EP1882050A2 - Pulvermetallurgisch hergestellter, verschleissbeständiger werkstoff - Google Patents
Pulvermetallurgisch hergestellter, verschleissbeständiger werkstoffInfo
- Publication number
- EP1882050A2 EP1882050A2 EP06742765A EP06742765A EP1882050A2 EP 1882050 A2 EP1882050 A2 EP 1882050A2 EP 06742765 A EP06742765 A EP 06742765A EP 06742765 A EP06742765 A EP 06742765A EP 1882050 A2 EP1882050 A2 EP 1882050A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- wear
- resistant material
- powder
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 57
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 63
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 42
- 239000000956 alloy Substances 0.000 claims abstract description 42
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 31
- 239000011651 chromium Substances 0.000 claims abstract description 30
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 claims abstract description 24
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 23
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000011733 molybdenum Substances 0.000 claims abstract description 21
- 239000010936 titanium Substances 0.000 claims abstract description 20
- 239000010955 niobium Substances 0.000 claims abstract description 19
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 18
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 18
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 16
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052742 iron Inorganic materials 0.000 claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 11
- 239000010703 silicon Substances 0.000 claims abstract description 11
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 10
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 10
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 10
- 239000010937 tungsten Substances 0.000 claims abstract description 10
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract 6
- 239000011572 manganese Substances 0.000 claims abstract 6
- 239000000843 powder Substances 0.000 claims description 46
- 238000001816 cooling Methods 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 28
- 239000011265 semifinished product Substances 0.000 claims description 21
- 238000010791 quenching Methods 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 14
- 239000000155 melt Substances 0.000 claims description 14
- 230000000171 quenching effect Effects 0.000 claims description 14
- 238000001513 hot isostatic pressing Methods 0.000 claims description 12
- 239000007795 chemical reaction product Substances 0.000 claims description 8
- 239000002131 composite material Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 238000005496 tempering Methods 0.000 claims description 8
- 239000003921 oil Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 5
- 239000011156 metal matrix composite Substances 0.000 claims description 5
- 238000004663 powder metallurgy Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 239000007921 spray Substances 0.000 claims description 5
- 238000005056 compaction Methods 0.000 claims description 3
- 238000005242 forging Methods 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 238000009694 cold isostatic pressing Methods 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 claims description 2
- 238000001125 extrusion Methods 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 238000007751 thermal spraying Methods 0.000 claims description 2
- 238000003826 uniaxial pressing Methods 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 5
- 229910001339 C alloy Inorganic materials 0.000 claims 3
- 238000000889 atomisation Methods 0.000 claims 1
- 239000003595 mist Substances 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 description 25
- 239000010959 steel Substances 0.000 description 25
- 229910000734 martensite Inorganic materials 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 229910001566 austenite Inorganic materials 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 6
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 4
- 238000010583 slow cooling Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 241000775881 Haematopota pluvialis Species 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229910000735 Pm alloy Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 229910001037 White iron Inorganic materials 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005552 hardfacing Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000010094 polymer processing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
- C22C33/0285—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/56—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
Definitions
- the invention relates to a powder metallurgically produced, wear-resistant material made of an alloy, and to a method for producing the material according to the invention, its use and a powder material.
- Wear resistant alloys based on iron are widely used.
- the wear resistance of the hardness of the martensitic metal matrix and the content of hard carbides, nitrides or borides of the elements chromium, tungsten, molybdenum, vanadium, molybdenum, niobium or titanium is achieved.
- This group includes cold and high speed steels as well as white cast iron and hardfacing alloys.
- the starting powder of these materials is an alloyed powder that is produced by atomizing a melt.
- such powders are filled into thin sheet metal capsules which are compacted to a dense body after evacuation and seal welding in special autoclaves using hot isostatic pressing technique (HIP) at a temperature below the melting point and at an isostatic gas pressure of up to 2,000 bar.
- HIP hot isostatic pressing technique
- Subsequent hot forming (forging or rolling) converts the compacted capsules into semi-finished tool steel, which are available in different sizes on the market. From these semi-finished tools are generally made, which receive their hardness by a known as hardening heat treatment.
- Hardening consists of austenitizing and cooling at such a rate that predominantly hard martensite is formed. With increasing wall thickness of the workpiece, the required cooling rate in the core is no longer achieved and the high hardness of martensite can only be adjusted to a certain depth of the workpiece. It is referred to as Einhärtungstiefe. In this case, the core is not through hardened. A variety of powder compositions for wear resistant materials are known, but these are generally insufficient in terms of their through-hardenability for thick-walled composite parts.
- the HIP technique can be used not only in the production of semi-finished products made of powder metallurgy steel, but is also suitable for applying a layer made of powder with a thickness in the mm to cm range on a low-cost, usually tough steel substrate.
- This technology known in the English-speaking world as HIP cladding, is increasingly being used more frequently for the production of highly wear-stressed components used in processing technology and polymer processing.
- wear-resistant coating materials here u.a. atomized steel powders are used for which hard powder powders are sometimes added in view of high wear resistance. In this way, it is already possible today to provide workpieces with extremely wear-resistant layers, which exceed conventional wear components which are not produced by the powder-metallurgical method many times over.
- New HIP systems are being manufactured for ever larger components, which in turn increase their wall thickness. This results in the problem of lack of hardening for the heat treatment of large-walled composite components necessary after tapping.
- the aim of this heat treatment is the martensitic hardening of the coating material, which is largely consumed by wear during operation and therefore must be consistently hard. Because of the large risk of cracking and distortion in hard-containing alloys and abrupt cooling in water or oil, these cooling media precipitate, especially in the case of thick wall thicknesses, because of the associated high thermal stresses. Therefore, coating materials are required which can be converted into the hard martensite phase, which is necessary even for slower cooling of large composite components, eg in air, in vacuum furnaces with nitrogen pressure ⁇ 6 bar or in the HIP plant.
- the steel powders known today are unsuitable for this purpose, since they have been optimized for semi-finished products and workpieces of smaller wall thicknesses. It is therefore the object of the present invention to provide alloys for the production of materials which make it possible that their matrix can be converted into the hard, wear-resistant martensite even at very slow cooling.
- a wear-resistant material comprising an alloy comprising: 1, 5 - 5.5 wt .-% carbon, 0.1 - 2.0 wt .-% silicon, max. 2.0 wt.% Manganese, 3.5-30.0 wt.% Chromium, 0.3-10 wt.% Molybdenum, 0-10 wt.% Tungsten, 0.1-30 wt. % Vanadium, 0-12% by weight of niobium, 0.1-12% by weight of titanium, 1.3-3.5% by weight of nickel, remainder iron and production-related impurities, the content of carbon satisfying the following condition :
- T is H the hardening temperature.
- the austenite-stabilizing effect of the nickel makes it possible to convert the alloys into the hard, wear-resistant martensite even at very slow cooling. Since in addition to the nickel content for austenite stabilization, in particular the carbon is important, but the same is bound in different carbide grades in different levels, it must be related to the other alloying elements in view of the desired hardenability. In this case, the C content calculated in summands S1 and S2 stands for the proportion of carbon that is indissolubly bound in the various carbide types.
- Summand S3 represents a proportion of carbon which, with sufficient molybdenum content in the alloy, can be solved by choosing the austenitizing temperature in the metal matrix. As the hardening temperature increases, more molybdenum-containing carbides are dissolved. As a result, the austenite becomes richer in molybdenum and carbon which expand the austenite area and thereby increase the critical cooling rate.
- the material according to the invention can be hardened cost-effectively by known measures, wherein even thick-walled components are cured without increased costs.
- the wear-resistant material may consist of an alloy having the chemical composition: 1, 5 - 5.5 wt .-% carbon, 0.1 - 2.0 wt .-% silicon, max. 2.0 wt.% Manganese, 3.5-30.0 wt.% Chromium, 0.3-10 wt.% Molybdenum, 0-10 wt.% Tungsten, 0.1-30 wt. % Vanadium, 0-12% by weight of niobium, 0.1-12% by weight of titanium, 1.3-3.5% by weight of nickel, remainder iron and production-related impurities, the content of carbon satisfying the following condition :
- the proportion of vanadium in the alloy of the wear-resistant material may be less than 11, 5 wt .-%, preferably less than 9.5 wt .-%, particularly preferably less than 6.0 wt .-%. In this case, it is particularly preferred if the volume fraction of the vanadium carbide in the alloy is less than 18.5% by volume. Corresponding areas have proven to be particularly suitable in the practice of the invention.
- the alloy of the wear-resistant material 2.0 to 2.5 wt .-% carbon, max. 1, 0 wt .-% silicon, max. 0.6% by weight of manganese, 12.0 to 14.0% by weight of chromium, 1.0 to 2.0% by weight of molybdenum, 1.1 to 4.2% by weight of vanadium, 2, 0 - 3.5 wt .-% nickel, balance iron and unavoidable impurities include. This specific composition has proven to be particularly suitable in practice.
- the alloy may additionally comprise 1-6% by weight of Co.
- the alloy may additionally have 0.3 to 3.5 wt .-% N.
- the addition of nitrogen has been found to be advantageous.
- the proportion of nickel can be between 2.0 and 3.5%.
- a corresponding nickel content is particularly suitable, in particular for quenching the material in static air.
- the Ni content may be between 1.3 and 2.0%.
- An alloy with a corresponding proportion of nickel is particularly suitable for cooling by gas ⁇ 6 bar.
- a Ni content of 1.0 to 1.3% is suitable.
- a prerequisite is that in the metal matrix a minimum chromium content of 12% is solved.
- the summand S2 K is used for the summand S2 of the above equation, which takes into account the necessary chromium content.
- the wear-resistant materials can be produced by a method, wherein first a melt is produced and the melt is further processed by one of the following methods: atomizing the melt into a powder or spray-compacting the melt. Consequently, the material according to the invention can be produced by various processes, thus making it possible on the one hand to produce powders and, on the other hand, by using spray compacting to produce the most varied semi-finished products as well as end products.
- Another preferred embodiment comprises a production method in which first a melt is formed and then poured into a semifinished product and wherein the semifinished product is processed further to produce chips and / or powder.
- the powder can be compacted at high pressure and / or elevated temperature into a semifinished product or end product.
- Konppaktierclar offers this is exemplified by cold isostatic pressing, uniaxial pressing, extrusion, powder forging, hot isostatic pressing, diffusion and sintering sintering. In practice, it is thus possible to select a suitable method without limitation to produce a final product.
- the powder can also be further processed by thermal spraying.
- the semifinished product or an end product can be heated to the hardening temperature and then quenched.
- a quenching process may be selected from the group comprising quenching in an oil, salt or polymer bath, quenching in a fluidized bed or spray, low and high pressure gas quenching.
- the semifinished product or an end product may be heated to the hardening temperature and then cooled.
- the preferred methods for cooling include cooling in slightly agitated air, cooling in still air, furnace cooling under normal atmosphere or inert gas, cooling in a HIP plant.
- the quenching or cooling serves primarily for the purpose of curing.
- the cooling can be interrupted by an isothermal holding step (interrupted hardening).
- subsequent to the cooling from the curing temperature of a single or multiple tempering may be carried out in the temperature range of 150-750 0 C, so as to achieve a desired combination of properties of hardness and toughness.
- the material according to the invention is used as a powder.
- the material can be converted to a desired semifinished or final shape by a variety of different methods.
- This also includes the use form as a layer component of composite components, in particular as a matrix powder for hard-metal matrix composites (metal matrix composites).
- a field of application is the use of the wear-resistant material for the production of solid and hollow rolls.
- Corresponding rolls can be used, inter alia, for the purpose of comminution, briquetting and compaction of natural, chemical or mineral feedstuffs, in particular cement clinker, ore and rock.
- corresponding rollers for the purpose of Moving and transporting wear-promoting products are used, in particular of metallic rolled and forged products.
- full or segmented rings of the wear-resistant material can be arranged by shrinking on full or hollow rollers. This is a practice proven method of applying the rings.
- the wear-resistant material can be used for the production of thick-walled or compact components.
- Corresponding components can be used, inter alia, in the field of wear protection in the extraction and processing and transport of natural, chemical or mineral goods, as well as metallic goods, polymeric goods, and ceramic goods.
- the invention relates to a powder for producing a wear-resistant material, comprising: 1, 5 - 5.5 wt .-% carbon, 0.1 - 2.0 wt .-% silicon, max. 2.0 wt.% Manganese, 3.5-30.0 wt.% Chromium, 0.3-10 wt.% Molybdenum, 0-10 wt.% Tungsten, 0.1-30 wt. -% vanadium, 0 - 12 wt .-% niobium, 0.1 - 12 wt .-% titanium, 1, 3 - 3.5 wt .-% nickel, remainder iron and manufacturing impurities, wherein the content of carbon following condition Fulfills:
- the invention relates to a powder for producing a wear-resistant material, having the following chemical composition: 1, 5 - 5.5 wt .-% carbon, 0.1 - 2.0 wt .-% silicon, max. 2.0 wt.% Manganese, 3.5-30.0 wt.% Chromium, 0.3-10 wt.% Molybdenum, 0-10 wt. % Tungsten, 0.1-30% by weight vanadium, 0-12% by weight niobium, 0.1-12% by weight titanium, 1.3-3.5% by weight nickel, remainder iron and production-related impurities, the content of carbon satisfying the following condition:
- the powder can be used as a semi-finished product. This makes it possible, inter alia, that a customer transfers the semi-finished product to the desired final shape.
- Another field of application is the use of the powder in powder form or as semifinished product as a layer material or layer component of composite components.
- Yet another area of use is the use of the powder as a matrix powder for hard-metal-matrix composite elements.
- Corresponding hard material-metal matrix composite elements are particularly suitable for the production of semi-finished products and composite components.
- FIG 1 a and Figure 1 b time-temperature conversion diagrams of an alloy according to the invention (PM 1) and a commercially available PM steel
- FIG. 2 tempering tempering temperatures of an alloy according to the invention (PM 1) and of a commercially available PM steel (X230 CrVMo 13-4)
- FIG. 3 a shows the microstructure of a commercially available PM steel (X230CrVMo13-4)
- FIG. 3 b shows a micrograph of an alloy (PM) according to the invention.
- the heat treatment characteristics of hardenable steels and alloys are generally judged by time-temperature conversion charts (ZTU charts).
- the ZTU diagram shown in FIG. 1 is used to compare an alloy according to the invention with a commercially available powder metallurgical steel having the composition X230CrVMo13-4 (material no. 1.2380). Since the formation of martensite for the said group of materials is essential to the cooling needs of the hardening temperature (here 1,050 0 C) take place so quickly that the soft structural phases ferrite and pearlite are avoided in the coating material.
- the cooling rate of increased attention which is described in the heat treatment technology by the cooling time of 800 0 C to 500 0 C.
- the cooling parameter ⁇ is formed, which is noted as a numerical value for some cooling curves in FIG.
- the mode of action of the alloy according to the invention and in particular the addition of nickel and molybdenum can be described on the basis of the ZTU diagram in FIG. 1 b, which for an alloy variant PM 1 with 12.5% Cr, 3% Ni, 1.5% V, 2 % Mo, 2.5% C, 0.2% Ti, balance iron (X250CrNiVMo13-3-2-2) was determined.
- balance iron X250CrNiVMo13-3-2-2
- the pearlite field is disgusting and molybdenum addition has been shifted to the right on the logarithmic time axis and the beginning of the martensitic transformation (martensite start temperature) has been shifted downwards.
- the addition of nickel and molybdenum, in combination with high tempering temperature leads to an increase in retained austenite, as the martensite finish temperature is pushed lower than room temperature.
- FIG. 1 b has a macrohardness between 763 and 814 HV30 for such a cooling of the alloy PM 1 compared to the hardness of the conventional powder metallurgical steel of only 345 HV30. Consequently, considerably larger layer or wall thicknesses can also be through-cured in air, without having to resort to brittle quenching agents (Table 1).
- the vacuum hardening with pressure gas quenching, which is frequently used today, can be replaced by the much more cost-effective and moreover reliable cooling of still air.
- the alloys according to the invention open up the possibility of even martensitic hardening of thick-walled components in the case of the usually slow cooling of HIP temperature ( ⁇ approx. 130) (see FIG. 1 b). By this measure, the process of subsequent expensive vacuum curing can be completely saved. Since the cooling in many HIP systems can also be carried out under pressure, the risk of cracking, which increases with the hard phase content, can additionally be counteracted by isostatic pressure.
- Chromium, vanadium and molybdenum alloyed steels of sufficient C content can be secondarily cured on tempering above 500 ° C. This allows the transformation of the remaining retained austenite by repeated tempering in the range of the secondary hardness maximum.
- hardness initiation curves for the PM steel X230CrVMo13-4 and a variant PM1 alloyed according to claim 1 are shown in FIG. While the commercial powder metallurgical steel because of the desired fast Cooling was cured with ⁇ ⁇ 9 in oil, the steel PM1 according to the invention with a ⁇ of about 80 was cooled. Although in this case the starting hardness is slightly lower than in the conventional comparative steel because of high retained austenite contents, the same hardness as in the conventional steel is achieved by repeated tempering in the region of the secondary hardness maximum and the associated residual austenite transformation and special carbide precipitation.
- the microstructure of the conventional Ni-free steel X230CrVMo13-4 and the alloy of the present invention are similar in terms of carbide type, size and volume fraction. Corresponding structures of the corresponding commercially available steel and the alloy according to the invention are shown in FIG.
- Table 1 Maximum curable diameter of cylindrical bodies in mm when cooled in air and oil for a commercially available PM steel and an alloy variant according to the invention for selected cooling parameters ⁇ .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200632073A SI1882050T1 (sl) | 2005-04-29 | 2006-05-02 | S prašno metalurgijo izdelan, proti obrabi odporen material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005020081A DE102005020081A1 (de) | 2005-04-29 | 2005-04-29 | Pulvermetallurgisch hergestellter, verschleißbeständiger Werkstoff |
PCT/EP2006/004086 WO2006117186A2 (de) | 2005-04-29 | 2006-05-02 | Pulvermetallurgisch hergestellter, verschleissbeständiger werkstoff |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1882050A2 true EP1882050A2 (de) | 2008-01-30 |
EP1882050B1 EP1882050B1 (de) | 2016-04-13 |
Family
ID=36088287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06742765.8A Active EP1882050B1 (de) | 2005-04-29 | 2006-05-02 | Pulvermetallurgisch hergestellter, verschleissbeständiger werkstoff |
Country Status (6)
Country | Link |
---|---|
US (2) | US20080253919A1 (de) |
EP (1) | EP1882050B1 (de) |
DE (1) | DE102005020081A1 (de) |
DK (1) | DK1882050T3 (de) |
SI (1) | SI1882050T1 (de) |
WO (2) | WO2006117030A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3801958A4 (de) * | 2018-05-28 | 2021-04-14 | Damasteel AB | Zuschnitt für einen gemusterten damaszener-gegenstand |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE0600841L (sv) * | 2006-04-13 | 2007-10-14 | Uddeholm Tooling Ab | Kallarbetsstål |
US9162285B2 (en) | 2008-04-08 | 2015-10-20 | Federal-Mogul Corporation | Powder metal compositions for wear and temperature resistance applications and method of producing same |
US9546412B2 (en) | 2008-04-08 | 2017-01-17 | Federal-Mogul Corporation | Powdered metal alloy composition for wear and temperature resistance applications and method of producing same |
US9624568B2 (en) | 2008-04-08 | 2017-04-18 | Federal-Mogul Corporation | Thermal spray applications using iron based alloy powder |
SE533991C2 (sv) * | 2008-11-06 | 2011-03-22 | Uddeholms Ab | Förfarande för tillverkning av en kompoundprodukt med ett område med slitstark beläggning, en sådan kompoundprodukt och användningen av ett stålmaterial för åstadkommande av beläggningen |
DE102008064190A1 (de) * | 2008-12-22 | 2010-07-01 | Corodur Verschleiss-Schutz Gmbh | Verfahren zum Herstellen eines Pulvers |
AT507215B1 (de) | 2009-01-14 | 2010-03-15 | Boehler Edelstahl Gmbh & Co Kg | Verschleissbeständiger werkstoff |
KR101091839B1 (ko) * | 2009-03-10 | 2011-12-12 | 캐터필라정밀씰 주식회사 | 씰 제조용 합금주철, 씰 및 씰의 제조 방법 |
IT1395649B1 (it) * | 2009-07-31 | 2012-10-16 | Avio Spa | Procedimento di fabbricazione di componenti ottenuti per sinterizzazione di leghe co-cr-mo aventi migliorata duttilita' alle alte temperature |
MY164192A (en) * | 2011-01-31 | 2017-11-30 | William Sinclair Fifield Robin | Hardbanding alloy |
US8778259B2 (en) | 2011-05-25 | 2014-07-15 | Gerhard B. Beckmann | Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques |
RU2477200C1 (ru) * | 2011-07-01 | 2013-03-10 | Государственное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет" | Способ термической обработки спеченных изделий |
GB2552629B (en) | 2012-03-01 | 2018-03-07 | Phoenix Product Development Ltd | Toilet pan bodies |
US20150007704A1 (en) * | 2013-07-08 | 2015-01-08 | Branson Ultrasonics Corporation | Ultrasonic steel horn for tire cutting and method of manufacturing |
DE102014103555A1 (de) * | 2014-03-14 | 2015-09-17 | Rwe Power Ag | Formzeug aus pulvermetallurgischem Werkstoff |
CN103938112B (zh) * | 2014-04-10 | 2016-05-18 | 铜陵南江鑫钢实业有限公司 | 一种超高碳钢 |
CN103993217B (zh) * | 2014-04-23 | 2016-05-18 | 中建材宁国新马耐磨材料有限公司 | 大型破碎机锤头的制备方法 |
CN103981427B (zh) * | 2014-05-07 | 2017-01-18 | 中建材宁国新马耐磨材料有限公司 | 一种破碎机锤头及其制备方法 |
US9284631B2 (en) * | 2014-05-16 | 2016-03-15 | Roman Radon | Hypereutectic white iron alloys comprising chromium and nitrogen and articles made therefrom |
EP2975146A1 (de) * | 2014-07-16 | 2016-01-20 | Uddeholms AB | Kaltarbeitsstahl |
US9580777B1 (en) | 2016-02-08 | 2017-02-28 | Roman Radon | Hypereutectic white iron alloys comprising chromium, boron and nitrogen and articles made therefrom |
DE102016122673A1 (de) | 2016-11-24 | 2018-05-24 | Saar-Pulvermetall GmbH | Eisen-Kohlenstoff-Legierung sowie Verfahren zur Herstellung und Verwendung der Legierung |
RU2665643C1 (ru) * | 2018-03-02 | 2018-09-03 | Юлия Алексеевна Щепочкина | Сплав на основе железа |
CN109576604B (zh) * | 2019-01-30 | 2021-04-27 | 沈阳大陆激光工程技术有限公司 | 一种用于激光制造的抗冲击耐磨材料 |
CN113862575A (zh) * | 2021-09-29 | 2021-12-31 | 重庆长安汽车股份有限公司 | 一种铌钒复合微合金化热成形钢及其生产方法 |
CN114346238B (zh) * | 2022-01-14 | 2022-08-26 | 中国科学院兰州化学物理研究所 | 一种超高温自润滑抗磨复合材料及其制备方法和应用 |
US12084732B2 (en) | 2022-03-29 | 2024-09-10 | Townley Foundry & Machine Co., Inc. | Hypereutectic white iron alloy comprising chromium, boron and nitrogen and cryogenically hardened articles made therefrom |
CN115233220B (zh) * | 2022-08-04 | 2024-06-21 | 沈阳大陆激光工程技术有限公司 | 一种用于激光熔覆碳、硼共同强化的耐磨材料 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5411767B2 (de) | 1973-01-24 | 1979-05-17 | ||
JPS52141406A (en) * | 1976-05-21 | 1977-11-25 | Kobe Steel Ltd | Tool steel containing nitrogen made by powder metallurgy |
US4249945A (en) * | 1978-09-20 | 1981-02-10 | Crucible Inc. | Powder-metallurgy steel article with high vanadium-carbide content |
DE3508982A1 (de) * | 1985-03-13 | 1986-09-18 | Seilstorfer GmbH & Co Metallurgische Verfahrenstechnik KG, 8092 Haag | Stahlmatrix-hartstoff-verbundwerkstoff |
JP2777716B2 (ja) * | 1988-04-26 | 1998-07-23 | 株式会社小松製作所 | 焼結合金製フローティングシール及びその製造方法 |
JPH03257144A (ja) | 1990-03-07 | 1991-11-15 | Mitsubishi Materials Corp | 耐焼付性および耐摩耗性のすぐれたF↓e基焼結合金 |
US5238482A (en) * | 1991-05-22 | 1993-08-24 | Crucible Materials Corporation | Prealloyed high-vanadium, cold work tool steel particles and methods for producing the same |
US5458703A (en) * | 1991-06-22 | 1995-10-17 | Nippon Koshuha Steel Co., Ltd. | Tool steel production method |
DE4202828C2 (de) | 1992-01-31 | 1994-11-10 | Werner Dr Ing Theisen | Verwendung einer verschleißbeständigen Legierung |
JPH07166300A (ja) * | 1993-12-13 | 1995-06-27 | Kubota Corp | 高速度鋼系粉末合金 |
GB9404786D0 (en) | 1994-03-11 | 1994-04-27 | Davy Roll Company The Limited | Rolling mill rolls |
US5900560A (en) * | 1995-11-08 | 1999-05-04 | Crucible Materials Corporation | Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and method for producing the same |
JP3447031B2 (ja) * | 1996-01-19 | 2003-09-16 | 日立粉末冶金株式会社 | 耐摩耗性焼結合金およびその製造方法 |
FI109555B (fi) * | 1998-11-16 | 2002-08-30 | Trueflaw Oy | Menetelmä vikojen ja jäännösjännitysten tuottamiseksi |
AT410448B (de) * | 2001-04-11 | 2003-04-25 | Boehler Edelstahl | Kaltarbeitsstahllegierung zur pulvermetallurgischen herstellung von teilen |
US6916444B1 (en) * | 2002-02-12 | 2005-07-12 | Alloy Technology Solutions, Inc. | Wear resistant alloy containing residual austenite for valve seat insert |
JP2004238721A (ja) | 2003-02-10 | 2004-08-26 | Sanyo Special Steel Co Ltd | 耐食性に優れる高剛性鋼 |
-
2005
- 2005-04-29 DE DE102005020081A patent/DE102005020081A1/de not_active Withdrawn
-
2006
- 2006-02-10 WO PCT/EP2006/001247 patent/WO2006117030A1/de active Application Filing
- 2006-05-02 SI SI200632073A patent/SI1882050T1/sl unknown
- 2006-05-02 EP EP06742765.8A patent/EP1882050B1/de active Active
- 2006-05-02 WO PCT/EP2006/004086 patent/WO2006117186A2/de active Application Filing
- 2006-05-02 DK DK06742765.8T patent/DK1882050T3/en active
- 2006-05-02 US US11/912,829 patent/US20080253919A1/en not_active Abandoned
-
2012
- 2012-11-21 US US13/683,971 patent/US9410230B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2006117186A2 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3801958A4 (de) * | 2018-05-28 | 2021-04-14 | Damasteel AB | Zuschnitt für einen gemusterten damaszener-gegenstand |
Also Published As
Publication number | Publication date |
---|---|
US9410230B2 (en) | 2016-08-09 |
DK1882050T3 (en) | 2016-08-01 |
EP1882050B1 (de) | 2016-04-13 |
US20080253919A1 (en) | 2008-10-16 |
WO2006117186A3 (de) | 2007-02-01 |
US20130084462A1 (en) | 2013-04-04 |
WO2006117030A1 (de) | 2006-11-09 |
WO2006117186A2 (de) | 2006-11-09 |
DE102005020081A1 (de) | 2006-11-09 |
SI1882050T1 (sl) | 2016-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1882050B1 (de) | Pulvermetallurgisch hergestellter, verschleissbeständiger werkstoff | |
AT507215B1 (de) | Verschleissbeständiger werkstoff | |
EP3228724B1 (de) | Werkzeugstahl, insbesondere warmarbeitsstahl, und stahlgegenstand | |
DE69818138T2 (de) | Kaltarbeitswerkzeugstahlteilchen mit hoher Schlagfestigkeit aus Metallpulver und Verfahren zu seiner Herstellung | |
DE69814896T2 (de) | Stahl und wärmebehandeltes werkzeug, hergestellt in einem integrierten pulvermetallurgischem prozess und die nutzung eines solchen stahles für werkzeuge | |
DE1533275B1 (de) | Verfahren zur pulvermetallurgischen Herstellung von Hartlegierungen | |
EP3323902B1 (de) | Pulvermetallurgisch hergestellter, hartstoffpartikel enthaltender stahlwerkstoff, verfahren zur herstellung eines bauteils aus einem solchen stahlwerkstoff und aus dem stahlwerkstoff hergestelltes bauteil | |
DE1298293B (de) | Hochverschleissfeste, bearbeitbare und haertbare Sinterstahllegierung und Verfahren zu deren Herstellung | |
EP3169821B1 (de) | Kaltverarbeiteter werkzeugstahl | |
EP1274872B1 (de) | Verfahren zur herstellung eines stickstofflegierten, sprühkompaktierten stahls, verfahren zu seiner herstellung | |
DE69906782T2 (de) | Stahl, verwendung des stahls, daraus hergestelltes produkt und verfahren zu dessen herstellung | |
DE60019758T2 (de) | Pulvermetallurgisch hergestellter schnellarbeitsstahl | |
DE60002669T2 (de) | Hochfester pulvermetallurgischer werkzeugstahl und daraus hergestellter gegenstand | |
DE102011088234A1 (de) | Bauteil | |
DE60037575T2 (de) | Grosse lagerteile aus stahl | |
EP4018006A1 (de) | Werkzeugstahl für kaltarbeits- und schnellarbeitsanwendungen | |
EP3323903B1 (de) | Pulvermetallurgisch hergestellter stahlwerkstoff, verfahren zur herstellung eines bauteils aus einem solchen stahlwerkstoff und aus dem stahlwerkstoff hergestelltes bauteil | |
DE102010010321A1 (de) | Heißisostatisch gepresster Verbundkörper, Verfahren zu seiner Herstellung sowie dessen Verwendung | |
EP4000762B1 (de) | Verwendung eines stahlpulvers für eine additive fertigung eines stahlbauteils | |
DE69530129T2 (de) | Hochfeste gesinterte legierung und verfahren zu deren herstellung | |
DE102011079954A1 (de) | Bauteil und Verfahren zum Herstellen des Bauteils | |
AT407646B (de) | Bauteil aus einem verschleissfesten, schmelzmetallurgisch hergestellten werkstoff | |
DE102011079955A1 (de) | Stahl, Bauteil und Verfahren zum Herstellen von Stahl |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071010 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: THEISEN, WERNER Inventor name: PACKEISEN, ANDREAS Inventor name: BERNS, HANS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20090205 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KOEPPERN ENTWICKLUNGS GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151026 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KOEPPERN ENTWICKLUNGS-GMBH |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 790237 Country of ref document: AT Kind code of ref document: T Effective date: 20160415 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006014878 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KELLER AND PARTNER PATENTANWAELTE AG, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20160726 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160714 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160816 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006014878 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20170116 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160502 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20060502 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160413 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: KOEPPERN ENTWICKLUNGS-GMBH, DE Free format text: FORMER OWNER: KOEPPERN ENTWICKLUNGS-GMBH, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230523 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502006014878 Country of ref document: DE Owner name: KOEPPERN ENTWICKLUNGS-GMBH, DE Free format text: FORMER OWNER: KOEPPERN ENTWICKLUNGS-GMBH, 45529 HATTINGEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240521 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240325 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240527 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240602 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240522 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240529 Year of fee payment: 19 Ref country code: FI Payment date: 20240527 Year of fee payment: 19 Ref country code: SI Payment date: 20240418 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240521 Year of fee payment: 19 Ref country code: BE Payment date: 20240521 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240524 Year of fee payment: 19 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20240502 |