel ball to three other steel balls under extremely high pressures. It is a simple test, commonly available in the lubrication industry. Higher extreme pressure weld points are desirable. For example, values below 200 kgf would indicate insufficient EP protection.
- The products of Test Fluid Sample A and Comparative Examples H, t, and K were tested for anti-scoring properties under high speed and shock conditions using a DANA model 44 hypoid rear axle by the L-42 Axle Shock Test method described in ASTM publication STP 512A (available at the ASTM International Test Monitoring website: http://www.astmimc.cmu.edu/). Test results, in Table I, are based on the scored area of the pinion and ring gears and a pass/fail grade is provided based on comparison to a reference oil formulation. The pass/fail criteria requires that there be less quantity of scoring on the ring and pinion gears than on the associated pass reference oil test.
- Six inventive test fluids were prepared and tested in the Emulsion test and the Four-Ball EP Weld Point Test. Further, five comparative test fluids, which are commercially available gear oils, were also tested in the Emulsion test and the Four-Ball EP Weld Point Test. Each inventive test fluid comprised the following base fluid: a surfactant, a sulfur-containing extreme pressure agent, a phosphorus-containing antiwear compound, a ZDDP antiwear compound, a molybdenum-containing friction modifier, an oil-soluble phosphonate friction modifier, at least one dispersant, at least one anti-foam agent, an antioxidant, at least one viscosity index improver, at least one pour point depressant, and a major amount of at least one base oil. The surfactant used comprised a HYPERMER® B210 surfactant available from Uniqema or its affiliated company Croda. The additive composition of the base fluid for the following examples was held constant for each test fluid, except that levels of metal-containing detergent were varied for each inventive test fluid. The fluids tested and results are described below.
- Test fluid sample A is an inventive test fluid that comprised about 0.022 wt% metal-containing detergent, about 28 total ppm alkali and/or alkali earth metal, and about 494 ppm phosphorus. The fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0.06 ppm/ppm. The fluid had a passing emulsification test result because it had 0 mL water separation and 80 mL emulsification. The fluid had a Four-Ball EP weld point at about 390 kgf and passed the L-42 shock test.
- Test fluid sample B is an inventive test fluid that comprised about 0.044 wt% metal-containing detergent, about 54 total ppm alkali and/or alkali earth metal, and about 495 ppm phosphorus. The fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0.11 ppm/ppm. The fluid had a passing emulsification test result because it had 0 mL water separation and 80 mL emulsification. The fluid had a Four-Ball EP weld point at about 390 kgf.
- Test fluid sample C is an inventive test fluid that comprised about 0.088 wt% metal-containing detergent, about 87 total ppm alkali and/or alkali earth metal, and about 495 ppm phosphorus. The fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0.18 ppm/ppm. The fluid had a passing emulsification test result because it had 0 mL water separation and 80 mL emulsification. The fluid had a Four-Ball EP weld point at about 380 kgf.
- Test fluid sample D is an inventive test fluid that comprised about 0.176 wt% metal-containing detergent, about 167 total ppm alkali and/or alkali earth metal, and about 499 ppm phosphorus. The fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0.33 ppm/ppm. The fluid had a passing emulsification test result because it had 0 mL water separation and 80 mL emulsification. The fluid had a Four-Ball EP weld point at about 380 kgf.
- Test fluid sample E is an inventive test fluid that comprised about 0.352 wt% metal-containing detergent, about 313 total ppm alkali and/or alkali earth metal, and about 502 ppm phosphorus. The fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0.62 ppm/ppm. The fluid had a passing emulsification test result because it had 0 mL water separation and 80 mL emulsification. The fluid had a Four-Ball EP weld point at about 400 kgf.
- Test fluid sample F is an inventive test fluid that comprised about 0.704 wt% metal-containing detergent, about 631 total ppm alkali and/or alkali earth metal, and about 499 ppm phosphorus. The fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 1.26 ppm/ppm. The fluid had a passing emulsification test result because it had 0 mL water separation and 80 mL emulsification. The fluid had a Four-Ball EP weld point at about 400 kgf.
- Test fluid comparative sample G is a commercially available 80W90 grade fluid that comprised about 5 total ppm alkali and/or alkali earth metal and about 364 ppm phosphorus. The fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0.01 ppm/ppm. The fluid had a failing emulsification test result because it had 20 mL water separation and 0 mL emulsification. The fluid had a Four-Ball EP weld point at about 230 kgf.
- Test fluid comparative sample H is a commercially available 85 grade fluid that comprised about 2612 total ppm alkali and/or alkali earth metal and about 332 ppm phosphorus. The fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 7.87 ppm/ppm. The fluid had a failing emulsification test result because it had 20 mL water separation and 0 mL emulsification. The fluid had a Four-Ball EP weld point at about 315 kgf and failed the L-42 shock test.
- Test fluid comparative sample I is a commercially available 75W90 synthetic fluid that comprised about 1 total ppm alkali and/or alkali earth metal and about 939 ppm phosphorus. The fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0 ppm/ppm. The fluid had a failing emulsification test result because it had 20 mL water separation and 0 mL emulsification. The fluid had a Four-Ball EP weld point at about 290 kgf and passed the L-42 shock test.
- Test fluid comparative sample J is a commercially available 80W90 grade fluid that comprised about 2 total ppm alkali and/or alkali earth metal and about 940 ppm phosphorus. The fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0 ppm/ppm. The fluid had a passing emulsification test result because it had about 0 mL water separation and 80 mL emulsification. The fluid had a Four-Ball EP weld point at about 290 kgf.
- Test fluid comparative sample K is a commercially available 80W90 grade fluid that comprised about 25 total ppm alkali and/or alkali earth metal and about 859 ppm phosphorus. The fluid had a ratio of alkali and/or alkali earth metal to phosphorus of about 0.03 ppm/ppm. The fluid had a passing emulsification test result because it had about 0 mL water separation and about 80 mL emulsification. The fluid had a Four-Ball EP weld point at about 315 kgf and failed the L-42 shock test.
Table I Test Fluid Sample Alkali or Alkaline Earth Metal/Phosphorus Ratio Emulsification Result* 4·Ball EP Weld Point [kgf] L-42 Shock Test A 0.06 Pass [0 mL water] 390 PASS B 0.11 Pass [0 mL water] 390 C 0.18 Pass [0 mL water] 380 D 0.33 Pass [0 mL water] 380 E 0.62 Pass [0 mL water] 400 F 1.26 Pass [0 mL water] 400 Comparative G 0.01 Fail [20 ml water] 230 Comparative H 7.87 Fail [20 ml water] 315 FAIL Comparative I 0.00 Fall [20 ml water] 290 PASS Comparative J 0.00 Pass [0 mL water] 290 Comparative K 0.03 Pass [0 mL water] 315 FAIL * A "fail" in the emulsification test is achieved when after 24 hours at 82 °C, 5 mL or greater synthetic seawater is visible. - As seen in the Table I, test fluid samples A-F, which have an alkali and/or alkali earth metal to phosphorus ratio ranging from about 0.06 to about 1.26 all passed the emulsification test. Further, not only did these samples provide passing emulsion test results, they are capable of achieving superior weld point test results compared to the comparative test fluids. The test fluid samples A-F provide weld point test results greater than about 3513 kgf. Further, surprisingly, the test fluid samples A-F provide weld point test results greater than about 375 kgf. None of the comparative samples were able to provide such superior extreme pressure weld points. Finally, in addition to the 4-ball EP weld point test, inventive test fluid Sample A was able to simultaneously pass an L-42 shock test and the water emulsification test.
- At numerous places throughout this specification, reference has been made to a number of U.S. Patents. All such cited documents are expressly incorporated in full into this disclosure as if fully set forth herein.
- Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the embodiments disclosed herein. As used throughout the specification and claims, "a" and/or "an" may refer to one or more than one. Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, percent, ratio, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about." Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
- The foregoing embodiments are susceptible to considerable variation in practice. Accordingly, the embodiments are not intended to be limited to the specific exemplifications set forth hereinabove. Rather, the foregoing embodiments are within the spirit and scope of the appended claims, including the equivalents thereof available as a matter of law.
- The patentees do not intend to dedicate any disclosed embodiments to the public, and to the extent any disclosed modifications or alterations may not literally fall within the scope of the claims, they are considered to be part hereof under the doctrine of equivalents.
- 1. A marine lubricant, comprising:
- a) a major amount of a base oil;
- b) at least one metal-containing detergent;
- c) at least one phosphorus-based wear preventative; and
- d) at least one surfactant agent.
- 2. The marine lubricant of embodiment 1 further comprising a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm), based an total mass of the lubricant, ranging from about 0.025 to about 9.5 (ppm/ppm).
- 3. The marine lubricant of embodiment 1 wherein the lubricant achieves a score of about 5 mL or less water separation in a water emulsion test.
- 4. The marine lubricant according to embodiment 1, wherein said at least one metal detergent is an overbased calcium phenate.
- 5. The marine lubricant according to embodiment 1, wherein said at least one phosphorus-based wear preventative comprises at least one zinc dihydrocarbyl dithiophosphate compound.
- 6. The marine lubricant according to embodiment 1, wherein said at least one surfactant agent comprises a block or graft co-polymer of the general formula (A-COO)mB, where m in an integer of at least 2 and, A is a polymeric component having a molecular weight of at least 500 and is the residue of an oil-soluble complex mono-carboxylic acid of the general structural formula:
- 7. The marine lubricant according to embodiment 5, wherein said composition contains from about 200 to about 2000 ppm phosphorus from the zinc dihydrocarbyl dithiophosphate compound.
- 8. The marine lubricant according to embodiment 7, wherein said composition contains from about 200 to 600 ppm phosphorus from the zinc dihydrocarbyl dithiophosphate compound.
- 9. The marine lubricant according to embodiment 1, wherein said composition contains from about 10 ppm to about 800 ppm metal from the metal-containing detergent.
- 10. The marine lubricant according to embodiment 1, further comprising at least one component selected from the group consisting of: an extreme pressure agent, an antiwear agent, a friction modifier, a dispersant, a defoamant, an antioxidant, a viscosity index improver, and a pour point depressant.
- 11. A gear component of a marine engine lubricated with the composition according to embodiment 1.
- 12. An additive composition suitable for use in a lubricant used in a marine environment, comprising:
- a) at least one metal-containing detergent;
- b) at least one phosphorus-based wear preventative; and
- c) at least one surfactant agent.
- 13. The additive composition of embodiment 12, further comprising a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm), based an total mass of the lubricant, ranging from about 0.025 to about 1.5 (ppm/ppm).
- 14. The additive composition of embodiment 12, wherein the lubricant achieves a score of about 5 mL or less water separation in a water emulsion test.
- 15. The additive composition according to embodiment 12, wherein said at least one metal detergent is an overbased calcium phenate.
- 16. The additive composition according to embodiment 12, wherein said at least one phosphorus-based wear preventative comprises at least one zinc dihydrocarbyl dithiophosphate compound.
- 17. The additive composition according to embodiment 12, wherein said at least one surfactant agent comprises a block or graft co-polymer of the general formula (A-COO)m,B, where m in an integer of at least 2 and, A is a polymeric component having a molecular weight of at least 500 and is the residue of an oil-soluble complex mono-carboxylic acid of the general structural formula:
- 18. The additive composition according to embodiment 12, further comprising at least one component selected from the group consisting of: an extreme pressure agent, an antiwear agent, a friction modifier, a dispersant, a defoamant, an antioxidant, a viscosity index improver, and a pour point depressant.
- 19. A method of making a lubricant suitable for use in marine applications, comprising:
- adding to a major amount of a base oil, a minor amount of an additive composition, comprising:
- a) at least one metal-containing detergent;
- b) at least one phosphorus-based wear preventative; and
- c) at least one surfactant agent.
- adding to a major amount of a base oil, a minor amount of an additive composition, comprising:
- 20. The method of embodiment 19, further comprising a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm), based an total mass of the lubricant, ranging from about 0.025 to about 1.5 (ppm/ppm).
- 21. The method of embodiment 19, wherein the lubricant achieves a score of about 5 mL or less water separation in a water emulsion test.
- 22. The method according to embodiment 19, wherein said at least one surfactant agent comprises a block or graft co-polymer of the general formula (A-COO)mB, where m in an integer of at least 2 and, A is a polymeric component having a molecular weight of at least 500 and is the residue of an oil-soluble complex mono-carboxylic acid of the general structural formula:
- 23. A method of lubricating a marine engine gear component, comprising:
- adding to the marine engine gear component a marine lubricant, comprising:
- a) a major amount of a base oil;
- b) at least one metal-containing detergent;
- c) at least one phosphorus-based wear preventative; and
- d) at least one surfactant agent; and
- operating the engine.
- adding to the marine engine gear component a marine lubricant, comprising:
- 24. The method of embodiment 23 further comprising a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm), based on total mass of the lubricant, ranging from about 0.025 to about 1.5.
- 25. The method of embodiment 23 wherein the lubricant achieves a score of about 5 mL or less water separation in a water emulsion test.
- 26. A method for improving the water tolerance of a gear oil suitable for use in marine applications, comprising combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent.
- 27. The method of embodiment 26 further comprising a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm), based on total mass of the lubricant, ranging from about 0.025 to about 1.5.
- 28. The method of embodiment 26, wherein the lubricant achieves a score of about 5 mL or less water separation in a water emulsion test.
- 29. A method for improving the extreme pressure properties of a gear oil suitable for use in marine applications, comprising combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent.
- 30. The method of embodiment 29, further comprising a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm), based a total mass of the lubricant, ranging from about 0.025 to about 1.5.
- 31. The method of embodiment 30, wherein the lubricant achieves a score of greater than about 350 kgf in an extreme pressure weld point test.
- 32. The method according to embodiment 31, wherein the lubricant achieves a score of greater than about 375 kgf in an extreme pressure weld point test.
- 33. A marine lubricant comprising:
- a) a major amount of a base oil;
- b) an extreme pressure weld point improving effective amount of a phosphorus-based wear preventative; and
- c) wherein said marine lubricant achieves a four-ball extreme pressure weld point score of about 350 kgf or greater and a score of about 5 mL or less water separation in a water emulsion test.
- 34. The marine lubricant of embodiment 33, further comprising a metal-containing detergent.
- 35. The marine lubricant of embodiment 33, further comprising at least one surfactant agent.
- 36. A marine lubricant comprising:
- a) a major amount of a base oil;
- b) a phosphorus-based wear preventative; and
- c) wherein said marine lubricant achieves a four-ball extreme pressure weld point score of about 350 kgf or greater, a passing L-42 score, and a score of about 5 mL or less water separation in a water emulsion test.
Claims (19)
- An additive composition suitable for use in a lubricant used in a marine environment, comprising:a) at least one metal-containing detergent;b) at least one phosphorus-based wear preventative; andc) at least one surfactant agent.
- The additive composition according to claim 1, wherein said at least one metal detergent is an overbased calcium phenate.
- The additive composition according to claim 1 or 2, wherein said at least one phosphorus-based wear preventative comprises at least one zinc dihydrocarbyl dithiophosphate compound.
- The additive composition according to any one of claims 1 to 3, wherein said at least one surfactant agent comprises a block or graft co-polymer of the general formula (A-COO)m,B, where m in an integer of at least 2 and, A is a polymeric component having a molecular weight of at least 500 and is the residue of an oil-soluble complex mono-carboxylic acid of the general structural formula:
- The additive composition according to any one of claims 1 to 4, further comprising at least one component selected from the group consisting of: an extreme pressure agent, an antiwear agent, a friction modifier, a dispersant, a defoamant, an antioxidant, a viscosity index improver, and a pour point depressant.
- A marine lubricant, comprising:a major amount of a base oil;and an additive composition according to any one of claims 1 to 5.
- The marine lubricant of claim 6 further comprising a ratio of alkali and/or alkaline earth metal content (ppm) to phosphorus content (ppm), based an total mass of the lubricant, ranging from about 0.025 to about 1.5 (ppm/ppm).
- The marine lubricant of claim 6 or 7 wherein the lubricant achieves a score of about 5 mL or less water separation in a water emulsion test.
- The marine lubricant according to any one of claims 6 to 8, wherein said composition contains from about 200 to about 2000 ppm, preferably from about 200 to 600 ppm phosphorus from the zinc dihydrocarbyl dithiophosphate compound.
- The marine lubricant according to any one of claims 1 to 9, wherein said composition contains from about 10 ppm to about 800 ppm metal from the metal-containing detergent.
- The lubricant according to any one of claims 6 to 10, wherein the lubricant achieves a score of greater than about 350 kgf, preferably of greater than about 375 kgf in an extreme pressure weld point test.
- The lubricant according to any one of claims 6 to 11, wherein the lubricant achieves a passing L-42 score.
- A method of making a lubricant according to any one of claims 6 to 12 suitable for use in marine applications, comprising:adding to a major amount of a base oil, a minor amount of an additive composition, comprising:a) at least one metal-containing detergent;b) at least one phosphorus-based wear preventative; andc) at least one surfactant agent.
- Use of the composition according to any one of claims 1 to 5 or of the lubricant according to any one of claims 6 to 12 to lubricate a gear component of a marine engine.
- Use according to claim 14, comprisingadding to the marine engine gear component a marine lubricant according to any one of claims 6 to 12; andoperating the engine.
- A method according to claim 13 for improving the water tolerance of a gear oil suitable for use in marine applications, comprising combining a major amount of a base oil with at least one metal-containing detergent, at least one phosphorus-based wear preventative, and at least one surfactant agent.
- A marine lubricant comprising:a) a major amount of a base oil;b) an extreme pressure weld point improving effective amount of a phosphorus-based wear preventative; andc) wherein said marine lubricant achieves a four-ball extreme pressure weld point score of about 350 kgf or greater and a score of about 5 mL or less water separation in a water emulsion test; wherein the phosphorus-based wear preventative is as defined in any one of claims 1, 3 or 9.
- The marine lubricant of claim 17, further comprising a metal-containing detergent, and/or at least one surfactant agent and optionally at least one compound as defined in claim 5; wherein the metal-containing detergent is as defined in any one of claims 1, 2 or 10 and wherein the surfactant agent is as defined in any one of claims 1 or 4.
- A marine lubricant comprising:a) a major amount of a base oil;b) a phosphorus-based wear preventative; andc) wherein said marine lubricant achieves a four-ball extreme pressure weld point score of about 350 kgf or greater, a passing L-42 score, and a score of about 5 mL or less water separation in a water emulsion test; wherein the phosphorus-based wear preventative is as defined in any one of claims 1, 3 or 9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US91527307P | 2007-05-01 | 2007-05-01 | |
US11/954,503 US20080280791A1 (en) | 2007-05-01 | 2007-12-12 | Lubricating Oil Composition for Marine Applications |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1990400A2 true EP1990400A2 (en) | 2008-11-12 |
EP1990400A3 EP1990400A3 (en) | 2010-08-04 |
Family
ID=39731090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08150713A Withdrawn EP1990400A3 (en) | 2007-05-01 | 2008-01-28 | Lubricating oil composition for marine applications |
Country Status (4)
Country | Link |
---|---|
US (1) | US20080280791A1 (en) |
EP (1) | EP1990400A3 (en) |
JP (1) | JP2008274284A (en) |
KR (1) | KR20080097352A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011031659A1 (en) * | 2009-09-14 | 2011-03-17 | The Lubrizol Corporation | Farm tractor lubricating composition with good water tolerance |
US8068218B2 (en) | 2008-04-13 | 2011-11-29 | Agilent Technologies, Inc. | Water in oil measurement using stabilizer |
WO2012070007A1 (en) | 2010-11-26 | 2012-05-31 | Total Raffinage Marketing | Engine lubricant composition |
WO2015160474A1 (en) * | 2014-04-18 | 2015-10-22 | Exxonmobil Research And Engineering Company | Method for improving antiwear performance and demulsibility performance |
EP3252130A1 (en) * | 2016-06-03 | 2017-12-06 | Infineum International Limited | Additive package and lubricating oil composition |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8207099B2 (en) * | 2009-09-22 | 2012-06-26 | Afton Chemical Corporation | Lubricating oil composition for crankcase applications |
US8586518B2 (en) | 2011-08-26 | 2013-11-19 | State Industrial Products Corporation | Biobased penetrating oil |
CN102604715A (en) * | 2012-02-09 | 2012-07-25 | 中山大学 | Composite lithium based lubricating grease composition and its preparation method |
US9897582B2 (en) * | 2012-10-26 | 2018-02-20 | Pratt & Whitney Canada Corp. | Method and system for failure prediction using lubricating fluid analysis |
JP6007318B2 (en) * | 2013-08-21 | 2016-10-12 | 三洋化成工業株式会社 | Water-soluble lubricant |
US10428293B2 (en) * | 2015-02-26 | 2019-10-01 | Dow Global Technologies Llc | Enhanced extreme pressure lubricant formulations |
GB201901031D0 (en) * | 2019-01-25 | 2019-03-13 | Croda Int Plc | Lubricant base stock |
CN113265295A (en) * | 2021-05-28 | 2021-08-17 | 上海尤希路化学工业有限公司 | Environment-friendly water-based gear broaching fluid with high lubrication and high cleaning rate |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US27331A (en) | 1860-02-28 | fuller | ||
US2719125A (en) | 1952-12-30 | 1955-09-27 | Standard Oil Co | Oleaginous compositions non-corrosive to silver |
US2719126A (en) | 1952-12-30 | 1955-09-27 | Standard Oil Co | Corrosion inhibitors and compositions containing same |
US3087937A (en) | 1961-03-22 | 1963-04-30 | Tesi Giorgio | Bis (perfluoromethyl) phosphinic nitride |
US4108889A (en) | 1976-11-19 | 1978-08-22 | The Procter & Gamble Company | Preparing alkane phosphonic acids and intermediates |
US4259195A (en) | 1979-06-28 | 1981-03-31 | Chevron Research Company | Reaction product of acidic molybdenum compound with basic nitrogen compound and lubricants containing same |
US4259194A (en) | 1979-06-28 | 1981-03-31 | Chevron Research Company | Reaction product of ammonium tetrathiomolybdate with basic nitrogen compounds and lubricants containing same |
US4261843A (en) | 1979-06-28 | 1981-04-14 | Chevron Research Company | Reaction product of acidic molybdenum compound with basic nitrogen compound and lubricants containing same |
US4263152A (en) | 1979-06-28 | 1981-04-21 | Chevron Research Company | Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same |
US4265773A (en) | 1979-06-28 | 1981-05-05 | Chevron Research Company | Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same |
US4272387A (en) | 1979-06-28 | 1981-06-09 | Chevron Research Company | Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same |
US4283295A (en) | 1979-06-28 | 1981-08-11 | Chevron Research Company | Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing said composition |
US4285822A (en) | 1979-06-28 | 1981-08-25 | Chevron Research Company | Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing the composition |
US4504276A (en) | 1983-03-24 | 1985-03-12 | Imperial Chemical Industries Plc | Emulsifying agents |
US4509950A (en) | 1983-03-24 | 1985-04-09 | Imperial Chemical Industries Plc | Emulsifying agents |
US4702850A (en) | 1980-10-06 | 1987-10-27 | Exxon Research & Engineering Co. | Power transmitting fluids containing esters of hydrocarbyl succinic acid or anhydride with thio-bis-alkanols |
US4776966A (en) | 1984-04-24 | 1988-10-11 | Imperial Chemical Industries Plc | Fluid compositions |
US4943672A (en) | 1987-12-18 | 1990-07-24 | Exxon Research And Engineering Company | Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403) |
WO1994006897A1 (en) | 1992-09-11 | 1994-03-31 | Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. | Fuel composition for two-cycle engines |
US5882505A (en) | 1997-06-03 | 1999-03-16 | Exxon Research And Engineering Company | Conversion of fisher-tropsch waxes to lubricants by countercurrent processing |
US6013171A (en) | 1998-02-03 | 2000-01-11 | Exxon Research And Engineering Co. | Catalytic dewaxing with trivalent rare earth metal ion exchanged ferrierite |
US6080301A (en) | 1998-09-04 | 2000-06-27 | Exxonmobil Research And Engineering Company | Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins |
US6096940A (en) | 1995-12-08 | 2000-08-01 | Exxon Research And Engineering Company | Biodegradable high performance hydrocarbon base oils |
US6103099A (en) | 1998-09-04 | 2000-08-15 | Exxon Research And Engineering Company | Production of synthetic lubricant and lubricant base stock without dewaxing |
US6165949A (en) | 1998-09-04 | 2000-12-26 | Exxon Research And Engineering Company | Premium wear resistant lubricant |
US6180575B1 (en) | 1998-08-04 | 2001-01-30 | Mobil Oil Corporation | High performance lubricating oils |
US6300291B1 (en) | 1999-05-19 | 2001-10-09 | Infineum Usa L.P. | Lubricating oil composition |
US6723685B2 (en) | 2002-04-05 | 2004-04-20 | Infineum International Ltd. | Lubricating oil composition |
US20040230068A1 (en) | 2003-05-16 | 2004-11-18 | Nubar Ozbalik | Process for manufacturing alkylphosphonate monoesters |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1195749A (en) * | 1966-12-19 | 1970-06-24 | Lubrizol Corp | Sulfur-Containing Cycloaliphatic Reaction Products and their use in Lubricant Compositions |
EP0000424B1 (en) * | 1977-07-12 | 1984-02-01 | Imperial Chemical Industries Plc | Linear or branched ester-ether block copolymers and their use as surfactants either alone or in blends with conventional surfactants |
US5633220A (en) * | 1994-09-02 | 1997-05-27 | Schlumberger Technology Corporation | High internal phase ratio water-in-oil emulsion fracturing fluid |
JP4011815B2 (en) * | 2000-02-14 | 2007-11-21 | シェブロンジャパン株式会社 | Lubricating oil composition for two-cycle crosshead diesel internal combustion engine and additive composition for lubricating oil composition |
US6933263B2 (en) * | 2002-05-23 | 2005-08-23 | The Lubrizol Corporation | Emulsified based lubricants |
US6642188B1 (en) * | 2002-07-08 | 2003-11-04 | Infineum International Ltd. | Lubricating oil composition for outboard engines |
US20050070447A1 (en) * | 2003-09-25 | 2005-03-31 | The Lubrizol Corporation | Ashless stationary gas engine lubricant |
US7776958B2 (en) * | 2004-06-30 | 2010-08-17 | Nalco Company | Inverse emulsion polymer and method of use thereof |
JP2006265345A (en) * | 2005-03-23 | 2006-10-05 | Sanyo Chem Ind Ltd | Lubricating oil for ship propulsor bearing |
-
2007
- 2007-12-12 US US11/954,503 patent/US20080280791A1/en not_active Abandoned
-
2008
- 2008-01-28 EP EP08150713A patent/EP1990400A3/en not_active Withdrawn
- 2008-04-30 JP JP2008118687A patent/JP2008274284A/en not_active Withdrawn
- 2008-04-30 KR KR1020080040682A patent/KR20080097352A/en not_active Abandoned
Patent Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US27331A (en) | 1860-02-28 | fuller | ||
US2719125A (en) | 1952-12-30 | 1955-09-27 | Standard Oil Co | Oleaginous compositions non-corrosive to silver |
US2719126A (en) | 1952-12-30 | 1955-09-27 | Standard Oil Co | Corrosion inhibitors and compositions containing same |
US3087937A (en) | 1961-03-22 | 1963-04-30 | Tesi Giorgio | Bis (perfluoromethyl) phosphinic nitride |
US4108889A (en) | 1976-11-19 | 1978-08-22 | The Procter & Gamble Company | Preparing alkane phosphonic acids and intermediates |
US4259195A (en) | 1979-06-28 | 1981-03-31 | Chevron Research Company | Reaction product of acidic molybdenum compound with basic nitrogen compound and lubricants containing same |
US4259194A (en) | 1979-06-28 | 1981-03-31 | Chevron Research Company | Reaction product of ammonium tetrathiomolybdate with basic nitrogen compounds and lubricants containing same |
US4261843A (en) | 1979-06-28 | 1981-04-14 | Chevron Research Company | Reaction product of acidic molybdenum compound with basic nitrogen compound and lubricants containing same |
US4263152A (en) | 1979-06-28 | 1981-04-21 | Chevron Research Company | Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same |
US4265773A (en) | 1979-06-28 | 1981-05-05 | Chevron Research Company | Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same |
US4272387A (en) | 1979-06-28 | 1981-06-09 | Chevron Research Company | Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same |
US4283295A (en) | 1979-06-28 | 1981-08-11 | Chevron Research Company | Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing said composition |
US4285822A (en) | 1979-06-28 | 1981-08-25 | Chevron Research Company | Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing the composition |
US4702850A (en) | 1980-10-06 | 1987-10-27 | Exxon Research & Engineering Co. | Power transmitting fluids containing esters of hydrocarbyl succinic acid or anhydride with thio-bis-alkanols |
US4509950A (en) | 1983-03-24 | 1985-04-09 | Imperial Chemical Industries Plc | Emulsifying agents |
US4504276A (en) | 1983-03-24 | 1985-03-12 | Imperial Chemical Industries Plc | Emulsifying agents |
US4776966A (en) | 1984-04-24 | 1988-10-11 | Imperial Chemical Industries Plc | Fluid compositions |
US4943672A (en) | 1987-12-18 | 1990-07-24 | Exxon Research And Engineering Company | Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403) |
WO1994006897A1 (en) | 1992-09-11 | 1994-03-31 | Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. | Fuel composition for two-cycle engines |
US6096940A (en) | 1995-12-08 | 2000-08-01 | Exxon Research And Engineering Company | Biodegradable high performance hydrocarbon base oils |
US5882505A (en) | 1997-06-03 | 1999-03-16 | Exxon Research And Engineering Company | Conversion of fisher-tropsch waxes to lubricants by countercurrent processing |
US6013171A (en) | 1998-02-03 | 2000-01-11 | Exxon Research And Engineering Co. | Catalytic dewaxing with trivalent rare earth metal ion exchanged ferrierite |
US6180575B1 (en) | 1998-08-04 | 2001-01-30 | Mobil Oil Corporation | High performance lubricating oils |
US6080301A (en) | 1998-09-04 | 2000-06-27 | Exxonmobil Research And Engineering Company | Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins |
US6165949A (en) | 1998-09-04 | 2000-12-26 | Exxon Research And Engineering Company | Premium wear resistant lubricant |
US6103099A (en) | 1998-09-04 | 2000-08-15 | Exxon Research And Engineering Company | Production of synthetic lubricant and lubricant base stock without dewaxing |
US6300291B1 (en) | 1999-05-19 | 2001-10-09 | Infineum Usa L.P. | Lubricating oil composition |
US6723685B2 (en) | 2002-04-05 | 2004-04-20 | Infineum International Ltd. | Lubricating oil composition |
US20040230068A1 (en) | 2003-05-16 | 2004-11-18 | Nubar Ozbalik | Process for manufacturing alkylphosphonate monoesters |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8068218B2 (en) | 2008-04-13 | 2011-11-29 | Agilent Technologies, Inc. | Water in oil measurement using stabilizer |
WO2011031659A1 (en) * | 2009-09-14 | 2011-03-17 | The Lubrizol Corporation | Farm tractor lubricating composition with good water tolerance |
CN102630249A (en) * | 2009-09-14 | 2012-08-08 | 卢布里佐尔公司 | Farm tractor lubricating composition with good water tolerance |
CN102630249B (en) * | 2009-09-14 | 2014-03-05 | 卢布里佐尔公司 | Farm tractor lubricating composition with good water tolerance |
AU2010292401B2 (en) * | 2009-09-14 | 2016-10-06 | The Lubrizol Corporation | Farm tractor lubricating composition with good water tolerance |
US9528072B2 (en) | 2009-09-14 | 2016-12-27 | The Lubrizol Corporation | Farm tractor lubricating composition with good water tolerance |
WO2012070007A1 (en) | 2010-11-26 | 2012-05-31 | Total Raffinage Marketing | Engine lubricant composition |
WO2015160474A1 (en) * | 2014-04-18 | 2015-10-22 | Exxonmobil Research And Engineering Company | Method for improving antiwear performance and demulsibility performance |
EP3252130A1 (en) * | 2016-06-03 | 2017-12-06 | Infineum International Limited | Additive package and lubricating oil composition |
US10640724B2 (en) | 2016-06-03 | 2020-05-05 | Infineum International Ltd. | Additive package and lubricating oil composition |
Also Published As
Publication number | Publication date |
---|---|
KR20080097352A (en) | 2008-11-05 |
EP1990400A3 (en) | 2010-08-04 |
JP2008274284A (en) | 2008-11-13 |
US20080280791A1 (en) | 2008-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080280791A1 (en) | Lubricating Oil Composition for Marine Applications | |
US9963655B2 (en) | Lubricating oil compositions | |
EP2952561B1 (en) | Lubricating oil compositions | |
EP1018539B1 (en) | Overbased metal detergents | |
EP2952564B1 (en) | Lubricating oil compositions | |
US9057039B2 (en) | Method of lubricating a tractor hydraulic | |
EP2952562B1 (en) | Lubricating oil compositions | |
CA3134364A1 (en) | Transmission fluid compositions for hybrid and electric vehicle applications | |
CN101298579A (en) | Lubricating oil composition for marine applications | |
EP2952563B1 (en) | Lubricating oil compositions | |
US20110067662A1 (en) | Lubricating oil composition for crankcase applications | |
EP2692840B1 (en) | Lubricating oil composition | |
EP2390306B1 (en) | A lubricating oil composition | |
EP2977436B1 (en) | Lubricating oil compositions | |
US20060111253A1 (en) | Lubricating compositions | |
US20120103299A1 (en) | Lubricating oil composition | |
EP1652908A1 (en) | Lubricating Compositions | |
EP2559748B1 (en) | Lubricating oil composition | |
EP2161326A1 (en) | Lubricating oil compositions | |
JP2024012125A (en) | Transmission lubricants containing molybdenum | |
US20120111299A1 (en) | Lubricating oil composition | |
US20090131292A1 (en) | Lubricating Oil Compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080128 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20120410 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120801 |